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1
SEMICONDUCTOR STRUCTURE
EXHIBITING REDUCED LEAKAGE
CURRENT AND METHOD OF FABRICATING
SAME

FIELD OF THE INVENTION

This invention relates generally to semiconductor struc-
tures and devices and to a method for their fabrication, and
more specifically to fabrication of semiconductor structures,
devices, and integrated circuits that include an epitaxially
grown, high dielectric constant strained-layer heterostruc-
ture to reduce leakage current.

BACKGROUND OF THE INVENTION

The search for alternative gate oxide materials has
become more vigorous as complementary metal-oxide-
semiconductor (CMOS) technology using SiO, as the gate
oxide approaches its fundamental limits. Currently, it is not
possible to use SiO, layers on Si at the thickness required to
achieve the next desired level of performance (approxi-
mately 10 angstroms) without unacceptably high gate leak-
age current. Utilizing oxides with dielectric constants
greater than that of SiO, permits larger gate oxide thickness
with the same capacitance. However, in addition to a high
dielectric constant, the high dielectric constant oxide should
exhibit sufficiently large energy band offsets at the interface
with Si so that Schottky leakage current is negligible.

Several oxides have been investigated as potential candi-
dates to replace SiO,. One of the most promising thus far is
perovskite oxides, such as SrTiO; (“STO”). These oxides
have a high bulk dielectric constant and exhibit a high
degree of structural compatibility with Si, making epitaxy
possible. It has been demonstrated that single-crystal SrTiO,
thin films can be grown on Si(001) substrates by molecular
beam epitaxy (MBE) with interface state densities as low as
6x10'° states/cm”. See, e.g., R. A. McKee et al, Phys. Rev.
Lett. 81, p. 3014 (1998) and K. Eisenbeiser et al., Appl. Phys.
Lett. 76, p. 1324 (2000). The equivalent dielectric layer
thickness of SrTiO; may be more than ten times less than
that of SiO,. Thus, the gate oxide layer thickness can be ten
times larger when SiO, is replaced with SrTiO;, and yet the
capacitance can be approximately the same.

Although the SrTiO,/Si structure demonstrates these
promising properties, theoretical and experimental evidence
indicates that the structure may exhibit significant Schottky
electron leakage current. See, e.g., J. Robertson and C. W.
Chen, Appl. Phys. Lett. 74, p 1168 (1999) and S. A.
Chambers et al., Appl Phys. Lett. 77, p. 1662 (2000), herein
incorporated by reference. Referring to FIGS. 1 and 2, the
SrTi0,/Si structure exhibits a much smaller conduction
band offset (AE_,) compared to the valence band offset
(AE,,) for both n-Si and p-Si structures and, hence, almost
the entire band discontinuity resides at the valance band
edge. Accordingly, Schottky leakage current may result. It
would be desirable to engineer the energy band offset such
that appropriate height Schottky barriers exist at both con-
duction and valence band edges.

Accordingly, a need exists for a semiconductor structure
having a gate oxide formed of a high dielectric constant
which exhibits low Schottky electron leakage current.

In addition, a need exists for a method of changing the
energy band offset at the interface of two crystalline mate-
rials to reduce Schottky leakage current.

A need further exists for a method of changing the energy
band offset at the interface of two crystalline materials to
accommodate specific device applications.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the accompanying figures, in which like
references indicate similar elements, and in which:

FIG. 1 is a graphical representation of an energy band
diagram of a SrTiO;/n-Si structure;

FIG. 2 is a graphical representation of an energy band
diagram of a SrTiO;/p-Si structure;

FIGS. 3 and 4 illustrate schematically, in cross section,
device structures in accordance with various embodiments
of the invention;

FIG. 5 is a graphical representation of an energy band
diagram of a device structure in accordance with an embodi-
ment of the invention; and

FIG. 6 illustrates schematically, in cross section, a device
structure in accordance with another embodiment of the
invention.

