wo 2014/107540 A1 [N 0FV 00O T O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/107540 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

10 July 2014 (10.07.2014) WIPOIPCT
International Patent Classification: (81)
GO6F 9/44 (2006.01)

International Application Number:
PCT/US2014/010113

International Filing Date:
3 January 2014 (03.01.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/734,712 4 January 2013 (04.01.2013) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399
(US).

Inventors: WEINSBERG, Yaron; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). YU, Jinsong;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). GRABARNIK, Maxim; c¢/o0 Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). MASSARENTI,
Davide; c¢/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: SOFTWARE INTERFACE FOR A HARDWARE DEVICE

(57) Abstract: Automatically generating code used with device drivers for
interfacing with hardware. The method includes receiving a machine read-

500

502~

Receive A Machine Readable Description Of A Hardware
Device, Including At Least One Of Hardware Registers Or
Shared Memory Structures Of The Hardware Device

504~ Y

Determine An Operating System With Which The
Hardware Device Is To Be Used

506~ 4

Processing The Machine Readable Description On A Code Generation
Tool To Automatically Generate Code For A Hardware Driver For The
Hardware Device Specific To The Determined Operating System

Figure 5

able description of a hardware device, including at least one of hardware re-
gisters or shared memory structures of the hardware device. The method fur-
ther includes determining an operating system with which the hardware
device is to be used. The method further includes processing the machine
readable description on a code generation tool to automatically generate
code for a hardware driver for the hardware device specitic to the determ-
ined operating system.



WO 2014/107540 A1 W00V 000 00 O AR

Published:
—  with international search report (Art. 21(3))



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

SOFTWARE INTERFACE FOR A HARDWARE DEVICE

BACKGROUND

[0001] Computers and computing systems have affected nearly every aspect of modern
living. Computers are generally involved in work, recreation, healthcare, transportation,
entertainment, household management, etc.

[0002] General purpose computing systems can utilize a number of devices by using code
known as device drivers. The device drivers function as a way to interface hardware or
other devices to system resources, such as CPU registers, system memory registers, etc.
Device drivers typically run in kernel mode, which is a privileged mode. In particular, in
kernel mode, driver code can access any memory address and control any system level
component. Hence, a defective or malicious driver can readily compromise the integrity of
the computing system, leading to crashes or data corruption.

[0003] Thus, device drivers are unsafe. While object oriented design methodologies,
language type-safety and static code verification find their way into advanced platforms
(e.g. the so-called cloud) and development environments, device drivers are still developed
using unsafe languages (e.g. C/C++) and are accessed using type-less, non-object-oriented
and error-prone interfaces. Most device drivers are still executed in kernel mode increasing
the potential for a single software bug to cause a system failure. Further, insofar as any
drivers are implemented in user mode, they are not now capable of being used for high
throughput and low latency devices because, in some operating systems, hardware interrupts
cannot be delivered efficiently to a user mode process. In other operating systems, the
performance of a user mode driver is significantly worse than a kernel mode driver.

[0004] Hardware manufacturers typically describe the hardware in free form hardware
specifications. Driver developers use these specifications to develop a hardware access
layer. This layer enables a driver to interact with device registers and shared memory.
Developing this layer is both tedious and error prone as it depends on the quality of the
specification and developer’s experience. In most cases this layer is operating system
dependent and cannot be used by other platforms.

[0005] The subject matter claimed herein is not limited to embodiments that solve any
disadvantages or that operate only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary technology areca where some

embodiments described herein may be practiced.



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

SUMMARY
[0006] One embodiment illustrated herein includes a method practiced in a computing
environment including acts for automatically generating code used by device drivers to
interact with the hardware device. The method includes receiving a machine readable
description of a hardware device, including at least one of hardware registers or shared
memory structures of the hardware device. The method further includes determining an
operating system with which the hardware device is to be used. The method further includes
processing the machine readable description on a code generation tool to automatically
generate code for a hardware driver for the hardware device specific to the determined
operating system.

[0007] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended
to identify key features or essential features of the claimed subject matter, nor is it intended
to be used as an aid in determining the scope of the claimed subject matter.

[0008] Additional features and advantages will be set forth in the description which
follows, and in part will be obvious from the description, or may be learned by the practice
of the teachings herein. Features and advantages of the invention may be realized and
obtained by means of the instruments and combinations particularly pointed out in the
appended claims. Features of the present invention will become more fully apparent from
the following description and appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] In order to describe the manner in which the above-recited and other advantages
and features can be obtained, a more particular description of the subject matter briefly
described above will be rendered by reference to specific embodiments which are illustrated
in the appended drawings. Understanding that these drawings depict only typical
embodiments and are not therefore to be considered to be limiting in scope, embodiments
will be described and explained with additional specificity and detail through the use of the
accompanying drawings in which:

[0010] Figure 1 illustrates device hardware and automatic device hardware abstraction
layer interface generation;

[0011] Figure 2 illustrates hierarchical driver generation;

[0012] Figure 3 illustrates a bus driver framework;

[0013] Figure 4 illustrates driver interrupt and device communication;



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

[0014] Figure 5 illustrates a method of automatically generating code for device drivers;
[0015] Figure 6 illustrates a method of enforcing limitations on hardware drivers; and
[0016] Figure 7 illustrates a method of implementing a safe driver that can support high
throughput and low latency devices.

