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a Sample positioning algorithm Selected from a program 
mable memory or generated by programmable hardware. 
The Sample buffer, which is coupled to the graphics 
processor, may be configured to Store the Samples. The 
sample buffer may be super-sampled and double buffered. 
The Sample-to-pixel calculation unit is programmable to 
Select a variable number of Stored Samples from the Sample 
buffer to filter into an output pixel. The sample-to-pixel 
calculation unit performs the filter process in real-time, and 
may use a number of different filter types. The algorithms 
used to position the Samples may position the Samples 
according to a regular grid, a perturbed regular grid, or a 
Stochastic grid. 
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GRAPHICS SYSTEM WITH 
PROGRAMMABLE SAMPLE POSITIONS 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

This invention relates generally to the field of computer 
graphics and, more particularly, to high performance graph 
ics Systems. 

2. Description of the Related Art 
A computer System typically relies upon its graphics 

System for producing visual output on the computer Screen 
or display device. Early graphics Systems were only respon 
Sible for taking what the processor produced as output and 
displaying it on the Screen. In essence, they acted as Simple 
translators or interfaces. Modern graphics Systems, however, 
incorporate graphics processors with a great deal of pro 
cessing power. They now act more like coprocessors rather 
than simple translators. This change is due to the recent 
increase in both the complexity and amount of data being 
Sent to the display device. For example, modem computer 
displays have many more pixels, greater color depth, and are 
able to display more complex images with higher refresh 
rates than earlier models. Similarly, the images displayed are 
now more complex and may involve advanced techniques 
Such as anti-aliasing and texture mapping. 
AS a result, without considerable processing power in the 

graphics System, the CPU would spend a great deal of time 
performing graphics calculations. This could rob the com 
puter System of the processing power needed for performing 
other tasks associated with program execution and thereby 
dramatically reduce overall System performance. With a 
powerful graphics system, however, when the CPU is 
instructed to draw a box on the Screen, the CPU is freed from 
having to compute the position and color of each pixel. 
Instead, the CPU may send a request to the Video card Stating 
“draw a box at these coordinates.” The graphics System then 
draws the box, freeing the processor to perform other taskS. 

Generally, a graphics System in a computer (also referred 
to as a graphics System) is a type of Video adapter that 
contains its own processor to boost performance levels. 
These processors are specialized for computing graphical 
transformations, So they tend to achieve better results than 
the general-purpose CPU used by the computer System. In 
addition, they free up the computer's CPU to execute other 
commands while the graphics System is handling graphics 
computations. The popularity of graphical applications, and 
especially multimedia applications, has made high perfor 
mance graphics Systems a common feature of computer 
Systems. Most computer manufacturers now bundle a high 
performance graphics System with their Systems. 

Since graphics Systems typically perform only a limited 
Set of functions, they may be customized and therefore far 
more efficient at graphics operations than the computer's 
general-purpose central processor. While early graphics SyS 
tems were limited to performing two-dimensional (2D) 
graphics, their functionality has increased to Support three 
dimensional (3D) wire-frame graphics, 3D Solids, and now 
includes Support for three-dimensional (3D) graphics with 
textures and Special effects Such as advanced shading, 
fogging, alpha-blending, and Specular highlighting. 

The processing power of 3D graphics Systems has been 
improving at a breakneck pace. A few years ago, Shaded 
images of Simple objects could only be rendered at a few 
frames per Second, while today's Systems Support rendering 
of complex objects at 60 Hz or higher. At this rate of 
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2 
increase, in the not too distant future, graphics Systems will 
literally be able to render more pixels than a Single human's 
Visual System can perceive. While this extra performance 
may be uSeable in multiple-Viewer environments, it may be 
wasted in more common primarily Single-viewer environ 
ments. Thus, a graphics System is desired which is capable 
of matching the variable nature of the human resolution 
System (i.e., capable of putting the quality where it is needed 
or most perceivable). 
While the number of pixels is an important factor in 

determining graphics System performance, another factor of 
equal import is the quality of the image. For example, an 
image with a high pixel density may still appear unrealistic 
if edges within the image are too sharp or jagged (also 
referred to as “aliased”). One well-known technique to 
overcome these problems is anti-aliasing. Anti-aliasing 
involves Smoothing the edges of objects by shading pixels 
along the borders of graphical elements. More specifically, 
anti-aliasing entails removing higher frequency components 
from an image before they cause disturbing visual artifacts. 
For example, anti-aliasing may Soften or Smooth high con 
trast edges in an image by forcing certain pixels to inter 
mediate values (e.g., around the Silhouette of a bright object 
Superimposed against a dark background). 

Another visual effect used to increase the realism of 
computer images is alpha blending. Alpha blending is a 
technique that controls the transparency of an object, allow 
ing realistic rendering of translucent Surfaces Such as water 
or glass. Another effect used to improve realism is fogging. 
Fogging obscures an object as it moves away from the 
Viewer. Simple fogging is a special case of alpha blending in 
which the degree of alpha changes with distance So that the 
object appears to Vanish into a haze as the object moves 
away from the viewer. This simple fogging may also be 
referred to as "depth cueing or atmospheric attenuation, 
i.e., lowering the contrast of an object So that it appears leSS 
prominent as it recedes. More complex types of fogging go 
beyond a simple linear function to provide more complex 
relationships between the level of translucence and an 
objects distance from the viewer. Current state of the art 
Software Systems go even further by utilizing atmospheric 
models to provide low-lying fog with improved realism. 
While the techniques listed above may dramatically 

improve the appearance of computer graphics images, they 
also have certain limitations. In particular, they may intro 
duce their own aberrations and are typically limited by the 
density of pixels displayed on the display device. 
AS a result, a graphics System is desired which is capable 

of utilizing increased performance levels to increase not 
only the number of pixels rendered but also the quality of the 
image rendered. In addition, a graphics System is desired 
which is capable of utilizing increases in processing power 
to improve the results of graphics effects Such as anti 
aliasing. 

Prior art graphics Systems have generally fallen short of 
these goals. Prior art graphics Systems use a conventional 
frame buffer for refreshing pixel/video data on the display. 
The frame buffer stores rows and columns of pixels that 
exactly correspond to respective row and column locations 
on the display. Prior art graphics System render 2D and/or 
3D images or objects into the frame buffer in pixel form, and 
then read the pixels from the frame buffer during a Screen 
refresh to refresh the display. Thus, the frame buffer stores 
the output pixels that are provided to the display. To reduce 
Visual artifacts that may be created by refreshing the Screen 
at the same time the frame buffer is being updated, most 
graphics systems frame buffers are double-buffered. 
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To obtain more realistic images, Some prior art graphics 
Systems have gone further by generating more than one 
Sample per pixel. AS used herein, the term "sample” refers 
to calculated color information that indicates the color, depth 
(Z), transparency, and potentially other information, of a 
particular point on an object or image. For example a Sample 
may comprise the following component values: a red value, 
a green Value, a blue value, a Z value, and an alpha value 
(e.g., representing the transparency of the Sample). A sample 
may also comprise other information, e.g., a Z-depth value, 
a blur value, an intensity value, brighter-than-bright 
information, and an indicator that the Sample consists par 
tially or completely of control information rather than color 
information (i.e., "sample control information”). By calcu 
lating more samples than pixels (i.e., Super-Sampling), a 
more detailed image is calculated than can be displayed on 
the display device. For example, a graphics System may 
calculate four Samples for each pixel to be output to the 
display device. After the Samples are calculated, they are 
then combined or filtered to form the pixels that are stored 
in the frame buffer and then conveyed to the display device. 
Using pixels formed in this manner may create a more 
realistic final image because overly abrupt changes in the 
image may be Smoothed by the filtering process. 

These prior art Super-Sampling Systems typically generate 
a number of Samples that are far greater than the number of 
pixel locations on the display. These prior art Systems 
typically have rendering processors that calculate the 
Samples and Store them into a render buffer. Filtering hard 
ware then reads the samples from the render buffer, filters 
the Samples to create pixels, and then Stores the pixels in a 
traditional frame buffer. The traditional frame buffer is 
typically double-buffered, with one side being used for 
refreshing the display device while the other side is updated 
by the filtering hardware. Once the samples have been 
filtered, the resulting pixels are Stored in a traditional frame 
buffer that is used to refresh to display device. These 
Systems, however, have generally Suffered from limitations 
imposed by the conventional frame buffer and by the added 
latency caused by the render buffer and filtering. Therefore, 
an improved graphics System is desired which includes the 
benefits of pixel Super-Sampling while avoiding the draw 
backs of the conventional frame buffer. 

SUMMARY OF THE INVENTION 

The present invention comprises a computer graphics 
System that utilizes a graphics processor, a Sample buffer, 
and a programmable Sample-to-pixel calculation unit. In one 
embodiment, the graphics System may be programmable to 
generate Sample positions according to a number of different 
Sample position algorithms. This programmability may 
potentially reduce visual artifacts or improve the realism of 
the image displayed (depending upon the implementation 
and algorithm or algorithms Selected). 

In one embodiment, the graphics processor maybe con 
figured generate a plurality of Samples according to a 
Selected Sample position algorithm and Stores them into a 
Sample buffer. The graphics processor preferably generates 
and Stores more than one Sample for at least a Subset of the 
pixel locations on the display. Thus, the Sample buffer may 
be a Super-Sampled Sample buffer which Stores a number of 
Samples that, in Some embodiments, may be far greater than 
the number of pixel locations on the display. In other 
embodiments, the total number of Samples may be closer to, 
equal to, or even less than the total number of pixel locations 
on the display device, but the Samples may be more densely 
positioned in certain areas and leSS densely positioned in 
other areas. 
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4 
The Sample-to-pixel calculation unit is configured to read 

the Samples from the Super-Sampled Sample buffer and filter 
or convolve the Samples into respective output pixels, 
wherein the output pixels are then provided to refresh the 
display. Note as used herein the terms “filter” and “con 
Volve” are used interchangeably and refer to mathematically 
manipulating one or more Samples to generate a pixel (e.g., 
by averaging, by applying a convolution function, by 
Summing, by applying a filtering function, by weighting the 
Samples and then manipulating them, by applying a ran 
domized function, etc.). The sample-to-pixel calculation unit 
Selects one or more Samples and filters them to generate an 
output pixel. Note the number of Samples Selected and or 
filtered by the Sample-to-pixel calculation unit may be one 
or, in the preferred embodiment, greater than one. 

In Some embodiments, the number of Samples used to 
form each pixel may vary. For example, the underlying 
average Sample density in the Sample buffer may vary, the 
extent of the filter may vary, or the number of samples for 
a particular pixel may vary due to Stochastic variations in the 
Sample density. In Some embodiments the number may vary 
on a per-pixel basis, on a per-Scan line basis, on a per-region 
basis, on a per-frame basis, or the number may remain 
constant. The Sample-to-pixel calculation unit may acceSS 
the Samples from the Super-Sampled Sample buffer, perform 
a real-time filtering operation, and then provide the resulting 
output pixels to the display in real-time. The graphics System 
may operate without a conventional frame buffer, i.e., the 
graphics System does not utilize a conventional frame buffer 
which Stores the actual pixel values that are being refreshed 
on the display. Note Some displayS may have internal frame 
buffers, but these are considered an integral part of the 
display device, not the graphics System. Thus, the Sample 
to-pixel calculation units may calculate each pixel for each 
Screen refresh on a real time basis. AS used herein, the term 
“real-time” refers to a function that is performed at or near 
the display device’s “refresh rate.” “On-the-fly” means at, 
near, or above the human visual System's perception capa 
bilities for motion fusion (how often a picture must be 
changed to give the illusion of continuous motion) and 
flicker fusion (how often light intensity must be changed to 
give the illusion of continuous). These concepts are further 
described in the book “Spatial Vision” by Russel L. De 
Valois and Karen K. De Valois, Oxford University Press, 
1988. 
The Sample-to-pixel calculation unit may be programmed 

to vary the number of Samples used to generate respective 
output pixels. For example, the number of Samples used may 
vary according to the location of the output pixel, e.g., the 
distance of the output pixel from a viewer's point of fove 
ation. As used herein, the term “point of foveation” refers to 
a point (e.g., on a display Screen) on which the center of a 
viewer's eyes' field of vision is focused. This point may 
move as the viewer's eyes move. For example, the point of 
foveation (which moves as the viewer's eyes move) may be 
located at the exact center of the display Screen when the 
Viewer is focussing on a Small object displayed at the center 
of the Screen. 
The human visual System has varying levels of acuity, 

with the highest level of acuity occurring in the vicinity of 
the foveal pit of the retina. The foveal region receives light 
from the point of foveation and typically accounts for only 
a few degrees at the center of a humans of field of vision. 
Thus, to best match the human visual System, the graphics 
System may, in Some embodiments, be configured to detect 
where the viewer's point of foveation is relative to the 
display device. This allows the graphics System to match the 
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Sample density to the human eye's acuity. Thus, more 
Samples (and more processing power) will be allocated to 
areas of the display device that will be perceived by the 
highest acuity regions of the human visual System. Similarly, 
leSS Samples and processing power will be devoted to 
regions that will be perceived by the lower acuity regions of 
the human visual system. Note however, it is not just the 
density of rods and cones in the eye that may be matched. 
Other factorS also influence the perception of the human 
Visual System, including the lens System, chromatic 
aberrations, and the neural pathways to the eye. For the 
purposes of matching computer displays to human retinal 
perception, the human brain's processing limits for Visual 
input provides a useful target that future graphics Systems 
may strive to match or exceed. 

This type of graphics System may be implemented in a 
number of different ways. For example, eye-tracking Sensors 
may be used to determine in what direction the viewer's eyes 
are directed. This may provide data with which to predict 
where the viewer's point of foveation is. Typically, head 
mounted eye-tracking Sensors may use an additional head 
tracking Sensor. Taken together, the eye- and head-tracking 
Sensors can provide useful information about the position 
and movement of a viewer's point of foveation relative to 
the display device. Even further accuracy may be obtained 
using two eye-tracking Sensors (i.e., one for each of the 
viewer's eyes). Thus two points of foveation may be 
detected for each viewer. Furthermore, in Some configura 
tions multiple viewers may each have their points of fove 
ation detected. Other configurations may utilize a hand 
tracking Sensor (e.g., pointing wand or data glove) in 
combination with head- and or eye-tracking Sensors. 
Another configuration may utilize a head-mounted display 
with various motion, direction, eye-tracking and or head 
tracking Sensors. A higher number of Samples may be 
allocated to a region of a predetermined size centered at the 
calculated point of foveation to compensate for inaccuracies 
in the Sensors (i.e., to ensure that the actual point of 
foveation will receive pixels generated from a high Sample 
density). Note as used herein, the term "gaze tracking unit 
refers to any combination of eye-tracking, head-tracking, 
hand tracking, and or body tracking Sensors that provide 
information concerning one or more viewers points of 
foveation (there can be two points of foveation for each 
viewer). Examples of gaze tracking units may include one or 
more of the following: video cameras, “EMG' sensors that 
detect electrical currents in muscles, an eye-and-head 
tracker, an eye tracker, a head tracker, a hand tracker, a data 
glove, a wand, a data Suit, a mouse, a body position Sensor, 
a body position Sensing chair, motion Sensors, pressure 
Sensors, acoustic Sensors, and infra-red ScannerS/Sensors. In 
other embodiments, the System may assume that the View 
er's point of foveation is located at a fixed location near the 
center of the Screen, or at a varying point of interest on the 
display created by the Software application being executed. 

