(12)特許協力条約に基づいて公然された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2004年7月1日 (01.07.2004)

(51)国際特許分類: H04B 1/59, G06F 17/40

(21)国際出願番号: PCT/JP2003/015827

(25)国際出願の言語: 日本語

(26)国際公開の言語: 日本語

(30)優先権データ:
特願2002-361782
特願2002-370673

(71)出願人 (米国を除く全ての指定国について): ブラザー工業株式会社 (BROTHER KOGYO KABUSHIKI KAIsha)

(72)発明者: および

(74)代理人: 池田 拓幸 (IKEDA,Takuya) 郵便番号 450-0002 愛知県名古屋市中村区名駅三丁目１５－１ 名古屋ダイヤビル2号館 池田国際特許事務所 Aichi (JP)

Title: COMMUNICATION SYSTEM, COMMUNICATION SYSTEM INQUIRY DEVICE, AND RESPONSE DEVICE

Abstract: Radio communication is performed between inquiry devices (2a to 2e). The frequency band of radio wave (communication wave) used for communication between inquiry devices (2a to 2e) is separated from the frequency band of the response wave reflected by modulating the inquiry wave transmitted from the inquiry device (2a to 2e) to response devices (3a to 3c), so that the frequency band of the response wave is nearer to the frequency of the inquiry wave than the frequency band of the communication wave. It is possible to easily modify the inquiry devices (2a to 2e) or add a new inquiry device and provide a communication system of beautiful appearance.

要約: 質問器2a〜2e間通信を無線で行う。そして、質問器2a〜2e間の通信に用いる電波（通信電波）の周波数帯域と、応答器3a〜3cに対し反射される応答電波の周波数帯域を分離、応答電波の周波数帯域が通信電波の周波数帯域より質問電波の周波数に近くなるようにする。質問器2a〜2eの配置の変更や増設が容易で、美的感覚に優れた通信システムが提供される。
(84) 指定国 (広域): ヨーロッパ特許 (DE, FR, GB).
添付公開書類:
一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。
明細書

通信システム、通信システムの質問器、及び応答器

技術分野

本発明は、質問器間や質問器と応答器の間で情報の送信、受信を行う通信システム、その通信システムの質問器、及び応答器に関する。

背景技術

従来、複数の質問器が近接して配置され、各質問器は他の質問器及びホストと有線で接続、制御され、近接する移動体を検知、識別する移動体検出システムが知られている（例えば、文献1参照）。また、複数の質問器及び応答器が設置される場合に、複数の質問器が所定の応答器に向けて同時に通信する場合に起こり得る干渉を防止するため、各質問器が異なる周波数利用帯を利用して応答器と通信する通信システムもよく知られている（例えば、文献2参照）。さらに、無線基地局間通信としては、F M（Frequency Modulation）方式、A M（Amplitude Modulation）方式、或いは、F S K（Frequency Shift Keying）方式、A S K（Amplitude Shift Keying）方式などの通信方式がよく使われるが、最近、周波数利用効率の良い通信方式として、複数のサブキャリアに分散させてデータを伝送するマルチキャリア方式であるO F D M（直交周波数分割多重調：Orthogonal Frequency Division Multiplex ）方式が脚光を浴び、利用されつつある（例えば、文献3参照。）。

ところが、各質問器間を有線のネットワークで接続した場合、配線が面倒であるため、設置場所が限定され、増設も容易ではなく、且つ、配線がいたるところに張り巡らされるため、配線が目立ち美観に乏しいものになっていた。これを解決するために、前記質問器と応答器間の通信と同様に、質問器間の通信も無線で行おうとすると、質問器間の通信と、質問器と応答器間の通信とが互いに干渉するという問題の発生が想定される。また、上記O F D M方式は周波数の利用効率の優れた有望な方式であることから、高速デジタル通信分野では実用化が進んで
いるが、他のシステムとの処理の共用化など、システム全体の効率化は未だ進んでいない。

【文献１】特開平6-68330号公報
【文献２】特許第2624815号公報
【文献３】特開平11-298438号公報

そこで、本発明は、質問器の配置の変更や増設が容易で、美観に優れた通信システム、及び通信システムの質問器を提供することを第1の目的とする。質問器間の通信、及び質問器と応答器間の通信の両方を無線で行っても、夫々が互いに干渉することができない通信システムの質問器、及び応答器を提供することを第2の目的とする。

発明の開示

請求の範囲第1項に記載の通信システムは、複数の質問器と、応答器とを備えた通信システムにおいて、各前記質問器と前記応答器との間に、各前記質問器から質問波を送信し、前記質問波を受信した応答器が前記質問波に所定の変調を行った反射波を前記質問器に返信することによって通信が行われ、前記質問器間では、交信波を利用することによって無線で通信が行われることを特徴とする。この請求の範囲第1項に係る発明によると、質問器間の通信を無線で行うため、質問器の配置の変更や増設が容易で、且つ、配線がなく美観にも優れている。

請求の範囲第2項に記載の通信システムは、前記第1項に記載の通信システムにおいて、前記反射波の周波数帯域と前記交信波の周波数帯域とが分離され、且つ、前記交信波の周波数帯域より前記反射波の周波数帯域が前記質問波の周波数に近いことを特徴とする。この請求の範囲第2項に係る発明によると、応答器によって反射される反射波の周波数帯域と、質問器間の通信に用いられる交信波の周波数帯域とが分離されているため、反射波と交信波とが干渉することを防ぐことができる。さらに、交信波の周波数帯域より反射波の周波数帯域が質問波の周波数に近くなるようにしているため、応答器が消費する電力を小さく抑えることができる。

請求の範囲第3項に記載の通信システムは、前記第2項に記載の通信システム
において、前記交信波の周波数帯域の最も前記質問波の周波数に近い周波数と前
記質問波の周波数との差が、前記反射波の周波数帯域の最も前記質問波の周波数
から離れた周波数と前記質問波の周波数との差の、実質的に2倍以上であること
を特徴とする。この請求の範囲第3項に係る発明によると、質問器間の通信で利
用される交信波が応答器で反射された場合であっても、質問波に対する反射波の
周波数帯域と交信波に対する反射波の周波数帯域が重なることがなくなる。こ
の結果、質問器と応答器との間の干渉を抑圧できるため通信の信頼性が高いもの
となるとともに、質問器と応答器との間の通信と、質問器間の通信とを同時に且
つ周波数の利用効率良く行うことが可能になる。

請求の範囲第4項に記載の通信システムは、前記第2項に記載の通信システム
において、前記複数の質問器のうち互いに無線で通信を行う2つの質問器の夫々
が送出する質問波の周波数の差が、前記反射波の周波数帯域の最も前記質問波の
周波数から離れた周波数と前記質問波の周波数との差の4倍と前記交信波の周波
数帯域幅とを加算して得られる値と実質的に等しいかそれより大きいことを特徴
とする。この請求の範囲第4項に係る発明によると、夫々の質問器が送出した質
問波に対する応答器における反射波と、交信波に対する応答器における反射波と、
交信波とが互いに重ならないようにすることが可能になる。この結果、質問器と
応答器との間の干渉を抑圧できるため通信及び質問器間の通信の信頼性が高いも
のになる。また、2つの質問器の夫々が送出する質問波の周波数の差が、反射波
の周波数帯域の最も質問波の周波数から離れた周波数と質問波の周波数との差の
4倍と交信波の周波数帯域幅とを加算して得られる値と実質的に等しくすると、
各質問器の周波数の利用効率を最も高くできる。

請求の範囲第5項に記載の通信システムは、前記第1項から第4項のいずれか
1項に記載の通信システムにおいて、同じ情報を有する前記交信波の周波数帯域
が前記質問波の周波数の両側の周波数領域に存在することを特徴とする。この請
求の範囲第5項に係る発明によると、同じ情報を有する交信波が質問波の両側に
存在するため、交信波の送信に関して切り換えが不要になり、隣接する2つ（以
上）の質問器に対して同時に送信することも可能となり、効率の良い通信ができ
る。
請求の範囲第6項に記載の通信システムは、第1項から第5項のいずれか1項に記載の通信システムにおいて、前記交信波がOFDM方式による変調がなされたものであることを特徴とする。この請求の範囲第6項に係る発明によると、変調方式としてOFDM方式を使用するため、一つの周波数帯の複数の変調方式に比べて、周波数帯域の有効活用が図られる。

請求の範囲第7項に記載の通信システムは、前記第6項に記載の通信システムにおいて、前記検波器は、OFDM信号を生成するOFDM信号生成手段と、前記OFDM信号生成手段によって生成された前記OFDM信号を主搬送波でアップコンバートして前記交信波とするミキサ手段と、前記ミキサ手段からの前記交信波と前記主搬送波を変調、或いは変調しないで得られる前記質問波を合成して送信波とする合成手段と、当該質問器が受信した受信波を検波する検波手段と、前記検波手段により検波された受信波をデジタル信号に変換するAD変換手段と、前記AD変換手段で変換された受信波を前記反射波と前記他の質問器からの交信波とに分離する受信波分離手段と、前記受信波分離手段で分離された前記反射波を復調する反射波復調手段と、前記受信波分離手段で分離された前記他の質問器からの交信波を復調する交信波復調手段を、を備えたことを特徴とする。この請求の範囲第7項に係る発明によると、質問波と交信波を同時に送信することが可能であるとともに、反射波と交信波を分離して復調することが可能であるため反射波と交信波を同時に受信できる質問器を実現できる。

請求の範囲第8項に記載の通信システムは、前記第7項に記載の通信システムにおいて、前記反射波復調手段と前記交信波復調手段は、フーリエ変換手段を共用していることを特徴とする。この請求の範囲第8項に係る発明によると、フーリエ変換手段を共用することによって効率のよい復調が可能となり質問器の構成を簡単にすることが可能になる。

請求の範囲第9項に記載の質問器は、前記第1項から第8項のいずれか1項に記載の通信システムを構成するためのものである。すなわち、その通信システムを構成する質問器を単体で提供するようにしてもよい。

請求の範囲第10項に記載の通信システムの質問器は、複数の質問器のどれかは応答器に対して主搬送波を送信し、応答器は受信した前記主搬送波を応答情報
信号で変調して反射波として返信するとともに、各前記質問器は他の質問器へ交信波を送信する通信システムの質問器であって、他の質問器へ送信する送信情報で前記応答情報信号とは周波数帯域の異なる送信情報信号を生成する送信情報信号生成手段と、前記送信情報信号生成手段からの送信情報信号で主搬送波を変調して送信情報信号変調波を生成する主搬送波変調手段と、前記主搬送波変調手段からの前記主搬送波及び前記送信情報信号変調波を含む交信波を送信する送信手段と、前記応答器において応答情報信号で変調がなされた反射波を受信し、他の質問器からの交信波を受信する受信手段を含むことを特徴とする。この請求の範囲第10項に係る発明によれば、応答器によって主搬送波を変調する応答情報信号とは周波数帯域の異なる送信情報信号を生成するようにしているため、質問器間の通信、及び質問器と応答器間の通信が互いに干渉することがなくなってしまい、両方の通信を同時に行うことが可能となる。また、質問器からの他の質問器へ送る送信情報信号の変調に質問器が応答器に対して送信する主搬送波を利用する構成においては、質問器の装置構成が簡単になるという利点がある。

請求の範囲第11項に記載の通信用システムの質問器は、前記第10項に記載の通信システムの質問器において、前記送信情報信号の周波数が前記応答情報信号の周波数より大きくならないように設定されていることを特徴とする。この請求の範囲第11項に係る発明によると、送信情報信号の周波数が応答情報信号の周波数より大きくなるように設定するため、送信情報信号の周波数が応答情報信号の周波数より小さくなるように設定する場合に比べ、応答情報信号の周波数を小さくすることができるので、応答器での消費電力を小さく抑えることが可能な質問器を提供できる。

請求の範囲第12項に記載の通信用システムの質問器は、前記第10項又は第11項に記載の通信用システムにおいて、前記受信手段が受信した受信波を前記主搬送波変調手段からの信号により復調する受信波復調手段と、前記受信波復調手段からの信号のうち前記応答器からの応答情報信号のみを通過させる第1フィルタ手段と、前記受信波復調手段からの信号のうち前記他の質問器からの送信情報信号のみを通過させる第2フィルタ手段とを、さらに備えたことを特徴とする。この請求の範囲第12項に係る発明によると、応答器からの応答情報信号のみを通
過させる第1フィルタ手段と他の質問器からの送信情報信号のみを通過させる第2フィルタ手段とを質問器が備えているため、他の質問器からの送信情報信号変調波を取り出して、それに含まれる情報を取得することが可能であるとともに、応答器からの反射波を取り出して、それに含まれる情報を取得することが可能になる。

請求の範囲第13項に記載の通信システムの応答器は、前記第10項に記載の質問器へ送信する応答情報で前記送信情報信号とは周波数帯域の異なる応答情報信号を生成する応答情報生成手段と、前記質問器から送信される主搬送波を前記応答情報信号で変調して反射波として返信する主搬送波反射手段を、備える応答器であって、前記応答情報信号の周波数が前記送信情報信号の周波数より小さくなるように設定されていることを特徴とする。この請求の範囲第13項に係る発明によると、応答情報信号の周波数が送信情報信号の周波数より小さくなるように設定するため、応答情報信号の周波数が送信情報信号の周波数より大きくならないように設定する場合に比えて、応答情報信号の周波数を小さくすることが可能なので、応答器での消費電力を小さく抑えることが可能になる。また、既に稼動しているバックスキャッタシステムなどに応答器を新規追加する場合など、応答器側の設定を行うだけで、質問器側の設定を変えずに前述した効果を得やすい場合に容易に行うことができる。

請求の範囲第14項に記載の通信システムの質問器は、複数の質問器の何れかは応答器に対して主搬送波を送信し、応答器は受信した前記主搬送波を応答情報信号で変調して反射波として返信するとともに、前記質問器は他の質問器へ交信波を送信する通信システムの質問器であって、他の質問器へ送信する送信情報信号で送信情報信号を生成する送信情報信号生成手段と、前記送信情報信号生成手段からの送信情報信号で主搬送波を変調して送信情報信号変調波を生成する主搬送波変調手段と、前記主搬送波変調手段からの前記主搬送波、及び周波数領域上で当該搬送波の両側に発生する前記送信情報信号変調波の波帯の一方向のみの側波帯を通過させるフィルタ手段と、前記フィルタ手段からの前記主搬送波及び前記側波帯交信波として送信する送信手段と、前記応答器において変調がなされた反射波を受信し、他の質問器からの交信波を受信する受信手段を、備えたこ
とを特徴とする。この請求の範囲第14項に係る発明によると、主搬送波と送信情報信号変調波の側波帯の一方のみを通過させるフィルタ手段を備えているため、質問器間の通信、及び質問器と応答器間の通信を同時に行うことが可能になる。また、質問器から他の質問器へ送る送信情報信号の変調に質問器が応答器に対しても信する主搬送波を利用する構成にしているため、質問器の装置構成が簡単になるという利点がある。