DETAILED DESCRIPTION

[0017] Embodiments disclosed herein may include a number of techniques that facilitate
the development of high-performance user mode and type safe drivers for all device types.
The drivers deliver performance that is comparable to legacy kernel mode device drivers
existing in other operating systems.

[0018] Some embodiments may implement an auto-generating device driver hardware
abstraction layer. As illustrated in Figure 1, a hardware device 102 interfaces with the
computing system 104 using registers 106 in the CPU 108 and shared memory 110 in system
memory 112. The hardware device is typically built in a static fashion to interface with
particular registers in the sets of registers 106 and with particular memory interaction. To
ensure that the system 104 and the registers 106 and shared memory 110, interface properly
with the hardware device 102, a driver 114 is used that provides the mapping to and from
the system hardware to the device hardware. Drivers 114 are typically developed manually
by using manufacturer provided textual specifications.

[0019] Hardware manufacturers typically describe the hardware in free form hardware
specifications. Driver developers use these specifications to develop a hardware access
layer. As noted, this layer enables a driver to interact with device registers and shared
memory, such as by using direct memory access (DMA). Developing this layer is both
tedious and error prone as it depends on the quality of the specification and developer’s
experience. In most cases this layer is operating system dependent and cannot be used by
other platforms.

[0020] Some embodiments herein simplify driver development by implementing a
hardware abstraction mechanism for separating the hardware access layer specification from
its implementation. A machine readable hardware specification 116 can be provided by the
device vendor. The machine readable hardware specification is processed by a code
generation tool 118. The code generation tool 118 has operating system context for one or
more different operating systems and thus can automatically create a hardware device
interface layer by processing the machine readable hardware specification 116. Thus, the
machine readable hardware specification 116 can be reused to create hardware device

interface layers 115-1, 115-2 through 115-n for multiple different operating systems and



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

using various different programming languages. This scheme greatly simplifies driver
development and reduces the amount of errors caused by incorrect hardware access. The
machine readable hardware specification 116 can be written in a simple language, such as
C# and can be easily validated via inspection.

[0021] Thus, a developer or hardware manufacturer can describe the device 102 hardware
registers and shared memory structures (in host memory) using a hardware-software
interface language. For this purpose the developer consults the textual hardware
specification. Note that a hardware engineer or the hardware vendor can also provide the
hardware-software interface description of the machine readable hardware specification
116. In particular, a driver developer does not need to be involved in the hardware
description phase to define the machine readable hardware specification 116 using the
hardware-software interface language. In the second phase, the hardware description is
processed by a code generation tool 118 that includes a hardware-software interface
processor 120.

[0022] The hardware-software interface processor 120 can generate various software
driver modules as illustrated below.

[0023] The hardware-software interface processor 120 can generate hardware access
methods for reading/writing registers and interpreting their fields. For example, based on
the machine readable hardware specification 116, the code generation tool 118 can
determine what registers in the set of registers 106 are used for communicating with the
hardware device 102. Methods can be generated to access these registers and can be used
to provide software interfaces to application wishing to control the hardware device 102 to
indicate the purpose of each register and the interpretation of data in each register.

[0024] The hardware-software interface processor 120 can generate methods for
reading/writing shared structures fields. For example, based on the machine readable
hardware specification 116, the code generation tool 118 can identify, in driver software
modules, portions of shared memory 110 that will be used by the hardware device 102. This
allows software application to use the driver 114 to be able to communicate with the portions
of shared memory 110 used by the hardware device 102.

[0025] The hardware-software interface processor 120 can generate memory allocators
for hardware interface entities expressed in the hardware-software interface description. For
example, based on the machine readable hardware specification 116, the code generation

tool 118 knows what hardware interfaces are included in the hardware device 102. The



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

hardware interface layer 115 may be automatically generated to therefore include memory
allocators to allocate memory in system memory 112 for the use of the hardware interfaces.
[0026] The hardware-software interface processor 120 can generate log modules that
interpret and trace hardware interface entities. For example, based on the machine readable
hardware specification 116 and knowledge about hardware interfaces of the hardware
device 102, the code generation tool 118 may automatically generate the hardware interface
layer 115 to include modules that are able to use the hardware interfaces to collect and log
data logging hardware actions of the hardware device 102.

[0027] The hardware-software interface processor 120 can generate debugger extensions
that visualize hardware interface entities. For example, based on the machine readable
hardware specification 116 and knowledge about hardware interfaces of the hardware
device 102, the code generation tool 118 may automatically generate the hardware interface
layer 115 to include modules that are able to use the hardware interfaces to collect and log
data logging hardware actions of the hardware device 102 which can be used for debugging
purposes.

[0028] The following illustrates a hardware-software interface sample description of the

USB EHCI controller capability registers.

/// <summary>
/Il These registers specify the limits, restrictions and capabilities of the host controller
implementation.
//] </summary>
[MemoryMappedRegister(ResourceType.MemoryRange, Size = 0xC)]
struct EhciCapabilityRegisters
{
/// <summary>
//l Capability Registers Length and Hci Version register combined in a single
DWORD.
//] </summary>

[DataField(Offset = 0x0)] public CapLengthHCIVersion CapVer;

/// <summary>
/// This is a set of fields that are structural parameters: Number of downstream

ports, etc.