Thus, the graphics System may be configured to utilize a 
greater number of Samples in computing pixel values in 
areas where the viewers are able to perceive them, and a 
Second lesser number of Samples in computing pixel values 
in other areas where the Viewers are not able to perceive 
them. The Sample-to-pixel calculation unit, in varying the 
number of Samples used, preferably varies the extent of the 
filter (e.g., the radius of the filter if a circularly Symmetrical 
filter is used) used for generation of respective output pixels, 
which affects the number of Samples used in calculating the 
output pixel (in addition, the rendering unit could have 
already varied the sample density). Alternatively, the 
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6 
Sample-to-pixel calculation unit may select Samples using 
other methods, e.g., randomly Selecting/discarding Samples 
to vary the number of Samples during the filtering process. 
The graphics processor may be Similarly configured to 

vary the density of Samples generated or rendered into the 
Super-Sampled Sample buffer for different regions of the 
displayed image. These different Sample density regions 
may be positioned based on the point of interest, cursor 
position, eye tracking, head tracking, etc. In other 
embodiments, the Sample density may be varied on a Scan 
line basis, a per-pixel basis, or a per-frame region basis. 

In Some embodiments, the graphics processor is further 
configurable to vary the positioning of the Samples gener 
ated. For example, the Samples may be positioned according 
to a regular grid, a perturbed regular gird, or a random 
distribution acroSS the image. The Sample positions may be 
Stored in one or more Sample position memories for fast 
access. In one embodiment, the Sample positions may be 
Stored as offsets, rather than absolute addresses or coordi 
nates. In one embodiment, the graphics processor is operable 
to programmatically configure or vary the Sample positions 
on a frame-by-frame basis or within a single frame. 
A Software program embodied on a computer medium and 

a method for operating a graphics Subsystem are also 
contemplated. In one embodiment, the method comprises 
first calculating a plurality of Sample locations, and then 
generating a Sample for each Sample pixel location. The 
Samples may then be stored (e.g., into the Super-Sampled 
Sample buffer). The sample locations may be specified 
according to any number of positioning or spacing Schemes, 
e.g., a regular grid, a perturbed regular grid, or a stochastic 
grid. The Stored Samples may then be Selected and filtered to 
form output pixels, which are provided in real time directly 
to the display without being Stored in a traditional frame 
buffer. The Samples may be Selected according to their 
distance from the center of the convolution kernel (which 
corresponds to the estimated center of the output pixel). The 
Selected Samples may be multiplied by a weighting factor 
and Summed. The output pixel is also normalized (e.g., 
through the use of pre-normalized weighting factors that are 
looked up, or by dividing the Summed Sample values by a 
calculated or pre-calculated normalization factor). In Some 
embodiments, the Selection process, weighting process, and 
normalization proceSS are each programmable and change 
able within each particular frame on a real-time basis. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing, as well as other objects, features, and 
advantages of this invention may be more completely under 
stood by reference to the following detailed description 
when read together with the accompanying drawings in 
which: 

FIG. 1 illustrates one embodiment of a computer system 
that includes one embodiment of a graphics System; 

FIG. 2 is a simplified block diagram of the computer 
system of FIG. 1; 

FIG. 3 is a block diagram illustrating more details of one 
embodiment of the graphics system of FIG. 1; 

FIG. 4 is diagram illustrating traditional pixel calculation; 
FIG. 5A is diagram illustrating one embodiment of Super 

Sampling; 
FIG. 5B is diagram illustrating a random distribution of 

Samples; 
FIG. 6 is a diagram illustrating details of one embodiment 

of a graphics System having one embodiment of a variable 
resolution Super-Sampled Sample buffer; 
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FIG. 7 is a diagram illustrating details of another embodi 
ment of a graphics System having one embodiment of a 
variable resolution Super-Sampled Sample buffer; 

FIG. 8 is a diagram illustrating details of three different 
embodiments of Sample positioning Schemes, 

FIG. 9 is a gram illustrating details of one embodiment of 
a Sample positioning Scheme; 

FIG. 10 is a diagram illustrating details of another 
embodiment of a Sample positioning Scheme; 

FIG. 11 is a diagram illustrating details of method of 
converting Samples to pixels in parallel; 

FIG. 11A is a diagram illustrating more details of the 
embodiment from FIG. 11; 

FIG. 11B is a diagram illustrating details of one embodi 
ment of a method for dealing with boundary conditions, 

FIG. 12 is a flowchart illustrating one embodiment of a 
method for drawing Samples into a Super-Sampled Sample 
buffer; 

FIG. 12A is a diagram illustrating one embodiment for 
coding triangle vertices, 

FIG. 13 is a diagram illustrating one embodiment of a 
method for calculating pixels from Samples, 

FIG. 14. is a diagram illustrating details of one embodi 
ment of a pixel convolution for an example set of Samples, 

FIG. 15 is a diagram illustrating one embodiment of a 
method for dividing a Super-Sampled Sample buffer into 
regions, 

FIG. 16 is a diagram illustrating another embodiment of 
a method for dividing a Super-Sampled Sample buffer into 
regions, 

FIG. 17 is a diagram illustrating yet another embodiment 
of a method for dividing a Super-Sampled Sample buffer into 
regions, 

FIGS. 18A-B are diagrams illustrating one embodiment 
of a graphics System configured to utilize input from an eye 
tracking or head tracking device; 

FIGS. 19A-B are diagrams illustrating one embodiment 
of a graphics System configured to vary region position 
according to the position of a cursor or visual object; and 

FIG. 20 is a diagram of one embodiment of a computer 
network connecting multiple computers. 

FIG. 21A illustrates an example of one embodiment of a 
texture map; 

FIG. 21B illustrates an example of one embodiment of 
texture mapping onto a cube, 

FIG. 21C illustrates an example of texture mapping onto 
a spherical object; 

FIG. 22 illustrates an example of one embodiment of a 
mip-map; 
While the invention is susceptible to various modifica 

tions and alternative forms, specific embodiments thereof 
are shown by way of example in the drawings and will 
herein be described in detail. It should be understood, 
however, that the drawings and detailed description thereto 
are not intended to limit the invention to the particular form 
disclosed, but on the contrary, the intention is to cover all 
modifications, equivalents, and alternatives falling within 
the Spirit and Scope of the present invention as defined by the 
appended claims. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
DETAILED DESCRIPTION OF SEVERAL 

EMBODIMENTS 
Computer System-FIG. 1 

Referring now to FIG. 1, one embodiment of a computer 
system 80 that includes a three-dimensional (3-D) graphics 
System is shown. The 3-D graphics System may be com 
prised in any of various Systems, including a computer 
System, network PC, Internet appliance, a television, includ 
ing HDTV Systems and interactive television Systems, per 
Sonal digital assistants (PDAS), and other devices which 
display 2D and or 3D graphics, among others. 
AS shown, the computer System 80 comprises a System 

unit 82 and a video monitor or display device 84 coupled to 
the system unit 82. The display device 84 may be any of 
various types of display monitors or devices (e.g., a CRT, 
LCD, or gas-plasma display). Various input devices may be 
connected to the computer System, including a keyboard 86 
and/or a mouse 88, or other input device (e.g., a trackball, 
digitizer, tablet, six-degree of freedom input device, head 
tracker, eye tracker, data glove, body Sensors, etc.). Appli 
cation software may be executed by the computer system 80 
to display 3-D graphical objects on display device 84. AS 
described further below, the 3-D graphics system in com 
puter System 80 includes a Super-Sampled Sample buffer 
with a programmable real-time Sample-to-pixel calculation 
unit to improve the quality and realism of images displayed 
on display device 84. 
Computer System Block Diagram-FIG. 2 

Referring now to FIG. 2, a simplified block diagram 
illustrating the computer system of FIG. 1 is shown. Ele 
ments of the computer System that are not necessary for an 
understanding of the present invention are not shown for 
convenience. As shown, the computer System 80 includes a 
central processing unit (CPU) 102 coupled to a highspeed 
memory bus or system bus 104 also referred to as the host 
bus 104. A system memory 106 may also be coupled to 
high-speed bus 104. 

Host processor 102 may comprise one or more processors 
of varying types, e.g., microprocessors, multi-processors 
and CPUs. The system memory 106 may comprise any 
combination of different types of memory Subsystems, 
including random access memories, (e.g., Static random 
acceSS memories or “SRAMs', Synchronous dynamic ran 
dom access memories or “SDRAMs”, and Rambus dynamic 
access memories or “RDRAM”, among others) and mass 
storage devices. The system bus or host bus 104 may 
comprise one or more communication or host computer 
buses (for communication between host processors, CPUs, 
and memory Subsystems) as well as Specialized Subsystem 
buses. 
A 3-D graphics System or graphics System 112 according 

to the present invention is coupled to the high-speed 
memory bus 104. The 3-D graphics system 112 may be 
coupled to the bus 104 by, for example, a crossbar Switch or 
other bus connectivity logic. It is assumed that various other 
peripheral devices, or other buses, may be connected to the 
high-speed memory bus 104. It is noted that the 3-D 
graphics System may be coupled to one or more of the buses 
in computer system 80 and/or may be coupled to various 
types of buses. In addition, the 3D graphics System may be 
coupled to a communication port and thereby directly 
receive graphics data from an external Source, e.g., the 
Internet or a network. AS shown in the figure, display device 
84 is connected to the 3-D graphics system 112 comprised 
in the computer system 80. 

Host CPU 102 may transfer information to and from the 
graphics System 112 according to a programmed input/ 
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output (I/O) protocol over host bus 104. Alternately, graph 
ics system 112 may access the memory Subsystem 106 
according to a direct memory access (DMA) protocol or 
through intelligent bus mastering. 
A graphics application program conforming to an appli 

cation programming interface (API) Such as OpenGL or Java 
3D may execute on host CPU 102 and generate commands 
and data that define a geometric primitive (graphics data) 
Such as a polygon for output on display device 84. AS 
defined by the particular graphics interface used, these 
primitives may have Separate color properties for the front 
and back Surfaces. Host processor 102 may transfer these 
graphics data to memory subsystem 106. Thereafter, the host 
processor 102 may operate to transfer the graphics data to 
the graphics system 112 over the host bus 104. In another 
embodiment, the graphics System 112 may read in geometry 
data arrays over the hostbus 104 using DMA access cycles. 
In yet another embodiment, the graphics System 112 may be 
coupled to the System memory 106 through a direct port, 
such as the Advanced Graphics Port (AGP) promulgated by 
Intel Corporation. 
The graphics System may receive graphics data from any 

of various sources, including the host CPU 102 and/or the 
System memory 106, other memory, or from an external 
Source Such as a network, e.g., the Internet, or from a 
broadcast medium, e.g., television, or from other Sources. 
As will be described below, graphics system 112 may be 

configured to allow more efficient microcode control, which 
results in increased performance for handling of incoming 
color values corresponding to the polygons generated by 
host processor 102. Note while graphics system 112 is 
depicted as part of computer System 80, graphics System 112 
may also be configured as a Stand-alone device (e.g., With its 
own built-in display). Graphics System 112 may also be 
configured as a Single chip device or as part of a System 
on-a-chip or a multi-chip module. 
Graphics System-FIG. 3 

Referring now to FIG. 3, a block diagram illustrating 
details of one embodiment of graphics System 112 is shown. 
AS shown in the figure, graphics System 112 may comprise 
one or more graphics processors 90, one or more Super 
Sampled Sample bufferS 162, and one or more Sample-to 
pixel calculation units 170A-D. Graphics system 112 may 
also comprise one or more digital-to-analog converters 
(DACs) 178A-B. Graphics processor 90 may be any suit 
able type of high performance processor (e.g., specialized 
graphics processors or calculation units, multimedia 
processors, DSPs, or general purpose processors). In one 
embodiment, graphics processor 90 may comprise one or 
more rendering units 150A-D. In the embodiment shown, 
however, graphics processor 90 also comprises one or more 
control units 140, one or more data memories 152A-D, and 
one or more schedule units 154. Sample buffer 162 may 
comprises one or more sample memories 160A-160N as 
shown in the figure. 

A. Control Unit 
Control unit 140 operates as the interface between graph 

ics system 112 and computer system 80 by controlling the 
transfer of data between graphics System 112 and computer 
system 80. In embodiments of graphics system 112 that 
comprise two or more rendering units 150A-D, control unit 
140 may also divide the stream of data received from 
computer System 80 into a corresponding number of parallel 
Streams that are routed to the individual rendering units 
150A-D. The graphics data may be received from computer 
System 80 in a compressed form. This may advantageously 
reduce the bandwidth requirements between computer Sys 
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tem 80 and graphics system 112. In one embodiment, control 
unit 140 may be configured to split and route the data stream 
to rendering units 150A-D in compressed form. 
The graphics data may comprise one or more graphics 

primitives. AS used herein, the term graphics primitive 
includes polygons, parametric Surfaces, Splines, NURBS 
(non-uniform rational B-splines), Sub-divisions Surfaces, 
fractals, Volume primitives, and particle Systems. These 
graphics primitives are described in detail in the text book 
entitled “Computer Graphics: Principles and Practice” by 
James D. Foley, et al., published by Addison-Wesley Pub 
lishing Co., Inc., 1996. Note polygons are referred to 
throughout this detailed description for simplicity, but the 
embodiments and examples described may also be used with 
graphics data comprising other types of graphics primitives. 

B. Rendering Units 
Rendering units 150A-D (also referred to herein as draw 

units) are configured to receive graphics instructions and 
data from control unit 140 and then perform a number of 
functions, depending upon the exact implementation. For 
example, rendering units 150A-D may be configured to 
perform decompression (if the data is compressed), 
transformation, clipping, lighting, texturing, depth cueing, 
transparency processing, Set-up, and Screen Space rendering 
of various graphics primitives occurring within the graphics 
data. Each of these features is described Separately below. 

Depending upon the type of compressed graphics data 
received, rendering units 150A-D may be configured to 
perform arithmetic decoding, run-length decoding, Huffinan 
decoding, and dictionary decoding (e.g., LZ77, LZSS, 
LZ78, and LZW). In another embodiment, rendering units 
150A-D may be configured to decode graphics data that has 
been compressed using geometric compression. Geometric 
compression of 3D graphics data may achieve significant 
reductions in data Size while retaining most of the image 
quality. Two methods for compressing and decompressing 
3D geometry are described in U.S. Pat. No. 5,793,371, 
application Ser. No. 08/511,294, (filed on Aug. 4, 1995, 
entitled “Method And Apparatus For Geometric Compres 
sion Of Three-Dimensional Graphics Data,”) and U.S. 
patent application Ser. No. 09/095,777, filed on Jun. 11, 
1998, entitled “Compression of Three-Dimensional Geom 
etry Data Representing a Regularly Tiled Surface Portion of 
a Graphical Object,”). In embodiments of graphics System 
112 that Support decompression, the graphics data received 
by each rendering unit 150 is decompressed into one or more 
graphics “primitives” which may then be rendered. The term 
primitive refers to components of objects that define its 
shape (e.g., points, lines, triangles, polygons in two or three 
dimensions, polyhedra, or free-form Surfaces in three 
dimensions). Rendering units 150 may be any suitable type 
of high performance processor (e.g., specialized graphics 
processors or calculation units, multimedia processors, 
DSPs, or general purpose processors). 

