情報入力装置を用いた回転操作のための入力装置

Information inputting device for an information apparatus, which can be simply and smoothly operated when information of a complicated structure is processed or information is inputted. The information inputting device includes a turning operation part for determining a displacement caused by a turning operation, and one or more contact detecting parts arranged in one or more partial regions defined by dividing the turning operation part, for detecting contact with any of the partial regions when a turning operation is conducted. The information inputting device may include a center press detection part disposed at the central portion of the turning operation part for detecting a press operation. The information inputting device may further include region press operation detection parts arranged in the partial regions of the turning operation parts so as to each detect a press operation for each partial region. Alternatively, the information inputting device may further include one or more region press operation detection part disposed in one or more of the partial regions so as to each detect the press operation for the partial region.
(57) 要約:

本発明は、複雑な構造の情報を操作する場合や文字情報を入力する場合に、簡単にスムーズな操作が可能な情報機器の情報入力装置を提供するものである。

本発明は、情報入力装置において、回動操作による移動量を検出する回動操作部を備え、この回動操作部を区分してなる複数の部分領域に対して、各部分領域への回動操作時の接触の有無を検出する接触検出部を、1以上の部分領域に設けたものである。

この情報入力装置は、上記回動操作部の中心部付近に押圧操作を検出可能な中心押圧操作検出部をさらに備えてもよい。

この情報入力装置は、上記回動操作部の各部分領域内に各部分領域ごとに押圧操作を検出可能な領域押圧操作検出部をさらに備えてもよい。あるいは、上記回動操作部の各部分領域内の少なくとも1つの領域に、この部分領域への押圧操作を検出可能な領域押圧操作検出部をさらに備えてもよい。
明細書
回動操作を利用した情報入力装置

技術分野
本発明は、情報機器の入力装置に関するものである。

背景技術
この種の入力装置としては、従来からキーボード、マウス、トラックボール、ジョイスティック等、種々の入力装置が提案され、使用されてきた。
しかし、これらの入力装置のうち、キーボードを用いる場合には、多様な文字情報を入力できる反面で、操作が複雑なため、初心者は使いづらいという問題があった。そのため、最近では、高齢者を含む初心者にキーボード操作を学習させる傾向にある。しかし、身体能力がやがて衰えるため、従来のキーボードのように複雑な操作によらず、いわゆるブラインド操作が可能な入力、選択及び閲覧機能等を提供する入力装置が求められていた。
一方、マウス、トラックボール、ジョイスティック等を使用すれば、操作が簡単な反面、複雑なメニューからの選択や多様な文字情報を入力する場合には、かえって操作に手間がかかることという問題があった。そのため、例えば、次世代のCATV受信装置等では、多チャンネル化に伴って、メニューの一覧表示機能を高め、目的の項目を簡単に選択できる操作器具が望まれていた。
また、携帯電話によってインターネットのホームページを閲覧（例えば株式会社エヌ・ティ・ティ・ドコモの提供するiモードサービス等を利用）する場合には、携帯性にすぐれ、かつ、簡易に閲覧操作及び選択操作が可能な操作方法が望まれていた。
しかしながら、複雑な構成の情報に対して簡易に閲覧操作、入力操作が可能な入力装置は、実現されていなかった。

発明の開示
本発明はこのような従来の技術の問題点に鑑みてなされたものであり、複雑な
構造の情報を操作する場合や文字情報を入力する場合にも簡単で、スムーズな操作が可能な情報機器の情報入力装置を提供するものである。本発明は前記課題を解決するために、以下の手段を採用した。

すなわち、本発明は、情報入力装置において、回動操作による移動量を検出する回動操作部を備え、この回動操作部を区分してなる複数の部分領域に対して、各部分領域への回動操作時の接触の有無を検出する接触検出部を、1以上の前記部分領域に設けたものである。

回動操作部は、回動による操作を検出する。一方、接触検出部は、回動操作がなされた際に上記部分領域のいずれの領域に接触されているかを検出する。

この情報入力装置は、上記部分領域のうち、第1の部分領域への接触による回動操作、または、第2の部分領域への接触による回動操作を所定の操作対象への操作として検出する。ここで操作対象とは、例えば、情報端末上に表示されたメニューの選択項目、表計算プログラムの表（シート）、テキスト情報、携帯電話の液晶ディスプレイに表示された文字入力の欄等をいう。

また、この情報入力装置は、上記各部分領域において、第1の部分領域への接触による回動操作を第1の操作対象への操作として検出し、第2の部分領域への接触による回動操作を第2の操作対象への操作として検出するようにしてもよい。

また、上記部分領域は、回動操作部を略2分割してなら、第1の部分領域への接触による反時計方向（または時計方向）への回動操作と、前記第2の部分領域への接触による時計方向（または反時計方向）への回動操作とを同一方向への移動量として検出するようにしてもよい。

この情報入力装置は、上記回動操作部の中心部付近に押圧操作を検出可能な中心押圧操作検出部をさらに備えてもよい。

この情報入力装置は、上記回動操作部の各部分領域内に各部分領域ごとに押圧操作を検出可能な領域押圧操作検出部をさらに備えてもよい。あるいは、上記回動操作部の各部分領域内の少なくとも1つの領域に、この部分領域への押圧操作を検出可能な領域押圧操作検出部をさらに備えてもよい。

この情報入力装置は、基板上に回動自在に設置され、回動操作による回動量を検出する回動操作部と、
基板上に固定され、前記回動操作部が回動する領域を所定の回動範囲に対応する部分領域に区分する領域指示部材と、

この領域指示部材によって区分される部分領域のうち1以上の部分領域について、回動操作時にその部分領域への接触の有無を検出する接触操作検出部とを設けてもよい。この各部分領域において、その部分領域にある回動操作部への接触による回動操作と他の部分領域にある回動操作部への接触操作を弁別するようにしてもよい。

上記領域指示部材は、回動操作部が回動する領域を上部分領域、下部分領域、左部分領域及び右部分領域からなる4つの部分領域に分割し、

上部分領域への接触による反時計方向（または時計方向）への回動操作と、下部分領域への接触による時計方向（または反時計方向）への回動操作とを同一方向への移動量として検出してもよい。

また、左部分領域への接触による反時計方向（または時計方向）への回動操作と、右部分領域への接触による時計方向（または反時計方向）への回動操作とを同一方向への移動量として検出するようにしてもよい。

このような回動操作の方向の検出は、上下の部分領域または左右の部分領域の一方に対して行ってもよい。あるいは、上下の部分領域と左右の部分領域の双方に対して行ってもよい。

このような回動操作の検出は、回動操作部が回動する領域を複数に分割し、互いに略軸対称な位置にある2つの部分領域に対して行ってもよい。

上記回動操作部が回動する領域の外側であって上記各部分領域に対応する位置に、押圧操作を検出する押圧操作検出部さらに備えてもよい。

上記部分領域間の境界部近傍に押圧操作を検出可能な境界押圧操作検出部をさらに備えてもよい。

上記回動操作部は、回動量に応じた回数の開閉をする第1のスイッチ部と、
時計回りの回動と反時計回りの回動を弁別する第2のスイッチ部とをさらに備えてもよい。

以上説明したように、本発明によれば、回動操作部及び接触検出部、さらには中心押圧操作検出部または回動操作部の部分領域に対する領域押圧操作検出部を
備えて入力操作を検出するので、複雑な構造の情報を操作する場合や文字情報を入力する場合にも、簡単でスムーズな操作が可能になる。