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

//] </summary>

[DataField(Offset = 0x4)] public HCSPARAMS HCSPARAMS;

/// <summary>
///" Multiple Mode control (time-base bit functionality), addressing capability.
//] </summary>

[DataField(Offset = 0x8)] public HCCPARAMS HCCPARAMS;

[0029] As noted, the diagram shows a sample description of a USB EHCI controller
registers. The register presented is the capability register. Each register is located at some
offset relative to the device memory base address. In this example, the capability register is
located at offset 0xC as specified by the “MemoryMappedRegister” attribute that is part of
the hardware-software syntax. Once the base address of a register is set, hardware-software
interface provides several attributes to present the different register fields. In this example,
the “DataField” attribute is used to represent registers that are part of the capability register.
For example, HCSPARAMS is a register located at offset 0x4 from the base address of the
capability register (at 0xC as explained). Each data field is recursively annotated by the
hardware-software interface syntax (as illustrated below).

[0030] The following illustrates a hardware-software interface description of the

HCCPARAMS register field.

/// <summary> Host Controller Capability Parameters </summary>
[MemoryMappedRegister(Size = 4)]
struct HCCPARAMS

{
[ReservedBits(16, 31)] public uint Reserved];

/// <summary>
///' EHCI Extended Capabilities Pointer (EECP).
//] </summary>

[BitField(8, 15)] public uint EECP;

/// <summary>



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

//l" Isochronous Scheduling Threshold. Default is implementation dependent.
//] </summary>

[BitField(4, 7)] public ushort IsochronousSchedulingThreshold;

[ReservedBits(3)] public uint Reserved?2;

/// <summary>
//l Asynchronous Schedule Park Capability. Default is implementation dependent.
//] </summary>

[BitField(2)] public uint AsyncSchedulePark;

/// <summary>
//l Programmable Frame List Flag. Default = Implementation dependent.
//] </summary>

[BitField(1)] public uint ProgramableFrameList;

/// <summary>
//l - 64-bit Addressing Capability.
//] </summary>

[BitField(0)] public bool Bit64Addressing;

[0031] This diagram shows how the HCSPARAMS register is annotated (which is part of
the capability register presented above). Hardware-software interface “BitField” and
“ReservedBits” attributes enable a developer to annotate the register bits. For example, bit
0 at this register indicates whether the device supports 64 addresses. The developer uses
“[(BitField(0)] public bool Bit64Addressing;” to present this requirement. The generated
code, will enable the developer to access the “Bit64Addressing” as a Boolean in order to
query the value.

[0032] The following shows the generated code for getting/setting HCCPARAMS field

values.

/// <summary>

//l This class represents device mapped resource.



WO 2014/107540 PCT/US2014/010113

//I" Tt uses as a container for IO memory range and all the registers within it.
//] </summary>
readonly struct EhciCapabilityRegisters
{
public const int SizelnBytes = 0xc;
readonly loMemory m_ioRange;

readonly int m_offset;

public EhciCapabilityRegisters(loMemory mem, int offset = 0)
{

Contract.Requires(mem != null);
Contract.Requires(mem.Length >= SizeInBytes);
m_ioRange = mem;

m_offset = offset;

public ulong PhysicalAddress
{

get { return m_ioRange.PhysicalAddress.Value + (uint)m_offset; }

public Register32Control<CapLengthHCIVersion> CapVer
{

get { return new Register32Control<CapLengthHCIVersion>(m_ioRange,
m_offset + 0x0); }

}

public Register32Control<HCSPARAMS> HCSPARAMS

{
get { return new Register32Control<HCSPARAMS>(m_ioRange, m_offset +

0x4); }
}

public Register32Control<HCCPARAMS> HCCPARAMS



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

get { return new Register32Control<HCCPARAMS>(m_ioRange, m_offset +
0x8); }
}

[0033] The generated code uses operating system specific interfaces and can be casily
generated for other operating systems.
[0034] The following illustrates the way by which the generated code is used by device

driver code.

IoMemory mem = m_mappedloRange. MemoryAtOffset(0,
EhciCapabilityRegisters.SizeInBytes, Access.Read);
m_capabilityRegs = new EhciCapabilityRegisters(mem);
CapLengthHCIVersion capVer = m_capabilityRegs.CapVer.Read();
EhciEvents.CapAndHci(capVer. CAPLENGTH, capVer. HCIMajorRevision,
capVer.HCIMinorRevision);
HCSPARAMS structuralParameters =
m_capabilityRegs. HCSPARAMS.Read();
int numberOfPorts = (int)m_structuralParameters.NumberOfPorts;
HCCPARAMS capabilityParameters =
m_capabilityRegs. HCCPARAMS Read();
bool is64Bit = capabilityParameters.Bit64Addressing;
if (is64Bit) { ... }

[0035] Once the register is initialized with the underlying memory region, a register can
be casily read, manipulated and written back to the device.

[0036] In the examples illustrated above, the generated code can be used by any operating
system and is not limited to a specific vendor. Additionally or alternatively, the generated
code can be in any development language, such as C#, Java, C, C++, etc.