請求の範囲第15項に記載の通信システムの質問器は、前記第14項に記載の通信システムの質問器において、前記受信手段が受信した受信波のうち前記応答器からの反射波のみを通過させる第1受信波フィルタ手段と、前記受信手段が受信した受信波のうち前記他の質問器からの交信波のみを通過させる第2受信波フィルタ手段を、さらに備えたことを特徴とする。この請求の範囲第15項によると、応答器からの反射波のみを通過させる第1受信波フィルタ手段と他の質問器からの交信波のみを通過させる第2受信波フィルタ手段とを、さらに備えてい るため、他の質問器からの交信波と応答器からの反射波を同時に受信した場合であっても、夫々を確実に分離して夫々に含まれる情報を精度良く取得することが可能になる。

請求の範囲第16項に記載の通信システムの質問器は、前記第14項又は第15項に記載の通信システムの質問器において、前記送信手段は、応答器からの反射波が他の質問器からの交信波に干渉しないように、送信する主搬送波を所定の強度に設定するようにしたことを特徴とする。この請求の範囲第16項に係る発明によると、主搬送波の強度を応答器からの反射波が他の質問器からの交信波に干渉しないような強度に設定するため、送信情報信号の周波数帯域と応答情報信号の周波数帯域とが重なるように設定してもよく、この結果、両者の周波数を小さくでき、質問器での消費電力及び応答器での消費電力の双方を小さく抑えることが可能になる。

請求の範囲第17項に記載の通信システムの質問器は、前記第10項から第16項のいずれか1項に記載の通信システムの質問器において、前記質問器は、他の質問器から交信波を受信しているか否かを判定する交信波受信判定手段をさらに備えており、前記受信手段は、前記交信波受信判定手段によって前記他質問
器から交信ボを受信していると判定されている間、前記交信ボの送信を中止することを特徴とする。この請求の範囲第17項に係る発明によると、他の質問器からの交信ボを受信している間は交信ボの送信を中止するので、自身が送信する交信ボと、他の質問器が送信している交信ボ（自身が受信している交信ボ）が干渉するのを防止することができ、信頼性の高い通信を実現することができる。

請求の範囲第18項に記載の通信システムは、前記第1項から第8項のいずれか1項に記載の通信システムにおいて、前記複数の質問器のうち少なくとも1つの質問器が所定の通信回線を介して管理サーバに接続されており、相互に情報の通信が可能とされていることを特徴とする。この請求の範囲第18項に係る発明によると、通信回線に接続された質問器から送られてくる情報を管理サーバによって管理することができ、通信回線に接続された質問器を含む通信システムを一元管理することができる。

請求の範囲第19項に記載の通信システムは、前記第18項に記載の通信システムにおいて、前記通信回線に接続された質問器は、前記複数の質問器間における通信に関する情報及び各前記質問器と前記応答器との間における通信に関する情報を前記通信回線を介して前記管理サーバに送信する通信情報送信手段を備えたものであり、前記管理サーバは、前記通信回線に接続された質問器から送られてくる情報を受信して一元的に管理する通信情報管理手段を備えたものであることを特徴とする。この請求の範囲第18項に係る発明によると、複数の通信システムにおける通信に関する情報を夫々の通信システムに含まれる通信回線に接続された質問器から管理サーバに送信することで、その管理サーバによって複数の通信システムを一元的に管理することができる。

請求の範囲第20項に記載の通信システムは、前記第18項又は第19項に記載の通信システムにおいて、前記通信回線に接続された質問器は、隣接する前記複数の質問器に順次質問してそれら複数の質問器間における通信に関する情報及び各前記質問器と前記応答器との間における通信に関する情報を収集する通信情報収集手段を備えたものであり、前記通信情報送信手段は、前記通信情報収集手段により収集された情報を前記通信回線を介して前記管理サーバに送信することを特徴とする。この請求の範囲第20項に係る発明によると、各通信システムに
おける通信に関する情報をその通信システムに含まれる通信回線に接続された質問器によって効率的に収集することができる。

請求の範囲第２１項に記載の通信システムは、前記第１９項又は第２０項に記載の通信システムにおいて、前記複数の質問器は、それぞれ所定の店舗内に設置されたものであり、前記通信に関する情報は、それら複数の質問器が設置された店舗に関する店舗情報であることを特徴とする。この請求の範囲第２１項に係る発明によると、各店舗内に形成された通信システムによりその店舗に関する店舗情報を好適に管理することができる。

図面の簡単な説明

図１は、本発明の実施の形態に係る通信システムの構成例を示す図である。
図２は、図１の通信システムを構成する質問器の電気的構成を示すブロック図である。
図３は、図２に示したＤＳＰの一部の詳細を説明するためのブロック図である。
図４は、図１の通信システムを構成する応答器の電気的構成を示すブロック図である。
図５は、図１の通信システムに利用される電波の周波数配置を説明するための説明図である。
図６は、本発明の他の実施形態に係る通信システムのシステム構成を示す図である。
図７は、図６の通信システムを構成する質問器の電気的構成を示す図である。
図８は、図６の質問器を構成する装置の一部の出力を説明するための図である。
図９は、図６の通信システムを構成する応答器の電気的構成を示す図である。
図１０は、図６の通信システムを構成する質問器の処理内容の手順を示すフローチャートである。
図１１は、本発明の他の実施形態における通信システムのシステム構成を示す図である。
図１２は、図１１の通信システムを構成する質問器の電気的構成を示す図である。
図13は、図12の質問器を構成する装置の一部の出力を説明するための図である。

図14は、図6の通信システムを構成する質問器の処理内容の手順を示すフローチャートである。

図15は、図6の通信システムを構成する応答器が情報を挿入するタイムスロットを説明するための図である。

図16は、本発明の他の実施形態における通信システムのシステム構成を示す図である。

図17は、図16の通信システムを構成する質問器の電気的構成を示す図である。

図18は、図17の質問器に備えられたDSPの構成を説明する図である。

図19は、図16の通信システムを構成する管理サーバの電気的構成を示す図である。

図20は、図18の質問器が行う処理内容の手順を示すフローチャートである。

図21は、図19の管理サーバが行う処理内容の手順を示すフローチャートである。

発明を実施するための最良の形態

以下の本発明の実施の形態における通信システムについて図面を参照しつつ説明する。

【第1の実施形態】

まず、本発明の第1の実施形態における通信システムの構成について図1を参照しつつ説明する。図1は、本第1の実施形態における通信システムの構成例を示す図である。

通信システム1は、5台の質問器2a〜2eと、3台の応答器3a〜3cとを備えている。ネットワークに接続された質問器2aは種々のサービス処理を実施する処理機能を備えており、質問器2aから少なくとも1つ以上の所定の質問器に宛てた指令などの情報が隣接する質問器を経由して伝達されたり、質問器が得た所定の応答情報などの情報が隣接する質問器を経由して質問器2aにまで伝達
されたリなどして、様々なサービス処理が実施される。尚、図1では、5台の質問器2a〜2eと3台の応答器3a〜3cが図示されているが、我々の台数は通信システムの規模や使用環境によって任意に設定され得る。また、質問器2aはサービス処理機能を備えず、収集した情報を質問器間を経由して（図示はしてない）ネットワーク上の他の機器に送ってそこでサービス処理が行われても良い。このサービス処理は後述する第4の実施形態において詳しく説明する。

質問器2a〜2e及び応答器3a〜3cとの間の通信は、質問器2a〜2eから主搬送波が所定の情報で変調された質問波を送信し、この質問波を受信した応答器3a〜3cは、受信した質問波を所定の情報を（例えば、応答器を識別するために付与された当該応答器の識別番号（応答器ID））で変調した反射波（この反射波が応答波である。）を送信することによって行われる。また、質問器2a〜2e間の通信は、無線で行われ、送信側は、送信情報（例えば、応答器から直接取得した応答器IDと自身の質問器を識別するための識別番号（質問器ID）、隣接する質問器から受け取った応答器IDと応答器から応答器IDを受け取った質問器の質問器IDなど）を含んだ交信波（質問器間の無線通信で送受信される電波）を送信し、受信側は、この交信波を受信することによって行われる。尚、質問器2a〜2eは、主搬送波を変調せずにそのまま質問波として送信するようにしてもよい。

以下、図1に一例を示す通信システム1を構成する質問器2a〜2e、及び応答器3a〜3cの電気的構成を順に図面を参照しつつ説明する。

まず、質問器2aの電気的構成について図2を参照しつつ説明する。図2は、質問器2aの電気的構成を示すブロック図である。尚、質問器2b〜2eの電気的構成は質問器2aと実質的に同様であり、質問器2aの説明が適用できるため詳細は省略する。

質問器2aは、図2に示すように、DSP（デジタル信号演算処理装置：digital signal processor）21と、発振器22と、DAコンバータ23と、アップコンバータ24と、変調器25と、合波器26と、電力増幅器27と、サーキュレータ28と、低雑音増幅器（low noise amplifier：LNA）29と、ホモダイイン検波器30と、ADコンバータ31と、アンテナ32とから構成されている。
DSP 21は、本第1の実施形態では、OFDM信号発生部21aと、BS信号発生部21bと、分離部21cと、OFDM復調部21dと、BS複調部21eなどを備えている。

OFDM信号発生部21aは、OFDM信号を発生させるOFDM信号発生手段として機能するものであって、応答器や他の質問器から受け取った情報をOFDM(orthogonal frequency division multiplexing：直交周波数分割多重)変調方式で変調してOFDM信号を生成し、生成したOFDM信号をDAコンバータ23へ出力する。このOFDM変調方式では、周波数の異なる複数のキャリアが用いられ、本第1の実施形態で利用される複数のキャリアの周波数を、夫々、周波数fs1、fs2、...、fsn（fs1<fs2<...<fsn）とする。但し、質問器2b～2eにおいても同様の周波数を利用するものとする。尚、質問器2a～2eの夫々のキャリアの周波数を異なるように設定してもよい。

BS信号発生部21bは、BS信号を発生させるBS信号発生手段として機能するものであって、質問器2自身のID番号や後述する応答器における副搬送波のホッピングタイミング或いはホッピングパターン等の情報を含んだBS（back scatter）信号を生成し、生成したBS信号を変調器25へ出力する。

分離部21cは、上記ADコンバータ31からの受信波を所定の質問器からの質問波に対する応答器3a、3b、3cからの反射波と他の質問器からの交信波とに分離する受信波分離手段として機能するものであって、ADコンバータ31からのデジタル信号（アンテナ32で受信された電波）に対して隣接する質問器からの交信波に相当する信号と応答器からの応答波に相当する信号とに分離し、交信波に相当する信号をOFDM復調部21dへ、応答波に相当する信号をBS復調部21eへ出力する。OFDM復調部21dは、他の質問器2c、2dなどからの交信波を復調する交信波復調手段として機能するものであって、分離部21cからの信号を復調して隣接する質問器からの交信波に含まれる情報を取り出す。BS復調部21eは、応答器3a、3b、3cからの反射波を復調する反射波復調手段として機能するものであって、分離部21cからの信号を復調して応答器3a、3b、3cからの情報を取り出す。

発振器22は、900MHz、2.4GHz、或いは5GHzなどの周波数の
主搬送波を発振し、発振した主搬送波をアップコンバータ24、変調器25、及びホモダイナム検波器30へ出力する。但し、質問器2a～2eの発振器が発振する周波数は、夫々、相互に異なっている。尚、質問器2a、2b、2c、2d、2eの発振器によって発振される主搬送波の周波数を、夫々、周波数fca、fcb、fcc、fcd、fceとする。

DAコンバータ23は、DSP21のOFDM信号発生部21aから入力されるデジタル化されたOFDM信号をアナログ信号に変換し、アップコンバータ24へ出力する。アップコンバータ24は、そのデジタル化されたOFDM信号を主搬送波でアップコンバートして信波するミキサ手段或いはミキサ部として機能するものであって、DAコンバータ23でアナログ信号に変換されたOFDM信号を発振器22で発振された主搬送波でアップコンバートし、合波器26へ出力する。

質問器2aのアップコンバータ24から出力される信号の周波数は、図5に示すように、周波数fca-fsn、...、fca-fs1、fca-fs1、fca-fs2、...、fca-fsnとなる。但し、図5ではfca-fsn、...、fca-fs2、fca-fs1は省略している。

但し、質問器2bのアップコンバータから出力される信号の周波数は、周波数fcb-fsn、...、fcb-fs2、fcb-fs1、fcb-fs1、fcb-fs2、...、fcb-fsnとなる。また、質問器2cのアップコンバータから出力される信号の周波数は、周波数fcc-fsn、...、fcc-fs2、fcc-fs1、fcc-fs1、fcc-fs2、...、fcc-fsnとなる。

さらに、質問器2dのアップコンバータから出力される信号の周波数は、周波数fcd-fsn、...、fcd-fs2、fcd-fs1、fcd-fs1、fcd-fs2、...、fcd-fsnとなる。さらに、質問器2eのアップコンバータから出力される信号の周波数は、周波数fce-fsn、...、fce-fs2、fce-fs1、fce-fs1、fce-fs2、...、fce-fsnとなる。

変調器25は、質問波であるBS信号を振幅変調するBS信号変調手段或いはBS信号変調部として機能するものであって、DSP21のBS信号発生部21bから入力されるBS信号を振幅変調（amplitude shift keying:ASK）する。
ことにより、発振器２２から入力された主搬送波を変調し、合波器２６へ出力する。

合波器２６は、上記交信波と質問波を合成する合成手段あるいは信号合成部として機能するものであって、上記アップコンバータ２４からの信号と変調器２５からの信号を合成し、電力増幅器２７へ出力する。電力増幅器２７は、合波器２６からの信号を電力増幅し、サーチレータ２８へ出力する。サーチレータ２８は、電力増幅器２７から入力された信号をアンテナ３２へ供給し、又、アンテナ３２が受信した電波をＬＮＡ２９に供給することにより、出力信号と入力信号との分離を行う。サーチレータ２８を介してアンテナ３２に伝えられた信号はそのアンテナ３２から空中へ電波として放射される。