Transformation refers to manipulating an object and 
includes translating the object (i.e., moving the object to a 
different location), Scaling the object (i.e., Stretching or 
Shrinking), and rotating the object (e.g., in three-dimensional 
Space, or "3-space'). 

Clipping refers to defining the limits of the displayed 
image (i.e., establishing a clipping region, usually a 
rectangle) and then not rendering or displaying pixels that 
fall outside those limits. 

Lighting refers to calculating the illumination of the 
objects within the displayed image to determine what color 
and or brightness each individual object will have. Depend 
ing upon the shading algorithm being used (e.g., constant, 
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Gourand, or Phong), lighting may be evaluated at a number 
of different locations. For example, if constant shading is 
used (i.e., each pixel of a polygon has the same lighting), 
then the lighting need only be calculated once per polygon. 
If Gourand Shading is used, then the lighting is calculated 
once per vertex. Phong Shading calculates the lighting on a 
per-pixel basis. 

Set-up refers to mapping primitives to a three 
dimensional viewport. This involves translating and trans 
forming the objects from their original “world-coordinate” 
system to the established viewport's coordinates. This cre 
ates the correct perspective for three-dimensional objects 
displayed on the Screen. 

Screen-space rendering refers to the calculations per 
formed to actually calculate the data used to generate each 
pixel that will be displayed. In prior art Systems, each pixel 
is calculated and then stored in a frame buffer. The contents 
of the frame buffer are then output to the display device to 
create the final image. In the embodiment of graphics System 
112 shown in the figure, however, rendering units 150A-D 
calculate “samples' instead of actual pixel data. This allows 
rendering units 150A-D to “super-sample” or calculate 
more than one sample per pixel. Super-Sampling is described 
in greater detail below. Note that rendering units 150A-B 
may comprises a number of Smaller functional units, e.g., a 
Separate Set-up/decompress unit and a lighting unit. 
More details on Super-Sampling are discussed in the 

following books: “Principles of Digital Image Synthesis” by 
Andrew Glassner, 1995, Morgan Kaufman Publishing 
(Volume 1); and “Renderman Companion:” by Steve 
Upstill, 1990, Addison Wesley Publishing. 

C. Data Memories 
Each rendering unit 150A-D may be coupled to an 

instruction and data memory 152A-D. In one embodiment, 
each data memory 152A-D may be configured to store both 
data and instructions for rendering units 150A-D. While 
implementations may vary, in one embodiment each data 
memory 152A-D may comprise two 8 MByte SDRAMs 
providing a total of 16 MBytes of Storage for each rendering 
unit 150A-D. In another embodiment, RDRAMs (Rambus 
DRAMs) may be used to support the decompression and 
set-up operations of each rendering unit, while SDRAMs 
may be used to Support the draw functions of rendering units 
150A-D. 

D. Schedule Unit 
Schedule unit 154 may be coupled between the rendering 

units 150A-D and the sample memories 160A-N. Schedule 
unit 154 is configured to Sequence the completed Samples 
and store them in Sample memories 160A-N. Note in larger 
configurations, multiple Schedule units 154 may be used in 
parallel. In one embodiment, schedule unit 154 may be 
implemented as a crossbar Switch. 

E. Sample Memories 
Super-Sampled Sample buffer 162 comprises Sample 

memories 160A-160N, which are configured to store the 
plurality of Samples generated by the rendering units. AS 
used herein, the term “sample buffer” refers to one or more 
memories which Store Samples. AS previously noted, one or 
more samples are filtered to form output pixels (i.e., pixels 
to be displayed on a display device). The number of Samples 
Stored may be greater than, equal to, or less than the total 
number of pixels output to the display device to refresh a 
Single frame. Each Sample may correspond to one or more 
output pixels. AS used herein, a Sample “corresponds' to an 
output pixel when the Sample's information contributes to 
final output value of the pixel. Note, however, that some 
Samples may contribute Zero to their corresponding output 
pixel after filtering takes place. 
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Stated another way, the Sample buffer Stores a plurality of 

Samples that have positions that correspond to locations in 
Screen Space on the display, i.e., the Samples contribute to 
one or more output pixels on the display. The number of 
Stored Samples may be greater than the number of pixel 
locations, and more than one Sample may be combined in the 
convolution (filtering) process to generate a particular output 
pixel displayed on the display device. Any given Sample 
may contribute to one or more output pixels. 

Sample memories 160A-160N may comprise any of a 
number of different types of memories (e.g., SDRAMs, 
SRAMS, RDRAMs, 3DRAMs, or next-generation 
3DRAMs) in varying sizes. In one embodiment, each sched 
ule unit 154 is coupled to four banks of sample memories, 
wherein each bank comprises four 3DRAM-64 memories. 
Together, the 3DRAM-64 memories may form a 116-bit 
deep Super-Sampled Sample buffer that Stores multiple 
Samples per pixel. For example, in one embodiment, each 
sample memory 160A-160N may store up to sixteen 
Samples per pixel. 
3DRAM-64 memories are specialized memories config 

ured to support full internal double buffering with single 
buffered Z in one chip. The double buffered portion com 
prises two RGBX buffers, wherein X is a fourth channel that 
can be used to Store other information (e.g., alpha). 
3DRAM-64 memories also have a lookup table that takes in 
window ID information and controls an internal 2-1 or 3-1 
multiplexer that selects which buffers contents will be 
output. 3DRAM-64 memories are next-generation 3DRAM 
memories that may soon be available from Mitsubishi 
Electric Corporation's Semiconductor Group. In one 
embodiment, four chipS used in combination are Sufficient to 
create a double-buffered 1280x1024 Super-sampled Sample 
buffer. Since the memories are internally double-buffered, 
the input pins for each of the two frame buffers in the 
double-buffered System are time multiplexed (using multi 
plexers within the memories). The output pins may similarly 
be time multiplexed. This allows reduced pin count while 
still providing the benefits of double buffering. 3DRAM-64 
memories further reduce pin count by not having Z output 
pins. Since Z comparison and memory buffer Selection is 
dealt with internally, this may simplify sample buffer 162 
(e.g., using less or no selection logic on the output Side). Use 
of 3DRAM-64 also reduces memory bandwidth since infor 
mation may be written into the memory without the tradi 
tional process of reading data out, performing a Z 
comparison, and then writing data back in. Instead, the data 
may be simply written into the 3DRAM-64, with the 
memory performing the StepS described above internally. 

However, in other embodiments of graphics System 112, 
other memories (e.g., SDRAMs, SRAMs, RDRAMs, or 
current generation 3DRAMs) may be used to form sample 
buffer 162. 

Graphics processor 90 may be configured to generate a 
plurality of Sample positions according to a particular 
Sample positioning Scheme (e.g., a regular grid, a perturbed 
regular grid, etc.). Alternatively, the sample positions (or 
offsets that are added to regular grid positions to form the 
Sample positions) may be read from a sample position 
memory (e.g., a RAM/ROM table). Upon receiving a poly 
gon that is to be rendered, graphics processor 90 determines 
which Samples fall within the polygon based upon the 
Sample positions. Graphics processor 90 renders the Samples 
that fall within the polygon and Stores rendered Samples in 
sample memories 160A-N. Note as used herein the terms 
render and draw are used interchangeable and refer to 
calculating color values for Samples. Depth values, alpha 
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values, and other per-Sample values may also be calculated 
in the rendering or drawing process. 

E. Sample-to-pixel Calculation Units 
Sample-to-pixel calculation units 170A-D may be 

coupled between sample memories 160A-N and DACs 
178A-B. Sample-to-pixel calculation units 170A-D are 
configured to read Selected Samples from Sample memories 
160A-N and then perform a convolution (e.g., a filtering and 
weighting function or a low pass filter) on the samples to 
generate the output pixel values which are output to DACS 
178A-B. The sample-to-pixel calculation units 170A-D 
may be programmable to allow them to perform different 
filter functions at different times, depending upon the type of 
output desired. In one embodiment, the Sample-to-pixel 
calculation units 170A-D may implement a 5x5 Super 
Sample reconstruction band-pass filter to convert the Super 
Sampled Sample buffer data (stored in Sample memories 
160A-N) to single pixel values. In other embodiments, 
calculation units 170A-D may filter a selected number of 
Samples to calculate an output pixel. The filtered Samples 
may be multiplied by a variable weighting factor that gives 
more or leSS weight to Samples having positions close the 
center of the pixel being calculated. Other filtering functions 
may also be used either alone or in combination, e.g., tent 
filters, circular and elliptical filters, Mitchell filters, band 
pass filters, Sync function filters, etc. 

Sample-to-pixel calculation units 170A-D may also be 
configured with one or more of the following features: color 
look-up using pseudo color tables, direct color, inverse 
gamma correction, filtering of Samples to pixels, and con 
version of pixels to non-linear light Space. Other features of 
sample-to-pixel calculation units 170A-D may include pro 
grammable Video timing generators, programmable pixel 
clock Synthesizers, and crossbar functions. Once the Sample 
to-pixel calculation units have manipulated the timing and 
color of each pixel, the pixels are output to DACs 178A-B. 

F. DACS 
DACs 178A-B operate as the final output stage of graph 

ics system 112. The DACs 178A-B serve to translate the 
digital pixel data received from cross units 174A-B into 
analog video signals that are then Sent to the display device. 
Note in one embodiment DACs 178A-B may be bypassed 
or omitted completely in order to output digital pixel data in 
lieu of analog video signals. This may be useful when 
display device 84 is based on a digital technology (e.g., an 
LCD-type display or a digital micro-mirror display). 
Super-Sampling-FIGS. 4-5 

Turning now to FIG. 4, an example of traditional, non 
Super-Sampled pixel value calculation is illustrated. Each 
pixel has exactly one data point calculated for it, and the 
Single data point is located at the center of the pixel. For 
example, only one data point (i.e., Sample 74) contributes to 
value of pixel 70. 

Turning now to FIG. 5A, an example of one embodiment 
of Super-Sampling is illustrated. In this embodiment, a 
number of Samples are calculated. The number of Samples 
may be related to the number of pixels or completely 
independent of the number of pixels. In this example, there 
are 18 Samples distributed in a regular grid acroSS nine 
pixels. Even with all the Samples present in the figure, a 
Simple one to one correlation could be made (e.g., by 
throwing out all but the Sample nearest to the center of each 
pixel). However, the more interesting case is performing a 
filtering function on multiple samples to determine the final 
pixel values. Also, as noted above, a single Sample can be 
used to generate a plurality of output pixels, i.e., Sub 
Sampling. 
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A circular filter 72 is illustrated in the figure. In this 

example, samples 74A-B both contribute to the final value 
of pixel 70. This filtering proceSS may advantageously 
improve the realism of the image displayed by Smoothing 
abrupt edges in the displayed image (i.e., performing anti 
aliasing). Filter 72 may simply average samples 74A-B to 
form the final value of output pixel 70, or it may increase the 
contribution of sample 74B (at the center of pixel 70) and 
diminish the contribution of sample 74A (i.e., the sample 
farther away from the center of pixel 70). Circular filter 72 
is repositioned for each output pixel being calculated So the 
center of filter 72 coincides with the center position of the 
pixel being calculated. Other filters and filter positioning 
Schemes are also possible and contemplated. 

Turning now to FIG. 5B, another embodiment of Super 
Sampling is illustrated. In this embodiment, however, the 
Samples are positioned randomly. More Specifically, differ 
ent Sample positions are Selected and provided to graphics 
processor 90 (and render units 150A-D), which calculate 
color information to form Samples at these different loca 
tions. Thus the number of samples falling within filter 72 
may vary from pixel to pixel. 
Super-Sampled Sample Buffer with Real-Time 
Convolution-FIGS. 6-13 

Turning now to FIG. 6, a diagram illustrating one possible 
configuration for the flow of data through one embodiment 
of graphics System 112 is shown. AS the figure shows, 
geometry data 350 is received by graphics system 112 and 
used to perform draw process 352. The draw process 352 is 
implemented by one or more of control unit 140, rendering 
units 150, memories 152, and schedule unit 154. Geometry 
data 350 comprises data for one or more polygons. Each 
polygon comprises a plurality of Vertices (e.g., three vertices 
in the case of a triangle), Some of which may be shared. Data 
Such as x, y, and Z coordinates, color data, lighting data and 
texture map information may be included for each vertex. 

In addition to the vertex data, draw process 352 (which 
may be performed by rendering units 150A-D) also receives 
Sample coordinates from a Sample position memory 354. In 
one embodiment, position memory 354 is embodied within 
rendering units 150A-D. In another embodiment, position 
memory 354 may be realized as part of texture and render 
memories 152A-152D, or as a separate memory. Sample 
position memory 354 is configured to Store position infor 
mation for Samples that are calculated in draw proceSS 352 
and then stored into Super-sampled sample buffer 162. In 
one embodiment, position memory 354 may be configured 
to Store entire Sample addresses. However, this may involve 
increasing the size of position memory 354. Alternatively, 
position memory 354 may be configured to Store only X- and 
y-offsets for the Samples. Storing only the offsets may use 
leSS Storage Space than Storing each Sample's entire position. 
The offsets may be relative to bin coordinates or relative to 
positions on a regular grid. The Sample position information 
stored in sample position memory 354 may be read by a 
dedicated Sample position calculation unit (not shown) and 
processed to calculate example Sample positions for graph 
ics processor 90. More detailed information on sample 
position offsets is included below (see description of FIGS. 
9 and 10). 

In another embodiment, sample position memory 354 
may be configured to Store a table of random numbers. 
Sample position memory 354 may also comprise dedicated 
hardware to generate one or more different types of regular 
grids. This hardware may be programmable. The Stored 
random numbers may be added as offsets to the regular. grid 
positions generated by the hardware. In one embodiment, 



US 6,417,861 B1 
15 

the Sample position memory may be programmable to 
access or “unfold’ the random number table in a number of 
different ways. This may allow a smaller table to be used 
without Visual artifacts caused by repeating Sample position 
offsets. In one embodiment, the random numbers may be 
repeatable, thereby allowing draw process 352 and Sample 
to-pixel calculation process 360 to utilize the same offset for 
the same Sample without necessarily Storing each offset. 
AS shown in the figure, Sample position memory 354 may 

be configured to Store Sample offsets generated according to 
a number of different Schemes Such as a regular Square grid, 
a regular hexagonal grid, a perturbed regular grid, or a 
random (Stochastic) distribution. Graphics System 112 may 
receive an indication from the operating System, device 
driver, or the geometry data 350 that indicates which type of 
Sample positioning Scheme is to be used. Thus the Sample 
position memory 354 is configurable or programmable to 
generate position information according to one or more 
different Schemes. More detailed information on several 
Sample position Schemes are described further below (See 
description of FIG. 8). 