[0037] As noted, a generic hardware-software interface language is used to describe the
hardware registers and host memory data structures (accessible via DMA) in a machine

readable hardware specification. A code generator operates on the hardware-software



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

interface description. The hardware-software interface description can be provided,
validated and maintained by the hardware vendors. Hardware vendors can generate the
machine readable hardware specification directly from a hardware design eliminating
potential for any human error. This reduces or eliminates human intervention from
software/hardware interface design and implementation paths, reduce development time,
and provide uniformity and a better debugging experience.

[0038] Some embodiments implement capability based driver models with resource
hardening. In particular, most drivers 114 interface with real hardware. To accomplish this,
drivers 114 map part of the physical memory 122 that resides on the device 102 to the virtual
address space of the computing system 104 or use a dedicated address space called the I/O
space. The techniques illustrated previously are implemented to help ensure that driver code
properly uses the mapped memory (or 1/0 port) for accessing the device 102. In many
common operating systems, device drivers 114 can freely attempt, through error or malice,
to map and use any physical address in the system memory 112. Because of the privileged
nature of the driver software, the operating system typically has no way to ensure that a
driver 114 does not allocate a port, interrupt, or other interface that does not belong to the
driver or that is not needed for the driver to function properly to control a particular hardware
device 102. For example, a keyboard driver should typically have access to IRQ 1, but does
not need access to port 80. With access to port 80, a nefarious keyboard driver could
implement key-logging functionality including sending keystrokes across a network to a
rogue website. This can jeopardize system safety.

[0039] Embodiments herein can implement drivers and system processes in managed
code, such as C# or Java. Managed code is computer program source code that will only
execute under the management of a sandboxed virtual machine. As such, any drivers or
system processes so implemented contain a closed object space. Device memory and
registers can only be accessed via a dedicated managed object that is provided to the driver
when it is initialized. Thus, the driver will only be able to access system resources and 1/0
processes that are needed for the driver to function properly to control a device.

[0040] Referring now to Figure 2, some embodiments implement an approach where the
set 204 of all I/O resources (such as memory mapped registers 206, I/O ports 208, and DMA
buffers 210) are capabilities. These capabilities are exclusively owned by the kernel 212
and are assigned to the system’s root bus driver 214 upon startup. The systems root bus
driver 214 can allocate subsets 204-1, 204-2 through 204-n of the set 204 of all I/O resources
to other system busses 214-1, 214-2 through 214-n. The subsets 204-1 through 204-n are

10



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

assigned in such a way that busses 214-1 through 214-n are only assigned resources that
they need for particular devices that will be attached to them.

[0041] When bus drivers 214-1 through 214-n enumerate their devices, they assign a set
of I/0 resources to each child. For example, bus 214-1 has devices 202-1 and 202-1 attached
to it. The bus 214-1 can assign a set 204-1-1 of I/O resources to device 202-1 and a set of
resources 204-1-2 to the device 202-2, where sets 204-1-1 and 204-1-2 are subsets of set
204-1. A bus can only assign I/O resources that were assigned to it. This approach provides
a hierarchical 1/0 resource allocation scheme that can be used to guarantee that a driver can
only use or transfer resources that were assigned to it. This can greatly improve system
reliability and allow the operating system to easily track and revoke any I/O resource at any
time. When a driver is terminated or exits, its resources can be easily reclaimed by its parent
bus driver. With an input/output memory management unit (IOMMU) hardware, this
scheme can be enforced at the hardware level. For example, a driver developer trying to
program a device with illegal memory addresses will not be able to jeopardize the system
safety.

[0042] Figure 3 illustrates the structure of a typical bus driver 302. The bus driver 302
(the PCI bus driver in this example) is linked with a user level library which provides all
driver services (e.g. the DriverFramework library available from Microsoft Corporation of
Redmond Washington in this example). The driver is also linked with the plug and play
manager library 306 that enables a bus driver 302 to enumerate its child devices. For each
enumerated device, the framework creates an abstraction, called a bus slot (such as example,
bus slot 308-1), which holds the assigned device’s resources. Each bus driver exports
multiple bus slot interfaces, such as the example bus slot interface 310-1 (denoted as
IBusSlot interface) which are attached to the child drivers (illustrated by the example, 114-
1) by the runtime. No other service or process can attach itself to the bus slot interface
except the enumerated device driver. The bus slot interface is used by the child device
driver to allocate its assigned 1/O resources to a device, illustrated by the example device
102-1. A driver can only allocate 1/O resources that are specified on the bus slot at the
parent driver.

[0043] This mechanism can be easy to implement and distributed in the sense that /O
resource management is executed locally at each bus driver instead of in the kernel or a
single system service.

[0044] Besides 1/0O resources that are treated as capabilities, embodiments may implement

an operating system that is able to control the connectivity of various services. As drivers

11



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

are treated as services embodiments can control the set of services a driver can use/ interact
with. For example, unlike other operating systems, in some embodiments, a driver cannot
send a message to another driver as it does not have a capability to do so (which is an
interface to send a message to that service). The operating system, of some embodiments,
is able to constrain, control, observe, and recason about the connection of a driver to other
components in the system. The combination of a capability-based model and use of
managed code provides various advantages as illustrated herein.