DSP２１のOFDM信号発生部２１ａからＤＡコンバータ２３、アップコンバータ２４、合波器２６、電力増幅器２７、サーチレータ２８を介して、アンテナ３２から放射される電波が、質問器間の通信に用いられる交信波である。また、DSP２１のＢＳ信号発生部２１ｂから変調器２５、合波器２６、電力増幅器２７、サーチレータ２８を介して、アンテナ３２から放射される電波が、質問器２ａと応答器３ａ～３ｃとの間の通信に用いられるための質問器２ａから応答器３ａ～３ｃへ送信される質問波である。

以上のことから分かるように、各質問器が隣接する質問器に対して送信する交信波の周波数帯域（以下、帯域と略す。）は、質問波の周波数の両側に存在し、質問器２ａでは交信波の帯域は周波数 \(f_{ca} - f_{sn} \sim f_{ca} - f_{s1} \) 、\(f_{ca} + f_{s1} \sim f_{ca} + f_{sn} \) で、質問波の周波数は周波数 \(f_{ca} \) となる。

同様に、質問器２ｂでは交信波の帯域は周波数 \(f_{cb} - f_{sn} \sim f_{cb} - f_{s1} \) 、\(f_{cb} + f_{s1} \sim f_{cb} + f_{sn} \) となり、質問波の周波数は周波数 \(f_{cb} \) となる。また、質問器２ｃでは交信波の帯域は周波数 \(f_{cc} - f_{sn} \sim f_{cc} - f_{s1} \) 、\(f_{cc} + f_{s1} \sim f_{cc} + f_{sn} \) となり、質問波の周波数は周波数 \(f_{cc} \) となる。さらに、質問器２ｄでは交信波の帯域は周波数 \(f_{cd} - f_{sn} \sim f_{cd} - f_{s1} \) 、\(f_{cd} + f_{s1} \sim f_{cd} + f_{sn} \) となり、質問波の周波数は周波数 \(f_{cd} \) となる。さらに、質問器２ｅでは交信波の帯域は周波数 \(f_{ce} - f_{sn} \sim f_{ce} - f_{s1} \) 、\(f_{ce} + f_{s1} \sim f_{ce} + f_{sn} \) となり、質問波の周波数は周波数
数f c eとなる。

LNA29は、サキュレータ28から入力されるアンテナ32が受信した質問器あるいは応答器からの受信信号を増幅し、ホモダイナック検波器30へ出力する。ホモダイナック検波器30は、LNA29で増幅された受信信号を発振器22から入力される主搬送波とミキシングしてホモダイナック検波し、ADコンバータ31へ出力する。ADコンバータ31は、ホモダイナック検波器30から入力されるアナログの信号をデジタル信号に変換し、DSP21の分離部21cへ出力する。

アンテナ32により接続する質問器からの交信波が受信されると、受信された交信波は、サキュレータ28、LNA29、ホモダイナック検波器30、ADコンバータ31、DSP21の分離部21cを介してDSP21のOFDM復調部21dへ出力され、そのOFDM復調部21dにおいて復調される。また、アンテナ32により応答器3a～3cからの応答波が受信されると、受信された応答波は、サキュレータ28、LNA29、ホモダイナック検波器30、ADコンバータ31、及びDSP21の分離部21cを介してDSP21のBS復調部21eへ出力され、そのBS復調部21eにおいて復調される。上記ホモダイナック検波器30は、質問器2aが受信した受信波を検波する検波手段あるいは検波部として機能し、上記ADコンバータ31は、その受信波をデジタル信号に変換するAD変換手段あるいはAD変換部として機能している。

ここで、図2の分離部21c、OFDM復調部21d、及びBS復調部21eの詳細の一例について図3を参照しつつ説明する。図3は、分離部21c、OFDM復調部21d、及びBS復調部21eの詳細の一例を説明するための電気的構成を示すブロック図である。

図2の分離部21c、OFDM復調部21d、及びBS復調部21eの詳細の一例は、図3に示すような、FIRフィルタ33、間引き器34、ポリフェーズフィルタ35、パッファ36、パッファ37、FFT部38、及びスイッチ39a、39bから構成されている。

ADコンバータ31の出力は、FIR(finite impulse response)フィルタ33に入力されるとともに、パッファ37に入力され、パッファ37でADコンバータ31の出力の値が直接蓄積される。そして、適宜、スイッチ39aによりパ
テッファ37とFFT部38とが接続されて、バッファ37に蓄積された信号がFFT部38へ出力される。

FIRフィルタ33に入力されたADコンバータ31の出力は、FIRフィルタ33で交信波を除去され、間引き器34によりサンプリングレートを低くし、フィルタバンク（filterbank）に用いられるポリフェーズフィルタ(poly phase filter)35を通過した後、バッファ36に蓄積される。そして、適宜、スイッチ39aによりバッファ36とFFT部38とが接続されて、バッファ36に蓄積された信号が適宜FFT部38へ出力される。

FFT部38はフィーリーフ変換手段あるいはフィーリーフ変換部として機能するものであり、ここにおいては、バッファ37からのデータすなわち時間関数であるために時間軸上に示される時間軸信号を高速フーリエ変換（Fast Fourier Transform：FFT）して周波数の関数であるために周波数軸上に示される周波数軸信号に変換することによりOFDM復調信号が得られ、OFDM復調信号がスイッチ39bを介して不図示のDSP21内の信号処理部へ出力され、信号処理部で解析される。また、図5において、応答器2a、2b、2cは、帯域Ba、Bbのうち何れかの副搬送波周波数f1〜fhを用いて応答する。ここで、さらに副搬送波はホッピングさせられるので、反射波は、fcb-fh〜fcb-f1及びfcb+f1〜fcb+fhの周波数をホッピングする。また、FFT部38において、バッファ36からのデータを高速フーリエ変換することにより、すなわち、ポリフェーズフィルタ35とFFT部38とでフィルタバンクを構成できるので、BS復調信号が各副搬送波ホッピング周波数に対し、同時に得られ、BS復調信号がスイッチ39bを介して不図示のDSP21内の信号処理部へ出力され、信号処理部で解析される。

前記信号処理部で解析されたBS復調信号を適切なフレームに分離して応答器ごとに仕分けし、さらに、応答器ごとに連絡することによって、復調し、応答器からの情報を取出す。ここで、BS復調信号はOFDM復調信号に比べてデータレートが低く、バッファ36のデータ量や蓄積速度も間引きにより小さくなる。これによりFFTを行う割合はOFDM復調時のFFTを行う割合よりも非常に小さく、FFT部38を共用し切り換えても使用しても、BS復調処理及びOFDM
復調処理の双方を十分な速度で行うことができる。FFT部３８の共用によりシステムの構成が簡単となり、処理の効率化が向上する。尚、OFDM復調時にはFFTにより周波数の低い部分に反射波部分が生じるが信号レベルが低いので、ここは無視してOFDMのキャリア周波数に相当する成分のみ復調信号として取り出せばよい。また、パッファ３７の前に反射波の周波数成分を除去するフィルタを追加してもよい。

次に、応答器３ａの電気的構成について図４を参照しつつ説明する。図４は、応答器３ａの電気的構成を示すブロック図である。尚、応答器３ｂ、３ｃの電気的構成は応答器３ａと実質的に同等であり、応答器３ａの説明が適用できるため詳細は省略する。

応答器３ａは、図４に示すように、変調器４１と、デジタル回路部４２と、アンテナ４３とを備えている。変調器４１では、アンテナ４３が受信した電波（帯間限２～２ｅの帯間波）が復調されて、デジタル回路部４２の後述するコントローラ４２ａへ出力される。また、変調器４１では、デジタル回路部４２の後述する搬送波変調器４２ｃで変調された搬送波により帯波波が変調され、その変調波が反射波としてアンテナ４３から送信される。この反射波が応答波になる。

デジタル回路部４２は、コントローラ４２ａと、搬送波発振器４２ｂと、搬送波変調器４２ｃと、から構成されている。コントローラ４２ａは、応答器４ａの制御を司るものである。搬送波発振器４２ｂでは、搬送波が発振され、発振された搬送波が搬送波変調器４２ｃへ出力される。搬送波変調器４２ｃでは、コントローラ４２ａに制御されることにより、必要に応じて、情報信号（例えば、応答器１Ｄ）等を用いた位相変調（Phase Shift Keying：PSK）により、搬送波発振器４２ｂから出力された搬送波が変調され、変調された搬送波が変調器４１へ出力される。但し、搬送波発振器４２ｂによって発振される搬送波の周波数は周波数ホッピングされており、最低ホッピング周波数を周波数ｆ１とし、最高ホッピング周波数を周波数ｆｈとする。尚、搬送波発振器４２ｂ及び搬送波変調器４２ｃは、コントローラ４２ａのクロックを９利用して、ソフト的に構成しても良い。また、搬送波の変調は、位相変調以外に、
振幅変調 (Amplitude Shift Keying: A S K) やいは周波数変調 (Frequency Shift Keying: F S K) としても良い。また、副搬送波発振器 42 b及び副搬送波
変調器 42 cは、コントローラ 42 a内に設けて入チップ化しても良い。
アンテナ 43において受信された質問器 2 a～2 eからの質問波は、変調器
41にて復調された後、デジタル回路部 42のコントローラ 42 aへ出力される。
これにより、コントローラ 42 aでは質問波を受信中であることが検知される。
質問波が受信中であることが検知されると、コントローラ 42 aにおける制御に
より、副搬送波変調器 42 cでは応答情報信号によって副搬送波発振器 42 bか
ら入力された副搬送波が変調され、変調された副搬送波は変調器 41へ出力さ
れる。変調器 41では、副搬送波変調器 42 cにおいて変調された副搬送波を
用いて受信中の質問波が変調され、アンテナ 43から応答波として送信される。

但し、質問器 2 aから質問波を受信した応答器 3 a～3 cが送信する応答波の
周波数帯域（以下、帯域と略す。）は、周波数 f c a-f h～周波数 f c a-f l 、及び周波数 f c a+f l～周波数 f c a+f hとなる。また、質問器 2 bか
ら質問波を受信した応答器 3 a～3 cが送信する応答波の帯域は、f c b-f h
～f c b-f l、及びf c b+f l～f c b+f hとなる。また、質問器 2 cか
ら質問波を受信した応答器 3 a～3 cが送信する応答波の帯域は、f c c-f h
～f c c-f l、及びf c c+f l～f c c+f hとなる。また、質問器 2 dか
ら質問波を受信した応答器 3 a～3 cが送信する応答波の帯域は、f c d-f h
～f c d-f l、及びf c d+f l～f c d+f hとなる。また、質問器 2 eか
ら質問波を受信した応答器 3 a～3 cが送信する応答波の帯域は、f c e-f h
～f c e-f l、及び周波数 f c e+f l～周波数 f c e+f hとなる。

以下、通信システム1において通信に利用される電波の周波数配置の関係につ
いて図5を参照しつつ説明する。図5は、通信システム1において利用される電
波の周波数配置の関係を説明するための説明図である。

帯域A（周波数 f c a）は、質問器 2 aによって送信される質問波の周波数を
示している。

帯域A a（周波数 f c a-f h～周波数 f c a-f l）及び帯域A b（周波数
f c a+f l～周波数 f c a+f h）は、応答器 3 a～3 cによって質問器 2 a
から送信される質問波が変調反射されて送信される応答波の帯域を示している。

帯域AB（周波数 f cb - f s n ～ 周波数 f cb - f s 1 ；周波数 f ca + f s 1 ～ 周波数 f ca + f s n ）は、質問器2 a と質問器2 b との間の通信で利用される交信波の帯域を示している。

帯域B（周波数 f cb ）は、質問器2 b によって送信される質問波の周波数を示している。

帯域Ba（周波数 f cb - f h ～ 周波数 f cb - f l ）及び帯域Bb（周波数 f cb + f l ～ 周波数 f cb + f h ）は、応答器3 a ～ 3 c によって質問器2 b から送信される質問波が変調反射されて送信される応答波の帯域を示している。

帯域BC（周波数 f cb + f s 1 ～ 周波数 f cb + f s n ；周波数 f cc - f s n ～ 周波数 f cc - f s 1 ）は、質問器2 b と質問器2 c との間の通信で利用される交信波の帯域を示している。

帯域C（周波数 f cc ）は、質問器2 c によって送信される質問波の周波数を示している。

帯域Ca（周波数 f cc - f h ～ 周波数 f cc - f l ）及び帯域Cb（周波数 f cc + f l ～ 周波数 f cc + f h ）は、応答器3 a ～ 3 c によって質問器2 c から送信される質問波が変調且つ反射されて送信される応答波の帯域を示している。

帯域ABから分かるように、隣接する質問器2 a と質問器2 b とが同時に通信しないで交互に通信するなどして通信する場合は、交信波の帯域を共用できるため、質問器2 b が送信する交信波の帯域と、質問器2 a が送信する交信波の帯域が重なるように、質問器2 a の質問波の周波数 f ca 、質問器2 b の質問波の周波数 f cb 、最低キャリア周波数 f s 1 、及び最高キャリア周波数 f s n を設定している。同様に、隣接する質問器2 b ～ 2 e 間の通信に用いられる隣接する質問器が送信する交信波が互いに重なるように、各周波数が設定されている。

帯域Abと帯域ABから分かるように、応答器3 a ～ 3 c によって質問器2 a から送信される質問波が変調反射されて送信される応答波の帯域（図中Ab）と、質問器2 a と質問器2 b との間の通信で利用される交信波の帯域（図中AB）とが重ならないように、最低キャリア周波数 f s 1 、最高キャリア周波数 f s n 、
最低ホッピング周波数 f_1 及び最高ホッピング周波数 f_h が設定されている。
同様に、質問器 $2b, 2c, 2d, 2e$ の質問波に対応答器 $3a \sim 3c$ の応答波の帯域と、その質問波を送信した質問器が送信する交信波の帯域とが重ならないように、最低キャリア周波数 $f_s 1$、最高キャリア周波数 $f_s n$、最低ホッピング周波数 f_1 及び最高ホッピング周波数 f_h が設定されている。

このように交信波の帯域と応答波の帯域とが重ならない、つまり、分離することによって、交信波と応答波とが互いに干渉することがなくなり、質問器間通信と質問器と応答器との間の通信を同時にすることが可能になる。

