
(12) United States Patent
Deering et al.

USOO641 7861B1

(10) Patent No.: US 6,417,861 B1
(45) Date of Patent: Jul. 9, 2002

(54)

(75)

(73)

(21)
(22)

(51)

(52)

(58)

(56)

GRAPHICS SYSTEM WITH
PROGRAMMABLE SAMPLE POSITIONS

Inventors: Michael F. Deering, Los Altos,
Nathaniel David Naegle; Scott Nelson,
both of Pleasanton, all of CA (US)

Assignee: Sun Microsystems, Inc., Palo Alto, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/251,449
Filed: Feb. 17, 1999

Int. Cl... G09G 5/02

U.S. Cl. ... 345/589

Field of Search 345/431, 432,
345/136, 137, 138, 426, 428, 589, 611,

615, 673

References Cited

U.S. PATENT DOCUMENTS

5,008,838 A * 4/1991 Kelleher et al. 364/522
5,025,400 A 6/1991 Cook et al. 364/522
5,117.289 A 5/1992 Farley et al.
5,206.628 A 4/1993 Kelleher 340/703
5,287,438 A 2/1994 Kelleher 395/132
5,446,834 A 8/1995 Deering
5,594,854 A 1/1997 Baldwin et al.
5,619,438 A 4/1997 Farley et al.
5,638,176 A 6/1997 Hobbs et al.
5,745,125 A * 4/1998 Deering et al. 34.5/503
5,757.375 A 5/1998 Kawase
5,774,110 A 6/1998 Edelson 345/131
5,793,371 A 8/1998 Deering
5,809,219 A * 9/1998 Pearce et al. 345/426
6,184,891. B1 * 2/2001 Blinn 345/428
6,232,974 B1 * 5/2001 Horvitz et al. 345/419
6,330,000 B1 * 12/2001 Fenney et al. 34.5/586

inds - 20

is to -202

Converting, Lighting, a 208A
Transforming

FOREIGN PATENT DOCUMENTS

EP O 463 700 1/1992
EP O 506 429 9/1992
GB O 278 524 11/1994
WO 91/14995 10/1991

OTHER PUBLICATIONS

Bernfalk, “The Memory System Makes The Difference,” (C)
1999 Evans & Sutherland Computer Corporation, pp. 1-11.
Patent Abstract of Japan, vol. 098, No. 007, Mar. 31, 1998
and JP 08 063608 A.

“Simulating Peripheral Vision in Immersive Virtual Envi
ronments.” M. Slater, et al., Nov. 1993, No. 6, Headington
hill Hall, Oxford, GB, pp. 80–82, 91-94, and 105.

(List continued on next page.)

Primary Examiner Mark Zimmerman
ASSistant Examiner-Enrique L. Santiago
(74) Attorney, Agent, or Firm-Conley, Rose & Tayon PC
(57) ABSTRACT

A method and computer graphics System for rendering
images using programmable Sample positions is disclosed.
In one embodiment, the computer graphics System may
comprise a graphics processor, a Sample buffer, and a
Sample-to-pixel calculation unit. The graphics processor
may be configured to generate a plurality of Samples using
a Sample positioning algorithm Selected from a program
mable memory or generated by programmable hardware.
The Sample buffer, which is coupled to the graphics
processor, may be configured to Store the Samples. The
sample buffer may be super-sampled and double buffered.
The Sample-to-pixel calculation unit is programmable to
Select a variable number of Stored Samples from the Sample
buffer to filter into an output pixel. The sample-to-pixel
calculation unit performs the filter process in real-time, and
may use a number of different filter types. The algorithms
used to position the Samples may position the Samples
according to a regular grid, a perturbed regular grid, or a
Stochastic grid.