[0045] With reference to Figure 4, a unique architecture is illustrated. In the example
illustrated, a user mode 402 (e.g. Ring 3, the least privileged, of the privilege rings of the
x86 architecture) and kernel mode 404 are illustrated. A microkernel 406 may be
implemented in the kernel mode 404 (sometime referred to as a supervisor mode). The
microkernel 406 is a minimal amount of software that provides mechanisms, such as low-
level address space management, thread management, and IPC communication. The
microkernel 406 is responsible for reading basic hardware tables.

[0046] In user mode, 402, address spaces are divided up into domains, such as the
example, domain 408-1 (but referred to herein generically as 408). The domains run various
processes (such as the example process 410-1-1 but referred to generically as 410), including
one or more driver processes, on a runtime (such as the example runtime 412-1-1).
Embodiments may be implemented where drivers are user-mode 402 managed processes
410 (such as by coding the drivers in managed code, such as C# or Java) that can support
high throughput and low latency devices. In some embodiments, all services including
device drivers are developed using managed code libraries and are executed in user-mode
402. In addition, isolation among processes 410 and the microkernel 406 can be further
achieved via the statically verified type safety of the language. This mechanism enables the
exchange of data over inter-process communication (IPC) channels without copying as all
processes reside in a single address space or domain 408. Such an approach is hard to make
safe in traditional systems that are not based on type safe languages

[0047] User mode drivers implemented using managed code can greatly increase system
safety and simplify driver development. In particular, the developer can utilize any user-
mode library that is available in the system (including XML parsers, queue management,
etc.). In traditional operating systems, driver developers could not use any existing library
due to memory constraints and other limitations as drivers must share their address space
with the kernel. Additionally, developers no longer need to worry about memory

management. The same garbage collector that manages process memory is used for drivers.

12



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

Improper memory management is one of the greatest sources of operating system failures.
In some embodiment systems driver memory related bugs can be eliminated.

[0048] In some example embodiments, drivers implemented as one or more processes
410, are single threaded. Thus the developer does not need to worry about synchronization,
threads, and interrupt levels. Much of the driver complexity is gone and the developer is
focused on the driver’s functionality.

[0049] Drivers can be accessed via standard type-safe interfaces. Common operating
systems restrict access to drivers to a few pre-defined functions, such as Open, Close, Read,
Write and a general-purpose interface such as DeviceloControl (known as ‘ioctl”). While
in previous systems, drivers controlled a few well-known hardware components and the
tasks they performed were limited, this is inefficient for modern systems where at least some
hardware devices (e.g. hardware accelerators such as graphics accelerators) expose an
expansive and complex interface to their host. The solution provided in some embodiment
operating systems treats drivers as first class-citizens.

[0050] A driver implemented as a process 410 is accessed via type safe interfaces like any
other system service. Such an implementation takes advantage of a language's type-safety
features and catches erroneous method invocations at compile time. To provide compile-
time type checking, the compiler needs to know the data type information for the variables
or expressions in the code. Interfaces provide a contract between the interface consumer
and the interface implementation. The method signature can be statically checked during
compilation. Mismatches of differently-typed parameters simply cannot occur in a running
system. Additionally, those errors are caught by the application developer at compile time,
and do not require runtime checks by the driver developer in kernel mode 404.

[0051] Besides, safety and ease of development, embodiments enable device drivers to
achieve high-throughput and low latency comparable to common kernel mode device
drivers. This can be achieved through the ability to implement zero-copy 1/O paths. “Zero-
copy” refers to the fact data entering the system is written to memory only once and then
can be used directly by many layers of abstractions, both within the operating system and
within application code, without the need to copy the data. Zero-copy I/O paths are ones in
which the CPU does not perform copying from one memory location to another. Rather,
the CPU can perform other tasks. This can save from having context switches to have the
system switch between user mode 402 and kernel mode 404 to achieve the copying. The
following now illustrates techniques that allow a managed, user-mode device driver to

achieve such performance using zero-copy 1/O paths.

13



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

[0052] Embodiments may be configured to perform efficient interrupt dispatching. The
ability to efficiently deliver hardware interrupts to a user mode driver is novel. Interrupt
dispatching is executed by a tight interaction between the operating system micro-kernel,
the domain kernel and the drivers’ framework library.

[0053] The mechanism to dispatch an interrupt uses a 3-tier architecture including an I/O
interrupt manager, a driver framework library, and efficient microkernel interrupt handling.
[0054] Asillustrated in Figure 4, each domain 408 includes a domain kernel, an example
of which is illustrated at 414-1 (but referred to herein generically as 414). An I/O interrupt
manager, an example of which is illustrated at 416-1 (but referred to herein generically as
416) is part of the domain kernel 414 and bridges between the hardware device 102 and
device driver processes 410. It is responsible for managing registrations of device drivers
on the IRQs 418, dispatching interrupts to the driver processes 410, and handle interrupt
sharing when an IRQ is shared by multiple devices. As all device drivers run in processes,
embodiments can enforce stronger isolation and fault containment for drivers than
traditional monolithic OS kernel design where device drivers run in the kernel.