図面の簡単な説明

FIG. 1 は、本発明の第1実施形態に係る情報入力装置1と情報端末30の外観構成図であり、

FIG. 2 は、情報入力装置1の機械的構成要素を示す図であり、

FIG. 3 は、情報入力装置1と情報端末30側のプログラムとの関係を示す図であり、

FIG. 4 は、情報入力装置1の操作仕様の分類を示す図であり、

FIG. 5 は、情報入力装置1の外観と機能との関連を示す図であり、

FIG. 6 は、情報入力装置1を使用した数字を入力する操作の例であり、

FIG. 7 は、情報入力装置1を使用した項目を選択する操作の例であり、

FIG. 8 は、情報入力装置1を使用したかな文字を入力する操作の例であり、

FIG. 9 は、回動操作板3の左右の部分領域を使用したかな文字入力の例であり、

FIG. 10 は、情報入力装置1をかな漢字変換に使用する例であり、

FIG. 11 は、左右の部分領域によって同一項目を選択する操作の例であり、

FIG. 12 は、押圧スイッチにより、オン、オフの設定をする操作の例であり、

FIG. 13 は、テキスト情報をスクロール操作する例であり、

FIG. 14 は、ファイル選択ボックス18からファイルを選択する操作の例であり、

FIG. 15 は、第1実施形態に係る情報入力装置1の変形例（1）であり、

FIG. 16 は、第1実施形態に係る情報入力装置1の変形例（2）であり、

FIG. 17 は、第1実施形態に係る情報入力装置1の変形例（3）であり、

FIG. 18 は、第1実施形態に係る情報入力装置1の変形例（4）であり、

FIG. 19 は、第1実施形態に係る情報入力装置1の変形例（5）であり、

FIG. 20 は、第1実施形態に係る情報入力装置1の変形例（6）であり、
FIG. 2１は、第１実施形態に係る情報入力装置１の変形例の筐体（1）であり、

FIG. 2２は、第１実施形態に係る情報入力装置１の変形例の筐体（2）であり、

FIG. 2３は、本発明の第２実施形態に係るリモコン５１とテレビの外観構成図であり、

FIG. 2４は、第２実施形態に係るリモコン５１の機械的構成要素を示す図であり、

FIG. 2５は、第２実施形態に係るリモコン５１の信号経路を示す図であり、

FIG. 2６は、第２実施形態に係るリモコン５１によるテレビの操作例であり、

FIG. 2７は、第２実施形態に係るリモコン５１の変形例（1）であり、

FIG. 2８は、第２実施形態に係るリモコン５１の変形例（2）であり、

FIG. 2９は、第２実施形態に係るリモコン５１の変形例（2）の機械的構成要素を示す図であり、

FIG. 3０は、本発明の第３実施形態に係るリモコン７１を用いたカーナビゲーションシステムの外観構成図であり、

FIG. 3１は、本発明の第４実施形態に係る携帯電話を示す図であり、

FIG. 3２は、本発明の第５実施形態に係るダイヤルユニット１００の機械的構成要素を示す図であり、

FIG. 3３は、第５実施形態に係る歯車１０４の拡大図であり、

FIG. 3４は、第５実施形態に係るダイヤルユニットの回動操作検出機構を示す図である。

発明を実施するための最良の形態

以下、本発明の好適な実施の形態を図面を参照して説明する。

（第１実施形態）

本発明の第１実施形態をFIG. 1からFIG. 2の図面に基づいて説明する。

FIG. 1は、本実施形態に係る情報入力装置１を情報端末３０の入力装置とし
て用いる外観構成図を示すものであり、FIG. 2 は、この情報入力装置 1 の機械的構成要素を示す図であり、FIG. 3 は、この情報入力装置 1 を情報端末 30 の入力装置として用いる際の情報端末 30 側のプログラムとこの情報入力装置 1 との関係を示す図であり、FIG. 4 は、この情報入力装置 1 の操作仕様の分類を示す図であり、FIG. 5 はこの情報入力装置 1 の外観と機能との関連を示す図であり、FIG. 6～FIG. 14 は、情報端末 30 の入力装置として、この情報入力装置 1 を使用した場合の操作例を示す図であり、FIG. 15 から FIG. 22 は、この情報入力装置 1 の変形例を示す図である。

＜構成＞

FIG. 1 に、本実施形態に係る情報入力装置 1 を情報端末 30 の入力装置として用いる場合の外観構成図を示す。FIG. 1 のように、この情報端末 30 は、3 枚のシート（Sheet1～Sheet3）から構成される表を表示している。また、この表のシート（Sheet1）にはディレクトリを示す項目（Dir1～Dir3）とファイルを示す項目（File1～File4）とが含まれている。この情報入力装置 1 は、回動操作板 3 の回動操作、回動操作時の回動操作板 3 の左部分領域または右部分領域の接触、回動操作板 3 の左部分領域または右部分領域への押圧操作、回動操作板 3 の中央部のボタン 2 a への押圧操作を検出し、FIG. 1 に示すような表の各項目の選択、閲覧、文字入力等の機能を提供する。

FIG. 5 に、この情報入力装置 1 の外観と機能との関連を示す。FIG. 5 のように、この情報入力装置 1 は、ユーザの回動操作による移動量を検出する回動操作板 3 と、回動操作板 3 の左右の部分領域をユーザに区別して認識させるための中央線指示用マーク 14 と、回動操作板 3 の左部分領域（左半部、及び第 1 の部分領域に相当）または右部分領域（右半部、または第 2 の部分領域に相当）のいずれをユーザが接触して操作しているかを検出する接触検出センサ 8 a 及び 8 b（接触検出部に相当）と、ユーザの押圧操作を検出する回動操作板 3 の左部分領域または右部分領域の押圧スイッチ 11 a 及び 11 b（領域押圧操作検出部に相当）と、ユーザの押圧操作を検出する回動操作板 3 の中央のボタン 2 a とを備えている。さらに、このボタン 2 a は、FIG. 2 に示す筐体 9 上の押圧スイッチ 2 b（中央押圧操作検出部に相当）を被覆している。
FIG. 2 に、この情報入力装置 1 の機械的構成要素を示す。FIG. 2 のように、この情報入力装置 1 は、筐体部 9 と、接触検出センサ 8 a 及び 8 b と、スペーサ 7 と、回動操作板 3（表面 3 a、裏面 3 b）と、ボタン 2 a とを含む。FIG. 2 のように、これらの構成要素は積層構造で組み立てられている。

FIG. 2 のように、筐体部 9 には、この押圧スイッチ 2 b、11 a、11 b が設けられている。押圧スイッチ 2 b は、筐体部 9 の上面中央部に設けられている。また、押圧スイッチ 11 a と 11 b とは、押圧スイッチ 2 b を介して略対称な左右の位置に設けられている。

筐体部 9 とスペーサ 7 の間には、接触検出センサ 8 a と 8 b とが略左右対称に設けられている。この接触検出センサ 8 a、8 b は、人の指が近づくことによる静電容量の変化を検出して回動操作板 3 の左右いずれの部分領域にユーザの指が接触しているかを検出する。なお、FIG. 2 に示すように、中央線指示用マーク 14 が筐体 9 の上面に固定されているため、回動操作板 3 の回動による移動とは無関係に、上記部分領域が規定される。

回動操作板 3 の裏面 3 b には金属電極 4 が放射状に設けられている。一方、スペーサ 7 と回動操作板 3 の裏面 3 b との間には、平行電極 5 が設けられている。この放射状の金属電極 4 と平行電極 5 とが回転式エンコーダを構成しており、ユーザが回動操作板 3 を操作した際の移動量を金属電極 4 の間隔によって決まる最小分解能で検出する。回動操作板 3 の表面には、滑り止めのリブ 29 が放射状に設けられている。

押圧スイッチ 2 b は、スペーサの開口部 10、回動操作板 3 の開口部 12 を通して外部に突き出し、ボタン 2 a に被覆されている。ユーザがボタン 2 a を押すことで、押圧操作が押圧スイッチ 2 b を介して検出される。

ボタン 2 a は、押圧スイッチ 2 b を被覆し、外部からの押圧力を押圧スイッチ 2 b に伝達するともに、回動操作板 3 の回転軸を形成している。すなわち、回動操作板 3 は、その開口部 12 がボタン 2 a に接触することで回動自在となっている。

押圧スイッチ 11 a 及び 11 b は、スペーサ 7 及回動操作板 3 に覆われる。ユーザが回動操作板 3 の左右の部分領域を接触操作よりもさらに強く押圧操作する
ことで、その押圧操作が、押圧スイッチ11aまたは11bを介して検出される。

FIG. 3は、本実施形態の情報入力装置1を情報機器30に接続して使用する場合の、情報機器30に内蔵されたCPU12で実行されるプログラムとこの情報入力装置1との関係を示す図である。上記のような情報入力装置1への操作はCPU12のI/Oポートへの信号として読み取られる。この信号はCPU12で実行されるデバイスドライバ20によって検出され、OS21を介して、情報端末30の機能を提供するアプリケーションプログラム22に伝達される。

このアプリケーションプログラム22は、この信号をメニューの選択、文字の入力、画面上のカーソルの移動等の操作（操作対象への操作に相当）として受け付け、これらの操作に応答する。この結果、メニュー等の選択項目の現在選択されている位置、テキスト情報表示中のカーソル位置等が所定の方向（操作方向に相当）に移動する。そして、項目の選択が確定され、あるいは、文字が入力される。このような現在選択されている位置、テキスト情報表示中のカーソル位置、文字入力中の入力位置等を以下、選択位置と呼ぶ。

なお、デバイスドライバにかな漢字変換用のフロントエンドプロセッサが連動して作用している場合には、この情報入力装置1への操作は、デバイスドライバへの指示となる。

＜回動操作の検出＞

FIG. 4に、この情報入力装置1の操作方向の仕様を示す。上記のように回動操作による移動量の検出とともに、上記の接触検出センサ8aと8bとによって、回動操作板3の左右いずれの部分領域が接触されているかが検出される。この回動操作板3の左右の部分領域は、上述のように筐体1に明示された中央線指示用マーク14によって区分して表示される。従って、左右の部分領域のいずれが操作に使用されているかによって、FIG. 4のように、操作の方向を規定することができる。ここでは、回動操作板3の回動方向と、その時の操作対象（メニューの選択項目等）上の選択位置の移動方向との関係を操作方向の仕様と呼ぶ。

FIG. 4でNo.1は、左右の接触検出センサ8a、8bが共にオフ、すなわち、いずれも接触されていない状態であり、この場合には、ユーザ操作による回動はあり得ない。
N.o. 2では、左部分領域がオフで、右部分領域がオン、すなわち、ユーザの右部分領域の操作による回動を検出した場合である。この場合、時計回りの回動を正方向、反時計回りの回動を負方向として、操作方向を定める。ここで、正方向とは、進行方向を意味し、例えば、プルダウンメニューまたは複数項目からなるリストを下に移動する方向、テキストデータを上から下にスクロールする方向、あるいは、表を左から右に／上から下に移動する方向、数字が増加する方向等をいう。一方、負方向とは、その逆の方向をいう。この結果、右部分領域に接触して回動操作板3を時計回りに操作（概ね下方向に操作）する場合、プルダウンメニューや複数項目からなるリスト等の選択位置を下に移動する。

N.o. 3では、左部分領域がオンで、右部分領域がオフ、すなわち、ユーザの左部分領域の操作による回動を検出した場合である。この場合、時計回りの回動を負方向、反時計回りの回動を正方向として操作方向を定める。

N.o. 4は、左右の部分領域がともにオン、すなわち、ユーザが左右の部分領域に同時に接触した操作による回動を検出した場合である。本実施形態の情報入力装置1では、このような操作は無効であるとして、操作を無視する。

このような操作方向の仕様のため、右部分領域に接触して回動操作板3を時計回りに操作（概ね下方向に操作）する場合も、左部分領域に接触して回動操作板3を反時計回りに操作（概ね下方向に操作）する場合も、プルダウンメニューや複数項目からなるリスト等の選択位置を下に移動することになるので、左右の違いによる操作感覚の相違をなくすことができる。

＜応用例＞

FIG. 6～FIG. 14に、本実施形態に係る情報入力装置1をFIG. 1の情報端末30に接続した場合の操作例を示す。これらの操作例のいずれを使用するかを情報端末の操作モードとして設定し、情報端末の記憶装置に記憶しておくければよい。そして、回動操作板3の中央部のボタン2aの押圧操作等によって操作モードを切り替えるようにすればよい。