68 Claims, 22 Drawing Sheets

-- Decompress graphics data - 206

212-Dji n the -213

224 - Cetermins which samplesiall-220
within the polygon being

rendered

US 6,417,861 B1
Page 2

OTHER PUBLICATIONS Computer Graphics, “Principles and Practice,” Second Edi
The RenderMan Companion, “A Programmer's Guide to tion. In C, Foley, et al., Addison-Wesley Publishing Co.,
Realistic Computer Graphics,” Steve Upstill, 1990, pp. 1996, pp. 620–643–645, 788–791.
137-146, 171-178, 193–237, and 273–309. “Spatial Vision,” De Valois, et al., Oxford Psychology Series
“Principles of Digital Image Synthesis,” Andrew S. Glass- No. 14, 1990, pp38–60.
ner, Vol. 1, Morgan Kaufman Publisher's, Inc., San Fran
cisco, CA, 1995, pp. 243–244, 359-365. International Search Report, Jan. 6, 1999, PCT/US
“CIG Scene Realism: The World Tomorrow,” Cosman, et al., 99/03270.
Evans & Sutherland Computer Corporation, Salt Lake City,
UT, Jan. 29, 1999, 18 pages. * cited by examiner

US 6,417,861 B1 Sheet 1 of 22 Jul. 9, 2002 U.S. Patent

U.S. Patent Jul. 9, 2002 Sheet 2 of 22 US 6,417,861 B1

Main Memory
106

104

Graphics
Accelerator

112

Display Device
84

Fig. 2

US 6,417,861 B1 Sheet 3 of 22 Jul. 9, 2002 U.S. Patent

~ zu

US 6,417,861 B1 Sheet 4 of 22 Jul. 9, 2002 U.S. Patent

US 6,417,861 B1 Sheet 6 of 22 Jul. 9, 2002 U.S. Patent

Z '61)

73

U.S. Patent Jul. 9, 2002 Sheet 7 of 22 US 6,417,861 B1

Regular Grid

U.S. Patent Jul. 9, 2002 Sheet 8 of 22 US 6,417,861 B1

US 6,417,861 B1 Sheet 9 of 22 Jul. 9, 2002 U.S. Patent

Op 61-3

US 6,417,861 B1

??u (n ?AIOAuOO

Sheet 10 of 22 Jul. 9, 2002 U.S. Patent

US 6,417,861 B1

807

U.S. Patent

US 6,417,861 B1 Sheet 12 of 22 Jul. 9, 2002 U.S. Patent

TILL ?|| || || ||

TTTT TILLI__
FT EEN TTTTTTTILL

TTTTTTTTTTLD || || || || || TTTTTTTTTT|| |_|_|_|_|_|_|_|_|_| TTTTTTTTTTLLLLLL || |_|_|_| TTTTTTTTTTTTTT?LLLLLL TTTTTTTTTTTTTTTTT TIL LLLLLLLLLLL).| | | | | | | | | | TTTTTTT????W?G?T?STITILLL

U.S. Patent Jul. 9, 2002 Sheet 13 of 22 US 6,417,861 B1

Receive graphics Commands
and data

200

Route graphics data to 202
rendering units

204

graphics data
compressed? Yes DeCompress graphicS data 206

Converting, Lighting, 208A
Transforming

Determine which regions
intersect each triangle 208B

(this may determine the density
of samples to be calculated)

Select one of the sample 214
patterns in the sample pattern

memory
210

ls
triangle contained

within a single Determine which bins may 216 region? Contain samples that will
Contribute to the pixel

212-N Divide triangle into one or more
Smaller triangles along region

boundaries

Read offsets for samples in the - 218
selected bins from sample

position table

224 Render samples and store Determine which samples fall 220
them (via schedule unit) in within the polygon being

sample buffer rendered

Fig. 12

U.S. Patent Jul. 9, 2002 Sheet 14 of 22 US 6,417,861 B1

-,+,x-major +,+,x-major
+X

-,-,x-major +,-,x-major

-,-,y-major-,-, y-major

Fig. 12A

U.S. Patent Jul. 9, 2002 Sheet 15 of 22 US 6,417,861 B1

Read a stream of bins from the L-250 Multiply sample's values (e.g., - 264
sample buffer Color and al by Weighting

aCO

Store One or more Scanlines 252
WOrth of bins in Cache Sum Weighted values 266

Determine which bins may
contain samples that contribute - 254 ACCumulate total sample 268 Weights to the pixel Currently being

Convolved

Divide by Cumulative weighting - 270
Examine each sample in the 256 factor to normalize the pixel

Selected bins

258 Output final pixel value 274

sample - - - - -

Within limits of No Set sapleweight
COnvolution

filter? 262

Calculate Weighting factor for
sample (e.g., based on

distance from Center of pixel to
sample)