[0055] The driver framework library is responsible for registering an interrupt handler at
the domain kernel 414 to receive notifications. When a hardware interrupt is received at the
domain kernel 414, the interrupt handler is triggered and a pre-registered driver routine is
invoked. The overhead of invoking the method is very low as there is no context switch
from user mode 402 to kernel mode 404 involved.

[0056] Embodiments implement efficient microkernel interrupt handling. In some
embodiments, the microkernel 406 is interruptible but not preemptable. A logical processor,
while running in the context of microkernel 406, can receive interrupts but cannot block or
switch its context. To minimize the interrupt dispatch latency, embodiments limit the
amount of time a processor can spend inside of the microkernel 406. Some embodiments
implement a continuation execution scheme for system calls that potentially could take
longer time than preset bounds. The bounds and continuations scheme enable the
microkernel 406 to deliver interrupts to the domain kernel 414 with very low latency. All
hardware interrupts (MSIs, IRQs and Virtual) are delivered to a user mode library which is
part of the driver. Minimizing interrupt dispatch latency can be achieved in some
embodiments by using zero-copy 1/O paths.

[0057] One illustrative example of zero-copy /O paths is now illustrated. With reference
again to Figure 1, system memory 112 is illustrated. A process 410 can allocate a portion

of the system memory 112. The microkernel 406 (see Figure 4) can allow the process 410

14



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

to allocate the memory, but once the memory is allocated to the process 410, then the process
410 has control over the portion of system memory. In a hardware driver example, a
hardware device 102 can write to the portion of memory. The driver process 410 will then
mark this portion of memory as immutable. Memory that is immutable is memory whose
content and/or address cannot be changed. Because the portion of memory is immutable,
there are no real constraints on accessing the portion of memory. Thus, the system does not
need to switch to kernel mode to allow different processes to read from the memory. Thus,
a driver process 410 can access the portion of memory without requiring a context switch
and thus can obtain data from the hardware device 102 that writes to the portion of memory
quickly and efficiently such that high efficiency and low latency can still be achieved when
a driver is implemented in user mode.

[0058] The data can be delivered to the different processes 410 in appropriate ways by
providing different views of the immutable portion of the memory. Thus, rather than
copying the portions of the data that are needed for a particular process 410, pointers to the
immutable portion of the memory can be used, and logical views of the data in the
immutable portion of the memory can provide the appropriate data. Thus, from the
perspective of a particular process 410, the data appears to have been copied and provided
in the appropriate format while in fact, no data copying has occurred.

[0059] Similar functionality can be used for a driver process 410 to send data to a
hardware device 102. In particular, a driver process 410 can write data to a portion of the
system memory 112. The portion can be marked by the same driver process 410 or another
driver process as immutable. The memory can then be read by the hardware device 102
without needing the system to switch to kernel mode 404.

[0060] In some embodiments, the immutable portion of memory can have a counter
associated with it. Each time a process accesses the immutable portion of memory, the
counter is incremented. When the process is done reading the immutable portion of
memory, the counter decrements. Thus, after all processes that have been reading the
immutable portion of memory finish with the immutable portion of memory, the counter is
decremented to zero which allows the portion of memory to be freed up for other memory
operations.

[0061] Another technique is related to the use of DMA channels for device control. A
channel is a bi-directional message conduit having exactly two endpoints, called the channel
endpoints. A DMA channel is a high performance mechanism to bridge the gap between

applications and device drivers which exchange high volumes of packetized data via DMA.

15



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

It is a specialization of a standard inter-process communication (IPC) channel, differing
primarily by offering readable DMA operations and asynchronous retirement of messages
in the channel. An IPC message has two parts, one mandatory and the other optional. The
mandatory part is inline data copied into the channel’s slot and the optional part includes
handles that are transferred across (or shared over) the channel. DMA channels are unique
in the following aspects:

. They are entirely executed in user-mode (where drivers and processes live).

. They provide back pressure. There is no memory allocation for each message
passed between an application and network driver. Furthermore, data can stay in the channel
until it’s fully consumed, and messages behind this data can continue to be processed.

. They include zero-copy support. DMA can be executed from the ring buffer.

. They include support for arbitrary control messages. This enables optimizations
like software segmentation offload.

[0062] The following discussion now refers to a number of methods and method acts that
may be performed. Although the method acts may be discussed in a certain order or
illustrated in a flow chart as occurring in a particular order, no particular ordering is required
unless specifically stated, or required because an act is dependent on another act being
completed prior to the act being performed.

[0063] Referring now to Figure 5, a method 500 is illustrated. The method 500 may be
practiced in a computing environment. The method 500 includes acts for automatically
generating code used with device drivers for interfacing with hardware. The method 500
includes receiving a machine readable description of a hardware device (act 502). The
machine readable description includes at least one of hardware registers or shared memory
structures of the hardware device. For example, Figure 1 illustrates an example of a machine
readable description 116 of a hardware device 102.

[0064] The method 500 further includes determining an operating system with which the
hardware device is to be used (act 504). For example, the code generation tool 118 may
have access to, or may have information that sets the operating system for which a hardware
interface layer 115 is being created.