また、帯域 $A b$ と帯域 $A B$ から分かるように、応答器 $3a \sim 3c$ によって質問器 $2a$ から送信される質問波が変調反射されて送信される応答波の帯域（図中 $A b$）が、質問器 $2a$ と質問器 $2b$ との間の通信で利用される交信波の帯域（図中 $A B$）より周波数 $f_c a$ に近くなるように、最低キャリア周波数 $f_s 1$、最高キャリア周波数 $f_s n$、最低ホッピング周波数 f_1 及び最高ホッピング周波数 f_h が設定されている。同様に、質問器 $2b, 2c, 2d, 2e$ の質問波に対する応答器 $3a \sim 3c$ の応答波の帯域が、質問波を送信した質問器が送信する交信波の帯域より、当該質問器が送信する質問波の周波数に近くなるように、最低キャリア周波数 $f_s 1$、最高キャリア周波数 $f_s n$、最低ホッピング周波数 f_1 及び最高ホッピング周波数 f_h が設定されている。

このように設定することによって、応答器 $3a \sim 3c$ の副搬送波発振器 $42b$ によって発振される搬送波の周波数を低く抑えることができるので、応答器 $3a \sim 3c$ で消費される電力を低く抑えることができる。また、一般に、応答器は数多く設置され、移動するものが多く、質問器 $2a$ 等からの質問波を整流して電源とすることで他の電源を有しない場合や、容量の少ない小型の電池などで駆動される場合は多いなど、給電に苦労する場合が多いため、質問器より消費電力を小さく抑えることが望ましく、その点でも上述した周波数設定は効果的である。

より干渉の少ない通信を行うためには、交信波の帯域は応答波の帯域と重ならないだけでなく、質問波と共に送信される交信波が応答器によって変調反射され生じる不要な反射波の帯域とも重ならないように設定される必要がある。そして、点線で示す応答器は交信波の周波数 $f_s 1 \sim f_s n$ の各キャリアに対しても質問
波に対するのと同一の帯域幅を有した反射波を発生してしまったため、周波数 f s 1 - f h から周波数 f s n + f l までの帯域の不要な反射波が各交信波毎に発生することになる。つまり、質問波が応答器によって変調反射される反射波の当該質問波から最も遠い周波数と当該質問波の周波数との差が、交信波に対する応答器における反射波の当該交信波から最も離れた周波数と当該交信波に最も近い周波数と、の差とが同一（つまり f h ）となることがわかる。

以上の点を踏まえて、質問器 2 a と質問器 2 b との間の通信で利用される交信波の帯域（図中 A B ）の最低の波数（質問器 2 a によって送信される質問波に最も近い周波数 f c a + f s 1 と質問器 2 a が送信する質問波の周波数 f c a との差（ f s 1 ）が、応答器 3 a ～ 3 c によって質問器 2 a から送信される質問波が変調反射されて送信される応答波の帯域（図中 A b ）の最高の周波数（質問器 2 a によって送信される質問波から最も離れた周波数 f c a + f h と質問器 2 a が送信する質問波の周波数 f c a との差（ f h ）の実質的に 2 倍以上になるように（ f s 1 ≥ 2 × f h ）、最低キャリア周波数 f s 1 と、最高ホッピング周波数 f h が設定されている。同様に、各質問器及び各応答器において、質問器から送信される交信波の帯域の当該質問器から送信される質問波に最も近い周波数と当該質問器から送信される質問波の周波数との差が、当該質問器が送信する質問波が応答器 3 a ～ 3 c によって変調反射される反射波の帯域の当該質問波から最も遠い周波数と当該質問波の周波数との差の実質的に 2 倍以上になるように、最低キャリア周波数 f s 1 、最高ホッピング周波数 f h が設定されている。

このように設定することによって、質問器間の通信で利用される交信波が応答器で反射された場合であっても、質問波に対する反射波の帯域と交信波に対する反射波の帯域との重なりがなくなり、この結果、質問器と応答器との間の通信の信頼性が高いものとなるとともに、質問器と応答器との間の通信と、質問器間の通信を同時にすることが可能になる。尚、周波数率を高める観点からは 2 倍にする（実際は可能な限り 2 倍に近づける）ことが好ましい。

隣接する質問器が同じ周波数のキャリアを利用して交信波を生成して送信し、且つ、各応答器の反射波の帯域が同じ場合、質問器 2 a によって送信される質問波の周波数 f c a と質問器 2 b によって送信される質問波の周波数 f c b との差
(fcb - fca)が、質問器2a；2bから送信される質問波が応答器3a～3cによって変調反射されて送信される応答波の帯域（図中A B）の最も質問器2a；2bから送信される質問波から最も離れた周波数fca + fh；fcb - fhと質問器2a；2bから送信される質問波の周波数fca；fcbとの差（fh = (fca + fh) - fh；fh = fcb - (fcb - fh)）の4倍と、質問器2aと質問器2bとの間の通信に利用される交信波の帯域（図中A B）の幅（fsn - fsl）との和（4x fh + (fsn - fsl)）に等しいかそれより大きくなるように（fcb - fca ≥ 4x fh + (fsn - fsl))、質問器2aの質問波の周波数fca、質問器2bの質問波の周波数fcb、最低キャリア周波数fsl、最高キャリア周波数fsn、及び最高ホッピング周波数fhが設定されている。同様に、各質問器及び各応答器において、質問器から送信される質問波が応答器によって変調反射される反射波の帯域の当該質問波から最も離れた周波数と当該質問波の周波数との差の4倍と、交信波の帯域幅とを、加算して得られる値に実際的に等しいかそれより大きくなるように、隣接する質問器の質問波の周波数、最低キャリア周波数fsl、最高キャリア周波数fsn、及び最高ホッピング周波数fhが設定される。

このように周波数を設定することによって、夫々の質問器が送出した質問波に対する反射波と、交信波に対する反射波と、交信波とが互いに干渉することを防ぐことができ、この結果、質問器と応答器との間の通信及び質問器間の通信の信頼性が高いものになる。尚、周波数効率の観点からは、fcb - fca = 4x fh + (fsn - fsl)になる（実際には可能な限り近づける）ように各周波数を設定することが好ましい。他の場合においても同様である。

以上説明した第1の実施形態における通信システムは、質問器2a～2e間の通信を無線で行うため、質問器2a～2eの配置の変更や増設が容易で、且つ、配線がなく美観にも優れている。また、上述したように各周波数が設定されることによって、質問器間2a～2e間の通信に利用される交信波、質問波に対する反射波（応答波）、交信波に対する反射波が互いに干渉することがなく、通信の信頼性が高いものとなる。また、限られた周波数帯域を有効に利用することができる。
また、サービス処理機能を有する質問器と離れた位置にある質問器からサービス処理機能を有する質問器へ情報を転送する場合、その間にある質問器を経由して転送することが可能であるため、交信波に必要な電力を小さくすることができるとある。

[第2の実施形態]

次に、本発明の第2の実施形態における通信システムのシステム構成について図6を参照しつつ説明する。図6は、通信システムのシステム構成の一例を示す図である。

通信システム101は、図6に示すことと、質問器102a、102bと、応答器103a、103b、103c、103d、103eをも含んでいる。尚、図6では、2台の質問器102a、102bと、5台の応答器103a～103eを図示しているが、夫々の台数は通信システムの規模や使用環境によって任意に設定することが可能である。

質問器102a、102bの応答器103a～103e間の通信の概略は次のようなものである。質問器102a、102bは、主搬送波及び送信情報信号変調波（送信情報から生成された送信情報信号で主搬送波を変調して生成される送信情報信号変調波）を含む交信波を送信する。応答器103a～103eのうち交信波を受信した応答器は、交信波に含まれる主搬送波を、質問器へ応答する応答情報（例えば、受信要求、応答器を識別するための識別情報など）を含んだ応答情報信号で変調して反射波として返信する。質問器102a、102bのうち交信波を送信した質問器が応答器103a～103eから反射波を受信すると、反射波から応答情報信号を取り出す。尚、交信波に含まれる送信情報信号変調波の成分に対しても応答情報信号で変調されて反射波として返信されるが、これは強度が小さいため質問器102a、102bでは無視される。

質問器102a、102b間の通信の概略は次のようなものである。質問器102a、102bは、主搬送波及び送信情報信号変調波を含む交信波を送信する。交信波を送信した質問器102a、102bと他の質問器（交信波を送信した質問器102a、102bと通信可能エリア内にある質問器）は、交信波を受信し、受信した交信波に含まれる送信情報信号を取り出し、送信情報を取得する。
以下、図6に一例を示す通信システム1を構成する質問器102a、102b、及び応答器103a～103eの電気的構成を順に図面を参照しつつ説明する。

まず、質問器102aの電気的構成について図7及び図8を参照しつつ説明する。図7は、質問器102aの電気的構成を示すブロック図である。また、図8は、図7を構成する一部の装置から出力される信号の概略を説明するための図である。尚、図8の(a)、(b)、(c)、(d)、(e)の周波数軸（横軸）が示す値は位置的に相互に共通（一致）とされている。また、質問器102bの電気的構成は質問器102aと実質的に同様であり、質問器102aの説明が適用できるため詳細は省略する。

質問器102aは、図7に示すように、副搬送波発振器121、送信情報変調器122、搬送波発振器123、搬送波変調器124、電力増幅器125、サーキュレータ126、低雑音増幅器（Low Noise Amplifier : LNA）127、受信波フィルタ128、受信波復調器129、フィルタ130、増幅器131、ADコンバータ132、フィルタ133、増幅器134、ADコンバータ135、信号処理回路136、RSSI（Received Signal Strength Indicator）137、コントローラ138、及びアンテナ139を備えている。

副搬送波発振器121は、周波数fscの副搬送波を発振し、発振した副搬送波を送信情報変調器122へ出力する。尚、質問器102bが備える副搬送波発振器が発振する副搬送波の周波数も周波数fscに設定している。

送信情報変調器122は、送信情報（例えば、直接、応答器103a～103eから受け取った応答情報や例えば質問器102bから受け取った応答器103a～103eからの応答情報、最初に応答器103a～103cが受け取った質問器を識別するための識別情報など）で、副搬送波発振器121から入力された副搬送波を変調して送信情報変調波（送信情報信号）を生成、送信情報信号を主搬送波変調器124へ出力する。この送信情報変調器122から出力される送信情報信号141は、図8(a)に概略示されるように、周波数fscとその両側の側波帯とかかるる。本実施例では、上記送信情報変調器122が、他の質問器へ送信する送信信号であって前記応答器103a～103cからの反射波に含まれる応答情報信号は周波数帯域の異なる（周波数の高い）送信情報変調波
すなわち送信情報信号を生成する送信情報信号生成手段或いは送信情報信号生成部として機能している。

主搬送波発振器１２３は、周波数ｆｃの主搬送波を発振し、主搬送波変調器１２４へ出力する。尚、質問器１０２ｂが備える主搬送波発振器が発振する主搬送波の周波数も周波数ｆｃに設定されている。

主搬送波変調器１２４は、送信情報信号により主搬送波を変調して送信情報信号変調波を生成する主搬送波変調手段或いは主搬送波変調部として機能するものであって、送信情報信号変調器１２２から入力された送信情報信号で、主搬送波発振器１２３から入力された主搬送波を変調して送信情報信号変調波を生成し、主搬送波及び生成した送信情報信号変調波を電力増幅器１２５及び受信波復調器１２９の各々へ出力する。

電力増幅器１２５は、主搬送波変調器１２４から入力された主搬送波及び送信情報信号変調波を電力増幅し、増幅後の主搬送波及び増幅後の送信情報信号変調波を含む交信波をサーキュレータ１２６へ出力する。この電力増幅器１２５から出力される交信波１４２は、図８（ｂ）に概略を示すように、周波数ｆｃの主搬送波１４２ａと、周波数ｆｃ＋ｆｓｃａの周囲に生成された上側波帯１４２ｂと、周波数ｆｃ－ｆｓｃａの周囲に生成された下側波帯１４２ｃを、含んでいる。但し、上側波帯１４２ｂと下側波帯１４２ｃとが、送信情報信号変調波の成分である。

サーキュレータ１２６は、電力増幅器１２５から入力された交信波をアンテナ１３９に伝え、又、アンテナ１３９が受信した受信波をＬＮＡ１２７に伝えるように出力と入力の分離を行う。アンテナ１３９に伝えられた交信波がアンテナ１３９から放射される。本実施例では、上記電力増幅器１２５、サーキュレータ１２６、アンテナ１３９などが、前記主搬送波及び送信情報信号変調波を含む交信波を送信するための送信手段或いは送信部として機能し、アンテナ１３９、サーキュレータ１２６、ＬＮＡ１２７などが、応答器からの反射波を受信するとともに他の質問器からの交信波を受信するための受信手段或いは受信部として機能している。

ＬＮＡ１２７は、サーキュレータ１２６から入力された受信波を電力増幅し、
增幅後の受信波を受信波フィルタ128及びRSS137へ出力する。このLNA127から出力される増幅後の受信波143に含まれることがあるのは、図8（c）に概略を示すように、例えば、質問器102bから受信した受信波に含まれる周波数f_cの主搬送波143aと、例えば、質問器102bから受信した受信波に含まれる周波数f_c+f_s+cの周囲に存在する上側波帯及び周波数f_c-f_s+cの周囲に存在する下側波帯からなる送信情報信号変調波143b、143cと、送信情報信号変調波143b、143cと重ならない、かつ、送信情報信号変調波143b、143cより主搬送波143aに近い、応答器103a～103eから受信した周波数f_s+c+f_s+cの周囲に存在する上側波帯及び周波数f_s+c-f_s+cの周囲に存在する下側波帯からなる反射波143d、143eと、である。尚、後述するように、他の質問器からの受信波の受信中は、送信波を送信しないように構成されているため、受信波に、自身が送信した受信波に含まれる主搬送波に対する応答器からの反射波、他の質問器からの受信波が同時に含まれることはない。

但し、送信情報信号変調波143b、143cと反射波143d、143eとが、重ならないように、質問器の副搬送波発振器によって発振される副搬送波の周波数f_s+cと応答器の後述する副搬送波発振器が発振する副搬送波の周波数f_s+cとが設定されている。さらに、送信情報信号変調波143b、143cより反射波143d、下側波帯143eが主搬送波143aに近くなるように、つまり、送信情報信号の周波数が応答情報信号の周波数より高くなるように（言い換えると、応答情報信号の周波数が送信情報信号の周波数より小さくなるように）、質問器の副搬送波発振器が発振する副搬送波の周波数f_s+cが応答器の後述する副搬送波発振器が発振する副搬送波の周波数f_s+cより高く設定されている。