In one embodiment, Sample position memory 354 may 
comprise a RAM/ROM that contains stochastic sample 
points (or locations) for different total Sample counts per bin. 
AS used herein, the term “bin” refers to a region or area in 
Screen-space and contains however many Samples are in that 
area (e.g., the bin may be 1x1 pixels in area, 2x2 pixels in 
area, etc.). The use of bins may simplify the storage and 
access of samples in sample buffer 162. A number of 
different bin sizes may be used (e.g., one sample per bin, 
four Samples per bin, etc.). In the preferred embodiment, 
each bin has an Xy-position that corresponds to a particular 
location on the display. The bins are preferably regularly 
Spaced. In this embodiment the bins' Xy-positions may be 
determined from the bin's Storage location within Sample 
buffer 162. The bins' positions correspond to particular 
positions on the display. In Some embodiments, the bin 
positions may correspond to pixel centers, while in other 
embodiments the bin positions correspond to points that are 
located between pixel centers. The Specific position of each 
Sample within a bin may be determined by looking up the 
sample's offset in the RAM/ROM table (the offsets may be 
Stored relative to the corresponding bin position). However, 
depending upon the implementation, not all bin sizes may 
have a unique RAM/ROM entry. Some bin sizes may simply 
read a Subset of the larger bin sizes entries. In one 
embodiment, each Supported size has at least four different 
Sample position Scheme variants, which may reduce final 
image artifacts due to repeating Sample positions. 

In one embodiment, position memory 354 may store pairs 
of 8-bit numbers, each pair comprising an X-offset and a 
y-offset (other possible offsets are also possible, e.g., a time 
offset, a Z-offset, etc.). When added to a bin position, each 
pair defines a particular position in Screen Space. The term 
"Screen Space” referS generally to the coordinate System of 
the display device. To improve read times, memory 354 may 
be constructed in a wide/parallel manner So as to allow the 
memory to output more than one sample location per clock 
cycle. 

Once the Sample positions have been read from Sample 
position memory 354, draw process 352 selects the samples 
positions that fall within the polygon currently being ren 
dered. Draw process 352 then calculates the Z and color 
information (which may include alpha or other depth of field 
information values) for each of these samples and Stores the 
data into sample buffer 162. In one embodiment, the sample 
buffer may only single-buffer Z values (and perhaps alpha 
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values) while double buffering other Sample components 
Such as color. Unlike prior art Systems, graphics System 112 
may double buffer all Samples (although not all sample 
components may. be double-buffered, i.e., the samples may 
have components that are not double-buffered, or not all 
samples may be double-buffered). In one embodiment, the 
samples are stored into sample buffer 162 in bins. In some 
embodiments, the size of bins, i.e., the quantity of Samples 
within a bin, may vary from frame to frame and may also 
vary across different regions of display device 84 within a 
Single frame. For example, bins along the edges of display 
device may comprise only one Sample, while bins corre 
sponding to pixels near the center of display device 84 may 
comprise Sixteen Samples. Note the area of bins may vary 
from region to region. The use of bins will be described in 
greater detail below in connection with FIG. 11. 

In parallel and independently of draw process 352, filter 
process 360 is configured to read Samples from Sample 
buffer 162, filter (i.e., filter) them, and then output the 
resulting output pixel to display device 84. Sample-to-pixel 
calculation units 170 implement filter process 380. Thus, for 
at least a Subset of the output pixels, the filter process is 
operable to filter a plurality of Samples to produce a respec 
tive output pixel. In one embodiment, filter process 360 is 
configured to: (i) determine the distance from each sample 
to the center of the output pixel being filtered; (ii) multiply 
the sample's components (e.g., color and alpha) with a filter 
value that is a specific (programmable) function of the 
distance; (iii) Sum all the weighted Samples that contribute 
to the output pixel, and (iv) normalize the resulting output 
pixel. The filter process 360 is described in greater detail 
below (see description accompanying FIGS. 11, 12, and 14). 
Note the extent of the filter need not be circular (i.e., it may 
be a function of X and y instead of the distance), but even if 
the extent is, the filter need not be circularly Symmetrical. 
The filter’s “extent” is the area within which samples can 
influence the particular pixel being calculated with the filter. 

Turning now to FIG. 7, a diagram illustrating an alternate 
embodiment of graphics System 112 is shown. In this 
embodiment, two or more sample position memories 354A 
and 354B are utilized. Thus, the sample position memories 
354A-B are essentially double-buffered. If the sample posi 
tions are kept the same from frame to frame, then the Sample 
positions may be single buffered. However, if the Sample 
positions may vary from frame to frame, then graphics 
System 112 may be advantageously configured to double 
buffer the Sample positions. The Sample positions may be 
double buffered on the rendering side (i.e., memory 354A 
may be double buffered) and or the filter/convolve side (i.e., 
memory 354B may be double buffered). Other combinations 
are also possible. For example, memory 354A may be 
single-buffered, while memory 354B is doubled buffered. 
This configuration may allow one side of memory 354B to 
be used for refreshing (i.e., by filter/convolve process 360) 
while the other side of memory 354B is used being updated. 
In this configuration, graphics System 112 may change 
Sample position Schemes on a per-frame basis by shifting the 
sample positions (or offsets) from memory 354A to double 
buffered memory 354B as each frame is rendered. Thus, the 
positions used to calculate the Samples (read from memory 
354A) are copied to memory 354B for use during. the 
filtering process (i.e., the sample-to-pixel conversion 
process). Once the position information has been copied to 
memory 354B, position memory 354A may then be loaded 
with new Sample position offsets to be used for the Second 
frame to be rendered. In this way the Sample position 
information follows the samples from the draw/render pro 
ceSS to the filter process. 
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Yet another alternative embodiment may store tags to 
offsets with the Samples themselves in Super-Sampled 
sample buffer 162. These tags may be used to look-up the 
offset/perturbation associated with each particular Sample. 
Sample Positioning Schemes 

FIG. 8 illustrates a number of different sample positioning 
Schemes. In regular grid positioning Scheme 190, each 
Sample is positioned at an interSection of a regularly-spaced 
grid. Note however, that as used herein the term “regular 
grid” is not limited to Square grids. Other types of grids are 
also considered “regular as the term is used herein, 
including, but not limited to, rectangular grids, hexagonal 
grids, triangular grids, logarithmic grids, and Semi-regular 
lattices Such as Penrose tiling. 

Perturbed regular grid positioning scheme 192 is based 
upon the previous definition of a regular grid. However, the 
Samples in perturbed regular grid Scheme 192 may be offset 
from their corresponding grid intersection. In one 
embodiment, the Samples may be offset by a random angle 
(e.g., from 0 to 360) and a random distance, or by random 
X and y offsets, which may or may not be limited to a 
predetermined range. The offsets may be generated in a 
number of ways, e.g., by hardware based upon a Small 
number of Seeds, looked up from a table, or by using a 
pseudo-random function. Once again, perturbed regular gird 
Scheme 192 may be based on any type of regular grid (e.g., 
Square, or hexagonal). A rectangular or hexagonal perturbed 
grid may be particularly desirable due to the geometric 
properties of these grid types. 

Stochastic Sample positioning Scheme 194 represents a 
third potential type of Scheme for positioning Samples. 
Stochastic Sample positioning involves randomly distribut 
ing the Samples acroSS a region (e.g., the displayed region on 
a display device or a particular window). Random position 
ing of Samples may be accomplished through a number of 
different methods, e.g., using a random number generator 
Such as an internal clock to generate pseudo-random num 
berS. Random numbers or positions may also be pre 
calculated and Stored in memory. 

Turning now to FIG. 9, details of one embodiment of 
perturbed regular grid scheme 192 are shown. In this 
embodiment, Samples are randomly offset from a regular 
Square grid by X- and y-offsets. AS the enlarged area shows, 
sample 198 has an x-offset 134 that specifies its horizontal 
displacement from its corresponding grid interSection point 
196. Similarly, sample 198 also has a y-offset 136 that 
Specifies its vertical displacement from grid interSection 
point 196. The random offset may also be specified by an 
angle and distance. AS with the previously disclosed 
embodiment that utilized angles and distances, X-Offset 134 
andy-offset 136 may be limited to a particular minimum and 
or maximum value or range of values. 

Turning now to FIG. 10, details of another embodiment of 
perturbed regular grid scheme 192 are shown. In this 
embodiment, the samples are grouped into “bins' 138A-D. 
In this embodiment, each bin comprises nine (i.e., 3x3) 
samples. Different bin sizes may be used in other embodi 
ments (e.g., bins Storing 2x2 Samples or 4x4 samples). In the 
embodiment shown, each Sample's position is determined as 
an offset relative to the position of the bin. The position of 
the bins may be defined as any convenient position related 
to the grid, e.g., the lower left-hand corners 132A-D as 
shown in the figure. For example, the position of sample 198 
is determined by Summing x-offset 124 and y-offset 126 to 
the X and y coordinates of the corner 132D of bin 138D. As 
previously noted, this may reduce the Size of the Sample 
position memory used in Some embodiments. 
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Turning now to FIG. 11, one possible method for rapidly 

converting Samples Stored in Sample buffer 162 into pixels 
is shown. In this embodiment, the contents of sample buffer 
162 are organized into columns (e.g., Cols. 1-4). Each 
column in Sample buffer 162 may comprise a two 
dimensional array of bins. The columns may be configured 
to horizontally overlap (e.g., by one or more bins), and each 
column may be assigned to a particular Sample-to-pixel 
calculation unit 170A-D for the convolution process. The 
amount of the Overlap may depend upon the extent of the 
filter being used. The example shown in the figure illustrates 
an overlap of two bins (each Square Such as Square 188 
represents a single bin comprising one or more samples). 
Advantageously, this configuration may allow Sample-to 
pixel calculation units 170A-D to work independently and 
in parallel, with each Sample-to-pixel calculation unit 
170A-D receiving and converting its own column. Over 
lapping the columns will eliminate Visual bands or other 
artifacts appearing at the column boundaries for any opera 
tors larger than a pixel in extent. 

Turning now to FIG. 11A, more details of one embodi 
ment of a method for reading the Samples from a Super 
Sampled Sample buffer are shown. AS the figure illustrates, 
the convolution filter kernel 400 travels across column 414 
(See arrow 406) to generate output pixels. One or more 
Sample-to-pixel calculation units 170 may implement the 
convolution filter kernel 400. A bin cache 408 may used to 
provide quick access to the Samples that may potentially 
contribute to the output pixel. AS the convolution process 
proceeds, bins are read from the Super-Sampled Sample 
buffer and stored in bin cache 408. In one embodiment, bins 
that are no longer needed 410 are overwritten in the cache 
by new bins 412. As each pixel is generated, convolution 
filter kernel 400 shifts. Kernel 400 may be visualized as 
proceeding in a Sequential fashion within the column in the 
direction indicated by arrow 406. When kernel 400 reaches 
the end of the column, it may shift down one or more rows 
of Samples and then proceed again. Thus the convolution 
process proceeds in a Scan line manner, generating one 
column of output pixels for display. 

Turning now to FIG. 11B, a diagram illustrating potential 
border conditions is shown. In one embodiment, the bins 
that fall outside of sample window 420 may be replaced with 
Samples having predetermined background colorS Specified 
by the user. In another embodiment, bins that fall outside the 
window are not used by Setting their weighting factors to 
Zero (and then dynamically calculating normalization 
coefficients). In yet another embodiment, the bins at the 
inside edge of the window may be duplicated to replace 
those outside the window. This is indicated by outside bin 
430 being replaced by mirror inside bin 432. 

FIG. 12 is a flowchart of one embodiment of a method for 
drawing or rendering Sample pixels into a Super-Sampled 
sample buffer. Certain of the steps of FIG. 12 may occur 
concurrently or in different orders. In this embodiment, the 
graphics System receives graphics commands and graphics 
data from the host CPU 102 or directly from main memory 
106 (step 200). Next, the instructions and data are routed to 
one or more rendering units 150A-D (step 202). If the 
graphics data is compressed (Step 204), then the rendering 
units 150A-D decompress the data into a useable format, 
e.g., triangles (step 206). Next, the triangles are processed, 
e.g., converted to Screen space, lit, and transformed (Step 
208A). If the graphics system implements variable resolu 
tion Super Sampling, then the triangles are compared with the 
sample density region boundaries (step 208B). In variable 
resolution Super-Sampled Sample buffer implementations, 
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different regions of the display device may be allocated 
different Sample densities based upon a number of factors 
(e.g., the center of the attention on the Screen as determined 
by eye or head tracking). Sample density regions are 
described in greater detail below (see Section entitled Vari 
able Resolution Sample buffer below). If the triangle crosses 
a region boundary (step 210), then the triangle may be 
divided into two Smaller polygons along the region bound 
ary (step 212). This may allow each newly formed triangle 
to have a single Sample density. In one embodiment, the 
graphics System may be configured to Simply use the entire 
triangle twice (i.e., once in each region) and then use a 
bounding box to effectively clip the triangle. 

Next, one of the sample position Schemes (e.g., regular 
grid, perturbed regular grid, or stochastic) are selected from 
the sample position memory 184 (step 214). The sample 
position Scheme will generally have been pre-programmed 
into the sample position memory 184, but may also be 
selected “on the fly”. Based upon this sample position 
Scheme and the Sample density of the region containing the 
triangle, rendering units 150A-D determine which bins may 
contain Samples located within the triangle's boundaries 
(step 216). The offsets for the samples within these bins are 
then read from sample position memory 184 (step 218). 
Each Sample's position is then calculated using the offsets 
and is compared with the triangle's vertices to determine if 
the sample is within the triangle (step 220). Step 220 is 
discussed in greater detail below. 

For each sample that is determined to be within the 
triangle, the rendering unit draws the Sample by calculating 
the Sample's color, alpha and other attributes. This may 
involve lighting calculation and interpolation based upon the 
color and texture map information associated with the 
Vertices of the triangle. Once the Sample is rendered, it may 
be forwarded to Schedule unit 154, which then stores the 
sample in sample buffer 162 (step 224). 

Note the embodiment of the method described above is 
used for explanatory purposes only and is not meant to be 
limiting. For example, in Some embodiments the Steps 
shown in the figure as occurring Serially may be imple 
mented in parallel. Furthermore, Some Steps may be reduced 
or eliminated in certain embodiments of the graphics System 
(e.g., steps 204-206 in embodiments that do not implement 
geometry compression or Steps 210-212 in embodiments 
that do not implement a variable resolution Super-Sampled 
sample buffer). 
Determination of which Samples Reside within the Polygon 
Being Rendered 
The comparison may be performed in a number of dif 

ferent ways. In one embodiment, the deltas between the 
three vertices defining the triangle are first determined. For 
example, these deltas may be taken in the order of first to 
second vertex (V2-v1)=d 12, second to third vertex (v3-v2)= 
d23, and third vertex back to the first vertex (v1-v3)=d31. 
These deltas form vectors, and each vector may be catego 
rized as belonging to one of the four quadrants of the 
coordinate plane (e.g., by using the two sign bits of its delta 
X and Y coefficients). A third condition may be added 
determining whether the vector is an X-major vector or 
Y-major vector. This may be determined by calculating 
whether abs(delta X) is greater than abs(delta y). 