＜数字の入力例＞

FIG. 6に、情報入力装置1を使用して数字を入力する操作の例を示す。ユーザが回動操作板3を回動すると、その移動量が情報端末30に伝達される。こ
ここで、移動量とは、正負の符号を含む回動操作板外周上の位置の変化量（操作開始時点の位置からの相対量、またはこれをその回動半径で割った角度変化量）をいう。

この移動量に基づいて、情報端末３０は、不図示の画面上に０～９の数字を順次選択して表示していく。一方、逆方向に回動すると、情報端末３０は、表示順を逆にして０～９の数字を表示する。このような状態で、回動操作板３の右部分領域がさらに強く押圧されると、押圧スイッチ１１ｂによって、その押圧操作が検出され、ＦＩＧ．１の画面３１上に現在表示されている数字（例えば０）が確定する。

さらに、ユーザが回動操作板３を回動すると、同様に順次０～９の数字が選択して表示される。例えば、数字９が表示されている状態で回動操作板３の右部分領域がさらに強く押圧されると、数字９が確定する。このようにして、ユーザは、次々と数字の選択と確定を繰り返して、ＦＩＧ．６のように、０９０１２３・・・というように数字を入力することができる。

このように、この情報入力装置１によって、簡単に数字の入力が可能になる。

＜１次元の項目一覧表からの選択＞

ＦＩＧ．７に一次元の項目一覧表から項目を選択する操作の例を示す。まず、情報端末３０のプログラムが、画面３１上に名前を要素とする一覧表を表示する。この状態で、ユーザが回動操作板３を回動すると、上記と同様に移動量が情報端末３０に伝達される。その結果一覧表の選択位置１６が、一覧表の項目上を順次移動していく。ＦＩＧ．７では、ユーザが回動操作板３の右部分領域に接触しているため、時計回りの移動量が正として判定され、その操作に対応して一覧表の項目上を選択位置１６が下に移動する。一方、反時計回りのの移動量は、負として判定され、その操作に対応して、一覧表の項目上を選択位置１６が上に移動する。このようにして、例えば、赤井という名前が選択された状態で、回動操作板３の右部分領域がさらに強く押圧されると、押圧スイッチ１１ｂによって、その押圧信号が情報端末３０に伝達され、選択が確定する。

＜回動操作板３の片側の部分領域によるかな文字入力＞

ＦＩＧ．８にかな文字を入力する操作の例を示す。ユーザによって回動操作板
３が回動させられると、その移動量が情報端末３０に伝達される。この移動量に基づいて、情報端末３０は、FIG. 1 の画面上にかな文字の行の種類、’あか
さたなはまやらわ’で始まる行の種類を順次表示していく。右部分領域がさらに
強く押圧されると押圧スイッチ１１ｂによって、その押圧操作が検出され、FIG.
１の画面上で現在選択されている行（例えばあ行）が確定する。
次に回動操作板３が回動されるとき、上記で確定した’あ’行の文字’あいうえ
お’が順次表示される。ここで例えば、文字’あ’を表示した状態で右部分領域
がさらに強く押圧されると、押圧スイッチ１１ｂによって、その押圧操作が検出
され、文字’あ’の入力が確定する。一方、中央のボタン２ａが押圧されると、
情報入力装置１は、’あかさたなはまやらわ’で始まる各行の切替モードに戻る。
この状態で回動操作板３が回動されると再び、’あかさたなはまやらわ’で始ま
る行の種類が順次表示される。
このように次々とかな文字の選択と確定を繰り返して、FIG. 7 のように、
’あおき’というような文字が入力される。このように、この情報入力装置１に
よって、簡単にかな文字の入力が可能になる。
＜回動操作板３の左右の部分領域によるかな文字入力＞
FIG. 9 に回動操作板３の左右の部分領域を使用したかな文字入力の例を示
す。ユーザが回動操作板３の左部分領域に指を接触させて、回動操作板３を回動
させると、接触検出センサ８ａが、左部分領域への接触を検出する。情報端末３
０は、左部分領域への接触による回動に対して、かな文字の行の種類、’あかさ
たなはまやらわ’を順次選択して表示していく。そして、例えば、’か’行が表
示された状態で、ユーザが左部分領域から指を離し、右部分領域に接触して回動
操作板３を回動させると、接触検出センサ８ｂが右部分領域への接触を検出する。
情報端末３０は、右部分領域への接触による回動に対して、’か’行の文字、’
かきくけこ’を表示していく。このようにして、例えば文字’こ’が選択された
状態で、ユーザが回動操作板３の右部分領域をさらに強く押圧すると、その操作
が押圧スイッチ１１ｂに検出され、情報端末３０に伝達される。これにより、文
字’こ’の入力が確定する。
次にユーザが、右部分領域から指を離して、左部分領域を接触すると再び、か
な文字の行の種類を選択可能になる。以上の操作を繰り返して検出することによ
り、例えば’こまつ’という文字列が入力される。この操作によっても、簡単に
かな文字の入力が可能になる。
＜かな漢字変換の入力装置＞

FIG. 10 に、本実施形態の情報入力装置 1 をかな漢字変換に使用する例を
示す。上記いずれかの方法で、今、'あいう' というかな文字が入力されている
と仮定する。この状態で回動操作板 3 の右部分領域が押圧されると、これが押圧
スイッチ 11a を介して検出され、かな文字入力の状態から、かな漢字変換状態
に遷移する。この状態で、右部分領域を通じて回動されると、かな文字あどの部分
が漢字の亜に変換される。さらにこの回動操作を続けることによって、次々に、
かな文字あに対する変換対象のリスト、例えば、阿、吾・・・等を表示してい
く。

一方、左部分領域を通じて回動されると、変換対象部分の文節が、かな文字あ
から文字列あいに変更される。この状態で、再び、右部分領域を通じて回動され
ると、かな文字あいの部分が漢字の亜に変換される。

このように、回動操作板 3 の左右の部分領域に対する接触を接触検出センサ 8
a、8 b が識別することにより、かな漢字変換の変換対象の選択と、文節変更と
をスムーズに実行できる。
＜回動操作板 3 の左右の部分領域による同一項目の選択＞

FIG. 11 に、回動操作板 3 の左右の部分領域によって同一項目の選択を選
択する操作の例を示す。この例では、ユーザが回動操作板 3 の左部分領域に接触
して回動操作すると、情報入力装置 1 は、時計回り方向の回動を上方向と認識す
る。そして、File1〜File4で示される選択項目上を選択位置 1 6 が負方向（上方向）
に移動される。また、このとき情報入力装置 1 は、逆の反時計回り方向の回
動を下方向と認識し、File1〜File4で示される選択項目上を選択位置 1 6 が正方
向（下方向）に移動される。

一方、ユーザが回動操作板 3 の右部分領域に接触して回動操作すると、情報入
力装置 1 は、時計回り方向の回動を下方向と認識する。そして、File1〜File4で
示される選択項目上を選択位置 1 6 が正方向（下方向）に移動される。また、こ
のとき情報入力装置1は、逆の反時計回り方向の回動を上方向と認識する。そして、File1～File4で示される選択項目上を選択位置16が負方向（上方向）に移動される。

このように、本実施形態に係る情報入力装置1を使用すると、ユーザが回動操作板3の左右いずれの部分領域を使用しても、回動方向が上下の移動に変換されて検出される。このため、メニューの項目等からの選択に際して、操作の方向と、選択項目上の選択位置の移動方向が一致し、ユーザは自然な感覚で操作することができる。
＜オン、オフの設定＞

FIG. 12に、回動操作板3の左右の押圧スイッチ11aと11bとにより、オン、オフの設定をする例を示す。

左部分領域の押圧スイッチ11aがオンに対応し、右部分領域の押圧スイッチ11bがオフに対応する。
＜テキスト情報のスクロール＞

FIG. 13に、回動操作板3を使用してテキスト情報をスクロール操作する例を示す。FIG. 13は、人の氏名がテキスト情報として表示された画面をスクロールする例を示している。この操作例では、情報入力装置1は、回動操作板3の操作を検出して、時計回り及び反時計回りの回動に対応して、テキスト情報の各行を上及び下にスクロールする。FIG. 13では、現在、符号17で示される行（大川光太郎という氏名）が選択されている。この状態で、回動操作板3の左部分領域が押圧すると、これを押圧スイッチ11aが検出する。そして、選択項目内で1文字ずつ左にカーソル（選択位置16で示す）がスクロールされる。一方、この状態で、回動操作板3の右部分領域が押圧されると、これを押圧スイッチ11bが検出する。そして、選択項目内で1文字ずつ右にカーソル（選択位置16で示す）がスクロールされる。

このように、本実施形態に係る情報入力装置1は、テキスト情報の各行ごとのスクロール及び、各行内のスクロールを簡易に行い、テキスト情報を編集するための入力装置として使用することができる。

FIG. 13はテキスト情報をスクロールする例を示すものであるが、テキス
ト情報に代えて、いわゆる表計算プログラムの表（2次元のマトリックス）を上下、左右にスクロールする場合にも、同様にして情報入力装置1を使用できる。
＜ファイル選択ボックスからの選択＞

FIG. 14にいわゆるファイル選択ボックス18からファイルを選択する操作の例を示す。このファイル選択ボックスは、ディレクトリを選択するための左側の項目19と、選択されたディレクトリ内のファイルを選択するための右側の項目20を含んでいる。

ユーザが回動操作板3の左部分領域に接触して回動操作すると、時計回り方向の回動が上方向、反時計回りの回動が下方向と認識され、選択位置16aがDir1～Dir3で示される選択項目上を上下に移動される。これによって、例えば、Dir2が選択された状態では、右側の項目20に、ディレクトリDir2に属するファイルの一覧が表示される。