Skilled artisans will appreciate that elements in the figures
are illustrated for simplicity and clarity and have not nec-
essarily been drawn to scale. For example, the dimensions of
some of the elements in the figures may be exaggerated
relative to other elements to help to improve understanding
of embodiments of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The present invention provides a method of fabricating a
high dielectric constant crystalline oxide layer on a semi-
conductor substrate using a crystalline high dielectric con-
stant strained-layer heterostructure. In one aspect of the
invention, the strained-layer heterostructure is formed of a
first high dielectric constant crystalline oxide layer under-
lying a second crystalline oxide layer which has a lattice
constant different from the first. The difference in lattice
constants between the two layers may create strain within
the oxide layers of the heterostructure, at the interface
between the oxide layers of the heterostructure and at the
interface of the substrate and the heterostructure which
result in creation of a suitable Schottky barrier at the
semiconductor substrate/heterostructure interface.

FIG. 3 illustrates schematically, in cross section, a struc-
ture 100 in accordance with an exemplary embodiment of
the present invention. Structure 100 may be a device such as,
for example, a component of a MOS device or any high
dielectric constant device. Structure 100 includes a substrate
101, which may be formed of a monocrystalline semicon-
ductor material, such as, for example, silicon (Si), strontium-
passivated Si, germanium (Ge), silicon germanium (Si—
Ge), indium phosphide (InP), or gallium arsenide (GaAs).
Substrate 101 may also comprise a suitable compound
semiconductor material, such as, for example, indium gal-
lium arsenide (InGaAs), indium aluminum arsenide (In-
AlAs), aluminum gallium arsenide (AlGaAs), indium gal-
lium phosphide (InGaP), and other compound
semiconductor materials known to those skilled in the art to
be suitable for particular semiconductor device applications.
In one embodiment, substrate 101 comprises a monocrys-
talline n-type silicon substrate. Substrate 101 may optionally
include a plurality of material layers such that the composite
substrate may be tailored to the quality, performance, and
manufacturing requirements of a variety of semiconductor
device applications.

In another embodiment of the invention, substrate 101
may comprise a (001) Group IV material that has been
off-cut towards a (110) direction. The growth of materials on
a miscut Si (001) substrate is known in the art. For example,
U.S. Pat. No. 6,039,803, issued to Fitzgerald et al. on Mar.
21, 2000, which patent is herein incorporated by reference,
is directed to growth of silicon-germanium and germanium
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layers on miscut Si (001) substrates. Substrate 101 may be
off-cut in the range of from about 2 degrees to about 6
degrees towards the (110) direction. A miscut Group IV
substrate reduces dislocations and results in improved qual-
ity of a subsequently grown monocrystalline material layers.

A monocrystalline oxide interface layer 102 is formed
overlying substrate 101. Monocrystalline oxide interface
layer 102 may comprise a monocrystalline oxide material
selected for its crystalline (i.e., lattice) compatibility with
the underlying substrate. For example, the material could be
an oxide or nitride having a lattice structure closely matched
to the substrate. Materials that are suitable for the monoc-
rystalline oxide interface layer 102 include metal oxides
such as the alkaline earth metal titanates, alkaline earth
metal zirconates, alkaline earth metal hafnates, alkaline
earth metal tantalates, alkaline earth metal ruthenates, alka-
line earth metal niobates, alkaline earth metal vanadates,
perovskite oxides such as alkaline earth metal tin-based
perovskites, lanthanum aluminate, lanthanum scandium
oxide and gadolinium oxide. In an exemplary embodiment,
layer 102 may comprise an alkaline earth metal titanate,
such as, for example, barium titanate (BaTiO;), strontium
titanate (SrTiO;), or barium strontium titanate (Sr.Ba,.
2T10,), or another suitable oxide material having a thickness
of up to about 100 angstroms. Preferably, monocrystalline
oxide interface layer 102 is formed of SrTiO; having a
thickness in the range of approximately 1-5 nm.

In accordance with another embodiment of the invention,
as shown in FIG. 4, structure 100 may also include an
amorphous intermediate layer 103 positioned between sub-
strate 101 and monocrystalline oxide interface layer 102. In
accordance with one embodiment of the invention, amor-
phous intermediate layer 103 is grown on substrate 101 at
the interface between substrate 101 and the growing monoc-
rystalline oxide interface layer 102 by the controlled oxida-
tion of substrate 101 during the growth of layer 102. The
amorphous intermediate layer typically does not affect the
band discontinuity at the interface of the substrate 101 layer
and the monocrystalline oxide interface layer 102.