Using these three bits of information, the Vectors may 
each be categorized as belonging to one of eight different 
regions of the coordinate plane. If three bits are used to 
define these regions, then the X-sign bit (shifted left by two), 
the Y-sign bit (shifted left by one), and the X-major bit, may 
be used to create the eight regions as shown in FIG. 12A. 
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Next, three edge equations may be used to define the 

inside portion of the triangle. These edge equations (or 
half-plane equations) may be defined using slope-intercept 
form. To reduce the numerical range needed, both X-major 
and Y-major equation forms may be used (such that the 
absolute value of the Slope value may be in the range of 0 
to 1). Thus, the two edge equations are: 

X-major:y-mix-b-0, when the point is below the line 

Y-major: x-my-b-0, when the point is to the left of the line 

The X-major equations produces a negative versus posi 
tive value when the point in question is below the line, while 
the Y-major equation produces a negative verSuS positive 
value when the point in question is to the left of the line. 
Since which side of the line is the “accept” side is known, 
the sign bit (or the inverse of the sign bit) of the edge 
equation result may be used to determine whether the 
sample is on the “accept side or not. This is referred to 
herein as the “accept bit'. Thus, a Sample is on the accept 
side of a line if: 

X-major: (y-mix-b-0)<xor-accept 

Y-major: (x-my-b-0)<xors accept 

The accept bit may be calculated according to the fol 
lowing table, wherein cw designates whether the triangle is 
clockwise (cw=1) or counter-clockwise (cw=0): 

1: accept=cw 
: accept=CW 
accept=CW 
accept=cW 
accept=CW 
accept=cw 
accept=cw 

: accept=cw 
Tie breaking rules for this representation may also be 

implemented (e.g., coordinate axes may be defined as 
belonging to the positive octant). Similarly, X-major may be 
defined as owning all points that tie on the Slopes. 

In an alternate embodiment, the accept Side of an edge 
may be determined by applying the edge equation to the 
third vertex of the triangle (the vertex that is not one of the 
two vertices forming the edge). This method may incur the 
additional cost of a multiply–add, which may not be used by 
the technique described above. 
To determine the “faced-ness” of a triangle (i.e., whether 

the triangle is clockwise or counter-clockwise), the delta 
directions of two edges of the triangle may be checked and 
the slopes of the two edges may be compared. For example, 
assuming that edge 12 has a delta-direction of 1 and the 
Second edge (edge23) has a delta-direction of 0, 4, or 5, then 
the triangle is counter-clockwise. If, however, edge23 has a 
delta-direction of 3, 2, or 6, then the triangle is clockwise. If 
edge23 has a delta-direction of 1 (i.e., the same as edge 12), 
then comparing the slopes of the two edges breaks the tie 
(both are X-major). If edge 12 has a greater slope, then the 
triangle is counter-clockwise. If edge23 has a delta-direction 
of 7 (the exact opposite of edge12), then again the slopes are 
compared, but with opposite results in terms of whether the 
triangle is clockwise or counter-clockwise. 
The same analysis can be exhaustively applied to all 

combinations of edge 12 and edge23 delta-directions, in 
every case determining the proper faced-ness. If the slopes 
are the same in the tie case, then the triangle is degenerate 
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(i.e., with no interior area). It can be explicitly tested for and 
culled, or, with proper numerical care, it could be let through 
as it will cause no pixels to render. One Special case is when 
a triangle splits the View plane, but that may be detected 
earlier in the pipeline (e.g., when front plane and back plane 
clipping are performed). 

Note in most cases only one Side of a triangle is rendered. 
Thus, after the faced-ness of a triangle is determined, if the 
face is the one to be rejected, then the triangle can be culled 
(i.e., Subject to no further processing with no pixels 
generated). Further note that this determination of faced 
ness only uses one additional comparison (i.e., of the slope 
of edge 12 to that of edge23) beyond factors already com 
puted. Many traditional approaches may utilize more com 
plex computation (though at earlier Stages of the set-up 
computation). 

FIG. 13 is a flowchart of one embodiment of a method for 
filtering Samples Stored in the Super-Sampled Sample buffer 
to generate output pixels. First, a Stream of bins are read 
from the Super-sampled sample buffer (step 250). These may 
be stored in one or more caches to allow the Sample-to-pixel 
calculation units 170 easy acceSS during the convolution 
process (step 252). Next, the bins are examined to determine 
which may contain Samples that contribute to the output 
pixel currently being generated by the filter process (Step 
254). Each sample that is in a bin that may contribute to the 
output pixel is then individually examined to determine if 
the sample does indeed contribute (steps 256-258). This 
determination may be based upon the distance from the 
Sample to the center of the output pixel being generated. 

In one embodiment, the Sample-to-pixel calculation units 
170 may be configured to calculate this distance (i.e., the 
extent of the filter at sample's position) and then use it to 
indeX into a table Storing filter weight values according to 
filter extent (step 260). In another embodiment, however, the 
potentially expensive calculation for determining the dis 
tance from the center of the pixel to the sample (which 
typically involves a Square root function) is avoided by 
using distance Squared to indeX into the table of filter 
weights. Alternatively, a function of X and y may be used in 
lieu of one dependent upon a distance calculation. In one 
embodiment, this may be accomplished by utilizing a float 
ing point format for the distance (e.g., four or five bits of 
mantissa and three bits of exponent), thereby allowing much 
of the accuracy to be maintained while compensating for the 
increased range in values. In one embodiment, the table may 
be implemented in ROM. However, RAM tables may also 
be used. Advantageously, RAM tables may, in Some 
embodiments, allow the graphics System to vary the filter 
coefficients on a per-frame basis. For example, the filter 
coefficients may be varied to compensate for known short 
comings of the display or for the user's personal preferences. 
The graphics System can also vary the filter coefficients on 
a Screen area basis within a frame, or on a per-output pixel 
basis. Another alternative embodiment may actually calcu 
late the desired filter weights for each Sample using Special 
ized hardware (e.g., multipliers and adders). The filter 
weight for Samples outside the limits of the convolution 
filter may simply be multiplied by a filter weight of zero 
(step 262), or they may be removed from the calculation 
entirely. 

Once the filter weight for a Sample has been determined, 
the sample may then be multiplied by its filter weight (Step 
264). The weighted sample may then be summed with a 
running total to determine the final output pixel’s color value 
(step 266). The filter weight may also be added to a running 
total pixel filter weight (step 268), which is used to normal 
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ize the filtered pixels. Normalization advantageously pre 
vents the filtered pixels (e.g., pixels with more samples than 
other pixels) from appearing too bright or too dark by 
compensating for gain introduced by the convolution pro 
ceSS. After all the contributing Samples have been weighted 
and Summed, the total pixel filter weight may be used to 
divide out the gain caused by the filtering (step 270). Finally, 
the normalized output pixel may be output for gamma 
correction, digital-to-analog conversion (if necessary), and 
eventual display (step 274). 

FIG. 14 illustrates a simplified example of an output pixel 
convolution. As the figure shows, four bins 288A-D contain 
Samples that may possibly contribute to the output pixel. In 
this example, the center of the output pixel is located at the 
boundary of bins 288A-288D. Each bin comprises sixteen 
Samples, and an array of 2 four bins (2x2) is filtered to 
generate the output pixel. ASSuming circular filters are used, 
the distance of each Sample from the pixel center determines 
which filter value will be applied to the sample. For 
example, Sample 296 is relatively close to the pixel center, 
and thus falls within the region of the filter having a filter 
value of 8. Similarly, samples 294 and 292 fall within the 
regions of the filter having filter values of 4 and 2, respec 
tively. Sample 290, however, falls outside the maximum 
filter extent, and thus receives a filter value of 0. Thus 
sample 290 will not contribute to the output pixel’s value. 
This type of filter ensures that the samples located the closest 
to the pixel center will contribute the most, while pixels 
located the far from the pixel center will contribute less to 
the final output pixel values. This type of filtering automati 
cally performs anti-aliasing by Smoothing any abrupt 
changes in the image (e.g., from a dark line to a light 
background). Another particularly useful type of filter for 
anti-aliasing is a windowed Sinc filter. Advantageously, the 
windowed Sinc filter contains negative lobes that resharpen 
Some of the blended or “fuzzed' image. Negative lobes are 
areas where the filter causes the Samples to Subtract from the 
pixel being calculated. In contrast Samples on either side of 
the negative lobe add to the pixel being calculated. 

Example values for samples 290–296 are illustrated in 
boxes 300-308. In this example, each sample comprises red, 
green, blue and alpha values, in addition to the Sample's 
positional data. Block 310 illustrates the calculation of each 
pixel component value for the non-normalized output pixel. 
As block 310 indicates, potentially undesirable gain is 
introduced into the final pixel values (i.e., an out pixel 
having a red component value of 2000 is much higher than 
any of the sample's red component values). AS previously 
noted, the filter values may be Summed to obtain normal 
ization value 308. Normalization value 308 is used to divide 
out the unwanted gain from the output pixel. Block 312 
illustrates this proceSS and the final normalized example 
pixel values. 

Note the values used herein were chosen for descriptive 
purposes only and are not meant to be limiting. For example, 
the filter may have a large number of regions each with a 
different filter value. In one embodiment, Some regions may 
have negative filter values. The filter utilized may be a 
continuous function that is evaluated for each Sample based 
on the Sample's distance from the pixel center. Also note that 
floating point values may be used for increased precision. A 
variety of filters may be utilized, e.g., cylinder, cone, 
gaussian, Katmull-Rom, windowed Sinc, Mitchell filter, box, 
tent. 

Full-Screen Anti-aliasing 
The vast majority of current 3D graphics Systems only 

provide real-time anti-aliasing for lines and dots. While 
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Some Systems also allow the edge of a polygon to be 
“fuzzed”, this technique typically works best when all 
polygons have been pre-Sorted in depth. This may defeat the 
purpose of having general-purpose 3D rendering hardware 
for most applications (which do not depth pre-Sort their 
polygons). In one embodiment, graphics System 112 may be 
configured to implement full-screen anti-aliasing by Sto 
chastically Sampling up to Sixteen Samples per output pixel, 
filtered by a 4x4-convolution filter. 
Variable Resolution Super-Sampling 

Currently, the straight-forward brute force method of 
utilizing a fixed number of Samples per pixel location, e.g., 
an. 8x. Super-Sampled Sample buffer, would entail the use of 
eight times more memory, eight times the fill rate (i.e., 
memory bandwidth), and a convolution pipe capable of 
processing eight Samples per pixel. Given the high resolu 
tion and refresh rates of current displays, a graphics System 
of this magnitude may be relatively expense to implement 
given today's level of integration. 

In one embodiment, graphics System 112 may be config 
ured to overcome these potential obstacles by implementing 
variable resolution Super-Sampling. In this embodiment, 
graphics System 112 mimics the human eye's characteristics 
by allocating a higher number of Samples per pixel at one or 
more first locations on the Screen (e.g., the point of foveation 
on the Screen), with a drop-off in the number of Samples per 
pixel for one or more second locations on the Screen (e.g., 
areas farther away from the point of foveation). Depending 
upon the implementation, the point of -foveation may be 
determined in a variety of ways. In one embodiment, the 
point of foveation may be a predetermined area around a 
certain object displayed upon the Screen. For example, the 
area around a moving cursor or the main character in a 
computer game may be designated the point of foveation. In 
another embodiment, the point of foveation on the Screen 
may be determined by head-tracking or eye-tracking. Even 
if eye/head/hand-tracking, cursor-based, or main character 
based points of foveation are not implemented, the point of 
foveation may be fixed at the center of the Screen, where the 
majority of Viewers attention is focused the majority of the 
time. Variable resolution Super-Sampling is described in 
greater detail below. 
Variable-Resolution Super-Sampled Sample Buffer-FIGS. 
15-19 
A traditional frame buffer is one rectangular array of 

uniformly Sampled pixels. For every pixel on the final 
display device (CRT or LCD), there is a single pixel or 
location of memory storage in the frame buffer (perhaps 
double buffered). There is a trivial one-to-one correspon 
dence between the 2D memory address of a given pixel and 
its 2D Sample address for the mathematics of rendering. 
Stated another way, in a traditional frame buffer there is no 
Separate notion of Samples apart from the pixels themselves. 
The output pixels are stored in a traditional frame buffer in 
a row/column manner corresponding to how the pixels are 
provided to the display during display refresh. 

In a variable-resolution Super-Sampled Sample buffer, the 
number of computed Samples per output pixel varies on a 
regional basis. Thus, output pixels in regions of greater 
interest are computed using a greater number of Samples, 
thus producing greater resolution in this region, and output 
pixels in regions of lesser interest are computed using a 
lesser number of Samples, thus producing lesser resolution 
in this region. 
AS previously noted, in Some embodiments graphic SyS 

tem 112 may be configured with a variable resolution 
Super-Sampled Sample buffer. To implement variable reso 
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lution Super-Sampling, Sample buffer 162 may be divided 
into Smaller pieces, called regions. The size, location, and 
other attributes of these regions may be configured to vary 
dynamically, as parameterized by run-time registers on a 
per-frame basis. 

Turning now to FIG. 15, a diagram of one possible 
scheme for dividing sample buffer 162 is shown. In this 
embodiment, sample buffer 162 is divided into the following 
three nested regions foveal region 354, medial region 352, 
and peripheral region 350. Each of these regions has a 
rectangular shaped outer border, but the medial and the 
peripheral regions have a rectangular shaped hole in their 
center. Each region may be configured with certain constant 
(per frame) properties, e.g., a constant density Sample den 
sity and a constant size of pixel bin. In one embodiment, the 
total density range may be 256, i.e., a region could Support 
between one sample every 16 Screen pixels (4x4) and 16 
Samples for every 1 Screen pixel. In other embodiments, the 
total density range may be limited to other values, e.g., 64. 
In one embodiment, the Sample density varies, either lin 
early or non-linearly, acroSS a respective region. Note in 
other embodiments the display may be divided into a 
plurality of constant sized regions (e.g., Squares that are 4x4 
pixels in size or 40x40 pixels in size). 
To Simply perform calculations for polygons that encom 

pass one or more region corners (e.g., a foveal region 
corner), the sample buffer may be further divided into a 
plurality of Subregions. Turning now to FIG. 16, one 
embodiment of sample buffer 162 divided into Sub-regions 
is shown. Each of these Sub-regions are rectangular, allow 
ing graphics System 112 to translate from a 2D address with 
a Sub-region to a linear address in Sample buffer 162. Thus, 
in Some embodiments each Sub-region has a memory base 
address, indicating where Storage for the pixels within the 
Sub-region Starts. Each Sub-region may also have a “stride' 
parameter associated with its width. 