次に、ユーザが回動操作板3の右部分領域に接触して回動操作すると、時計回り方向の回動が下方向、反時計回りの回動が上方向と認識され、選択位置16bがFile1～File4で示される選択項目上を上下に移動される。ここで、例えば、File3が選択された状態で、回動操作板3の右部分領域が押圧されると、これを押圧スイッチ11bが検出し、File3の名称で示されるファイルの選択が確定される。

このように、情報入力装置1により、複雑な構造を含むファイル選択ボックス上の項目を容易に選択することができる。

＜変形例＞

＜3分割方式の応用例＞

上記実施の形態では、回動操作板3を左右に2分割して部分領域を定義した。しかし、本発明の実施はこれに限られず、部分領域の数は3以上であってもよい。例えば、FIG. 15のように、部分領域表示マーク19によって回動操作板3を3分割し、その分割された部分領域ごとに接触を検出する3つの接触検出センサ（不図示）を配置することができる。この場合、分割された3つの部分領域の各接触検出センサがオンかオフにより8通りの状態を検出することができる。

FIG. 15に、このような回動操作板3を情報端末30に接続した使用例を示す。上部分領域の接触検出センサがオンの状態での回動操作（矢印13cで示
す）によって、シート23cの種類が、Sheet1〜Sheet3の範囲で選択される。選択されたシートSheet1において、左下部分領域の接触検出センサがオマの状態での回動操作（矢印13aで示す）によって、ディレクトリ23aの種類がDir1〜Dir3の範囲で選択される。さらに、選択されたディレクトリDir2において、右下部分領域の接触検出センサがオマの状態での回動（矢印13bで示す）によって、ファイル23bの種類がFile1〜File4の範囲で選択される。

このように、回動操作板3の部分領域の分割数を増加することにより、複雑な構造の情報を簡易に操作することができる。

＜回動操作板3以外の操作部品＞

上記実施形態では、情報入力装置1で回動操作のため、回動操作板3を使用したが、本発明の実施は、回動操作板3を使用した装置に限定されない。回動操作を検出する検出部（例えば、回転式エンコーダ）を内部に備えていれば、ユーザが操作する外部の部分の形状は、FIG. 16のような棒状のハンドル、FIG. 17のような非対称のつまみ、FIG. 18のような3本以上の部材からなるハンドルであってもよい。このような場合、ハンドルの各部分15a、15b等への接触を検出する接触検出センサは、ハンドルの各部分15a、15b等（部分領域に相当）に内蔵すればよい。また、押圧スイッチ11aまたは11b等は、ハンドルの各部分15a、15b等の裏面に配置すればよい。

＜構造上の変形例＞

上記実施形態では、FIG. 2に示すように押圧スイッチ11aおよび11bを筐体9の上面に設置したが、これらをスペース7と回動操作板3との間に設けてもよい。また、上記実施形態では、スペース7と接触検出センサ8aと8bと分離して構成したが、これらを一体化して、接触検出センサ8a、8bにスペース7の機能を兼用させてもよい。

また、FIG. 2に示したスペース7を設けずに、平行電極5、接触検出センサ8a、8b、押圧スイッチ2b、11a、11bをすべて筐体9の表面上に階層構造なしに配置しても構わない。その場合には、金属電極4の回転移動位置以外の位置に押圧スイッチ11a、11bを配置すればよい。FIG. 19に、この場合の回動操作板3の裏面3bの配置を示す。FIG. 19では、金属電極4
が回動操作板３の周辺部付近に配置され、平行電極５と接触することで回動の検出が可能となっている。一方、押圧スイッチ２ｂ、１１ａ及び１１ｂは、すべて金属電極の位置より、円周の内部に存在するため、金属電極４が押圧スイッチ２ｂ、１１ａ及び１１ｂと干渉せず、回動操作板３の移動が妨げられることはない。

以上述べたように、本発明の実施においては、回動操作板３の部分領域への接触、押圧及び回動を検出できるように金属電極４、接触検出センサ８ａ、８ｂ及び押圧スイッチ１１ａ、１１ｂ等を配置すればよい。したがって、本発明は、FIG.２に示す構成要素間の位置関係には限界されるもので、上記接觸検出センサは、すべての部分領域に設ける必要はない。例えば、2分割で部分領域を形成する場合に、左部分領域の接触検出センサ８ａを設けなくても、右部分領域の接触検出センサ８ｂがオフのまま、回動を検出した場合は、左部分領域に接触した操作があったと見なすことができる。回動操作板３を３以上に分割する場合も同様である。

上記実施形態で、回動操作板３を２分割して部分領域を構成する場合、中央線指示用マーク１４を情報入力装置の上面において縦に配置した。したがって、部分領域はすべて左右の部分領域として構成した。しかし、本発明の実施は、これにかぎらない。すなわち、中央線指示用マーク１４を横、または特定の角度で傾けて、部分領域を構成し、これに対応して接触検出センサ８ａ、８ｂを配置してもよい。ただし、左右の部分領域として構成した場合には、プルダウンメニュー上を移動する方向（上下）と、回動操作板３を回動させたときの左右の部分領域の移動方向（概ね上下方向）が一致し、自然な操作感覚となる。

上記実施形態では、回動操作板３を回動自在にするために、押圧スイッチ２ｂを被覆するボタン２ａを回転軸として用いたが、本発明の実施は、このような回転軸の構造には限定されない。例えば、FIG.２１に示すように、筒体の上面中央部に中空円筒状の回転軸４０を設けて、その回転軸４０に回動操作板３の開口部１２を挿入することで回動自在としてもよい。この回転軸４０の内部に押圧スイッチ２ｂを備え、ボタン２ａは回転軸４０の内部に挿入され、押圧スイッチ２ｂに連結されればよい。

なお、回転軸４０を中空とせず、通常の円柱とし、押圧スイッチ２ｂを回転軸
40の近傍に設けてもよい。さらに、押圧スイッチ2bは、筐体9の内部に収容し、ボタン2aと押圧スイッチ2bとを連結する軸を設け、この軸を回転軸としてもよい。

また、F.I.G.22に示すように、回動操作板3を回動自在とするために、回転軸を設ける代わりに、筐体9の上面に円形のリブ41を設け、一方、回動操作板3の裏面3bに、このリブ41を収容する円形の凹部を設けてもよい。すなわち、円形のリブ41がレールを形成し、この円形のリブ41と回動操作板3の裏面3bの凹部とを嵌合させて、摺動することにより、回動操作板3を回動自在としてもよい。

＜接触検出センサ＞

上記実施形態では、接触検出センサ8a、8bとして、静電容量の変化を利用するものを使用した。しかし、本発明の実施はこれに限られるものではなく、感圧センサ、光センサ、歪みセンサ、赤外線センサ、温度センサ、接点スイッチ等を使用することができる。従来、感圧センサまたは接点スイッチを使用する場合、感圧センサまたは接点スイッチの感度は、押圧スイッチ11a、11bよりも高感度に設定する必要がある。すなわち、ユーザ軽く回動操作板3を押さえると、感圧センサまたは接点スイッチがその接触を検出し、ユーザがさらに強く回動操作板3を押さえると、押圧スイッチ11aおよび11bが押圧操作を検出ように感度が設定される。その場合、所定の反発力を有するバネをで押圧スイッチ11aおよび11bを防護し、その反発力を超える力で押圧されない限り、押圧スイッチ11aおよび11bに押圧力が加わらないようにすればよい。

光センサは、発光部と受光部を備え、ユーザが回動操作板3を押さえることにより、発光部と受光部との位置関係を変形させ、または受光部に対して発光部を遮光させて、ユーザの接触を検出するものである。発光部を設ける代わりに、回動操作板3に穴部を設け、これをユーザの指が塞ぐことにより、遮光を検出するようにしてもよい。光センサ（受光部）としては、フォトダイオードまたはフォトトランジスタが一般的である。

歪みセンサは、一般的には、電気回路の抵抗として構成される。ユーザが回動操作板3をに接触した際の押圧力により、回動操作板3に接触する歪みセンサを
変形させ、変形に伴う抵抗値の変化を検出するものである。歪みセンサを使用する場合も、その感度は、押圧スイッチ１１ａ、１１ｂよりも高感度に設定する必要がある。歪みセンサとしては、ゲルマニウムやシリコンの圧電抵抗値効果を利用したものも使用できる。

赤外線センサは、ユーザの指が回動操作板３に近づいた際の赤外線の放射量の変化を検出するものである。

温度センサは、ユーザの指が回動操作板３に接触した際の熱変化を検出するものである。温度センサとしては測温抵抗材料を電気回路の素子として使用するのが、簡便である（以上、前田他、「大学課程電気計測」オーム社）。

＜回動操作板の変形例＞

上記実施形態では、回動操作板３としてＦＩＧ．２に示したように、表面２ａに滑り止めのリブ２９を放射状に備えていたが、本発明の実施は、これには限定されない。すなわち、回動操作時の滑り止めとしては、例えば、回動操作板３の表面２ａに多数の凹凸を設けてもよい。また、表面２ａに、人の指との摩擦が大きい材質のもの、例えばゴムを使用したような場合には、回動操作板２にはＦＩＧ．２のようなリブ２９や凹凸等を設けなくてもよい。

また、上記実施形態では、回動操作板３としてＦＩＧ．２に示したように、回転式エンコーダを備えた機械的回動を伴うものを使用した。しかし、本発明の実施はこれに限らず、人の指または押圧ペンによって、表面接触した状態を検出するタッチパネル３３を用いてもよい。ＦＩＧ．２０に回動操作板３に代えて、タッチパネル３３を使用した情報入力装置１の外観を示す。このタッチパネルの表面には、同心円上の溝３４が刻まれ、ユーザが指または押圧ペンを使用して表面に接触させて、円弧を描くためのガイドを形成している。

タッチパネルは、ユーザが左右の部分領域のいずれかにふれているか認識るので、接触検出センサは不要である。タッチパネル３３は、溝３４にガイドされた表面への摺動操作による曲線状の軌跡と、溝３４にガイドされない表面への摺動操作による直線状の軌跡を識別する。ただし、溝３４にガイドされない曲線上の軌跡と直線状の軌跡を識別するようにしてもよい。