Referring again to FIG. 3, a monocrystalline oxide strain-
ing layer 104 is formed overlying monocrystalline oxide
interface layer 102 to form a strained-layer heterostructure
105. Layer 104 may have a thickness of from approximately
one monolayer up to about 100 angstroms. Monocrystalline
oxide straining layer 104 may be formed of any of those
compounds previously described with reference to layer 102
in FIGS. 3 and 4 and having a crystalline lattice constant that
is different than the lattice constant of layer 102. As used
herein, lattice constant refers to the distance between atoms
of a unit cell measured in the plane of a surface. For
example, if monocrystalline oxide interface layer 102 is
formed of Sr,Ba, TiO; where 0=x=1, monocrystalline
oxide straining layer 104 may comprise Sr,Ba, TiO;, where
y does not equal x, which has a different lattice constant than
Sr Ba, TiO,. The difference in lattice constants results in
strain within layers 102 and 104, at the interface between
layers 102 and 104, and at the interface of substrate 101 and
heterostructure 105. The strain results in an increase of the
conduction band offset at the interface of substrate 101 and
monocrystalline oxide interface layer 102, effecting an
increase of the Schottky barrier at the interface. The strain
also results in a change of the valence band offset at the
interface. Preferably, if layer 102 is formed of SrTiO;, layer
104 is formed of BaTiO; having a thickness in the range of
from 1 to 5 nm.

The following example illustrates a process, in accor-
dance with one embodiment of the invention, for fabricating
a semiconductor structure having a low leakage current
density.
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The process starts by providing a monocrystalline semi-
conductor substrate comprising, for example, silicon and/or
germanium. In accordance with one embodiment of the
invention, the semiconductor substrate is a Sr-passivated
silicon wafer having a (001) orientation. The substrate is
preferably oriented on axis or, at most, about 2° to about 6°
off axis. At least a portion of the semiconductor substrate has
a bare surface although other portions of the substrate may
encompass other structures. The term “bare” in this context
means that the surface in the portion of the substrate has
been cleaned to remove any oxides, contaminants, or other
foreign material. As is well known, bare silicon is highly
reactive and readily forms a native oxide. The term “bare”
is intended to encompass such a native oxide. A thin silicon
oxide may also be intentionally grown on the semiconductor
substrate, although such a grown oxide is not essential to the
process in accordance with the invention. To epitaxially
grow a monocrystalline oxide layer overlying the monoc-
rystalline substrate, the native oxide layer must first be
removed to expose the crystalline structure of the underlying
substrate. The following process is preferably carried out by
molecular beam epitaxy (MBE), although other epitaxial
processes may also be used in accordance with the present
invention. The native oxide can be removed by first ther-
mally depositing a thin layer of strontium, barium, or
combination of strontium and barium or other alkali earth
metals or combinations of alkali earth metals in an MBE
apparatus. In the case where strontium is used, the substrate
is then heated to a temperature of about 750° C. to cause the
strontium to react with the native silicon oxide layer. The
strontium serves to reduce the silicon oxide to leave a silicon
oxide-free surface. The resultant surface exhibits an ordered
2x1 structure. If an ordered 2x1 structure has not been
achieved at this stage of the process, the structure may be
exposed to additional strontium until an ordered 2x1 struc-
ture is obtained. The ordered 2x1 structure forms a template
for the ordered growth of an overlying layer of a monoc-
rystalline oxide. The template provides the necessary chemi-
cal and physical properties to nucleate the crystalline growth
of an overlying layer.

In accordance with an alternate embodiment of the inven-
tion, the native silicon oxide can be converted and the
substrate surface can be prepared for the growth of a
monocrystalline oxide layer by depositing an alkaline earth
metal oxide, such a strontium oxide, strontium barium
oxide, or barium oxide, onto the substrate surface by MBE
at a low temperature and by subsequently heating the
structure to a temperature of about 750° C. At this tempera-
ture a solid state reaction takes place between the strontium
oxide and the native silicon oxide causing the reduction of
the native silicon oxide and leaving an ordered 2x1 structure
with strontium, oxygen, and silicon remaining on the sub-
strate surface. Again, this forms a template for the subse-
quent growth of an ordered monocrystalline oxide layer.