Another potential division of the Super-Sampled Sample 
buffer is circular. Turning now to FIG. 17, one such embodi 
ment is illustrated. For example, each region may have two 
radii associated with it (i.e., 360-368), dividing the region 
into three concentric circular-regions. The circular-regions 
may all be centered at the same Screen point, the fovea center 
point. Note however, that the fovea center-point need not 
always be located at the center of the foveal region. In Some 
instances it may even be located off-screen (i.e., to the Side 
of the visual display surface of the display device). While the 
embodiment illustrated Supports up to Seven distinct 
circular-regions, it is possible for Some of the circles to be 
shared acroSS two different regions, thereby reducing the 
distinct circular-regions to five or less. 
The circular regions may delineate areas of constant 

Sample density actually used. For example, in the example 
illustrated in the figure, foveal region 354 may allocate a 
Sample buffer density of 8 Samples per Screen pixel, but 
outside the innermost circle 368, it may only use 4 Samples 
per pixel, and outside the next circle 366 it may only use two 
Samples per pixel. Thus, in this embodiment the rings need 
not necessarily save actual memory (the regions do that), but 
they may potentially Save memory bandwidth into and out of 
the sample buffer (as well as pixel convolution bandwidth). 
In addition to indicating a different effective Sample density, 
the rings may also be used to indicate a different Sample 
position Scheme to be employed. AS previously noted, these 
Sample position Schemes may stored in an on-chip RAM/ 
ROM, or in programmable memory. 
AS previously discussed, in Some embodiments Super 

sampled sample buffer 162 may be further divided into bins. 
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For example, a bin may store a Single Sample or an array of 
Samples (e.g., 2x2 or 4x4 samples). In one embodiment, 
each bin may store between one and Sixteen Sample points, 
although other configurations are possible and contem 
plated. Each region may be configured with a particular bin 
size, and a constant memory Sample density as well. Note 
that the lower density regions need not necessarily have 
larger bin sizes. In one embodiment, the regions (or at least 
the inner regions) are exact integer multiples of the bin size 
enclosing the region. This may allow for more efficient 
utilization of the sample buffer in some embodiments. 

Variable-resolution Super-Sampling involves calculating a 
variable number of Samples for each pixel displayed on the 
display device. Certain areas of an image may benefit from 
a greater number of Samples (e.g., near object edges), while 
other areas may not need extra Samples (e.g., Smooth areas 
having a constant color and brightness). To save memory 
and bandwidth, extra Samples may be used only in areas that 
may benefit from the increased resolution. For example, if 
part of the display is colored a constant color of blue (e.g., 
as in a background), then extra Samples may not be particu 
larly useful because they will all simply have the constant 
value (equal to the background color being displayed). In 
contrast, if a Second area on the Screen is displaying a 3D 
rendered object with complex textures and edges, the use of 
additional Samples may be useful in avoiding certain arti 
facts Such as aliasing. A number of different methods may be 
used to determine or predict which areas of an image would 
benefit from higher Sample densities. For example, an edge 
analysis could be performed on the final image, and with that 
information being used to predict how the Sample densities 
should be distributed. The Software application may also be 
able to indicate which areas of a frame should be allocated 
higher sample densities. 
A number of different methods may be used to implement 

variable-resolution Super Sampling. These methods tend to 
fall into the following two general categories: (1) those 
methods that concern the draw or rendering process, and (2) 
those methods that concern the convolution process. For 
example, Samples may be rendered into the Super-Sampling 
sample buffer 162 using any of the following methods: 

1) a uniform Sample density; 
2) varying Sample density on a per-region basis (e.g., 

medial, foveal, and peripheral); and 
3) Varying Sample density by changing density on a 

Scan-line basis (or on a small number of Scan lines 
basis). 

Varying Sample density on a Scan-line basis may be 
accomplished by using a look-up table of densities. For 
example, the table may specify that the first five pixels of a 
particular Scan line have three Samples each, while the next 
four pixels have two Samples each, and So on. 
On the convolution Side, the following methods are poS 

sible: 

1) a uniform convolution filter; 
2) continuously variable convolution filter; and 
3) a convolution filter operating at multiple spatial fre 

quencies. 
A uniform convolve filter may, for example, have a 

constant extent (or number of Samples selected) for each 
pixel calculated. In contrast, a continuously variable convo 
lution filter may gradually change the number of Samples 
used to calculate a pixel. The function may be vary con 
tinuously from a maximum at the center of attention to a 
minimum in peripheral areas. 

Different combinations of these methods (both on the 
rendering side and convolution Side) are also possible. For 
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example, a constant Sample density may be used on the 
rendering Side, while a continuously variable convolution 
filter may be used on the Samples. 

Different methods for determining which areas of the 
image will be allocated more Samples per pixel are also 
contemplated. In one embodiment, if the image on the 
Screen has a main focal point (e.g., a character like Mario in 
a computer game), then more samples may be calculated for 
the area around Mario and fewer Samples may be calculated 
for pixels in other areas (e.g., around the background or near 
the edges of the Screen). 

In another embodiment, the viewer's point of foveation 
may be determined by eye/head/hand-tracking. In head 
tracking embodiments, the direction of the viewer's gaze is 
determined or estimated from the orientation of the viewer's 
head, which may be measured using a variety of mecha 
nisms. For example, a helmet or visor worn by the viewer 
(with eye/head tracking) may be used alone or in combina 
tion with a handtracking mechanism, wand, or eye-tracking 
Sensor to provide orientation information to graphics System 
112. Other alternatives include head-tracking using an infra 
red reflective dot placed on the user's forehead, or using a 
pair of glasses with head- and or eye-tracking Sensors built 
in. One method for using head- and hand-tracking is dis 
closed in U.S. Pat. No. 5,446,834 (entitled “Method and 
Apparatus for High Resolution Virtual Reality Systems 
Using Head Tracked Display,” by Michael Deering, issued. 
Aug. 29, 1995), which is incorporated herein by reference in 
its entirety. Other methods for head tracking are also pos 
Sible and contemplated (e.g., infrared sensors, electromag 
netic Sensors, capacitive Sensors, Video cameras, Sonic and 
ultraSonic detectors, clothing based Sensors, Video tracking 
devices, conductive ink, Strain gauges, force-feedback 
detectors, fiber optic Sensors, pneumatic Sensors, magnetic 
tracking devices, and mechanical Switches). 
AS previously noted, eye-tracking may be particularly 

advantageous when used in conjunction with head-tracking. 
In eye-tracked embodiments, the direction of the viewer's 
gaze is measured directly by detecting the orientation of the 
viewer's eyes in relation to the viewer's head. This 
information, when combined with other information regard 
ing the position and orientation of the viewer's head in 
relation to the display device, may allow an accurate mea 
surement of viewer's point of foveation (or points of fove 
ation if two eye-tracking Sensors are used). One possible 
method for eye tracking is disclosed in U.S. Pat. No. 
5,638,176 (entitled “Inexpensive Interferometric Eye Track 
ing System'). Other methods for eye tracking are also 
possible and contemplated (e.g., the methods for head track 
ing listed above). 

Regardless of which method is used, as the viewer's point 
of foveation changes position, So does the distribution of 
Samples. For example, if the viewer's gaze is focused on the 
upper left-hand corner of the Screen, the pixels correspond 
ing to the upper left-hand corner of the Screen may each be 
allocated eight or Sixteen Samples, while the pixels in the 
opposite corner (i.e., the lower right-hand corner of the 
Screen) may be allocated only one or two Samples per pixel. 
Once the viewer's gaze changes, So does the allotment of 
Samples per pixel. When the viewers gaze moves to the 
lower right-hand corner of the Screen, the pixels in the upper 
left-hand corner of the Screen may be allocated only one or 
two Samples per pixel. Thus the number of Samples per pixel 
may be actively changed for different regions of the Screen 
in relation the viewer's point of foveation. Note in some 
embodiments, multiple users may be each have head/eye/ 
hand tracking mechanisms that provide input to graphics 
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System 112. In these embodiments, there may conceivably 
be two or more points of foveation on the Screen, with 
corresponding areas of high and low Sample densities. AS 
previously noted, these Sample densities may affect the 
render proceSS only, the filter process only, or both pro 
CCSSCS. 

Turning now to FIGS. 18A-B, one embodiment of a 
method for apportioning the number of Samples per pixel is 
shown. The method apportions the number of Samples based 
on the location of the pixel relative to one or more points of 
foveation. In FIG. 18A, an eye- or head-tracking device 360 
is used to determine the point of foveation 362 (i.e., the focal 
point of a viewer's gaze). This may be determined by using 
tracking device 360 to determine the direction that the 
viewer's eyes (represented as 364 in the figure) are facing. 
AS the figure illustrates, in this embodiment, the pixels are 
divided into foveal region 354 (which may be centered 
around the point of foveation 362), medial region 352, and 
peripheral region 350. 

Three Sample pixels are indicated in the figure. Sample 
pixel 374 is located within foveal region 314. Assuming 
foveal region 314 is configured with bins having eight 
Samples, and assuming the convolution radius for each pixel 
touches four bins, then a maximum of 32 Samples may 
contribute to each pixel. Sample pixel 372 is located within 
medial region 352. ASSuming medial region 352 is config 
ured with bins having four Samples, and assuming the 
convolution radius for each pixel touches four bins, then a 
maximum of 16 Samples may contribute to each pixel. 
Sample pixel 370 is located within peripheral region 350. 
ASSuming peripheral region 370 is configured with bins 
having one Sample each, and assuming the convolution 
radius for each pixel touches one bin, then there is a one 
Sample to pixel correlation for pixels in peripheral region 
350. Note these values are merely examples and a different 
number of regions, Samples per bin, and convolution radius 
may be used. 

Turning now to FIG. 18B, the same example is shown, but 
with a different point of foveation 362. As the figure 
illustrates, when tracking device 360 detects a change in the 
position of point of foveation 362, it provides input to the 
graphics System, which then adjusts the position of foveal 
region 354 and medial region 352. In some embodiments, 
parts of Some of the regions (e.g., medial region 352) may 
extend beyond the edge of display device 84. In this 
example, pixel 370 is now within foveal region 354, while 
pixels 372 and 374 are now within the peripheral region. 
ASSuming the Sample configuration as the example in FIG. 
18A, a maximum of 32 samples may contribute to pixel 370, 
while only one sample will contribute to pixels 372 and 374. 
Advantageously, this configuration may allocate more 
Samples for regions that are near the point of foveation (i.e., 
the focal point of the viewer's gaze). This may provide a 
more realistic image to the viewer without the need to 
calculate a large number of Samples for every pixel on 
display device 84. 

Turning now to FIGS. 19A-B, another embodiment of a 
computer System configured with a variable resolution 
Super-Sampled Sample buffer is shown. In this embodiment, 
the center of the viewer's attention is determined by position 
of a main character 362. Medial and foveal regions are 
centered around main character 362 as it moves around the 
Screen. In Some embodiments main character may be a 
Simple cursor (e.g., as moved by keyboard input or by a 
mouse). 

In Still another embodiment, regions with higher Sample 
density may be centered around the middle of display device 
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84's Screen. Advantageously, this may require leSS control 
Software and hardware while Still providing a shaper image 
in the center of the Screen (where the viewer's attention may 
be focused the majority of the time). 
Computer Network-FIG. 20 

Referring now to FIG. 20, a computer network 500 is 
shown comprising at least one Server computer 502 and one 
or more client computers 506A-N. (In the embodiment 
shown in FIG. 4, client computers 506A-B are depicted). 
One or more of the client Systems may be configured 
Similarly to computer System 80, with each having one or 
more graphics systems 112 as described above. Server 502 
and client(s) 506 may be joined through a variety of con 
nections 504, such as a local-area network (LAN), a wide 
area network (WAN), or an Internet connection. In one 
embodiment, server 502 may store and transmit 3-D geom 
etry data (which may be compressed) to one or more of 
clients 506. The clients 506 receive the compressed 3-D 
geometry data, decompress it (if necessary) and then render 
the geometry data. The rendered image is then displayed on 
the client's display device. The clients render the geometry 
data and display the image using Super-Sampled Sample 
buffer and real-time filter techniques described above. In 
another embodiment, the compressed 3-D geometry data 
may be transferred between client computers 506. 
Additional Graphics System Features 

Depending upon the implementation, computer System 80 
may be configured to perform one or more of the following 
techniques in real-time using graphics System 112 (and 
Super-Sampled Sample buffer 162): high-quality texture 
filtering, bump mapping, displacement mapping, multiple 
texture mapping, decompression of compressed graphics 
data, per-pixel Phong Shading, depth of field effects, alpha 
buffering, Soft-key output, 12-bit effective linear output, and 
integral eye-head-hand tracking. Each of these techniques 
will be described in detail further below. 

A. Texture Filtering-FIGS. 21-22 
One popular technique to improve the realism of images 

displayed on a computer System is texture mapping. Texture 
mapping maps an image comprising a plurality of pixel 
values or texel values (called a "texture map’) onto the 
Surface of an object. A texture map is an image which can 
be wrapped (or mapped) onto a three-dimensional (3D) 
object. An example of a texture map 20 is illustrated in FIG. 
21 A. Texture map 20 is defined as a collection of texture 
elements 22a-n (“texels'), with coordinates U and V 
(similar to X and Y coordinates on the display or “screen 
Space”). In FIG. 21B, an example of texture mapping is 
shown. AS the figure illustrates, texture map 20 is mapped 
onto two sides of a three dimensional cube. FIG. 21C shows 
another example of texture mapping, but this time onto a 
Spherical object. Another example would be to map an 
image of a painting with intricate details onto a Series of 
polygons representing a Vase. 
While texture mapping may result in more realistic 

Scenes, awkward Side effects of texture mapping may occur 
unless the graphics Subsystem can apply texture maps with 
correct perspective. Perspective-corrected texture mapping 
involves an algorithm that translates texels (i.e., pixels from 
the bitmap texture image) into display pixels in accordance 
with the Spatial orientation of the Surface. 