受信波フィルタ128は、バンドパスフィルタで構成されており、LNA127から入力された増幅後の受信波を受信波復調器129へ通過させる。

受信波復調器129は、前記主搬送波変調手段又は主搬送波変調部として機能する主搬送波変調器124からの信号により上記受信波フィルタ128を通過した受信波を復調する受信波復調手段又は受信波復調部として機能するものであり、受信波フィルタ128を通過した受信波を主搬送波変調器124から入力
される主搬送波と送信情報信号変調波とで複調し、復調した信号（応答器からの
応答情報信号、他の質問器からの送信情報信号）をフィルタ１３０及びフィルタ
１３３へ出力する。
フィルタ１３０は、上記受信波復調器１２９により復調された信号から応答情
報信号のみを通じさせる第１フィルタ手段或いは第１フィルタ部として機能する
ものであって、バンドパスフィルタで構成されており、受信波復調器１２９から
入力された信号のうち応答情報信号のみを増幅器１３１へ通過させる。
増幅器１３１は、フィルタ１３０を通過した応答情報信号を電力増幅し、増幅
後の応答情報信号をＡＤコンバータ１３２へ出力する。この増幅器１３１から出
力される応答情報信号１４４は、図８（ｄ）に概略を示すように、周波数ｆｓｃ
ｂの周波に存在する。
ＡＤコンバータ１３２は、増幅器３１から入力されたアナログの応答情報信号
をデジタルの応答情報信号に変換し、変換後の応答情報信号を信号処理回路１３
６へ出力する。
フィルタ１３３は、上記受信波復調器１２９により復調された信号から他の質
問器からの送信情報信号のみを通じさせる第２フィルタ手段或いは第２フィルタ
部として機能するものであって、バンドパスフィルタで構成されており、受信波
復調器１２９から入力される信号のうち送信情報信号を増幅器１３４へ出力す
る。
増幅器１３４は、フィルタ１３３を通過した送信情報信号を電力増幅し、増幅
後の送信情報信号をＡＤコンバータ１３５へ出力する。この増幅器１３４から出
力される送信情報信号１４５は、図８（ｅ）に概略を示すように、周波数ｆｓｃ
ａの周波に存在する。
ＡＤコンバータ１３５は、増幅器１３４から入力されたアナログの送信情報信
号をデジタルの送信情報信号に変換し、変換後の送信情報信号を信号処理回路１３
６へ出力する。
信号処理回路１３６は、ＡＤコンバータ１３２から入力されるデジタルの応答
情報信号からそれに含まれる応答情報を取り出すとともに、ＡＤコンバータ１３
５から入力されるデジタルの送信情報信号からそれに含まれる送信情報を取り出
す。そして、信号処理回路１３６は、取り出した応答情報や送信情報に対して予め定められた処理などを行う。

RSSI１３７は、LNA１２７から入力される受信波の強度を検知し、検知結果をコントローラ１３８へ出力する。コントローラ１３８は、RSSI１３７による検知結果に基づいて、他の質問器によって送信された交信波を受信しているか否かを判断する部分（交信波受信判定手段、交信波受信判定手部）を備え、そこで交信波の受信中であると判断された場合には、自身から交信波が送信されないように制御を行う。

次に、応答器１０３ａの電気的構成について図９を参照しつつ説明する。図９は、応答器１０３ａの電気的構成を示すブロック図である。尚、応答器１０３ｂ～１０３ｅの電気的構成は応答器１０３ａと実質的に同じであり、応答器１０３ａの説明が適用できるため詳細は省略する。

応答器１０３ａは、図９に示すように、変調器１５１と、デジタル回路部１５２と、アンテナ１５３とを、備えている。変調器１５１は、アンテナ１５３が受信した交信波を変調して、デジタル回路部１５２内のコントローラ１５２ａへ出力する。また、変調器１５１は、デジタル回路部１５２の後述する副搬送波変調器１５２ｃで変調された応答情報信号でアンテナ１５３が受信している交信波に含まれる主搬送波を変調し、この変調波が反射波としてアンテナ１５３から送信される。すなわち、この変調器１５１は、質問器から送信された主搬送波を上記応答情報信号で変調して反射波として返信する主搬送波反射手段でありまたは主搬送波反射部として機能している。

デジタル回路部１５２は、コントローラ１５２ａと、副搬送波発振器１５２ｂと、副搬送波変調器１５２ｃと、から構成されている。コントローラ１５２ａは、応答器１０３ａの制御を司るものである。副搬送波発振器１５２ｂは、周波数 f s c a の周囲の帯域の周波数である送信情報信号とは重複しないようにそれぞれ約も十分に低い周波数帯域の周波数 f s c b の副搬送波を発振し、発振した副搬送波を副搬送波変調器１５２ｃへ出力する。副搬送波変調器１５２ｃは、質問器へ送信する応答情報を含む前記送信情報信号よりも低い周波数帯域となるように設定された応答情報信号を生成する応答情報信号生成手段または応答情報信号
生成部として機能するものであって、コントローラ152aを介して入力される応答情報（例えば、受信要求、応答器を識別するための識別情報など）で副搬送波発振器152bから入力された副搬送波を変調して応答情報変調波（応答情報信号）を生成し、生成した応答情報信号を変調調器151へ出力する。図15に示すように、複数の応答器からの反射波同士で混信しないように、応答情報信号はコントローラ152aによりランダムに選択されるタイムスロットで出力される。

上述した反射波は、周波数fcの主搬送波と、周波数fc+fscbの周囲に存在する上側波帯（図8(c)の反射波143d参照）、及び周波数fc-fscbの周囲に存在する下側波帯（図8(c)の反射波143e参照）を含んでいる。

以下、上述した通信システム1の質問器102aが行う処理内容について図10を参照しつつ説明する。図10は、質問器102aのコントローラ138が行う処理内容の順序を示すフローチャートである。尚、質問器102bが行う処理内容の順序は質問器102aと実質的に同様であり、質問器102aの処理内容の説明が適用できるため詳細は省略する。

先ず、交信波受信判定手段或いは交信波受信判定部に対応するステップ（以下、ステップを省略する）S101において、他の質問器が送信している交信波を受信中であるか否かが判断される。具体的には、アンテナ139、サーキュレータ126、LNA127を介してRSSI137に入力された受信波の強度に基づいて、当該強度が予め定められた閾値以上であるか否かが判断され、閾値以上であれば他の質問器から交信波を受信中であると判断される。

他の質問器から交信波を受信中であると判断された場合には（S101:YES）、S111の処理へ移行する。一方、他の質問器から交信波を受信中でないと判断した場合には（S101:NO）、S102の処理へ移行する。

S102において、他の質問器へ送信する送信情報があるか否かを判断する。他の質問器へ送信情報があると判断された場合には（S102:YES）、S103の処理へ移行する。一方、他の質問器へ送信する送信情報がないと判断された場合には（S102:NO）、S107の処理へ移行する。
S103において、他の質問器へ送信情報を送信する。具体的には、副搬送波変調器122によって、送信情報で副搬送波発振器121から入力される副搬送波を変調して送信情報信号を生成する。そして、主搬送波変調器124によって、この生成された送信情報信号で主搬送波発振器123から入力される主搬送波を変調して送信情報信号変調波を生成する。そして、主搬送波及び生成された送信情報信号変調波を電力増幅器125で電力増幅し、増幅後の主搬送波及び増幅後の送信情報信号変調波を含む交信波をサーキュレータ126を介してアンテナ139から送信する。

S104において、応答器103a〜103eの少なくとも1つから受信要求があるか否かを判断する。この判断は、アンテナ139によって受信された受信波が、サーキュレータ126、LNA127、受信波フィルタ128、受信波復調器129、フィルタ130、増幅器131、及びADコンパータ132を介して信号処理回路136に入力され、信号処理回路136で応答情報信号から応答情報を取り出して、取り出した応答情報に基づいて行われる。

応答器103a〜103eの少なくとも1つから受信要求があると判断された場合には（S104：YES）、S105の処理へ移行する。一方、受信要求がないと判断された場合には（S104：NO）、S106の処理へ移行する。

S105において、他の質問器へ送信情報を送信する。具体的には、副搬送波変調器122によって、送信情報で副搬送波発振器121から入力される副搬送波を変調して送信情報信号を生成する。そして、主搬送波変調器124によって、この生成された送信情報信号で主搬送波発振器123から入力される主搬送波を変調して送信情報信号変調波を生成する。そして、主搬送波及び生成された送信情報信号変調波を電力増幅器125で電力増幅し、増幅後の主搬送波及び増幅後の送信情報信号変調波を含む交信波をサーキュレータ126を介してアンテナ139から送信する。

さらに、応答器からの応答情報を受信する。具体的には、アンテナ139によって受信した受信波が、サーキュレータ126、LNA127、受信波フィルタ128を介して受信波復調器129に入力され、受信波復調器129によって主搬送波変調器124から入力される主搬送波及び送信情報信号変調波で復調を行
う。復調された信号が、フィルタ１３０、増幅器１３１、及びＡＤコンバータ１３２を介して送信処理回路１３６に入力され、送信処理回路１３６で応答情報信号から応答情報を取り出す。

ここで、応答情報の他にも送信情報信号変調波の成分が復調信号にもあらわれるが、周波数帯域が異なるために、フィルタ１３０により分離除去されるため、結果として、反射波の受信と送信波の送信が同時にできるようになる。

そして、Ｓ１０１の処理へ戻る。

Ｓ１０６において、他の質問器へ送信情報を送信する。具体的には、副搬送波変調器１２２によって、送信情報で副搬送波発振器１２１から入力される副搬送波を変調して送信情報信号を生成する。そして、主搬送波変調器１２４によって、この生成された送信情報信号で主搬送波発振器１２３から入力される主搬送波を変調して送信情報信号変調波を生成する。そして、主搬送波及び生成された送信情報信号変調波を電力增幅器１２５で電力増幅し、増幅後の主搬送波及び増幅後の送信情報信号変調波を含む交信波をサーチレータ１２６を介してアンテナ１３９から送信する。そして、Ｓ１０１の処理へ戻る。

Ｓ１０７において、主搬送波のみを送信する。具体的には、例えば、副搬送波発振器１２１から副搬送波変調器１２２へ副搬送波が入力されないように、その副搬送波発振器１２１の発振を停止させる。そして、主搬送波発振器１２３によって発振された主搬送波を、主搬送波変調器１２４、電力增幅器１２５、及びサーチレータ１２６を介してアンテナ１３９から送信する。

Ｓ１０８において、応答器１０３ａ〜１０３ｃの少なくとも１つが受信要求があるか否かを判断する。この判断は、アンテナ１３９によって受信された受信波が、サーチレータ１２６、ＬＮＡ１２７、受信波フィルタ１２８、受信波復調器１２９、フィルタ１３０、増幅器１３１、及びＡＤコンバータ１３２を介して送信処理回路１３６に入力され、送信処理回路１３６で応答情報信号から応答情報を取り出して、取り出した応答情報に基づいて行われる。

応答器１０３ａ〜１０３ｃの少なくとも１つが受信要求があると判断された場合には（Ｓ１０８：ＹＥＳ）、Ｓ１０９の処理へ移行する。一方、受信要求がないと判断された場合には（Ｓ１０８：ＮＯ）、Ｓ１１０の処理へ移行する。
S109において、応答器からの応答情報を受信する。具体的には、アンテナ139によって受信した受信波が、サーキュレータ126、LNA127、受信波フィルタ128を介して受信波復調器129に入力され、受信波復調器129によって主搬送波変調器124から入力される主搬送波で復調を行う。復調された信号が、フィルタ130、増幅器131、及びADコンバータ132を介して送信処理回路136に入力され、送信処理回路136で応答情報信号から応答情報を取り出す。そして、S101の処理へ戻る。

S110において、主搬送波の送信を中止する。そして、S101の処理へ戻る。

S111において、他の質問からの送信情報を受信する。具体的には、アンテナ139によって受信した受信波が、サーキュレータ126、LNA127、受信波フィルタ128を介して受信波復調器129に入力され、受信波復調器129によって主搬送波変調器124から入力される主搬送波で復調を行う。復調された信号が、フィルタ133、増幅器134、及びADコンバータ135を介して送信処理回路136に入力され、送信処理回路136で送信情報信号から送信情報を取り出す。そして、S101の処理へ戻る。

以上説明した第2の実施形態における通信システム1によれば、質問器102a、102bの副搬送波変調器122によって生成される送信情報信号の周波数帯域と、応答器103a～103eの副搬送波変調器152cによって生成される応答情報信号の周波数帯域が相互に異なるように設定されているので、質問器102a、102bから他の質問器へ送信する交信波と、当該交信波に対する応答器によって変調反射された反射波が互いに干渉することが少なくなり、質問器間の通信及び質問器と応答器との通信の双方を同時に行うことが可能となる。なお、質問器から他の質問器へ送る送信情報信号の変調に質問器が応答器に対して送信する主搬送波を利用する構成になっているため、質問器の装置構成が簡単になるという利点がある。

また、送信情報信号の周波数が応答情報信号の周波数より大きくなるように（応答情報信号の周波数が送信情報信号の周波数より小さくなるように）設定されているため、送信情報信号の周波数が応答情報信号の周波数より小さくなるように
（応答情報信号の周波数が送信情報信号の周波数より大きくなるように）設定される場合に比べ、応答情報信号の周波数を小さくすることができるので、応答器での消費電力を小さく抑えることが可能になる。

さらに、他の質問器から送信される交信波を受信している間は、交信波を送信しないようにするため、質問器間通信で用いられる交信波同士が互いに干渉することを防ぐことができる。

【第3の実施形態】

以下、本発明の第3の実施形態における通信システムについて図面を参照しつつ説明する。

まず、第3の実施形態における通信システム101aのシステム構成について図11を参照しつつ説明する。図11は、通信システム101aのシステム構成の一例を示す図である。

通信システム101aは、図11に示すように、質問器106a、106bと、応答器103a、103b、103c、103d、103eとを備えている。尚、図11では、2台の質問器106a、106b、5台の応答器103a～103eを図示しているが、実際の台数は通信システムの規模や使用環境によって任意に設定することが可能である。尚、応答器103a～103eは、第2の実施形態で説明したものが利用可能である。