Following the removal of the silicon oxide from the
surface of the substrate, in accordance with one embodiment
of the invention, the substrate is cooled to a temperature in
the range of about 200-800° C. and a thin layer of strontium
titanate is grown on the template layer by molecular beam
epitaxy. The MBE process is initiated by opening shutters in
the MBE apparatus to expose strontium, titanium and oxy-
gen sources. The ratio of strontium and titanium is approxi-
mately 1:1. The partial pressure of oxygen is initially set a
minimum value to grow stoichiometric strontium titanate at
a growth rate of about 0.3-0.5 nm per minute. After initi-
ating growth of the strontium titanate, the partial pressure of
oxygen is increased above the initial minimum value. The
partial pressure of oxygen may cause the growth of an
amorphous silicon oxide layer at the interface between the
underlying substrate and the growing strontium titanate
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layer. The growth of the silicon oxide layer results from the
diffusion of oxygen through the growing strontium titanate
layer to the interface where the oxygen reacts with silicon at
the surface of the underlying substrate. The thickness of the
amorphous silicon oxide layer can be controlled by varying
the temperature of the process and the oxygen partial
pressure. The thickness of the amorphous silicon oxide layer
may be as thick as 1 nm but is preferably within the range
of about 0.2 nm to about 0.7 nm. The strontium titanate
grows as an ordered monocrystal with the crystalline orien-
tation rotated by 45° with respect to the unit cell of the
underlying substrate.

After the strontium titanate layer has been grown to the
desired thickness, preferably from a few monolayers up to
approximately 100 angstroms, a thin layer of barium titanate
is grown overlying the strontium titanate layer by molecular
beam epitaxy. The barium titanate layer is preferably grown
to a thickness of from about a few monolayers to about 100
angstroms.

The process described above illustrates a process for
forming a semiconductor structure including a silicon sub-
strate and an overlying strained-layer heterostructure by the
process of molecular beam epitaxy. The process can also be
carried out by the process of chemical vapor deposition
(CVD), metal organic chemical vapor deposition
(MOCVD), migration enhanced epitaxy (MEE), atomic
layer epitaxy (ALE), physical vapor deposition (PVD),
chemical solution deposition (CSD), pulsed laser deposition
(PLD), or the like. Further, by a similar process, other
monocrystalline layers such as alkaline earth metal titanates,
zirconates, hafnates, tantalates, vanadates, ruthenates, and
niobates, perovskite oxides such as alkaline earth metal
tin-based perovskite, lanthanum aluminate, lanthanum scan-
dium oxide, and gadolinium oxide can also be grown.

An illustration of an energy band diagram of an exem-
plary embodiment of structure 100 wherein substrate 101 is
formed of n-Si, monocrystalline oxide transition layer 102 is
formed of SrTiO; (STO) and monocrystalline oxide strain-
ing layer 104 is formed BaTiO; (BTO) is shown in FIG. 5.
As illustrated, the conduction band offset at the Si/STO
interface (AE_,) of structure 100 is greater than the conduc-
tion band offset at the Si/STO interface of the structure
illustrated in FIG. 1, that is, AE_,>AE_,. Similarly, the
valence band (AE,,) offset at the Si/STO interface of struc-
ture 100 is smaller than the valence band offset at the Si/STO
interface of the structure illustrated in FIG. 1, that is,
AE ,<AE .

EXAMPLE

In this example, a monocrystalline semiconductor sub-
strate of n-silicon having a (001) orientation was provided.
Native oxide was removed by first thermally depositing a
thin layer of strontium in an MBE apparatus. The substrate
was heated to a temperature of about 750° C. to cause the
strontium to react with the native silicon oxide layer. The
resultant surface exhibited an ordered 2x1 structure.

Following the removal of the silicon oxide from the
surface of the substrate, the substrate was cooled to a
temperature in the range of about 200-800° C. and a thin
layer of approximately 2 nm of strontium titanate was grown
on the template layer by MBE. The MBE process was
initiated by opening shutters in the MBE apparatus to expose
strontium, titanium and oxygen sources. The ratio of stron-
tium and titanium was approximately 1:1.

After the strontium titanate layer was grown on the
substrate, a thin layer of approximately 2 nm of barium
titanate was deposited on the strontium titanate layer using
MBE at a temperature in the range of 200-800° C. Depo-
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sition of the barium titanate layer formed a BTO/STO
strained-layer heterostructure on Si.