In conjunction with texture mapping, many graphics 
Subsystems utilize bilinear filtering, anti-aliasing, and mip 
mapping to further improve the appearance of rendered 
imageS. Bilinear filtering improves the appearance of texture 
mapped Surfaces by considering the values of a number of 
adjacent texels (e.g., four) in order to determine the value of 
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the displayed pixel. Bilinear filtering may reduce Some of 
the “blockiness” that results from Simple point Sampling 
when adjacent display pixel values are defined by a single 
texel. 
AS previously described, aliasing refers to the jagged 

edges that result from displaying a Smooth object on a 
computer display. Aliasing may be particularly disconcert 
ing at the edges of texture maps. Anti-aliasing (i.e., mini 
mizing the appearance of jagged edges) avoids this distrac 
tion by reducing the contrast between the edges where 
different Sections of the texture map meet. This is typically 
accomplished by adjusting pixel values at or near the edge. 
Mip-mapping involves Storing multiple copies of texture 

maps, each digitized at a different resolution. When a 
texture-mapped polygon is Smaller than the texture image 
itself, undesirable effects may result during texture mapping. 
Mip mapping avoids this problem by providing a large 
version of a texture map for use when the object is close to 
the viewer (i.e., large), and Smaller versions of the texture 
map for use when the object shrinks from view. 
A mip-map may be visualized as a pyramid of filtered 

versions of the same texture map. Each map has one-half the 
linear resolution of its preceding map, and has therefore one 
quarter the number of texels. The memory cost of this 
organization, where the coarsest level has only one texel, is 
V3 (i.e.,1+/4+/16+ . . . ) the cost of the original map. The 
acronym “mip' Stands for “multum in parvo' a Latin phrase 
meaning “many things in a Small place'. The mip-map 
Scheme thus provides pre-filtered textures, one of which is 
Selected at run time for use in rendering. In general, the 
desired level will not exactly match one of the predeter 
mined levels in the mip-map. Thus, interpolation may be 
involved to calculate the desired level. Bilinear interpolation 
may be used if the texel to be looked up is not exactly on the 
integer boundaries of the predetermined mip-map levels. 
Similar two-dimensional linear interpolations are computed 
in each mip-map when Scaled (u, v) values for texture table 
lookup are not integer values. To assure continuity when 
rapidly changing images (e.g., during animation), the effects 
of the four texels which enclose the Scaled (u, v) values are 
considered, based upon their linear distances from the ref 
erence point in texel Space. For example, if the Scaled (u, v) 
values are (3.7, 6.8), the weighted average of texels (3, 6), 
(4., 6), (3, 7), and (4, 7) is taken. 

Turning now to FIG. 22, a Set of mip maps is shown. AS 
the figure illustrates, each mip map is a two dimensional 
image, where each Successive mip map is one half the size 
of the previous one. For example, if level 0 (i.e., texture map 
20) is sixteen by sixteen texels, then level 1 (mip map 22) 
is eight by eight texels, level 2 (mip map 24) is four by four 
texels, level 3 (mip map 24) is two by two texels, and level 
4 (mip map 28) is a single texel. Each Subsequent mip map 
is one half the dimension of the previous mip map. Thus, 
each Subsequent mip map has one quarter the area, number 
of texels, and resolution of the previous mip map. Note 
however, that other ratios are also possible and that mip 
maps need not be Square. 

Tri-linear filtering may be used to Smooth out edges of 
mip mapped polygons. and prevent moving objects from 
displaying a distracting sparkle resulting from mismatched 
texture interSections. Trilinear filtering involves blending 
texels from two neighboring mip maps (e.g., blending texels 
from mip map 20 and mip map 22). The texel addresses in 
the neighboring mip maps are related by their addresses. For 
example, a particular texel at address (U,V) in level N 
corresponds to the texel at address (U/2, V/2) in level N+1. 
This is represented by texels 30 and 32 in the figure (each 
marked with an “X”). 
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Current texture mapping hardware tends to implement 

Simple bi- or tri-linear interpolation of mip-map textured 
images. Bi-linear filters, however, are effectively “tent” 
filters that are uniform in texture Space, not Screen Space. 
Uniformity in Screen Space, however, tends to result in a 
more realistic image. 

Currently, most high quality texture mapping is actually 
performed by software. While a variety of different tech 
niques are used, most may be classified generally as “ellip 
tical filters” (i.e., elliptical in texture space, but circular in 
Screen Space). These elliptical filters produce more realistic 
results, but are also considerably more complex than a tent 
filter. This complexity has prevented most real-time hard 
ware implementations. 

In one embodiment, graphics System 112 may be config 
ured to perform real-time high quality texture mapping by 
converting texels into micro-polygons (e.g., triangles) at 
render time. These micro-polygons are then rendered into 
Super-Sampled Sample buffer 162 using bi-linear interpola 
tion. The final filtering (which produces the high quality 
image) is deferred until the convolution is performed. This 
allows all Samples that might effect the final pixel value to 
be written into sample buffer 162 before the pixel value is 
calculated. The final filtering may then advantageously be 
performed in Screen Space. In one embodiment, one to two 
hundred Samples may be filtered to generate a single pixel. 
This may significantly improve the appearance of the final 
image in Some embodiments when compared with tradi 
tional hardware texture mapping Systems that only filter four 
to eight texels to create a pixel. 

In one embodiment, graphics System 112 may also be 
configured to perform one or more of the following 
advanced texturing techniques: bump mapping, displace 
ment mapping, and multiple texture mapping. 

B. Bump Mapping 
Bump mapping perturbs the normal on a Surface to create 

what appears to be Small wrinkles or bumps on the Surface. 
This technique breaks down near the Silhouette of an object 
(because the Silhouette of the object is in fact unchanged, the 
bumps implied by the shading are not visible in the 
geometry), and at near-glancing angles to the Surface 
(because there is no blocking or geometric attenuation due 
to the bumps. In general, though, as long as the bumps are 
very Small and the object is Some distance away, bump 
mapping is an effective way to imply Small deformations to 
a shape without actually changing the geometry. 

C. Displacement Mapping 
Displacement mapping actually moves the Surface by a 

given amount in a given direction. Rendering displacement 
mapped Surfaces can present a challenge to Some Systems, 
particularly when the displacements become large. The 
results are often much better than with bump mapping, 
because displacement mapped objects may actually exhibit 
Self-hiding and potentially shelf-shadowing features, as well 
as a changed Silhouette. 

D. Multiple Texture Mapping 
Multiple texture mapping involves blending a number of 

different texture maps together to from the texture applied to 
the object. For example, a texture of fabric may be blended 
with a texture of marble So that it may appear that the fabric 
is Semi-transparent and covering a marble object. 

Another example of multiple texture mapping is taking a 
texture map of corresponding light and dark areas (i.e., a 
low-frequency shadow map), and then blending the Shadow 
map with a texture (e.g., a high-frequency texture map). 
Multiple texture mapping may also be used for “micro 
detail” applications. For example, when a viewer Zooms in 
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on a texture-mapped wall, the texture map for the wall may 
be blended with a low-resolution intensity map to provide 
more realistic imperfections and variations in the finish of 
the wall. 

E. Decompression of Compressed Graphics Data 
AS previously noted, Some embodiments of graphics 

System 112 may be configured to receive and decompress 
compressed 3D geometry data. This may advantageously 
reduce the memory bandwidth requirements within graphics 
System 112, as well as allow objects with a larger number of 
polygons to be rendered in real time. 

F. Per-pixel Phong Shading 
AS previously noted, in Some embodiments graphics 

System 112 may be configured to break textures into Sub 
pixel triangle fragments (see Texture Filtering above). By 
combining this feature with geometry compression (See 
Decompression of Compressed Graphics Data above) and an 
extremely high triangle render rate, graphics System 112 
may, in Some embodiments, be capable of achieving image 
quality rivaling, equaling, or even Surpassing that of per 
pixel Phong shading. These high quality images may be 
achieved by finely tessellating the objects to be rendered 
using micro-polygons. By finely teSSelating the objects, a 
Smoother and more accurate image is created without the 
need for per-pixel Phong Shading. For example, hardware in 
graphics System may be configured to automatically turn all 
primitives into micro-triangles (i.e., triangles that are one 
pixel or less in size) before lighting and texturing is per 
formed. 

G. Soft-key Output 
In Some environments, users of graphics Systems may 

desire the ability to output high quality anti-aliased rendered 
images that can be overlaid on top of a live video stream. 
While some systems exist that offer this capability, they are 
typically quite expensive. In one embodiment, graphics 
System 112 may be configured to inexpensively generate 
high quality over layS. In one embodiment, graphics System 
112 may be configured to generate an accurate Soft edge 
alpha key for Video output and down Stream alpha keying. 
The alpha key may be generated by Sample-to-pixel calcu 
lation units 170, which may perform a filtering function on 
the alpha values stored in sample buffer 162 to form “alpha 
pixels. Each alpha pixel may correspond to a particular 
output pixel. In one embodiment, the alpha pixels may be 
output using DAC 178A while the color output pixels may 
be output by DAC 178B. 

In another embodiment, this Soft edge alpha key overlay 
is then output in a digital format to an external mixing unit 
which blends the overlay with a live video feed. The alpha 
pixels corresponding to each output pixel will determine 
how much of the live video shows through the correspond 
ing pixel of the overlay. In one embodiment, for example, 
the greater the alpha pixel value, the more opaque the pixel 
becomes (and the less the live video feed shows through the 
pixel). Similarly, the Smaller the alpha pixel value, the more 
transparent the pixel becomes. Other embodiments are also 
possible and contemplated. For example, the live Video feed 
could be input into computer System 80 or graphics System 
112. Graphics system 112 could then blend the two sources 
internally and output the combined video signal. 

H. 12-bit Effective Linear Output 
While 12-bit (linear light) color depth (i.e., 12-bits of data 

for each of red, green, and blue) is considered ideal in many 
embodiments, possible limitations in Sample memories 162 
may limit the Storage space per sample to a lesser value (e.g., 
10-bits per color component). In one embodiment, graphics 
System 112 may be configured to dither Samples from 
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12-bits to 10-bits before they are stored in sample buffer 
162. During the final anti-aliasing computation in Sample 
to-pixel calculation units 170A-D, the additional bits may 
effectively be recovered. After normalization, the resulting 
pixels may be accurate to 12-bits (linear light). The output 
pixels may be converted to nonlinear light, and after the 
translation, the results may be accurate to 10 bits (non-linear 
light). After conversion from linear to non-linear light, the 
resulting pixels may thus be accurate to 10-bits. 

I. Integrated Eye-Head-Hand Tracking 
AS previously noted, Some embodiments of graphics 

System 112 may be configured to Support eye, head, and or 
hand tracking by modifying the number of Samples per pixel 
at the viewer's point of foveation. 

J. Alpha Blending, Fogging, and Depth-Cueing 
Alpha blending is a technique that controls the transpar 

ency of an object, allowing realistic rendering of translucent 
Surfaces Such as glass or water. Additional atmospheric 
effects that are found in rendering engines include fogging 
and depth cueing. Both of these techniques obscure an object 
as it moves away from the viewer. Blur is also somewhat 
related and may be implemented by performing low-pass 
filtering during the filtering and Sample-to-pixel calculation 
process (e.g., by using a larger extent during the filtering 
process) by sample-to-pixel calculation units 170A-D. An 
alpha value may be generated that can be used to blend the 
current Sample into the Sample buffer. 

Although the embodiments above have been described in 
considerable detail, other versions are possible. Numerous 
variations and modifications will become apparent to those 
skilled in the art once the above disclosure is fully appre 
ciated. It is intended that the following claims be interpreted 
to embrace all Such variations and modifications. Note the 
headings used herein are for organizational purposes only 
and are not meant to limit the description provided herein or 
the claims attached hereto. 
What is claimed is: 
1. A graphics System comprising: 
a graphics processor configured to calculate a plurality of 

Samples, wherein Said graphics processor is program 
mable to vary the positions of Said Samples, 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store Said plurality of 
Samples, wherein Said Samples are double-buffered in 
Said Sample buffer; and 

a Sample-to-pixel calculation unit coupled to read and 
filter said samples from said sample buffer to form 
output pixels in real time. 

2. The graphics System as recited in claim 1, wherein Said 
Sample-to-pixel calculation unit directly deliverS Said output 
pixels to a display device without an intervening frame 
buffer. 

3. The graphics System as recited in claim 1, wherein Said 
graphics processor is configured to vary the positions of Said 
Samples on one of the following bases: a per-frame basis, a 
per-pixel basis, a per-Scan line basis, a per region basis, a 
group of pixels basis, and a group of Scan lines basis. 

4. The graphics System as recited in claim 1, wherein Said 
graphics processor is configured to vary the density of Said 
plurality of Samples using a basis Selected from the group 
comprising: a per-frame basis, a per-pixel basis, a per-Scan 
line basis, a per region basis, a group of pixels basis, and a 
group of Scan lines basis. 

5. The graphics System as recited in claim 1, further 
comprising a Sample position memory coupled to Said 
graphics processor, wherein Said Sample position memory is 
configured to Store sample position information according to 
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one or more Sample position Schemes, wherein Said graphics 
processor is configured to read Said Sample position infor 
mation from Said Sample position memory. 

6. The graphics System as recited in claim 1, further 
comprising a Sample position memory coupled to Said 
graphics processor, wherein Said Sample position memory is 
configured to Store sample position information according to 
one or more Sample position Schemes and one or more 
Sample densities, wherein Said graphics processor is config 
ured to read Said Sample position information corresponding 
to a Selected Sample position Scheme and a Selected Sample 
position density from Said Sample position memory. 

7. The graphics System as recited in claim 1, further 
comprising a programmable Sample position memory 
coupled to Said graphics processor, wherein graphics pro 
ceSSor is configured to read Sample position information 
from Said Sample position memory. 

8. The graphics System as recited in claim 7, wherein Said 
Sample position memory is configured to Store Said Sample 
position information as X-offsets and y-offsets. 

9. The graphics System as recited in claim 7, wherein Said 
Sample position memory is double-buffered. 

10. The graphics system as recited in claim 8, wherein 
Said graphics processor is configured to generate Said 
Samples according to Sample positions calculated by com 
bining Said X- and y-offsets with coordinates Selected from 
the group comprising: predetermined bin coordinates and 
predetermined pixel center coordinates. 

11. The graphics System as recited in claim 7, wherein 
Said Sample-to-pixel calculation unit is configured to filter 
Samples read from Said Sample buffer according to Sample 
position information Stored in Said Sample position memory. 

12. The graphics System as recited in claim 11, wherein 
said Sample-to-pixel calculation unit is configured to filter 
Samples read from Said Sample buffer once per pixel per 
frame in real time. 

13. The graphics System as recited in claim 1, wherein 
Said graphics processor is programmable to Select one of a 
plurality of algorithms with which to generate Said Sample 
positions. 

14. The graphics System as recited in claim 13, wherein 
Said graphics processor is programmable to Select an algo 
rithm with which to generate Said Sample positions for the 
group comprising: regular grid Spacing, Stochastic spacing; 
and perturbed regular grid Spacing. 

15. The graphics System as recited in claim 1, wherein 
Said Sample buffer is Super-Sampled. 

16. The graphics System as recited in claim 1, further 
comprising a dedicated Sample position calculation unit. 

17. The graphics system as recited in claim 16, wherein 
Said Sample position calculation unit comprises hardware 
Selected from the group consisting of: a random number 
generator, a pseudo-random function generator, a table of 
random numbers, and a table of random number Seeds. 

18. A method for rendering images using a graphics 
System, the method comprising: 

receiving a set of 3D graphics data, wherein Said 3D 
graphics data comprises at least one graphics primitive; 

generating a plurality of Sample positions, 
Selecting the Sample positions that are within Said at least 

one primitive; 
calculating Samples corresponding to the Selected Samples 

positions, 
Storing the calculated Samples into a Sample buffer; and 
filtering the Stored Samples to generate output pixels, 

wherein the filtering is performed once per output pixel 
per frame. 
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19. The method as recited in claim 18, wherein said 

generating further comprises Selecting one of a plurality of 
Sample position generating algorithms. 