[0065] The method 500 further includes processing the machine readable description on
a code generation tool to automatically generate code for a hardware driver for the hardware

device specific to the determined operating system (act 506). For example, Figure 1

16



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

illustrates that he code generation tool 118 executes the machine readable hardware
specification 116

[0066] Various driver code portions may be generated. For example, some embodiments
of the method 500 may be practiced where generating code for a hardware driver comprises
generating hardware access methods for reading and writing to registers and interpreting
fields of the registers. Alternatively or additionally, embodiments of the method 500 may
be practiced where generating code for a hardware driver comprises generating methods for
reading and writing to shared structures fields. Alternatively or additionally, embodiments
of the method 500 may be practiced where generating code for a hardware driver comprises
generating memory allocators for hardware interface entities expressed in the machine
readable description of the hardware device. Alternatively or additionally, embodiments of
the method 500 may be practiced where generating code for a hardware driver comprises
generating log modules that interpret and trace hardware interface entities. Alternatively or
additionally, embodiments of the method 500 may be practiced where debugger extensions
that visualize hardware interface entities.

[0067] Some embodiments of the method 500 may be practiced where the machine
readable description of a hardware device is provided by a hardware vendor.

[0068] Some embodiments of the method 500 may be practiced where the generated code
for the hardware driver is generated as managed code.

[0069] Referring now to Figure 6, a method 600 is illustrated. The method 600 may be
practiced in a computing environment. The method 600 includes acts for enforcing
limitations on hardware drivers. The method 600 includes from a system kernel, assigning
I/O resources to the system’s root bus (act 602). For example, Figure 2 illustrates that I/O
resources are assigned to a system’s root bus by assigning the resources to a bus driver 214.
[0070] From the root bus, the method 600 includes assigning a subset of the I/0 resources
to a device bus (act 604). Assigning a subset of the I/O resources to a device bus includes
limiting the device bus to only be able to assign I/O resources that are assigned to it by the
root bus. For example, in Figure 2, devices busses 214-1 through 214-n have resources
assigned to them. Each of these device busses is only able to further assign resources which
have been assigned to them.

[0071] The method 600 further includes, from the device bus, assigning 1/O resources to

a device through a device interface (act 606).

17



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

[0072] Some embodiments of the method 600 may be implemented where limiting the
device bus to only be able to assign I/O resources that are assigned to it by the root bus is
accomplished by implementing bus drivers in managed code.

[0073] The method 600 may be practiced where assigning a subset of the 1/0 resources to
a device bus comprises invoking a bus driver implemented in managed code.

[0074] The method 600 may be practiced where assigning I/O resources to a device
comprises invoking a device driver implemented in managed code.

[0075] The method 600 may further include preventing other services and processes from
attaching themselves to the device interface.

[0076] Referring now to Figure 7, a method 700 is illustrated. The method 700 may be
practiced in a computing environment. The method 700 includes acts for implementing a
type safe driver that can support high throughput and low latency devices. The method 700
includes receiving data from a hardware device (act 702). The method 700 further includes
delivering the data to one or more driver processes executing in user mode using a zero-
copy to allow the one or more driver processes to support high throughput and low latency
hardware devices (act 704).

[0077] The method 700 may be practiced where delivering the data is performed without
pre-empting the kernel mode. Alternatively or additionally, the method 700 may further
include limiting the amount of time a processor spends in kernel mode. Alternatively or
additionally, the method 700 may be practiced where the driver process is implemented in
managed code. Alternatively or additionally, the method 700 may further include an I/O
interrupt manager implemented in user mode registering user mode device drivers on
interrupts. In some embodiment, the I/O interrupt manager dispatches interrupts to driver
processes. Alternatively or additionally, the method 700 may further include implementing
drivers as single threaded processes. Alternatively or additionally, the method 700 may be
practiced where the one or more driver processes are implemented without limitation on
what user mode libraries can be used to implement the one or more driver processes.
[0078] Further, the methods may be practiced by a computer system including one or
more processors and computer readable media such as computer memory. In particular, the
computer memory may store computer executable instructions that when executed by one
or more processors cause various functions to be performed, such as the acts recited in the
embodiments.

[0079] Embodiments of the present invention may comprise or utilize a special purpose

or general-purpose computer including computer hardware, as discussed in greater detail

18



10

15

20

25

30

WO 2014/107540 PCT/US2014/010113

below. Embodiments within the scope of the present invention also include physical and
other computer-readable media for carrying or storing computer-executable instructions
and/or data structures. Such computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions are transmission media. Thus,
by way of example, and not limitation, embodiments of the invention can comprise at least
two distinctly different kinds of computer-readable media: physical computer readable
storage media and transmission computer readable media.

[0080] Physical computer readable storage media includes RAM, ROM, EEPROM, CD-
ROM or other optical disk storage (such as CDs, DVDs, etc.), magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store desired program
code means in the form of computer-executable instructions or data structures and which
can be accessed by a general purpose or special purpose computer.

[0081] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry or
desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above are also included within the scope of computer-readable media.
[0082] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be transferred
automatically from transmission computer readable media to physical computer readable
storage media (or vice versa). For example, computer-executable instructions or data
structures received over a network or data link can be buffered in RAM within a network
interface module (e.g., a “NIC”), and then eventually transferred to computer system RAM
and/or to less volatile computer readable physical storage media at a computer system.
Thus, computer readable physical storage media can be included in computer system
components that also (or even primarily) utilize transmission media.