タッチパネル３３の中央部には、ボタン２ａに連結された押圧スイッチ２ｂが
備えられている。また、タッチパネルの左部分領域及び右部分領域の下部には、
上記実施形態と同様押圧スイッチ１１ａと１１ｂとが埋設され、押圧操作を検出
可能となっている。

タッチパネル３３は、接触位置の座標の認識が可能であるため、部分領域とし
て、上記実施形態のように、左右に分割するものの他、様々な構成を採ることが
できる。この情報入力装置では、各部分領域への接触、直線軌跡、曲線軌跡、押
圧スイッチへの押圧を組み合わせて、情報入力が可能である。
＜英文字入力＞

上記実施形態では、かな文字入力の例を示したが、本情報入力装置１を使用し
て、英文字入力も可能である。回動操作版３の回動にともない、数字を入力した
のと同様の手順で、英文字ａ～ｚを順次表示して選択させればよい。また、中央
部のボタン２ａを介して、押圧スイッチ２ｂを押すことにより、大文字と小文字
を切り替えるようにすればよい。
＜その他の変形例＞

上記実施形態では、ＦＩＧ．４のＮｏ．４において、左右の部分領域がともにオ
ンの場合、すなわち、ユーザが左右の部分領域に同時に接触した回動操作を無効
とした。しかし、これに代えて、左右の部分領域がともにオンの場合、ＦＩＧ．
４のＮｏ．２（時計回りを正方向）、またはＮｏ．３（反時計回りを正方向）の
いずれかとして、操作できるようにしてもよい。

上記実施形態では、情報入力装置１を情報端末３０の入力装置として使用する
例を説明した。具体的には、パーソナルコンピュータ、携帯端末、携帯電話、ゲ
ーム機等の入力装置として、または、テレビジョン、ビデオカメラ、ラジオ、自
動車の操作用部品として、この情報入力装置１を使用できる。さらに、例えば、
この情報入力装置１をマウスの表面に組み込んで、マウスに機能を付加したり、
キーボード７に組み込んでキーボードに機能を付加した形式で使用することができる。

上記実施形態の情報入力装置１では、ＦＩＧ．４示したように、操作対象（メ
ニュの項目等）上の選択位置の移動方向と回動操作板３の回動の方向との関係は、
左右の部分領域のいずれが接触されているかにより、決定された。この場合、例
えば最初に左部分領域に触れ（接触検出センサ8aが接触を検出）、そのまま時計回りに回動を続けると、中央線指示用マーク14を越えて、右部分領域に進入し、接触検出センサ8bが接触を検出し、操作対象上の移動方向が反転することになる。つまり、同一方向への回動操作（つまり回転操作）を連続して続けると、中央線指示用マーク14を越える度に、操作対象上の移動方向が反転する。

これに代えて、操作開始時点の位置のみに基づいて、移動方向を決定してもよい。すなわち、一旦左部分領域（または右部分領域）への接触を検出して回動操作板3の回動が始まるとき、その回動が終了するまで、中央線指示用マーク14を越えても、操作対象上の移動方向をそのまま維持するようにしてもよい。これは、回動操作開始時の接触位置（左右の部分領域のいずれか）をラッチ回路に保持し、回動操作終了まで、ラッチ回路の状態を維持し、回動操作終了後にラッチ回路をリセットするようにすればよい。

上記実施形態では、回動操作板3の移動量、すなわち、操作開始からの回動の相対量に基づいて、操作を検出した。これに代えて、特定位置からの絶対量に基づいて、操作を検出してもよい。また、接触のない状態では、回動操作板3の回動角度が0となるようにに初期設定されるような機構（例えば弦巻パネで初期の位置に戻す機構等）を設けるもよい。

上記実施形態では、回動操作板3の中央付近にボタン2aを備えていた。しかし、本発明の実施は、このような構成には限定されない。例えば、ボタン2aに代えて、静電センサ、トラックボール、ジョイスティック等のユーザ操作を検出する入力装置を備えてもよい。

（第2実施形態）

本発明の第2実施形態をFIG.23からFIG.29に基づいて説明する。

FIG.23は、本実施形態に係るテレビ用のリモートコントローラ（以下リモコン51）、及びこのリモコン51により操作されるテレビ45の外観構成図を示すものであり、FIG.24は、このリモコン51の機械的構成要素を示す図であり、FIG.25は、リモコン51の信号経路を示す図であり、FIG.26は、リモコン51によるテレビの操作例を示す図であり、FIG.27からFIG.29は、このリモコン51の変形例を示す図である。
上記第1実施形態においては、回動操作板3の回動する領域の部分領域をユーザに認識させるために中央線指示マーク14（FIG. 5）または部分領域指示マーク19（FIG. 19）を用いた。本実施形態では、この中央線指示マーク14または部分領域指示マーク19に代えて、保護枠54（領域指示部材に相当）を用いて、回動操作板を部分領域に区分したリモコン51を説明する。他の構成及び作用については、第1実施形態と同様であり、必要に応じてFIG. 1からFIG. 22を参照する。また、FIG. 23からFIG. 29において、第1実施形態と同一の構成については、同一の符号を付してその説明を省略する。

＜構成＞

FIG. 23に、本実施形態に係るリモコン51、及びこのリモコン51により操作されるテレビ45の外観構成図を示す。

テレビ45には、赤外線受光部46が備えられ、リモコン51からの赤外線信号47を受光する。また、このテレビ45には、録画予約用カレンダが表示されている。さらに、録画用カレンダは日付欄45a、時刻欄45b、チャンネル欄45c及び番組欄45dを有している。

リモコン51は、筐体9と、この筐体9の上面（基板に相当）の上で回動可能に取り付けられた回動操作板3（回動操作部に相当）と、筐体9に固定された保護枠54（領域指示部材に相当）と、押ボタン2aと、赤外線発光部48とを備えている。なお、回動操作板3と筐体9との間には、第1実施形態と同様に、押圧スイッチ11a、11b、11c及び11dが備えられている。

FIG. 24に、リモコン51の機械的構成要因を示す。FIG. 24のようにリモコン51は、第1実施形態で説明した情報入力装置1と同様の構成であるが以下の点において相違する。

（1）押ボタン2aと回動操作板3との間に、保護枠54が備えられている。この保護枠54は、十字形状をしており、その十字の中央に開口部55を有する。また、十字の先端が下方に屈曲されて爪部54a、54b、54c、及び54dを形成している。

この開口部55には、ボタン2aの軸部2cが貫通される。

また、爪部54a、54b、54c、及び54dは、筐体9の上面に設けた緊
合穴56a、56b、56c、及び54dに嵌合する。これにより、保護枠54は、筐体9の上面に固定される。それら結果、FIG.23に示したように、保護枠54は、回動操作板3の回動する円形の領域を4つの扇形領域3a、3b、3c、及び3dに分割する。
（2）ボタン2aの軸2cには、ネジ山が切られている。この軸2aは、開口部55を貫通し、押しボタン2bに設けたネジ穴2dに固定される。
（3）回動操作板3と筐体9との間に、4つの接触検出センサ8a、8b、8c、及び8dが設けられる。この接触検出センサ8a、8b、8c、及び8dは、各々、保護枠54によって区分される扇形領域3a、3b、3c、及び3dへのユーザの接触操作を検出する。この場合、回動操作板3そのものは、回動されるので、接触検出センサ8a、8b、8c、及び8dが検出するのは、回動操作板上の位置ではなく、保護枠54によって区分される扇形領域3a、3b、3c、及び3dのいずれが接触されたか否かである。
（4）筐体9には、4つの押圧スイッチ11a、11b、11c、11dが備えられている。ユーザが、扇形領域3a、3b、3c、及び3dに存在する回動操作板3の部分を押圧すると、その押圧操作が押圧スイッチ11a、11b、11c及び11dによって検出される。FIG.23に示すように、各扇形領域3a、3b、3c、及び3dの外側に、この押圧位置を示すマーク57a、57b、57c及び57dが設けられている。
FIG.23において、回動操作板3の矢印A1、B1、C1、及びD1は、各々、扇形領域3a、3b、3c及び3dにおける回動操作板3へのユーザの接触操作の方向を示す。一方、テレビ画面上の矢印A2、B2およびC2により、回動操作に対応するテレビ45上の操作（操作対象への操作に相当）を示している。
矢印A1は、扇形領域3aに位置する回動操作板3への接触による回動操作の方向を示す。この矢印A1によって示される反時計回り（白矢印方向）の回動操作により、日付欄45aの選択位置81aが矢印A2の左方向（白矢印方向）へ移動する。一方、矢印A1の右方向（黒矢印方向）への回動操作により、日付欄45aの選択位置81aが矢印A2の右方向（黒矢印方向）へ移動する。
同様に、矢印B1によって示される回動操作により時刻欄45bの選択位置81bが矢印B2によって示される方向へ移動する。また、矢印C1によって示される回動操作によりチャンネル欄45cの選択位置81cが矢印C2によって示される方向へ移動する。

なお、本実施形態において、右側の扇形領域3dへの接触操作（矢印D1によって示される）により、左側の扇形領域3cへの接触操作（矢印C1によって示される）と同じ画面上の矢印C2への操作が発生する。その場合、右側の扇形領域3dへの接触操作による時計回り（反時計回り）の回動と、左側の扇形領域3cへの接触操作による反時計回り（時計回り）の回動とは、画面上で矢印C2の下方向（上方向）への移動操作となる。

また、回動領域3aにある回動操作板3の部分を押圧することにより、押圧スイッチ11aが押圧される。この押圧により、テレビ45は日付欄に表示する日付を切り替えるモードに遷移する。このモードにおいて、回動操作板3を回動することにより、表示する日付を変更できる。さらに、押圧スイッチ11aが押圧されると、テレビ45は、日付欄45aの日付を選択するモードに戻る。