The BTO/STO/Si structure was then measured using
x-ray photoemission spectroscopy (XPS). XPS results from
the BTO/STO/S1 structure were compared to those of an
STO/Si structure. The results showed an expansion of the
conduction band offset at the Si/STO interface (AEc) from
approximately 0.01 eV for the STO/Si structure to 0.9 eV for
the BTO/STO/Si structure. The valence band offset at the
Si/STO interface (AEv) showed a shift from -2.12 eV for the
STO/Si structure to —1.27 eV for the BTO/STO/Si structure.
The more balanced bandgap of the BTO/STO/Si indicates
that this structure would exhibit decreased Schottky leakage
current compared to the STO/Si structure.

In yet a further embodiment of the invention, heterostruc-
ture 105 may include a second monocrystalline oxide strain-
ing layer (not shown) overlying monocrystalline oxide
straining layer 104. This second monocrystalline oxide
straining layer may be formed of any of those compounds
previously described with reference to layers 102 and 104 in
FIGS. 3 and 4. The second monocrystalline oxide straining
layer has a crystalline lattice constant which is different from
the lattice constant of layer 104 and which may be the same
as, or alternatively different from, layer 102. By the addition
of the second monocrystalline oxide straining layer, the
offset of the conduction band and valence band at the
interface of the substrate and layer 102 may be tailored to the
Schottky barrier requirements of a variety of semiconductor
device applications. In a similar manner, a third monocrys-
talline oxide straining layer or more monocrystalline oxide
straining layers may be formed overlying the second monoc-
rystalline oxide straining layer to further tailor the conduc-
tion band and valence band offsets.

FIG. 6 illustrates schematically, in cross section, a semi-
conductor device structure 200 fabricated in accordance
with a further alternative embodiment of the present inven-
tion, wherein semiconductor device structure 200 comprises
a component of an MOS device. Structure 200 includes a
monocrystalline semiconductor substrate 201. Monocrystal-
line semiconductor substrate 201 may be formed of a
monocrystalline material such as that comprising layer 101
with reference to FIG. 3. Structure 200 also has a plurality
of first monocrystalline oxide straining layers 202 alternat-
ing between a plurality of second monocrystalline oxide
straining layers 204 which form a strained-layer heterostruc-
ture 205. First monocrystalline oxide straining layers 202
may comprise a monocrystalline oxide material selected for
its crystalline (i.e., lattice) compatibility with the underlying
substrate and having a first lattice constant. First monocrys-
talline oxide straining layers 202 may be formed of any of
those compounds previously described with reference to
layer 102 in FIGS. 3 and 4. In an exemplary embodiment,
layer 202 may comprise an alkaline earth metal titanate,
such as, for example, barium titanate (BaTiO;), strontium
titanate (SrTiO;), barium strontium titanate (Sr,Ba, TiO;),
or another suitable oxide material. Second monocrystalline
oxide straining layers 204 may be formed of any of those
compounds previously described with reference to layer 104
in FIGS. 3 and 4 with a lattice constant that is different from
first monocrystalline oxide straining layers 202. For
example, if first monocrystalline oxide straining layers 202
are formed of SrTiO;, second monocrystalline oxide strain-
ing layers may be formed of BaTiO;, which has a larger
crystalline lattice constant that SrTiO;. In one embodiment,
layers 202 are layers of SrTiO; having a thickness of up to
about 20 angstroms and layers 204 are layers of BaTiO;
having a thickness of up to 20 angstroms.

It will be appreciated that the materials of first monoc-
rystalline oxide straining layers 202 and second monocrys-
talline oxide straining layers 204 may be selected to tailor
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the conductive and valence energy band offsets at the
interface of strained-layer heterostructure 205 and the under-
lying substrate to achieve the quality and performance
requirements of a variety of semiconductor device applica-
tions. For example, second monocrystalline oxide straining
layers 204 may be formed of material having a crystalline
lattice constant that is less than the crystalline lattice con-
stant of first monocrystalline oxide straining layers 202.