[0083] Computer-executable instructions comprise, for example, instructions and data

which cause a general purpose computer, special purpose computer, or special purpose

19



10

15

20

WO 2014/107540 PCT/US2014/010113

processing device to perform a certain function or group of functions. The computer
executable instructions may be, for example, binaries, intermediate format instructions such
as assembly language, or even source code. Although the subject matter has been described
in language specific to structural features and/or methodological acts, it is to be understood
that the subject matter defined in the appended claims is not necessarily limited to the
described features or acts described above. Rather, the described features and acts are
disclosed as example forms of implementing the claims.

[0084] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, pagers, routers, switches, and the like. The invention may also be
practiced in distributed system environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both perform tasks. In a distributed
system environment, program modules may be located in both local and remote memory
storage devices.

[0085] The present invention may be embodied in other specific forms without departing
from its spirit or characteristics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of the invention is, therefore,
indicated by the appended claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of the claims are to be embraced

within their scope.

20



WO 2014/107540 PCT/US2014/010113

CLAIMS

1. In a computing environment, a method of automatically generating code used with
device drivers for interfacing with hardware, the method comprising:

receiving a machine readable description of a hardware device, including at least
one of hardware registers or shared memory structures of the hardware device;

determining an operating system with which the hardware device is to be used;
and

processing the machine readable description on a code generation tool to
automatically generate code for a hardware driver for the hardware device specific to the

determined operating system.

2. The method of claim 1, wherein generating code for a hardware driver comprises
generating hardware access methods for reading and writing to registers and interpreting

fields of the registers.

3. The method of claim 1, wherein generating code for a hardware driver comprises

generating methods for reading and writing to shared structures fields.
4. The method of claim 1, wherein generating code for a hardware driver comprises
generating memory allocators for hardware interface entities expressed in the machine

readable description of the hardware device.

5. The method of claim 1, wherein generating code for a hardware driver comprises

generating log modules that interpret and trace hardware interface entities.

6. The method of claim 1, wherein generating code for a hardware driver comprises

generating debugger extensions that visualize hardware interface entities.

7. The method of claim 1, wherein the machine readable description of a hardware

device is provided by a hardware vendor.

8. The method of claim 1, wherein the generated code for the hardware driver is

generated as managed code.

21



WO 2014/107540 PCT/US2014/010113

1/6

(=
SN S
-~ ~
V—
R
o 0|
SPMMIITITITTT S
A v,

|




WO 2014/107540

2/6

PCT/US2014/010113

S206

N
—
N

N
—
B

204

Figure 2



WO 2014/107540 PCT/US2014/010113

3/6

(" paeus \

NANAAAANNN

PnP Manager
306

] N

J

/

IBusSlot [BusSlot
<:::LL31&1 <::>
114-1
102-1

Figure 3



PCT/US2014/010113

WO 2014/107540

4/6

$ 9an31

707 \J/ [oUISYOIIN 07
SPOJ [auleY
AN\
BPO Jasn
[oul8y] urewo( 1-9IF |oulay ulewoq A L-bLp
awi|-uny
b2y
m LN [ ] L
$5890.d
A b0
)

-80%



WO 2014/107540 PCT/US2014/010113

5/6

500

502~

Receive A Machine Readable Description Of A Hardware
Device, Including At Least One Of Hardware Registers Or
Shared Memory Structures Of The Hardware Device

504 —~ i

Determine An Operating System With Which The
Hardware Device Is To Be Used

506 —~ l

Processing The Machine Readable Description On A Code Generation
Tool To Automatically Generate Code For A Hardware Driver For The
Hardware Device Specific To The Determined Operating System

Figure 5



WO 2014/107540 PCT/US2014/010113
6/6

600
602 —~ 1

From A System Kernel, Assign 1/O Resources To The System’s Root Bus

604 — i

From The Root Bus, Assign A Subset Of The I/O Resources To A
Device Bus, Wherein Assigning A Subset Of The 1/O Resources To A
Device Bus Includes Limiting The Device Bus To Only Be Able To
Assign I/0 Resources That Are Assigned To It By The Root Bus

606 ~ l

From The Device Bus, Assigning I/0O Resources
To A Device Through A Device Interface

Figure 6

700
702~ £

Receive Data From A Hardware Device

704 ~ i

Deliver The Data To One Or More Driver Processes Executing In User Mode
Using A Zero-Copy To Allow The One Or More Driver Processes To Support
High Throughput And Low Latency Hardware Devices

Figure 7



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/010113

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 2008/155572 Al (KOLATHUR VENUGOPAL [IN] 1-8
ET AL) 26 June 2008 (2008-06-26)
paragraph [0022] - paragraph [0102]

X US 2012/246614 Al (SLIWOWICZ PAUL [US]) 1-8
27 September 2012 (2012-09-27)
paragraph [0021] - paragraph [0073]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 March 2014

Date of mailing of the international search report

03/04/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kusnierczak, Pawel

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/010113
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008155572 Al 26-06-2008  NONE
US 2012246614 Al 27-09-2012 CN 102707983 A 03-10-2012
US 2012246614 Al 27-09-2012

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report