同様に、回動領域3bにある回動操作板3の部分を押圧することにより、押圧スイッチ11bが押圧される。この押圧により、テレビ45は、時刻欄に表示する時刻を切り替えるモードと時刻を選択するモードとを遷移する。

同様に、回動領域3cにある回動操作板3の部分を押圧することにより、押圧スイッチ11cが押圧される。この押圧により、テレビ45は、チャンネル欄に表示するチャンネルを切り替えるモードとチャンネルを選択するモードとを遷移する。

ユーザは、このようにして録画予約用カレンダにおいて日付、時間、チャンネルを操作した後、ボタン2aを押すことにより、録画予約ができる。

＜信号経路と作用＞

FIG. 25は、このリモコン51の信号経路を示す図である。この信号経路は、ロータリーエンコーダの出力を受ける回動方向弁別回路74と、この回動方向弁別回路74、押圧スイッチ11a〜11d、2b、及び接触検出センサ8a〜8dの信号を受け、これらの信号をシリアルポートから出力するバッファ75
と、クロック発生回路7 6と、クロック発生回路7 6のクロック出力とバッファ1 8のシリアルポートからの出力信号の積信号を発生するA N D回路7 7と、このA N D回路7 7の出力を増幅する増幅回路7 8と、赤外線4 7を発生する発光ダイオード7 9とを備えている。

FIG. 25に示した回動操作板3の金属電極4と平行電極5とはロータリーエンコーダを形成する。隣接する2つの金属電極4の間は互いに不図示の抵抗で接続されている。使用される抵抗は、1 0 0キロオーム、2 0 0キロオーム及び3 0 0キロオームの3種類であり、回計回りには、この順序で各金属電極4の間を接続している。また、平行電極5には5ボルトの電圧が印加されている。

従って、回動操作板3が回動され、平行電極5に2つの金属電極が接触すると、不図示の抵抗を介して電流が流れる。その場合、時計回りの回動操作により、平行電極5には、1 0マイクロアンペア、5マイクロアンペア及び、3 3マイクロアンペアの電流が繰り返して流れる。一方、反時計回りの回動操作により、平行電極5には、3 3マイクロアンペア、5マイクロアンペア及び、1 0マイクロアンペアの電流が繰り返して流れる。この電流の変化から回動方向判別回路7 4は、時計回り回動信号または反時計回り回動信号を発生する。この時計回りまたは反時計回り回動信号は、回動速度に比例したパルス数のパルス信号である。

バッファ7 5のデータビット数は、1 6ビットである。バッファ7 5の入力回路には、押圧スイッチ1 1 a - 1 1 d、2 b、及び接触検出センサ8 a - 8 dの信号9ビットと、左回動信号及び右回動信号の2ビットからなる1 1ビットの信号が入力される。この1 1ビットの信号に5ビットの空きビットを付加した1 6ビットの信号（以下リモコン信号という）が、A N D回路7 7に入力され、クロック信号に重畳される。

リモコン信号を重畳したクロック信号は、発光ダイオード7 9の発生する赤外線4 7を振幅変調し、テレビ4 5側の赤外線受光部4 6に伝達される。

＜テレビのチャンネル切り替えに使用する例＞

FIG. 26に、リモコン5 1によってテレビ4 5のチャンネル表示6 5に示されるチャンネルを設定する例を示す。このテレビ4 5は、4桁のチャンネル番号（最大9 9 9 9チャンネル）を切り替えることができる。
ユーザが、回動操作板3の上側の扇形領域3aにある回動操作板3を操作すると、第4桁（最上位桁）のチャンネル番号を変更できる。同様に、回動操作板3の右側、下側、及び左側の扇形領域3d、3b及び3cにある回動操作板3を操作すると、第3桁、第2桁及び第1桁（最下位桁）のチャンネル番号を変更できる。

以上のように、部分領域3aから3dのいずれにおいて回動操作したかを検出することにより、多数、例えば4桁に及ぶチャンネルを有するテレビであっても簡単に操作できる。

＜押圧スイッチの位置の変形＞

上記第2実施形状では、回動操作板3と筐体9との間に押圧スイッチ11a、11b、11c及び11dを設けた。しかし、本発明の実施は、このような押圧スイッチ11a、11b、11c及び11d等の位置には限定されない。例えば、FIG.27のように、押圧スイッチ11a、11b、11c及び11d（押圧操作検出部に相当）を回動操作板3の回動する領域の外側に設けてもよい。これにより、ユーザは、マーク57a、57b、57c、または57dの押下することで、押圧スイッチ11a、11b、11c及び11dを押下できる。

＜保護枠54の変形例＞

上記第2実施形状においては、十字形状の保護枠54により、回動操作板3の回動する領域を4つの扇形領域3b、3c及び3dに区分した。しかし、本発明の実施は、このような保護枠54の形状には限定されない。

例えば、FIG.28に示したように矩形の保護枠58を回動操作板3の上に設けてもよい。

このときの、リモコン51の機械的構造をFIG.29に示す。FIG.29のように保護枠58は、開口部58a及び中空の支柱58bを備えている。この支柱58bは、筐体9の上面で点線の円58cで示される位置に不図示のネジにより固定される。この支柱58bは、回動操作板3の開口部12を貫通する。このため、回動操作板は、支柱58bの周りを揺動される。

また、押圧スイッチ2bは、支柱58bの中空部に収容される。また、ボタン2aは、開口部12、開口部58a及び支柱58bの中空部を貫通して、押圧ス
イチ２ｂにネジ止めされる。

FIG.２８のように、この保護枠５８の上側の辺５８ａにより回動操作板３の上側の領域３ａが示される。同様に保護枠５８の下側、左側、及び右側の辺５８ｂ、５８ｃ及び５８ｄにより、各々、回動操作板３の下側、左側、及び右側の領域３ｂ、３ｃ及び３ｄが示される。ユーザは、この保護枠５８上の矢印Ａ、Ｂ、ＣまたはＤにより、接触位置とテレビ画面上の操作方向との関係を確認できる。

＜信号媒体の変形＞

上記第２実施形態では、リモコン５１への操作を伝達するため、信号媒体として赤外線４７を使用した。しかし、本発明の実施は、このような信号媒体には限定されない。例えば、赤外線の代わりにラジオ周波数領域の電磁波を用いてもよい。また、無線通信媒体に代えて、FIG.２８のように信号ケーブル５０を使用してもよい。信号ケーブルを使用する場合、回動操作板３の回動領域を区分する領域３ａ、３ｂ、３ｃ、３ｄ等ごと（すなわち、接触検出センサ８ａ、８ｂ、８ｃ、８ｄ等ごと）に異なる信号ケーブルを使用してもよい。

上記第２実施形態では、検出したリモコン信号をクロック発生回路７６のクロックと合成し、発光ダイオード７９の赤外線を振幅変調した。しかし、本発明の実施は、このような変調方法には限定されない。例えば、単に１６ビットのリモコン信号とクロックとの積を採る代わりに、１６ビットのリモコン信号の値に応じて、パルス位置を移動させて符号化してもよい（パルス位置変調、「NHKテレビ技術教科書」日本放送協会編参照）。

＜ロータリーエンコーダの変形例＞

上記第２実施形態では、ユーザの回動操作を検出するために、平行電極５、金属電極４、及び金属電極間を接続する３種類の抵抗値を持つ抵抗の組み合わせからなるロータリーエンコーダを使用した。しかし、本発明の実施は、このような構成には限定されない。例えば、回動操作板に電磁誘導、磁気式、光学式のロータリーエンコーダ、または、光電変換利用したロータリーエンコーダを組み込んでもよい（左右回転位相弁別可能なロータリーエンコーダについては、塩田泰仁著「メカトロニクスのセンサ技術」総合電子出版社刊を参照、またロータリーエンコーダの一般技術については、日本機械学会編「機械工学便覧」を参照のこ
と。
例えば、光学式のロータリーエンコーダを使用する場合、光を通す窓部の形状を長方形ではなく、左右いずれかの辺に傾きを持たせることにより、時計回りと反時計回りの回動方向が弁別できる。
＜部分領域の数＞
上記第2実施形態では、部分領域の数を上下左右の4領域とした。しかし、本発明の実施はこのような構成には限定されない。2〜3の部分領域（及び押圧スイッチ、接触検出センサ）を用いてもよいし、5以上の部分領域（及び押圧スイッチ、接触検出センサ）としてもよい。
（第3実施形態）
本発明の第3実施形態をFIG.30に基づいて説明する。FIG.30は、本実施形態に係るカーナビゲーションシステム用のリモートコントローラ（以下リモコン71）の外観構成図を示すものである。
上記第2実施形態においては、回動操作板3と筐体9との間に4つの押圧スイッチ11a、11b、11c、及び11dを使用した。本第3実施形態においては、さらに、保護枠54を介して押圧する押圧スイッチ11e、11f、11g、及び11hを追加したリモコン71について説明する。
他の構成及び作用については、第1実施形態または第2実施形態と同様であり、必要に応じてFIG.1からFIG.29を参照する。また、FIG.30において、第2実施形態と同一の構成については、同一の符号を付してその説明を省略する。
FIG.30のテレビ45は、カーナビゲーションシステムの画面（地図のスクロール＆機能設定）を表示している。この画面において、地図上の移動方向がマーク62a、62b、62c、62d、62e、62f、62g、及び62hにより示されている。また、目的地、音声案内、渋滞情報及びテレビの機能メニューが示されている。さらに、表示地域を選択するための地点メニュー（足立区、太田区、品川区、新宿区、港区及び目黒区の表示）が示されている。
リモコン71の機械的構成は、第2実施形態のリモコン51と同様である（FIG.24参照）。ただし、リモコン71では、保護枠54の4カ所の端部にマ
マーク57e、57f、57g、及び57hが設けられている。さらに、このマーク57e、57f、57g、及び57hの各位置において、回動操作板3と築体9との間に押圧スイッチ11e、11f、11g、及び11h（境界押圧操作検出部に相当）が設けられている（FIG. 30に点線で示す）。