以下、図11に一例を示す通信システム101aを構成する質問器106aの電気的構成について図12及び図13を参照しつつ説明する。図12は、質問器106aの電気的構成を示すブロック図である。また、図13は、図12を構成する一部の装置から出力される信号の概略を説明するための図である。尚、質問器106bの電気的構成は質問器106aと実質的に同様であり、質問器106aの説明が適用できるため詳細は省略する。

質問器106aは、図12に示すように、副搬送波発振器161、送信情報変調器162、主搬送波発振器163、主搬送波変調器164、送信波フィルタ165、電力增幅器166、サーキュレータ167、LNA168、受信波フィルタ169、受信波復調器170、增幅器171、ADコンバータ172、受信波フィルタ173、RF（Radio Frequency）增幅器174、受信波復調器175、
増幅器176、ADコンバータ177、信号処理回路178、及びアンテナ181を備えている。

副搬送波発振器161は、周波数fσcαの副搬送波を発振し、発振した副搬送波を送信情報変調器162へ出力する。尚、質問器106bが備える副搬送波発振器が発振する副搬送波の周波数も周波数fσcαに設定している。

送信情報変調器162は、送信情報で副搬送波発振器161から入力された副搬送波を変調して送信情報変調波（送信情報信号）を生成し、送信情報信号を主搬送波変調器164へ出力する。この送信情報変調器162から出力される送信情報信号191は、図13（a）に概略を示すように、周波数fσcαとその両側の側波帯とからなる。本実施例では、上記送信情報変調器162が、他の質問器へ送信するための送信情報で送信情報変調波（送信情報信号）を生成する送信情報信号生成手段あるいは送信情報信号生成部として機能している。

主搬送波発振器163は、周波数fψの主搬送波を発振し、主搬送波変調器164、受信波復調器170、及び受信波復調器175の夫々へ出力する。尚、質問器106bが備える主搬送波発振器が発振する主搬送波の周波数も周波数fψに設定している。

主搬送波変調器164は、送信情報信号により主搬送波を変調して送信情報信号変調波を生成する主搬送波変調手段あるいは主搬送波変調部として機能するものであって、送信情報変調器162から入力された送信情報信号で、主搬送波発振器163から入力された主搬送波を変調して送信情報信号変調波を生成し、主搬送波及び生成した送信情報信号変調波を送信波フィルタ165へ出力する。この主搬送波変調器164から出力される信号192は、図13（b）に概略を示すように、周波数fψの主搬送波192aと、周波数fψ+fσcαの周波数に生成された上側波帯192bと、周波数fψ-fσcαの周波数に生成された下側波帯192cと、からなる。但し、上側波帯192bと下側波帯192cとが、送信情報信号変調波である。

送信波フィルタ165は、上記主搬送波変調器164からの主搬送波、及び周波数領域上でその主搬送波の両側に発生する上記送信情報信号変調波の側波帯の一方のみの側波帯を通過させるフィルタ手段あるいはフィルタ部として機能するも
のであって、バンドパスフィルタで構成されており、主搬送波変調波１６４から入力された信号１９２のうち、主搬送波１９２ａと送信情報信号変調波の上側波帯１９２ｂのみを電力増幅器１６６へ通過させる。

電力増幅器１６６は、送信波フィルタ１６５から入力された主搬送波１９２ａ及び送信情報信号波の上側波帯１９２ｂを電力増幅し、増幅後の主搬送波及び増幅後の送信情報信号変調波の上側波帯を含む交信波をサーキュレータ１６７へ出力する。この電力増幅器１６６から出力される交信波１９３は、図１３（c）に概略を示すように、周波数ｆｃの主搬送波１９３ａと周波数ｆｃ＋ｆｓｃａの周囲に生成された送信情報信号変調波の上側波帯１９３ｂと、からなる。

サーキュレータ１６７は、電力増幅器１６６から入力された交信波をアンテナ１８１へ送ら通過させ、又、アンテナ１８１が受信した受信波をＬＮＡ１６８へ送ら通過させるように出力と入力の分離を行う。アンテナ１８１に伝えられた交信波がアンテナ１８１から電波により放射される。ＬＮＡ１６８は、サーキュレータ１６７から入力された受信波を電力増幅し、増幅後の受信波を受信波フィルタ１６９、及び受信波フィルタ１７３へ出力する。本実施例では、上記電力増幅器１６６、サーキュレータ１６７、アンテナ１８１などが、前記主搬送波及び送信情報信号変調波を含む交信波を送信するための送信手段又は送信部として機能し、アンテナ１８１、サーキュレータ１６７、ＬＮＡ１６８などが、応答器からの反射波を受信するとともに他の質問器からの交信波を受信するための受信手段又は受信部として機能している。

上記のＬＮＡ１６８から出力される増幅後の受信波１９４は、図１３（d）に概略を示すように、例えば、質問器１０６ｂから受信した交信波に含まれる周波数ｆｃの主搬送波１９４ａと、例えば、質問器１０６ｂから受信した交信波に含まれる周波数ｆｃ＋ｆｓｃａの周囲に存在する上側波帯からなる送信情報信号変調波１９４ｂと、送信情報信号変調波１９４ｂと重なっている応答器１０３ａ～１０３ｃから受信した周波数ｆｓｃ＋ｆｓｃｂの周囲に存在する上側波帯及び周波数ｆｓｃ－ｆｓｃｂの周囲に存在する下側波帯からなる反射波１９４ｃ、１９４ｄと、からなる。

但し、送信情報信号変調波１９４ｂと反射波１９４ｃとが、重なるように、質
関器の副搬送波発振器によって発振される副搬送波の周波数 \(f_{sca} \) と応答器の
副搬送波発振器が発振する副搬送波の周波数 \(f_{scb} \) とが設定されている。さら
に、送信情報信号変調波 \(194b \) と反射波 \(194c \) とが重なっても、送信情報信
号変調波 \(194b \) が反射波 \(194c \) の干渉を受けないように、つまり、反射波 \(194c \) が存在しても送信情報信号変調波からそれに含まれる送信情報を取り出す
ことができるように、主搬送波発振器 \(163 \) が発振する主搬送波の強度が設定さ
れている。

尚、主搬送波の強度は質問器から最も遠い応答器からの反射波が検出できて、
且つ、前記質問器から最も近い応答器の反射波が交信波の復調に干渉しない所定
の強度以下になるように設定される。一般的には、設定された誤り訂正の能力や
変調方式などを考慮し、最も近い応答器の反射波の強度が交信波の強度より \(\pm 1 \)
dB 〜 \(20 \) dB 程度小さくなるように設定される。

もちろん、前記交信波と前記反射波の強度差を先に設定しておいて、通信速度
や誤り訂正の能力や変調方式を干渉が起こらないように設定しても良いし、応答
器の質問器からの設置可能な距離を干渉の起こらない範囲に限定しても良い。

上述した第 3 の実施形態では、応答器の反射波と交信波とは受信性能面でトレ
ードオフの関係にあるため、応答器の反射波の受信精度を重視すれば主搬送波の
強度は強めに設定すれば良いし、交信波の受信精度を重視すれば、主搬送波は弱
めに設定すればよい。

又、各応答器の反射性能などが異なる場合が考えられるが、その場合でも、反射
波の強度が最も弱い応答器が質問器から最も遠い場合でも十分反射波を受信で
き、反射波の強度が最も強い応答器が質問器に最も近い場合でも反射波が交信波
の復調に干渉しないように質問器の主搬送波の強度を設定すればよい。

受信波フィルタ \(169 \) は、前記受信手段が受信した受信波のうち他の質問器か
らの交信波のみを通過させる第 2 受信波フィルタ手段あるいは第 2 受信波フィルタ
部として機能するものであって、バンドパスフィルタで構成されており、LNA
\(168 \) から入力された増幅後の受信波のうち交信波を受信波復調器 \(170 \) へ通
過させる。この受信波フィルタ \(169 \) から出力される信号は、図 \(13 \) (e) に概略
を示すように、例えば、質問器 \(106b \) から受信した交信波に含まれる周波数 \(f \)
cの主搬送波195aと、例えば、質問器106bから受信した交信波に含まれる周波数fc + fscの周波数帯からなる送信情報信号変調波195bと、送信情報信号変調波195bと重なっている応答器103a～103bとから受信した周波数fscの周波数帯からなる反射波195dと、からなる。尚、この通過する信号には、応答器からの反射波に関する信号195dも含まれるが、上述したように、反射波が交信波に干渉しないように主搬送波の強度が設定されているため、交信波のみを通過させていることとほぼ等価である。

受信波復調器170は、受信波フィルタ169を通過した受信波を主搬送波発振器163から入力される主搬送波で復調し、復調した信号を増幅器171へ出力する。

増幅器171は、受信波復調器170からの信号を電力増幅し、増幅後の信号をADコンバータ172へ出力する。この増幅器171から出力される信号197は、図13（g）に概略を示すように、周波数fscの周波数帯からなる送信情報信号197aと周波数fscの周波数帯からなる応答情報信号197bを含んでいる。尚、たとえば電力増幅器166のゲインを調節するなどによって、反射波が交信波に干渉しないように主搬送波の強度が設定されているため、信号197から情報を取り出せる信号は送信情報信号197aのみである。

ADコンバータ172は、増幅器71から入力されたアナログの信号をデジタルの信号に変換し、変換後の信号を信号処理回路178へ出力する。

受信波フィルタ173は、前記受信手段が受信した受信波のうち前記応答器からの反射波のみを通じさせる第1受信波フィルタ手段または第1受信波フィルタ部として機能するものであって、バンドパスフィルタで構成されており、LNA168から入力された増幅後の受信波のうち応答器からの反射波のみをRF増幅器174へ通過させる。この受信波フィルタ174から出力される信号は、図13（f）に概略を示すように、例えば、質問器106bから受信した交信波に含まれる周波数fcの主搬送波196aと、応答器103a～103bから受信した周波数fscの周波数帯からなる反射波196bと、からなる。
RF增幅器174は、受信波フィルタ173を通じた反射波を電力増幅し、增幅した反射波を受信波復調器175へ出力する。

受信波復調器175は、RF增幅器174から入力された反射波を主搬送波発振器163から入力される主搬送波あるいは交信波で復調し、復調した信号（応答情報からの応答情報を含む）を増幅器176へ出力する。

増幅器176は、受信波復調器175からの信号を電力増幅し、増幅後の信号をADコンバータ177へ出力する。この増幅器171から出力される信号198は、図13（h）に概略を示すように、周波数fscbの周波に存在する応答情報を含んでいる。

ADコンバータ177は、增幅器176から入力されたアナログの信号をデジタルの信号に変換し、変換後の信号を信号処理回路178へ出力する。

信号処理回路178は、ADコンバータ172から入力されるデジタルの送信情報信号からそれに含まれる送信情報を取り出す（応答情報信号の強度が小さいので、応答情報信号からの応答情報を取り出すことができない。）とともに、ADコンバータ177から入力されるデジタルの応答情報信号からそれに含まれる応答情報を取り出す。そして、信号処理回路178は、取り出した応答情報や送信情報に対して予め定められた処理を経て行う。

以下、上述した通信システム101の質問器106aが行う処理内容について図14を参照しつつ説明する。図14は、質問器102aが行う処理内容の手順を示すフローチャートである。尚、質問器106bが行う処理内容の手順は質問器106aと実質的に同様であり、質問器106aの処理内容の説明が適用できるため詳細は省略する。

S201において、質問器102aは、常時、主搬送波を送信し、応答器103a〜103eからの応答情報を随時受信する。

具体的には、例えば、副搬送波発振器161から副搬送波変調器162へ副搬送波が入力されないように、その間に設けたスイッチング素子をオフにする。そして、主搬送波発振器163によって発振された主搬送波を、主搬送波変調器164、送信波フィルタ165、電力増幅器166、及びサーキュレータ167を介してアンテナ181から送信する。
また、アンテナ181によって受信波が受信されると、アンテナ181によって受信した受信波が、サーキュレータ167、LNA168、受信波フィルタ173、RF増幅器174を介して受信波復調器175に入力され、受信波復調器175によって主搬送波発振器163から入力される主搬送波で復調を行う。復調された信号が、増幅器176、及びADコンバータ177を介して信号処理回路178に入力され、信号処理回路178で応答情報信号から応答情報を取り出す。そして、交信波受信判定手段あるいは交信波受信判定部に対応するS202の処理へ移行する。

S202において、他の質問器から送信されている送信情報を受信中であるか否かを判断する。具体的には、アンテナ181によって受信した受信波が、サーキュレータ167、LNA168、受信波フィルタ169を介して受信波復調器170に入力され、受信波復調器170によって主搬送波発振器163から入力される主搬送波で復調を行う。復調された信号が、増幅器171、及びADコンバータ172を介して信号処理回路178に入力され、ADコンバータ172から入力された信号に送信情報が含まれているか否かを判断する。

他の質問器から送信情報を受信中であると判断された場合には（S202：YES）、S205の処理へ移行する。一方、他の質問器から送信情報を受信中でないと判断した場合には（S202：NO）、S203の処理へ移行する。

S203において、他の質問器へ送信する送信情報があるか否かを判断する。

他の質問器へ送信情報があると判断された場合には（S203：YES）、S204の処理へ移行する。一方、他の質問器へ送信する送信情報がないと判断された場合には（S203：NO）、S205の処理へ移行する。

S204において、他の質問器へ送信情報を送信する。具体的には、副搬送波変調器162によって、送信情報で副搬送波発振器161から入力される副搬送波を変調して送信情報信号を生成する。そして、主搬送波変調器164によって、この生成された送信情報信号で主搬送波発振器163から入力される主搬送波を変調して送信情報信号変調波を生成する。そして、主搬送波及び生成された送信情報信号変調波のうち、搬送波及び送信情報信号変調波の上側波帯を通過させ、その後電力増幅器166で電力増幅し、増幅後の搬送波及び搬送波の送信情報
信号変調波の上側波帯を含む交信波をサーキュレータ１６７を介してアンテナ１８１から送信する。そして、Ｓ２０２の処理へ戻る。

他の質問器１０６ｂから送信情報を受信中である場合に実行されるＳ２０５では、たとえば送信手段が制御されることにより所定の質問器１０６ａからの交信波の送信が中止されるとともに、他の質問器からの送信情報が受信される。具体的には、アンテナ１８１によって受信した受信波が、サーキュレータ１６７、LNA１６８、受信波フィルタ１６９を介して受信波復調器１７０に入力され、受信波復調器１７０によって主搬送波発振器１６３から入力される主搬送波で復調を行う。復調された信号が、増幅器１７１、及びＡＤコンバータ１７２を介して信号処理回路１７８に入力され、信号処理回路１７８で送信情報信号から送信情報を取り出す。そして、Ｓ２０２の処理へ戻る。