Alternatively, it will be appreciated that the strained
heterostructure overlying the substrate may be formed of
any number of layers, wherein each layer has a lattice
constant which differs from and/or corresponds to the lattice
constants of any of the other layers. The materials of the
layers may be selected to produce a desired amount of strain
at the interface of the heterostructure and the substrate to
engineer the conductive and valence energy band offsets so
that Schottky leakage current may be increased or decreased
according to the requirements of desired semiconductor
device application.

In the foregoing specification, the invention has been
described with reference to specific embodiments. However,
one of ordinary skill in the art appreciates that various
modifications and changes can be made without departing
from the scope of the present invention as set forth in the
claims below. Accordingly, the specification and figures are
to be regarded in an illustrative rather than a restrictive
sense, and all such modifications are intended to be included
within the scope of the present invention.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any element(s) that may cause any benefit, advan-
tage, solution to occur or become more pronounced are not
to be constructed as critical, required, or essential features or
elements of any or all of the claims. As used, herein, the
terms “comprises,” “comprising” or any other variation
thereof, are intended to cover a non-exclusive inclusion,
such that a process, method, article, or apparatus that com-
prises a list of elements does not include only those elements
but may include other elements not expressly listed or
inherent to such process, method, article, or apparatus.

We claim:

1. A semiconductor structure exhibiting reduced leakage
current comprising:

a monocrystalline silicon substrate;

an amorphous oxide material in contact with the monoc-

rystalline silicon substrate; and

a strained-layer heterostructure overlying said substrate,

said heterostructure having:

a first layer comprising a first monocrystalline oxide
material having a first lattice constant selected from
the group consisting of alkaline earth metal titanates,
alkaline earth metal zirconates, alkaline earth metal
hafnates, alkaline earth metal tantalates, alkaline
earth metal ruthenates, alkaline earth metal niobates,
alkaline earth metal vanadates, alkaline earth metal
tin-based perovskites, lanthanum aluminate, lantha-
num scandium oxide, gadolinium oxide and mixtures
thereof contacting the amorphous oxide material;
and

a second layer comprising a second monocrystalline
oxide material overlying said first layer and having a
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second lattice constant, wherein said second lattice
constant is different from said first lattice constant,

wherein a strain is effected at least at one of an interface
of said strained layer heterostructure and said sub-
strate, an interface between said first layer and said
second layer, and within said first layer and said
second layer, and

wherein said substrate comprises a (001) semiconduc-
tor material having an orientation from about 2
degrees to about 6 degrees offset toward the (110)
direction.

2. The semiconductor structure of claim 1, wherein said
strained-layer heterostructure further comprises alternating
first strained layers and second strained layers, wherein said
alternating first and second strained layers overlie said
second layer, and wherein said first strained layers comprise
said first monocrystalline oxide material and said second
strained layers comprise said second monocrystalline oxide
material.

3. The semiconductor structure of claim 1, wherein said
first layer has a thickness ranging from approximately one
monolayer to approximately 100 angstroms.

4. The semiconductor structure of claim 1, wherein said
second layer has a thickness ranging from approximately
one monolayer to approximately 100 angstroms.

5. The semiconductor structure of claim 1, wherein said
second lattice constant is greater than said first lattice
constant.

6. The semiconductor structure of claim 1, wherein said
first layer comprises Sr Ba, TiO,, wherein x ranges from 0
to 1.

7. The semiconductor structure of claim 6, wherein said
second layer comprises Sr,Ba, TiO;, where y is not equal
to X.

8. The semiconductor structure of claim 1, wherein said
second layer comprises a monocrystalline oxide material
selected from the group consisting of alkaline earth metal
titanates, alkaline earth metal zirconates, alkaline earth
metal haihates, alkaline earth metal tantalates, alkaline earth
metal ruthenates, alkaline earth metal niobates, alkaline
earth metal vanadates, perovskite oxides such as alkaline
earth metal tin-based perovskites, lanthanum aluminate,
lanthanum scandium oxide, and gadolinium oxide.

9. The semiconductor structure of 1, wherein said
strained-layer heterostructure further comprises a third layer
formed of monocrystalline oxide material overlying said
second layer and having a third lattice constant, wherein said
third lattice constant is different from said second lattice
constant.

10. The semiconductor structure of claim 9, wherein said
third lattice constant is approximately equal to said first
lattice constant.

11. The semiconductor structure of claim 9, wherein said
third lattice constant is greater than said second lattice
constant.