FIG. 30のように、この押圧スイッチ11e、11f、11g、及び11hは、各々、保護枠54によって押圧可能である。すなわち、保護枠54の爪部54a、54b、54c、及び54dは、接触築体9の上面に設けた嵌合穴56a、56b、56c、及び56dを貫通し、押圧スイッチ11e、11f、11g、及び11hに接触している。このため、ユーザが保護枠54上のマーク57e、57f、57g、または57hの付近を押下すると、爪部54a、54b、54c、及び54dが押圧スイッチ11e、11f、11g、及び11hを押圧する。

このように、本リモコン71には、回動操作板3の中央部の押圧スイッチ2aの他、押圧スイッチ11aから11hを設けたので、ユーザはテレビ画面上でマーク62aから62hの8方向に地図をスクロールできる。

また、上記第2実施形態と同様、領域3aへの接触による矢印A1によって示される回動操作により、テレビ画面上に示した機能メニュの選択部81aが矢印A2によって示す方向に移動される。また、領域3bへの接触による矢印B1によって示される回動操作により、テレビ画面上に示した地点メニュの選択部81bが矢印B2によって示す方向に移動される。
＜境界押圧操作検出部の変形＞

上記第3実施形態において、境界押圧操作検出部に相当する押圧スイッチ11e、11f、11g、及び11hは、保護枠54上を押圧することにより、押圧された。しかし、本発明の実施は、このような構成には限定される。すなわち、境界押圧操作検出部が、部分領域3a、3b、3c、または、3dの境界近傍に設ければよく、これらが保護枠54を介して押圧される必要はない。

例えば、回動操作板3の回動する円領域の外側であって、保護枠54の延長線上に押圧スイッチ11e、11f、11g、及び11hを設けてもよい。その場合には、FIG. 30に示したマーク57e、57f、57g、及び57hを押
圧スイッチ１１e、１１f、１１g、及び１１hの設置箇所に設けてもよい。これにより、ユーザがマーク５７e、５７f、５７g、及び５７h付近を押圧することで、押圧スイッチ１１e、１１f、１１g、及び１１hが押圧される。
（第４実施形態）

本発明の第４実施形態に係る携帯電話を FIG. 31に基づいて説明する。FIG. 31は、この携帯電話の外観構成図である。本実施形態においても、上記第１実施形態から第３実施形態同一の構成については、同一の符号を付し、その説明を省略する。

FIG. 31のように、この携帯電話は、筐体９２と、筐体９２上面の液晶表示部９１と、液晶表示部の下方の回動操作板３と、回動操作板３の回動する領域を３つの扇形領域３a、３b及び３cに分割する保護枠９０と、回動操作板中央部のボタン２aとを備えている。また、この携帯電話は、各扇形領域３a、３b及び３cにおいて回動操作板３と筐体９２との間に、３つの押圧スイッチ１１a、１１b、１１c及び各扇形領域３a、３b及び３cへの接触操作を検出する接触検出センサ８a、８b、及び８cを備えている。

この携帯電話でも上記第２実施形態と同様、回動操作板３の矢印Ａ１、Ｂ１、及びＣ１は、各々、扇形領域３a、３b及び３cにおける回動操作板３へのユーザの接触操作の方向を示す。一方、液晶画面９２上の矢印Ａ２、Ｂ２、及びＣ２により、回動操作に対応する携帯電話への操作（操作対象への操作に相当）を示している。

矢印Ａ１は、扇形領域３aに位置する回動操作板３への接触による回動操作の方向を示す。この矢印Ａ１の反時計回り（白矢印方向）の回動操作により、数字欄９１aの選択位置９３aが矢印Ａ２の左方向（白矢印方向）へ移動する。一方、矢印Ａ１の時計回り（黒矢印方向）への回動操作により、数字欄９１aの選択位置９３aが矢印Ａ２の右方向（黒矢印方向）へ移動する。ユーザは、回動操作板３の領域３aを押圧することで、押圧スイッチ１１aにより所望の番号を指定できる。

同様に、矢印Ｂ１によって示される回動操作により機能欄９１bの選択位置９３bが矢印Ｂ２によって示される方向へ移動する。ユーザは、回動操作板３の領
第3bを押すことで、押圧スイッチ11bにより所望の機能、例えば、検索を指定できる。

また、矢印C１によって示される回動操作により名欄91cの選択位置93cが矢印C2によって示される方向へ移動する。ユーザは、回動操作板3の領域3cを押すことで、押圧スイッチ11cにより所望の氏名を指定できる。

ユーザは、以上のように設定された番号、または氏名を指定して検索した結果に誤りがなければ、回動操作板3の中央のボタン2aを押して電話を掛ける。

このように、携帯電話と回動操作を検出可能な回動操作板3、接触検出センサ8a、8b、8c、押圧スイッチ11a、11b、及び11cを組み合わせることにより、携帯電話の操作を容易にできる。

（第5実施形態）

本発明の第5実施形態に係るダイヤルユニット100をFIG.32からFIG.34に基づいて説明する。FIG.32は、このダイヤルユニット100の機械的構成要素を示す図であり、FIG.33は、FIG.32に示した歯車104の拡大図であり、FIG.34は、このダイヤルユニット100の回動操作検出機構を示す図である。本実施形態においても、上記第1実施形態から第4実施形態と同一の構成については、同一の符号を付し、その説明を省略する。

＜構成＞

FIG.31のように、このダイヤルユニットは、回動操作板3と、歯車104と、回動方向弁別板105と、中板115と底板116と左留め具121と、右留め具122とを備えている。

回動操作板3は、円板状であり、その上面に滑り止めの溝129を備えている。この回動操作板3は、円の中央部に開口部12を有している。

FIG.33に歯車104の拡大図を示す。この歯車は、周辺部に歯117を、また、中央部に開口112を有している。この歯車104と回動操作板3とは、接着剤で固定され一体として回動される。

回動方向弁別板105は、中央に開口部113を有する円板状の板から突部123が突きだした形状をなしている。この突部123には、金属カバー111が設けられている。
また、この回動方向弁別板１０５は、その上面に歯車１０４の作用により開閉する接点１０６及び１０８からなるスイッチ（第１のスイッチ部に相当）を有している。この接点１０８は、リード線１１０によって、上記金属カバー１１１に接続されている。

中板１１５は、中央部に支柱１１４を、また端部に金具１０９ａ、１０９ｂを備えている。

この支柱１１４は、回動操作板３の開口部１２、歯車１０４の開口部１１２及び回動方向弁別板１０５の開口部１１３を貫通し、これらを回動可能に保持する。

また、金具１０９ａ、１０９ｂは、回動方向弁別板１０５の突部１２３との接触により、回動方向を弁別する（金具１０９ａ、１０９ｂ及び回動方向弁別板１０５の突部１２３の金属カバー１１１が第２のスイッチ部に相当）。

なお、中板の表面には、不図示の接触操作検出センサが設けられ、ユーザが回動領域（回動操作板３が回動される領域）のどの部分に接触して回動操作しているかを検出する。

底板１１６は、押圧スイッチ１１ａ、１１ｂ、１１ｃ、及び１１ｄを備え、ユーザが回動操作板３を押圧した際の押圧操作を検出する。

左留め具１２１及び右留め具１２２は、中板１１５と底板１１６とを押圧スイッチ１１ａ、１１ｂ、１１ｃ、及び１１ｄが開放された状態で組み合わせる。

＜作用＞

FIG. ３４に、このダイヤルユニットの回動操作検出機構を示す。ユーザが回動操作板３を回動すると、回動操作板に固定された歯車１０４も回動される。一方、接点１０６の先端は、屈曲され、歯車１０４方向に突部１０６ａを形成している。このため、歯車１０４の回動に伴い、歯車１０４の歯１１７が突部１０６ａを外周方向（矢印Ｅ方向）に押圧し、接点１０６が接点１０８に接触する。そこで、接点１０６と１０８との間に電圧を印加し、接点の開閉によりパルスを発生させ、そのパルス数を計測することで回動量を検出できる。

一方、回動方向弁別板１０５は、歯車１０４との摩擦によって、回動方向に回動される。このため、例えば、回動方向弁別板１０５が時計回りに回動されると、突部１２３の金属カバー１１１が突部１１１の左側の金具１０９ａに接触する。
また、回動方向弁別板105が反時計回りに回動されると、突部111の金属カバー111が突部123の右側の金具109bに接触する。

一方、金属カバー111には、リード線110を介して接点108が接続されている。従って、歯車の回動により接点106と金具109aとが接続された場合、時計回りの回動が、歯車104の1ピッチだけ発生したことを示す。また、歯車の回動により接点106と金具109bとが接続された場合、反時計回りの回動が、歯車104の1ピッチだけ発生したことを示す。このように、接点106が金具109aまたは109bのいずれと接続されるかを観測することにより、回動方向を弁別することができる。また、その接続と切断の回数を計測することにより回動による移動量（回動量）を測定することができる。

このように、本実施形態に係るダイヤルユニット100では、電気的素子を用いることなく、機械部品とリード線によって、左右の回動方向の弁別と回動操作時の回動量を検出することができる。

＜変形例＞

上記第5実施形態においては、回動操作板3と歯車104とは、接着剤で固定した。しかし、本発明の実施は、このような構成には限定されない。例えば、回動操作板3と歯車104とネジ、ピン等で固定してもよい。また、回動操作板3と歯車104を一体としてモールド成形してもよい。

上記第5実施形態において、回動方向弁別板105は、歯車104との摩擦によって回動された。しかし、本発明の実施は、このような構成には限定されない。例えば、回動方向弁別板105はと歯車104との間に相対運動を規制する凹部及び凸部の組み合わせからなるストッパを設けてもよい。すなわち、歯車104が時計回り、または、反時計回りに一定以上回動すると必ず、回動方向弁別板105もその方向に所定量だけ回動するように構成すればよい。