20. The method as recited in claim 18, wherein said 
generating further comprises Selecting one of the following 
Sample position generating algorithms Stochastic, regular 
grid, or perturbed regular grid. 

21. The method as recited in claim 18, wherein said 
generating comprises calculating random offsets to be added 
to regular grid positions. 

22. The method as recited in claim 18, wherein said 
generating comprises: 

reading random offsets from a table of random offsets, and 
adding the offsets to regular grid positions. 
23. The method as recited in claim 18, wherein said 

generating comprises: 
reading pseudo-random offsets from a table of random 

offsets, and 
adding the offsets to regular grid positions. 
24. The method as recited in claim 22, wherein said 

random offsets comprise X-offsets and y-offsets, and wherein 
Said X-offsets and Said y-offsets are limited to predetermined 
minimum and maximum values. 

25. The method as recited in claim 18, further comprising 
Storing Said generated Sample positions in a double-buffered 
Sample position memory. 

26. The method as recited in claim 18, wherein each 
Sample has a corresponding Sample position, wherein the 
Samples are organized into bins, wherein each bin has a 
particular Screen position, wherein each Sample position is 
an X-offset and y-offset from the corresponding bin's X and 
y Screen position. 

27. The method as recited in claim 18, wherein said 
generating comprises evaluating a formula using a Stored 
counter value as input. 

28. The method as recited in claim 18, wherein said 
Sample buffer is Super-Sampled. 

29. The method as recited in claim 18, wherein a first 
portion of each Sample's information is double-buffered, and 
wherein a Second portion of each Sample's information is 
single buffered. 

30. A computer System comprising: 
a microprocessor, 
a main memory coupled to Said microprocessor; and 
a graphics accelerator coupled to Said main memory, 

wherein Said graphics accelerator comprises: 
a graphics processor configured to receive instructions 

and data from Said microprocessor and Said main 
memory and calculate a plurality of Samples corre 
sponding thereto; 

a Sample buffer coupled to Said graphics processor and 
configured to Store said Samples, wherein Said 
Samples are at least partially double buffered in Said 
Sample buffer; and 

a Sample-to-pixel calculation unit couple to Said Sample 
buffer, wherein Said calculation unit is configured to 
read and filter Samples from Said Sample buffer to 
form output pixels. 

31. The computer system as recited in claim 30, wherein 
Said graphics processor is configured to vary the positioning 
Scheme used to generate Said Samples on one of the follow 
ing bases: a per-frame basis, a per-pixel basis, a group of 
pixels basis, a per-Scan line basis, a multiple-Scan line basis, 
or a per frame region basis. 

32. The computer system as recited in claim 30, wherein 
Said graphics processor is configured to vary the density of 
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Said plurality of Samples on one of the following bases: a 
per-frame basis, a per-pixel basis, a group of pixels basis, a 
per-Scan line basis, a multiple-Scan line basis, or a per frame 
region basis. 

33. The computer system as recited in claim 30, further 
comprising a Sample position memory coupled to Said 
graphics processor, wherein Said Sample position memory is 
configured to Store sample position information according to 
one or more Sample position Schemes, wherein Said graphics 
processor is configured to read Said Sample position infor 
mation from Said Sample position memory. 

34. The computer system as recited in claim 30, further 
comprising a Sample position memory coupled to Said 
graphics processor, wherein Said Sample position memory is 
configured to Store sample position information according to 
one or more Sample position Schemes and one or more 
Sample densities, wherein Said graphics processor is config 
ured to read Said Sample position information corresponding 
to a Selected Sample position Scheme and a Selected Sample 
position density from Said Sample position memory. 

35. The computer system as recited in claim 30, further 
comprising a programmable Sample position memory 
coupled to Said graphics processor, wherein Said graphics 
processor is configured to read Sample position information 
from Said Sample position memory. 

36. The computer system as recited in claim 35, wherein 
Said Sample position memory is configured to Store Said 
Sample position information as X-offsets and y-offsets. 

37. A graphics device driver embodied on a carrier media, 
wherein Said graphics device driver comprises a plurality of 
instructions, wherein Said plurality of instructions are con 
figured to cause a graphics System to: 

Select a particular algorithm for generating Sample posi 
tions, 

generate a plurality of Sample positions, 
Store the generated Sample positions in a Sample position 
memory; 

read the Sample positions, and 
generate corresponding Sample pixels in real time. 
38. The graphics device driver as recited in claim 37, 

wherein Said plurality of instructions are further configured 
to instruct a graphics System to: 

read 3D graphics data from a main System memory, 
wherein Said 3D graphics data comprises a graphics 
primitive; 

determine which of the Sample positions from the Sample 
position memory are within the graphics primitive; 

render a Sample for each Sample position within the 
graphics primitive, and 

store the samples in a sample buffer in a double buffered 
C. 

39. The graphics device driver as recited in claim 38, 
wherein Said plurality of instructions are further configured 
to instruct a graphics System to: 

output the Samples Stored in the Sample buffer to a 
Sample-to-pixel calculation unit; and 

filter the Samples into output pixels for display on a 
display device. 

40. The graphics device driver as recited in claim 37, 
wherein Said particular algorithm is Selected from the group 
comprising: Stochastic spacing, perturbed regular grid 
Spacing, and regular grid Spacing. 

41. The graphics device driver as recited in claim 37, 
wherein Said carrier medium is a computer-readable 
medium. 
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42. The graphics device driver as recited in claim 37, 

wherein Said carrier medium is a transmission medium. 
43. A graphics System comprising: 
a programmable double-buffered Sample position 

5 memory including a first Sample position buffer and a 
Second Sample position buffer; 

a graphics processor configured to calculate a plurality of 
Samples based on Sample positions read from the first 

1O Sample position buffer; 
a Sample buffer coupled to Said graphics processor and 

configured to receive and Store Said plurality of 
Samples, wherein Said Samples are double-buffered in 
Said Sample buffer; and 

a Sample-to-pixel calculation unit coupled to read and 
filter Said Samples from Said Sample buffer in real time 
to form output pixels according to a programmable 
filter, wherein the programmable filter applies weights 
to the Samples and Sums the weighted Samples, wherein 
the weights are based on the Sample positions from the 
Second Sample position buffer. 

44. The graphics System of claim 43, wherein the Sample 
positions Stored in the first Sample position buffer and the 
Second Sample position buffer are offsets relative to a regular 

25 grid of Sample bins. 
45. A graphics System comprising: 

15 

a Sample position memory configured to Store positional 
information and to generate a first plurality of Sample 
positions within a pixel based on the positional infor 

3O mation; 
a graphics processor configured to receive the first plu 

rality of Sample positions from- the sample position 
memory and to calculate one or more first samples for 
the pixel respectively at one or more Sample positions 
of the first plurality, wherein the Sample position 
memory is configured to vary the first plurality Sample 
positions within the pixel between a first frame and a 
Second frame; 

35 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store Second Samples includ 
ing Said one or more first Samples, and 

40 

a Sample-to-pixel calculation unit coupled to read and 
filter said Second Samples from Said Sample buffer to 
generate output pixels for display. 

46. The graphics system of claim 45, wherein the number 
of Sample positions in Said 

45 

first plurality remains constant between the first frame and 
the Second frame. 

47. The graphics system of claim 45, wherein the posi 
tional information comprises a random number table, 
wherein the Sample position memory accesses the random 
number table differently in the second frame than in the first 
frame So that the first plurality of Sample positions in the 
pixel vary between the first frame and the Second frame. 

48. The graphics system of claim 45, wherein the sample 
position memory is configured to programmably generate 
the first plurality of Sample positions according to a Selected 
Sample positions Scheme. 

49. The graphics of claim 45, wherein the sample position 
memory is double buffered. 

50. A graphics System for generating displayable images, 
the graphics System comprising: 

50 

55 

60 

a graphics processor configured to generate a plurality of 
Sample positions in a first pixel, to calculate one or 
more first Samples at one or more of the Sample 
positions respectively, wherein the graphics processor 
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is programmable to vary the plurality of Sample posi 
tions in the first pixel, 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store Second Samples includ 
ing Said one or more first Samples, and 

a Sample-to-pixel calculation unit coupled to read and 
filter said Second Samples from Said Sample buffer to 
generate a plurality of pixels. 

51. The graphics system of claim 50 wherein graphics 
processor is programmable to generate the plurality of 
Sample positions in the first bin according to a Selected 
Sample positioning Scheme Selected from the group consist 
ing of a regular grid positioning Scheme, a perturbed regular 
grid positioning Scheme, and a stochastic Sample positioning 
Scheme. 

52. The graphics system of claim 50 wherein the sample 
to-pixel calculation unit is configured to provide the pixels 
to a display device without an intervening buffer for frames 
of Said pixels. 

53. A graphics System for rendering displayable images, 
the graphics System comprising: 

a graphics processor configured to generate a plurality of 
Sample positions for each pixel in at least a Subset of a 
plurality of pixels, to determine which of Said plurality 
of Sample positions in each pixel of Said at least a 
Subset reside interior to a first primitive, to calculate 
Samples at the interior Sample positions, wherein Said 
graphics processor is programmable to vary Said plu 
rality of Samples positions in at least one of Said pixels 
in Said at least a Subset; 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store the Samples, and 

a Sample-to-pixel calculation unit coupled to read and 
filter the Samples from the Sample buffer to generate a 
plurality of pixels. 

54. A graphics System comprising: 
a graphics processor configured to calculate a plurality of 

Samples corresponding to a first pixel, wherein Said 
graphics processor is programmable to vary the posi 
tions of Said Samples for the first pixel, wherein the 
graphics processor is configured to calculate a first 
plurality of Samples at first Sample positions in the first 
pixel in a first frame and to calculate a Second plurality 
of Samples at Second Sample positions in the first pixel 
in a Second frame, wherein Said first Sample positions 
are different than Said Second Sample positions, 

a Sample buffer configured to receive and Store one or 
more of Said first plurality of Samples in the first frame 
and to receive and Store one or more of Said Second 
plurality of Samples in the Second frame; and 

a Sample-to-pixel calculation unit coupled to read and 
filter Samples from the Sample buffer to generate output 
pixels including Said first pixel, wherein the Sample 
to-pixel calculation unit is operable to read and filter at 
least Said one or more Samples of Said first plurality of 
samples from the sample buffer to form the first pixel 
in the first frame, and wherein the Sample-to-pixel 
calculation unit is operable to read and filter at least 
Said one or more Samples of Said Second plurality of 
samples from the sample buffer to form the first pixel 
in the Second frame. 

55. A graphics System comprising: 
a graphics processor configured to calculate a plurality of 

Samples for each of a plurality of pixels, wherein Said 
graphics processor is programmable to vary the posi 
tions of Said Samples within at least one of Said plurality 
of pixels, 
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a Sample buffer coupled to Said graphics processor and 

configured to receive and Store Said plurality of 
Samples, wherein Said Samples are double-buffered in 
Said Sample buffer; and 

a Sample-to-pixel calculation unit coupled to read and 
filter said samples from said sample buffer to form 
output pixels in real time. 

56. A graphics System comprising: 
a Sample position memory configured to Store positional 

information and to generate a first plurality of Sample 
positions within a bin based on the positional informa 
tion; 

a graphics processor configured to receive the first plu 
rality of Sample positions from the Sample position 
memory and to calculate one or more first Samples for 
the bin respectively at one or more Sample positions of 
the first plurality, wherein the Sample position memory 
is configured to vary the first plurality Sample positions 
within the bin between a first frame and a second frame; 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store Second Samples includ 
ing Said one or more first Samples, and 

a Sample-to-pixel calculation unit coupled to read and 
filter said Second Samples from Said Sample buffer to 
generate output pixels for display. 

57. The graphics system of claim 56, wherein the number 
of Sample positions in Said 

first plurality remains constant between the first frame and 
the Second frame. 

58. The graphics system of claim 56, wherein the posi 
tional information comprises a random number table, 
wherein the Sample position memory accesses the random 
number table differently in the second frame than in the first 
frame So that the first plurality of Sample positions in the bin 
vary between the first frame and the second frame. 

59. The graphics system of claim 56, wherein the sample 
position memory is configured to programmably generate 
the first plurality of Sample positions according to a Selected 
Sample positions Scheme. 

60. A graphics System for generating displayable images, 
the graphics System comprising: 

a graphics processor configured to generate a plurality of 
Sample positions in a first bin, to calculate one or more 
first Samples at one or more of the Sample positions 
respectively, wherein the graphics processor is pro 
grammable to vary the plurality of Sample positions in 
the first bin; 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store Second Samples includ 
ing Said one or more first Samples, and 

a Sample-to-pixel calculation unit coupled to read and 
filter said Second Samples from Said Sample buffer to 
generate a plurality of pixels. 

61. The graphics system of claim 60 wherein the sample 
buffer is double-buffered. 

62. The graphics system of claim 60 wherein graphics 
processor is programmable to generate the plurality of 
Sample positions in the first bin according to a Selected 
Sample positioning Scheme. 

63. The graphics system of claim 62 wherein the sample 
positioning Scheme is Selected from the group consisting of: 
a regular grid positioning Scheme, a perturbed regular grid 
positioning Scheme, and a Stochastic Sample positioning 
Scheme. 

64. The graphics system of claim 60 wherein the sample 
to-pixel calculation unit is configured to provide the pixels 
to a display device without an intervening buffer for frames 
of Said pixels. 
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65. A graphics System for rendering displayable images, 
the graphics System comprising: 

a graphics processor configured to generate a plurality of 
Sample positions for each bin in at least a Subset of a 
plurality of bins, to determine which of said plurality of 
Sample positions in each bin of Said at least a Subset 
reside interior to a first primitive, to calculate Samples 
at the interior Sample positions, wherein Said graphics 
processor is programmable to vary Said plurality of 
Samples positions in at least one of Said bins in Said at 
least a Subset; 

a Sample buffer coupled to Said graphics processor and 
configured to receive and Store the Samples, and 

a Sample-to-pixel calculation unit coupled to read and 
filter the Samples from the Sample buffer to generate a 
plurality of pixels. 
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66. The graphics system of claim 65, wherein the graphics 

processor is configured to generate the plurality Sample 
positions in each bin of Said at least a Subset by accessing a 
table of random numbers, wherein the graphics processor 
accesses the table of random numbers differently in different 
frames resulting in a variation of the plurality of Sample 
positions between a first frame and a Second frame. 

67. The graphics system of claim 65, wherein the graphics 
processor is programmable to generate the plurality of 
Sample positions in each bin of Said at least a Subset 
according to a Selected Sample positioning Scheme. 

68. The graphics system of claim 65, wherein the graphics 
processor is configured generate the plurality of Sample 
positions for each bin of Said at least a Subset by adding 
Sample position offsets to coordinates of Said bin. 

k k k k k 