以上説明した第３の実施形態における通信システム１０１ａによれば、質問器１０６ａ、１０６ｂは主搬送波と送信情報信号変調波の側波帯の方のみを含んだ交信波を送信するため、質問器間の通信、及び質問器と応答器間の通信を同時に行うことが可能になる。また、質問器から他の質問器へ送る送信情報信号の変調に質問器が応答器に対して送信する主搬送波を利用する構成になっているため、質問器の装置構成が簡単になるという利点がある。

また、送信情報信号変調波１９４ｂと反射波１９４ｃとが重なっても、送信情報信号変調波１９４ｂが反射波１９４ｃの干渉を受けないように、主搬送波発振器１６３が発振する主搬送波の強度が設定されている。このため、質問器１０６ａ、１０６ｂの副搬送波発振器１６１が発振する副搬送波の周波数と、応答器１０３ａ～１０３ｅの副搬送波発振器１４２ｂが発振する副搬送波の周波数の両方を、質問器１０２ａ、１０２ｂ及び応答器１０３ａ～１０３ｅでの消費電力を小さく抑えることが可能になる。

さらに、他の質問器から送信情報を受信している間は、自身から送信情報を送信しないようにするため、異なる質問器から送信される送信情報同士が互いに干渉することを防ぐことができる。

【第４の実施形態】

以下、本発明の第４の実施形態における通信システムについて図面を参照しつ
つ説明する。尚、本第4の実施形態は、前述した第1乃至第3の実施形態の応用例であり、特に第1の実施形態における通信システム1を適用した例である。以下の説明に関して、前述した第1の実施形態と重複する部分については、図面に同一の符号を付してその説明を省略する。

まず、第4の実施形態における通信システム201のシステム構成について図16を参照しつつ説明する。図16は、通信システム201のシステム構成の一例を示す図である。

通信システム201は、図16に示すように、前記質問器2a〜21及び応答器3a〜3cを夫々備えた店舗202A、202B、202C、…、202N、…、202Nmax（以下、特に区別しない場合には店舗202と称する）と、管理サーバ203と、端末204と、それ等を相互に接続するための有線或いは無線による通信回線であるネットワーク205を備えて構成されている。このネットワーク205は、管理サーバ203、端末204、及び各店舗202内に備えられた前記複数の質問器2a〜21のうち少なくとも1つの質問器2aを相互に接続するものであり、それらの間で相互に情報の通信が可能とされている。

たとえば、顧客が施設内の各売り場コーナーを商品を見ながら歩き回れるようなスーパーマーケットやコンビニエンスストア等の各店舗202内には、第1の実施形態における通信システム1（図1の構成に加えて質問器2f〜21を含む）等が構成されており、その店舗内に設置された質問器2a〜21相互間や、それら質問器2a〜21とその店舗内に置かれた商品或いは顧客が携帯するメンバーカードやポイントカード等に組み込まれた応答器3a〜3cとの間で前述した情報の送受信が行われるようになっている。尚、図16では、店舗202Aに質問器2a〜21のみを例示しており、応答器3a〜3cは省略している。また、夫々の台数が通信システムの規模や使用環境によって任意に設定され得ることは第1の実施形態の図2乃至図4に示すものと同様である。

次に、本第4の実施形態における質問器2aの電気的構成について 図17及び図18を参照しつつ説明する。図17は、質問器2aの電気的構成の一例を示すブロック図であり、図18は、質問器2aに備えられたDSP21の構成の一例
を説明する図である。尚、本第4の実施形態における質問器2b～21及び応答器3a～3cの電気的構成は前述した第1の実施形態と同様でありその説明が適用できるため、詳細は省略する。

質問器2aに備えられたDSP21は、図18に示すように、中央演算処理装置であるCPU21g、ROM（Read Only Memory）21h、及びRAM（Random Access Memory）21i等から成り、RAM21iの一時記憶機能を利用してつつROM21hに予め記憶されたプログラムに従って信号処理を行う所謂マイクロコンピュータシステムである。また、DSP21は、図17及び図18に示すように、入出力インタフェイス21fを備えており、その入出力インタフェイス21fを介してネットワーク205に接続されることで、管理サーバー203、端末204、及び各店舗202に備えられた質問器2a等との間で情報のやりとりが可能とされている。このような質問器2aは、好適には、図16に示すように、店舗202の施設内と施設外を結ぶ通路上に配置されたレジスタ20Aに対応して設けられている。

図18に示す通信情報収集手段206及び通信情報送信手段207は、何れもCPU21gに備えられた制御機能であるが、これらの制御機能は、CPU21gとは別体としてハード的に構成されてもよい。質問器2aは、店舗202内に構成された通信システム1において隣接する前記複数の質問器2b～21に順次質問して、質問器2aを含むそれら複数の質問器2a～21相互間における通信に関する情報及び各前記質問器2a～21と前記応答器3a～3cとの間における通信に関する情報を収集する部分である通信情報収集手段206或いは通信情報収集部を備えている。この通信に関する情報とは、たとえば、各店舗202における所定時間毎の来客数、所定時間毎の各売り場の来客数及び売上げ、或いは顧客の移動経路や売り場コーナーに滞在した時間等の店舗202に関する店舗情報である。好適には、質問器2aの通信情報収集手段206により所定の送信コマンドが隣接する質問器2bへと転送され、その質問器2bから隣接する質問器2cに、質問器2cから隣接する質問器2dへと送信コマンドが順次転送されてゆき、未端の質問器21まで達したらその質問器21から隣接する質問器2kへ、質問器2kから隣接する質問器2jへと検出された店舗情報が質問器2aに達す
るまで順次送り返される。このように、情報を受信した質問器が自身の情報を付加して隣接する質問器に転送するという動作がリレー形式で順次繰り返されることにより、通信システム1における通信に関する情報すなわち店舗202に関する店舗情報が質問器2aにより効率的に収集されてDSP21に備えられたパッファ3、37に記憶される。通信情報送信手段207は、通信情報収集手段206により収集されてRAM21iに確保されたパッファ36、37に記憶された情報をネットワーク205を介して管理サーバ203に送信する。

次に、管理サーバ203の電気的構成について図19を参照しつつ説明する。図19は、管理サーバ203の電気的構成の一例を示すブロック図である。

管理サーバ203は、図19に示すように、中央演算処理装置であるCPU208によりRAM210の一時記憶機能を利用しつつROM209に予め記憶されたプログラムに従って信号処理を行う所謂マイクロコンピュータシステムを備えている。また、CRTコントローラ211により制御されるCRT等の映像表示装置212、インターフェイス213を介して接続される入力装置であるキーボード214、ハードディスク等の記憶装置215及びCPU208等をネットワーク205に接続するターミナルアダプタ216を備えている。記憶装置215には、通信情報データベース217が設けられており、各店舗202に構成された通信システム1每乃至はその通信システムに含まれる各質問器2每に情報が記憶されるようになっている。尚、ネットワーク205を介して接続された端末204は、管理サーバ203の操作端末として機能するものであり、その端末204によっても管理サーバ203の操作を行い得るようになっている。

図19に示す通信情報管理手段218は、CPU208に備えられた制御機能であるが、この制御機能は、CPU208とは別体としてハード的に構成されてもよい。管理サーバ203は、ネットワーク205を介して質問器2aから送られてくる情報を受信して一元的に管理する部分である通信情報管理手段218あるいは通信情報管理部を備えており、質問器2aの通信情報収集手段206により収集され且つ通信情報送信手段207により送信された各店舗202に関する店舗情報を受信して、各店舗202に構成された通信システム1每乃至はその通信システムに含まれる各質問器2每にその店舗情報を集計処理した後、記憶装置215に記憶される。
15に設けられた通信情報データベース217に記憶する。

以下、上述した通信システム201の質問器2a及び管理サーバ203が行う処理内容について図20及び図21を参照しつつ説明する。図20は、質問器2aのCPU21gが行う処理内容の手続きを示すフローチャートである。

先ず、S301において、内部タイムがリセット（初期化）された後、S302の処理へ移行する。

S302において、複数の質問器2a～21相互間における通信に関する情報及び各前記質問器2a～21と前記応答器3a～3cとの間における通信に関する情報たとえば所定時間毎の来客数、所定時間毎の各売り場の来客数及び売上げ、或いは顧客の移動経路や売り場コーナーに滞在した時間等の店舗202に関する店舗情報を管理サーバ203へ送信するためのコマンドであるサーバコマンドが有るか否かが判断される。この判断が肯定された場合には（S302：YES）、S303の処理へ移行するが、否定された場合には（S302：NO）、S305の処理へ移行する。

通信情報送信手段207に対応するS303において、DSP21に備えられたバッファ36、37の記憶内容（バッファメモリデータ）すなわち店舗202に関する店舗情報が管理サーバ203へ送信された後、S304の処理へ移行する。

S304において、バッファ36、37の記憶内容がクリア（初期化）された後、S302以下の処理が再び実行される。

S305において、内部タイムによりカウントされる時間が所定時間経過したか否かが判断される。この判断が肯定された場合には（S305：YES）、S306の処理へ移行するが、否定された場合には（S305：NO）、S302以下の処理が再び実行される。

S306において、店舗202に関する店舗情報を収集するためのコマンドである送信コマンドが隣接する質問器2bへ転送された後、S307の処理へ移行する。

S307において、隣接する各質問器間の通信により順次転送された店舗202に関する店舗情報が受信された後、S308の処理へ移行する。
S308において、S307にて受信された店舗202に関する店舗情報がパッファ36、37に追加・保存された後、S301以下の処理が再び実行される。以上の制御において、S306～S308が通信情報収集手段206に対応する。
図21は、管理サーバ203のCPU208が行う処理内容の手順を示すフローチャートである。

先ず、S401において、Nの値が初期値すなわち1とされた後、S402の処理へ移行する。

S402において、端末204からの応答処理集計データの送信要請すなわち端末問い合わせ有るか否かが判断される。この判断が肯定された場合には（S402：YES）、S403の処理へ移行するが、否定された場合には（S402：NO）、S404の処理へ移行する。

S403において、記憶装置215に設けられた通信情報データベース217からS402の要請に係る応答処理集計データが読み出されて端末204へ送信された後、S402以下の処理が再び実行される。

S404において、店舗N（すなわち店舗202N）に構成された通信システム1における通信に関する情報たとえば店舗Nにおける所定時間毎の来客数、所定時間毎の各売り場の来客数及び売上げ、或いは顧客の移動経路や売り場コーナーに滞在した時間等の店舗Nに関する店舗情報を収集するためのコマンドである送信コマンドがその店舗Nに含まれる質問器2aへ転送された後、S405の処理へ移行する。

S405において、店舗Nの通信システム1に含まれる質問器2aから送られてきたその店舗Nに関する店舗情報が受信された後、S406の処理へ移行する。

S406において、Nの値に1が加算された後、S407の処理へ移行する。

S407において、Nの値が最大値すなわち店舗Nの総数であるNmaxよりも大きいか否かが判断される。この判断が肯定された場合には（S407：YES）、S408の処理へ移行するが、否定された場合には（S407：NO）、S402以下の処理が再び実行される。

S408において、S405にて受信された店舗Nに関する店舗情報がたとえばその店舗Nに形成された通信システム1毎乃至は質問器毎に集計処理された
後、S409の処理へ移行する。

S409において、S408にて集計処理された店舗Nに関する店舗情報が記憶装置215に設けられた通信情報データベース217に記憶（保存処理）された後、S401以下の処理が再び実行される。以上の制御において、S401～S409が通信情報管理手段218に対応する。

以上説明した第4の実施形態における通信システム201によれば、前記複数の質問器2a～21のうち少なくとも1つの質問器2aがネットワーク205を介して管理サーバ203に接続されており、相互に情報の通信が可能とされているため、ネットワーク205に接続された質問器2aから送られてくる情報を管理サーバ203によって管理することができ、第1の実施形態における通信システム1等を一元管理することができる。また、店舗202に備えられた複数の質問器のうち所定の質問器2aのみをネットワーク205に接続する構成とすることで、余計な配線を省くことができ、店舗内の美観を損なわずに済むという利点がある。

また、ネットワーク205に接続された質問器2aは、複数の質問器2a～21間における通信に関する情報及び各質問器2a～21と応答器3a～3cとの間における通信に関する情報をネットワーク205を介して管理サーバ203に送信する通信情報送信手段207を備えたものであり、管理サーバ203は、ネットワーク205に接続された質問器2aから送られてくる情報を受信して一元的に管理する通信情報管理手段218を備えたものであるため、各店舗Nに夫々構成された複数の通信システム1における通信に関する情報を夫々の通信システム1に含まれる質問器2aから管理サーバ203に送信することで、その管理サーバ203によって複数の通信システム1を一元的に管理することができる。

また、ネットワーク205に接続された質問器2aは、隣接する複数の質問器2b～21に順次質問してそれら複数の質問器2a～21間における通信に関する情報及び各質問器2a～21と応答器3a～3cとの間における通信に関する情報を収集する通信情報収集手段206を備えたものであり、前記通信情報送信手段207は、通信情報収集手段206により収集された情報をネットワーク205を介して管理サーバ203に送信するものであるため、各通信システム1に
おける通信に関する情報をその通信システムに含まれる質問器2aによって効率的に収集することができる。

また、前記複数の質問器2a～2lは、それぞれ所定の店舗202内に設置されたものであり、前記通信に関する情報は、それら複数の質問器2a～2lが設置された店舗202に関する店舗情報であるため、各店舗202内に形成された通信システム1によりその店舗202に関する店舗情報を好適に管理することができる。

以上、本発明の好適な実施の形態について説明したが、本発明は、前記実施形態に限定されるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。

例えば、第1の実施の形態では、各応答器が質問波に対して変調反射する反射波が異なる帯域を持つ場合も考えられるが、その場合も、前記反射波の周波数の中で前記質問器から最も周波数の離れた周波数を利用し、上記第1の実施形態で説明した周波数配置が満たされるように、各周波数を設定すればよい。また、上記実施の形態では、交信波にはOFDM方式を用いた例で説明しているが、交信波や質問波の周波数数が前述したような本発明の要件を満たすように設定すれば、FM（FSK）やスペクトラム拡散通信（周波数ホッピング方式）など、種々の変調（伝送）方式を用いてもよいことはいうまでもない。さらに、質問波の周波数fca、fcb、fcc、fcd、fce、最低キャリア周波数f s1、最高キャリア周波数f sn、最低ホッピング周波数f l、及び最高ホッピング周波数f hが上記実施の形態で説明したような関係でなくても、特許請求の範囲に記載したような周波数の関係が満たされるものであればよい。