また、歯車104と回動方向弁別板105との間の摩擦の代わり、回動操作板3と回動方向弁別板105との間の摩擦、または、回動操作板3と回動方向弁別板105との間相対運動を規制する凹部及び凸部の組み合わせからなるストッパにより、回動方向弁別板105を回動させるようにしてもよい。

第5実施形態においては、接点106と接点108との接触により、回動操作
を検出した。しかし、本発明の実施は、このような構成には限定されない。例え
ば、歯車１０４の外周に導電性を持たせ、歯車１０４と接点１０６との間の接触
を検出することにより、回転操作を検出してもよい。

産業上の利用可能性

本発明は、コンピュータ・携帯端末等の情報機器、自動車内の情報端末、各種
コンピュータ周辺装置、テレビ・セットトップボックス・ビデオレコーダ等の家
庭電気製品、携帯電話等の通信機器、プレゼンテーション・会議用の表示装置、
デジタルカメラ等の撮影装置、銀行端末等、各種機器のユーザーインターフェース
に利用できる。従って、本発明は、これらの機器の製造または販売を行う産業、
これらの機器を用いてサービスを提供する産業に利用できる。
請求の範囲

1. 回動操作による移動量を検出する回動操作板を備え、
前記回動操作板の左半部への接触による反時計方向（または時計方向）への回
動操作と、右半部への接触による時計方向（または反時計方向）への回動操作と
を同一方向への移動量として検出する情報入力装置。

2. 前記回動操作板は、情報入力装置本体に回動自在に設けられており、前記回
動操作板と前記情報入力装置本体との間には、前記回動操作板の左半部への接触
を検出する第1の接触操作検出部と、右半部への接触を検出する第2の接触操作
検出部とが設けられた請求項1記載の情報入力装置。

3. 回動操作による移動量を検出する回動操作部を備え、
前記回動操作部を区分してなる複数の部分領域に対して、各部分領域への回動
操作時の接触の有無を検出する接触検出部を、1以上の前記部分領域に設けた情
報入力装置。

4. 前記部分領域のうち、第1の部分領域への接触による回動操作、または、第
2の部分領域への接触による回動操作を所定の操作対象への操作として検出する
請求項3記載の情報入力装置。

5. 前記各部分領域において、
第1の部分領域への接触による回動操作を第1の操作対象への操作として検出
し、
第2の部分領域への接触による回動操作を第2の操作対象への操作として検出
する請求項3記載の情報入力装置。

6. 前記部分領域は、前記回動操作部を略2分割してなり、
前記第1の部分領域への接触による反時計方向（または時計方向）への回動操
作と、前記第2の部分領域への接触による時計方向（または反時計方向）への回
動操作を同一方向への移動量として検出する請求項4または5記載の情報入力
装置。

7. 前記回動操作部の中心部付近に押圧操作を検出可能な中心押圧操作検出部を
さらに備えた請求項3記載の情報入力装置。

8. 前記回動操作部の各部分領域内に各部分領域ごとに押圧操作を検出可能な領
域押圧操作検出部をさらに備えた請求項3記載の情報入力装置。

9. 前記回動操作部の各部分領域内の少なくとも1つの領域に、この部分領域への押圧操作を検出可能な領域押圧操作検出部をさらに備えた請求項3記載の情報入力装置。

10. 前記第1の操作対象への操作または第2の操作対象への操作の少なくとも一つは、かな文字の入力操作の1ステップ、数字の入力操作の1ステップ、英字の入力操作の1ステップ、かな漢字変換における操作の1ステップ、文書情報のスクロール操作の1ステップ、または、配列された情報からなる表のスクロール操作の1ステップに含まれる請求項5記載の情報入力装置。

11. 基板上に回動自在に設置され、回動操作による回動量を検出する回動操作部と、

基板上に固着され、前記回動操作部が回動する領域を所定の回動範囲に対応する部分領域に区分する領域指示部材と、

前記領域指示部材によって区分される部分領域のうち1以上の部分領域について、回動操作時にその部分領域への接触の有無を検出する接触操作検出部とを設けた情報入力装置。

12. 前記各部分領域において、その部分領域にある回動操作部への接触による回動操作と他の部分領域にある回動操作部への接触操作をを弁別する請求項11記載の情報入力装置。

13. 前記領域指示部材は、前記回動操作部が回動する領域を上部分領域、下部分領域、左部分領域及び右部分領域からなる4つの部分領域に分割し、

上部分領域への接触による反時計方向（または時計方向）への回動操作と、下部分領域への接触による時計方向（または反時計方向）への回動操作とを同一方向への移動量として検出し、

左部分領域への接触による反時計方向（または時計方向）への回動操作と、右部分領域への接触による時計方向（または反時計方向）への回動操作とを同一方向への移動量として検出する請求項12記載の情報入力装置。

14. 前記回動操作部の中心部付近に押圧操作を検出可能な中心押圧操作検出部をさらに備えた請求項11記載の情報入力装置。
15. 前記各部分領域の少なくとも1つの領域に、この部分領域への押圧操作を検出可能な領域押圧操作検出部をさらに備えた請求項11記載の情報入力装置。
16. 前記各部分領域内に、各部分領域への押圧操作を検出可能な領域押圧操作検出部をさらに備えた請求項11記載の情報入力装置。
17. 前記回動操作部が回動する領域の外側であって前記各部分領域に対応する位置に、押圧操作を検出する押圧操作検出部さらに備えた請求項11記載の情報入力装置。
18. 前記部分領域間の境界部近傍に押圧操作を検出可能な境界押圧操作検出部をさらに備えた請求項11記載の情報入力装置。
19. 前記回動操作部は、回動量に応じた回数の開閉をする第1のスイッチ部と、時計回りの回動と反時計回りの回動とを弁別する第2のスイッチ部をさらに備えた請求項11記載の情報入力装置。
<table>
<thead>
<tr>
<th>No.</th>
<th>左部分領域</th>
<th>右部分領域</th>
<th>時計回り</th>
<th>反時計回り</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>オフ</td>
<td>オフ</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>オフ</td>
<td>オン</td>
<td>正方向</td>
<td>負方向</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>オン</td>
<td>オフ</td>
<td>負方向</td>
<td>正方向</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>オン</td>
<td>オン</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 4
図6

回転（0選択）
↓
押圧（確定）
↓
回転（9選択）
↓
押圧（確定）
↓
回転（0選択）
↓
0 9 0 1 2 3 …
図1（あ選択）
↓
右部領域押（決定）
↓
図2（え選択）
↓
右部領域押（決定）
↓
中央押（母音、子音の切替）
↓
図3（お選択）
↓
中央押（母音、子音の切替）
↓
図4（き選択）
↓
右部領域押（決定）
左部回転（子音か行選択）
↓
右部回転（こ選択）
↓
右領域押圧（確定）
↓
左部回転（子音ま行選択）
↓
右部回転（ま選択）
↓
右領域押圧（確定）
↓
左部回転（子音ま行選択）
↓
右部回転（ま選択）
↓
右領域押圧（確定）
↓
中央押圧（完了）
左部分領域の操作検出
時計回り（上方向） 反時計回り（下方向）
負方向 正方向

右部分領域の操作検出
時計回り（下方向） 反時計回り（上方向）
正方向 負方向

負 前候補 ▲
次候補 ▼ 正

File 1
File 2
File 3
File 4

16

負 前候補 ▲
次候補 ▼ 正

File 1
File 2
File 3
File 4

16
FIG. 12

モード設定
オン オフ
16/34

FIG. 16
FIG. 21
33/34

FIG. 33
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP00/07004

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl7 G06F 3/023

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl7 G06F 3/023, 3/02, 3/033, H04M 1/02, 1/23

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyu Shinan Koho 1926-1996
 Jitsuyu Shinan Toroku Koho 1996-2000
 Kokai Jitsuyu Shinan Koho 1971-2000
 Toroku Jitsuyu Shinan Koho 1994-2000

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>JP, 11-331344, A (Matsushita Electric Ind. Co., Ltd.), 30 November, 1999 (30.11.99) (Family: none)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>JP, 9-134248, A (Toshiba Corporation), 20 May, 1997 (20.05.97) (Family: none)</td>
<td>1-19</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier document but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed
 “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 “&” document member of the same patent family

Date of the actual completion of the international search
 15 December, 2000 (15.12.00)

Date of mailing of the international search report
 26 December, 2000 (26.12.00)

Name and mailing address of the ISA/
 Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際出願番号 PCT／JP00／07004

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl' G06F 3/023

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl' G06F 3/023、3/02、3/033、H04M 1/02、1/23

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1926－1996年
日本国公開実用新案公報 1971－2000年
日本国実用新案登録公報 1996－2000年
日本国登録実用新案公報 1994－2000年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の</th>
<th>引用文献名及と一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>カテゴリー＊</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>JP, 11-331344, A(松下電器産業株式会社). 30.11月. 1999(30.11.99) (ファミリーなし)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP, 9-134248, A(株式会社東芝). 20.5月. 1997(20.05.97) (ファミリーなし)</td>
<td>1-19</td>
<td></td>
</tr>
</tbody>
</table>

□ C欄の続きに文献が列举されている。□ パテントファミリーに関する別紙を参照。

＊ 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的技術水準を示すものの
「E」国際出願日前の出願または特許であるが、国際出願日以後に出願されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を提示するために引用する文献（理由付す）
「O」口頭による開示、使用、展示等に及ぼす文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日後に公表された文献
「T」国際出願日又は優先日後に公表された文献であって出願に矛盾するものではない、発明の原理又は理論の理解のために引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるものの
「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって明確である組合せによって進歩性がないと考えられるもの
「&」同一パテントファミリー文献

国際調査を完了した日 15.12.00
国際調査報告の発送日 26.12.00

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関3丁目4番3号

特許庁審査官（権限のある職員） 5E 9376
田中友善

電話番号 03－3581－1101 内線 3520

様式PCT／ISA／210（第2ページ）（1998年7月）