また、第1の実施の形態では、一般に応答器は数が多く移動し、消費電力を抑え、回路などを簡素化する必要があるため、質問器側で送信情報信号が応答情報信号の周波数より大きくなるように設定しているが、応答器側で応答情報信号の周波数が送信情報信号の周波数より小さくなるように設定してもよい。この場合、応答器側の設定を行うだけでよく、既に稼動しているパックスキャタシステムなどに応答器を新規追加する場合など、質問器側の設定を変える前に前述した効果を得たい場合に容易に行うことができ有効である。また、応答器側の消費電力を
小さく抑えることが可能になる。
また、第3の実施形態の送信波フィルタ165は主搬送波と送信情報信号変調波の上側波帯とを通しるものであるが、主搬送波と送信情報信号変調波の下側波帯とを通しにしてもよい。尚、受信波フィルタ169及び受信波フィルタ173の通過帯域をそれに合わせて変更する必要がある。
また、応答器の応答情報信号はランダムに選択されるタイムスロットで出力されるが、発明の効果を維持できる範囲で、副搬送波発振器152bの発振周波数を所定の拡散符号に従って変化させてもよい。
また、第4の実施形態では、第1の実施形態の通信システム1における通信に関する情報を管理サーバ203によって一元的に管理する通信システム201について説明したが、第2の実施形態の通信システム101や第3の実施形態の通信システム101aにおける通信に関する情報を一元的に管理するものであっても当然に構わない。この場合においては、通信システム101、101a各々に含まれる複数の質問器のうち少なくとも1つの質問器たとえば質問器102a、106aがネットワーク205を介して管理サーバ203に接続され、相互に情報の通信が行われる。
また、第4の実施形態では、ネットワーク205に接続された単一の管理サーバ203が通信システム201に含まれる複数の通信システム1における通信に関する情報を一元的に収集・管理するものであったが、2つ乃至は複数の管理サーバにより多圧的に情報を収集・管理する通信システムであっても当然に構わない。
請求の範囲

1. 複数の質問器と、応答器を備えた通信システムにおいて、
各前記質問器と前記応答器との間では、各前記質問器から質問波を送信し、前
記質問波を受信した応答器が前記質問波に所定の変調を行った反射波を前記質問
器に返信することによって通信が行われ、
前記質問器間では、交信波を利用することによって無線で通信が行われること
を特徴とする通信システム。
2. 前記反射波の周波数帯域と前記交信波の周波数帯域が分離され、且つ、前
記交信波の周波数帯域より前記反射波の周波数帯域が前記質問波の周波数に近い
ことを特徴とする請求の範囲第1項に記載の通信システム。
3. 前記交信波の周波数帯域の最も前記質問波の周波数に近い周波数と前記質問
波の周波数との差が、前記反射波の周波数帯域の最も前記質問波の周波数から離
れた周波数と前記質問波の周波数との差の、実質的に2倍以上であることを特徴
とする請求の範囲第2項に記載の通信システム。
4. 前記複数の質問器のうち互いに無線で通信を行う2つの質問器の未公が送出
する質問波の周波数の差が、前記反射波の周波数帯域の最も前記質問波の周波数
から離れた周波数と前記質問波の周波数との差の4倍と前記交信波の周波数帯域
幅を加算して得られる値と実質的に等しいかそれより大きいことを特徴とする
請求の範囲第2項に記載の通信システム。
5. 同じ情報を有する前記交信波の周波数帯域が前記質問波の周波数の両側の周
波数領域に存在することを特徴とする請求の範囲第1項から第4項のいずれか1
項に記載の通信システム。
6. 前記交信波がOFDM方式による変調がなされたものであることを特徴とする
請求の範囲第1項から第5項のいずれか1項に記載の通信システム。
7. 前記質問器は、
OFDM信号を生成するOFDM信号生成手段と、
前記OFDM信号生成手段によって生成された前記OFDM信号を発信波で
アップコンバートして前記交信波とするミキサ手段と、
前記ミキサ手段からの前記交信波と前記主搬送波を変調、或いは変調しないで得られる前記質問波とを合成して送信波とする合成手段と、
当該質問器が受信した受信波を検波する検波手段と、
前記検波手段により検波された受信波をデジタル信号に変換するAD変換手段と、
前記AD変換手段で変換された受信波を前記反射波と前記他の質問器からの交信波とに分離する受信波分離手段と、
前記受信波分離手段で分離された前記反射波を復調する反射波復調手段と、
前記受信波分離手段で分離された前記他の質問器からの交信波を復調する交信波復調手段とを、備えたことを特徴とする請求の範囲第6項に記載の通信システム。
8. 前記反射波復調手段と前記交信波復調手段は、フーリエ変換手段を共用していることを特徴とする請求の範囲第7項に記載の通信システム。
9. 請求の範囲第1項から第8項のいずれか1項に記載の通信システムの質問器。
10. 複数の質問器の何れかは応答器に対して主搬送波を送信し、応答器は受信した前記主搬送波を応答情報信号で変調して反射波として返信するとともに、各前記質問器は他の質問器へ交信波を送信する通信システムの質問器であって、
他の質問器へ送信する送信情報で前記応答情報信号とは周波数帯域の異なる送信情報信号を生成する送信情報信号生成手段と、
前記送信情報信号生成手段からの送信情報信号で主搬送波を変調して送信情報信号変調波を生成する主搬送波変調手段と、
前記主搬送波変調手段からの前記主搬送波及び前記送信情報信号変調波を含む交信波を送信する送信手段と、
前記応答器において応答情報信号で変調がなされた反射波を受信し、他の質問器からの交信波を受信する受信手段と、
を備えたことを特徴とする通信システムの質問器。
11. 前記送信情報信号の周波数が前記応答情報信号の周波数より大きくするように設定されていることを特徴とする請求の範囲第10項に記載の通信システムの質問器。
１２．前記受信手段が受信した受信波を前記主搬送波変調手段からの信号により復調する受信波復調手段と、

前記受信波復調手段からの信号のうち前記応答器からの応答情報信号のみを通
過させる第１フィルタ手段と、

前記受信波復調手段からの信号のうち前記他の質問器からの送信情報信号のみ
を通過させる第２フィルタ手段と、

をさらに備えたことを特徴とする請求の範囲第１０項又は第１１項に記載の通
信システムの質問器。

１３．請求の範囲第１項に記載の質問器へ送信する応答情報で前記送信情報信
号とは周波数帯域の異なる応答情報信号を生成する応答情報生成手段と、

前記質問器から送信される主搬送波を前記応答情報信号で変調して反射波とし
て返信する主搬送波反射手段を、備える応答器であって、

前記応答情報信号の周波数が前記送信情報信号の周波数より小さくなるように
設定されていることを特徴とする通信システムの応答器。

１４．複数の質問器の何れかは応答器に対して主搬送波を送信し、応答器は受信
した前記主搬送波を応答情報信号で変調して反射波として返信するとともに、各
前記質問器は他の質問器へ信波を送信する通信システムの質問器であって、

他の質問器へ送信する送信情報で送信情報信号を生成する送信情報信号生成手
段と、

前記送信情報信号生成手段からの送信情報信号で主搬送波を変調して送信情報
信号変調波を生成する主搬送波変調手段と、

前記主搬送波変調手段からの前記主搬送波、及び周波数領域上で当該主搬送波
の両側に発生する前記送信情報信号変調波の側波帯の一方のみの側波帯を通過さ
せるフィルタ手段と、

前記フィルタ手段からの前記主搬送波及び前記側波帯を交信波として送信する
送信手段と、

前記応答器において変調がなされた反射波を受信し、他の質問器からの交信波
を受信する受信手段と、

を備えたことを特徴とする通信システムの質問器。
１５．前記受信手段が受信した受信波のうち前記応答器からの反射波のみを通
過させる第１受信波フィルタ手段と、

前記受信手段が受信した受信波のうち前記他の質問器からの交信波のみを通
過させる第２受信波フィルタ手段と、

をさらに備えたことを特徴とする請求の範囲第１４項に記載の通信シス템の
質問器。

１６．前記送信手段は、応答器からの反射波が他の質問器からの交信波に干渉
しないように、送信する主送信波を所定の強度に設定するようにしたことを特徴
とする請求の範囲第１４項又は第１５項に記載の通信シス템の質問器。

１７．前記質問器は、他の質問器から交信波を受信しているか否かを判定する
交信波受信判定手段をさらに備えており、

前記送信手段は、前記交信波受信判定手段によって前記他の質問器から交信波
を受信していると判定されている間、前記交信波の送信を中止することを特徴と
する請求の範囲第１０項から第１３項のいずれか１項に記載の通信シス템の質
問器。

１８．前記複数の質問器のうち少なくとも１つの質問器が所定の通信回線を介し
て管理サーバに接続されており、相互に情報の通信が可能とされていることを特
徴とする請求の範囲第１項から第８項のいずれか１項に記載の通信シス템。

１９．前記通信回線に接続された質問器は、前記複数の質問器間における通信に
関する情報及び各前記質問器と前記応答器との間における通信に関する情報を前
記通信回線を介して前記管理サーバに送信する通信情報送信手段を備えたもので
あり、前記管理サーバは、前記通信回線に接続された質問器から送られてくる情
報を受信して一元的に管理する通信情報管理手段を備えたものであることを特徴
とする請求の範囲第１８項に記載の通信シス템。

２０．前記通信回線に接続された質問器は、隣接する前記複数の質問器に順次質
問してそれら複数の質問器間における通信に関する情報及び各前記質問器と前記
応答器との間における通信に関する情報を収集する通信情報収集手段を備えたも
のであり、前記通信情報送信手段は、前記通信情報収集手段により収集された情
報を前記通信回線を介して前記管理サーバに送信することを特徴とする請求の範
囲第18項又は第19項に記載の通信システム。
21. 前記複数の質問器は、それぞれ所定の店舗内に設置されたものであり、前記通信に関する情報は、それら複数の質問器が設置された店舗に関する店舗情報であることを特徴とする請求の範囲第19項又は第20項に記載の通信システム。
図 5

Aa 質問器2aの質問波に対する応答器の応答波

Ab 質問器2aの質問波に対する応答器の応答波

A 質問器2aの質問波

AB 質問器2a,2bの交信波

Ba 質問器2bの質問波に対する応答器の応答波

B 質問器2bの質問波

Bb 質問器2bの質問波に対する応答器の応答波

BC 質問器2b,2cの交信波

Ca 質問器2cの質問波に対する応答器の応答波

Cb 質問器2cの質問波に対する応答器の応答波
START

S301 タイマリセット

S302 サーバコマンド有り?

YES

S303 サーバへバッファメモリデータを送信

NO

S304 バッファメモリクリア

S305 所定時間経過?

NO

S306 各質問器への送信コマンドを転送

YES

S307 各質問器からのデータを受信

S308 受信データをバッファメモリに追加・保存
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/15827

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl 7 H04B1/59, G06F17/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl 7 H04B1/59, G06F17/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Toroku Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004
Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000-242742 A (Kokusai Electric Co., Ltd.), 08 September, 2000 (08.09.00), Full text (Family: none)</td>
<td>1-12,14-21</td>
</tr>
<tr>
<td>A</td>
<td>JP 11-274974 A (Sharp Corp.), 08 October, 1999 (08.10.99), Full text (Family: none)</td>
<td>1-12,14-21</td>
</tr>
<tr>
<td>A</td>
<td>JP 10-301984 A (Yazaki Corp.), 13 November, 1998 (13.11.98), Full text (Family: none)</td>
<td>1-12,14-21</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search

12 March, 2004 (12.03.04)

Date of mailing of the international search report

23 March, 2004 (23.03.04)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☒ Claims Nos.: 13
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 Claim 13 includes a description that "said transmission information signal...by response information transmitted to the inquiry device disclosed in claim 1". However, claim 1 does not contain the phrase "transmission information signal." Accordingly, claim 13 is unclear.

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest ☐ The additional search fees were accompanied by the applicant's protest.

☐ No protest accompanied the payment of additional search fees.
国際調査報告

国際出願番号 PCT／JP03／15827

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int. CI ‘H04B1／59 G06F17／40

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int. CI ‘H04B1／59 G06F17／40

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新型公報 1992－1996年
日本国公開実用新型公報 1971－2004年
日本国登録実用新型公報 1994－2004年
日本国実用新案登録公報 1996－2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000－242742 A（国際電気株式会社） 2000.09.08 全文（ファミリーなし）</td>
<td>1-12, 14-21</td>
</tr>
<tr>
<td>A</td>
<td>JP 11－274974 A（ジャーブ株式会社） 1999.10.08 全文（ファミリーなし）</td>
<td>1-12, 14-21</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

バペントファミリーに関する別紙を参照。

* 引用文献のカテゴリ
 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」権利主張に疑義を含む文献又は他の文献の発行日若しくは他の特別な理由を考慮するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 12.03.2004
国際調査報告の送付日 23.03.2004

国際調査機関の名称及び住所
日本国特許庁（lSA／JP）
郵便番号100－3915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
江口 能弘

電話番号 03－3581－1101 内線 6511

様式PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 10-301984 A（矢崎総業株式会社） 1998.11.13 全文 （ファミリーなし）</td>
<td>1-12, 14-21</td>
</tr>
</tbody>
</table>

国際調査報告
国際出願番号 PCT/JP03/15827

様式PCT/ISA/210（第2ページの続き）（1998年7月）
第Ⅰ欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

第8条第3項（PCT 17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. □ 請求の範囲 ＿＿＿＿＿＿＿＿＿＿は、この国際調査機関が調査をすることを要しない対象に係るものである。

つまり、

2. □ 請求の範囲 １３＿＿＿＿＿＿は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

請求の範囲1３に「請求の範囲第1項に記載の質問語を送信する応答情報の前記送信情報信号」と記載されているが、引用されている請求の範囲第1項には「伝送情報信号」という記載は無いかから、請求の範囲1３は不明確である。

3. □ 請求の範囲 ＿＿＿＿＿＿＿＿＿＿は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第Ⅱ欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に2以上の発明があるとこの国際調査機関は認めた。

1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。

2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めてなかった。

3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲について作成した。

4. □ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT/ISA/210（第1ページの続き）（1998年7月）