Fig. 13

US 6,417,861 B1 Sheet 16 of 22 Jul. 9, 2002 U.S. Patent

24%

0992 = 8,06|| +

U.S. Patent Jul. 9, 2002 Sheet 17 of 22 US 6,417,861 B1

Peripheral 350
Medial 352
Foveal
354

Y 162

Fig. 15

162 N Peripheral Top
350A

Medial Top
Peripheral Peripheral

Left Medial Foveal All 'El Right
Left ight 35OD 354 35OB

- 352D -m 352B

Medial Bottom
352C

Peripheral Bottom

362

US 6,417,861 B1 Sheet 18 of 22 Jul. 9, 2002 U.S. Patent

ogg >NO OTOZ

U.S. Patent Jul. 9, 2002 Sheet 19 of 22 US 6,417,861 B1

Display Device
84

Peripheral

FOCal Point Main Character
362

Fig. 19A

Display Device
84

Peripheral

Main Character FoCal Point
362 402

Fig. 19B

U.S. Patent Jul. 9, 2002 Sheet 20 of 22 US 6,417,861 B1

U.S. Patent Jul. 9, 2002 Sheet 21 of 22 US 6,417,861 B1

|O O.
Nu/
-O-

U

Fig. 21B

Fig. 21C

U.S. Patent Jul. 9, 2002 Sheet 22 of 22 US 6,417,861 B1

US 6,417,861 B1
1

GRAPHICS SYSTEM WITH
PROGRAMMABLE SAMPLE POSITIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of computer
graphics and, more particularly, to high performance graph
ics Systems.

2. Description of the Related Art
A computer System typically relies upon its graphics

System for producing visual output on the computer Screen
or display device. Early graphics Systems were only respon
Sible for taking what the processor produced as output and
displaying it on the Screen. In essence, they acted as Simple
translators or interfaces. Modern graphics Systems, however,
incorporate graphics processors with a great deal of pro
cessing power. They now act more like coprocessors rather
than simple translators. This change is due to the recent
increase in both the complexity and amount of data being
Sent to the display device. For example, modem computer
displays have many more pixels, greater color depth, and are
able to display more complex images with higher refresh
rates than earlier models. Similarly, the images displayed are
now more complex and may involve advanced techniques
Such as anti-aliasing and texture mapping.
AS a result, without considerable processing power in the

graphics System, the CPU would spend a great deal of time
performing graphics calculations. This could rob the com
puter System of the processing power needed for performing
other tasks associated with program execution and thereby
dramatically reduce overall System performance. With a
powerful graphics system, however, when the CPU is
instructed to draw a box on the Screen, the CPU is freed from
having to compute the position and color of each pixel.
Instead, the CPU may send a request to the Video card Stating
“draw a box at these coordinates.” The graphics System then
draws the box, freeing the processor to perform other taskS.

Generally, a graphics System in a computer (also referred
to as a graphics System) is a type of Video adapter that
contains its own processor to boost performance levels.
These processors are specialized for computing graphical
transformations, So they tend to achieve better results than
the general-purpose CPU used by the computer System. In
addition, they free up the computer's CPU to execute other
commands while the graphics System is handling graphics
computations. The popularity of graphical applications, and
especially multimedia applications, has made high perfor
mance graphics Systems a common feature of computer
Systems. Most computer manufacturers now bundle a high
performance graphics System with their Systems.

Since graphics Systems typically perform only a limited
Set of functions, they may be customized and therefore far
more efficient at graphics operations than the computer's
general-purpose central processor. While early graphics SyS
tems were limited to performing two-dimensional (2D)
graphics, their functionality has increased to Support three
dimensional (3D) wire-frame graphics, 3D Solids, and now
includes Support for three-dimensional (3D) graphics with
textures and Special effects Such as advanced shading,
fogging, alpha-blending, and Specular highlighting.

The processing power of 3D graphics Systems has been
improving at a breakneck pace. A few years ago, Shaded
images of Simple objects could only be rendered at a few
frames per Second, while today's Systems Support rendering
of complex objects at 60 Hz or higher. At this rate of

15

25

35

40

45

50

55

60

65

2
increase, in the not too distant future, graphics Systems will
literally be able to render more pixels than a Single human's
Visual System can perceive. While this extra performance
may be uSeable in multiple-Viewer environments, it may be
wasted in more common primarily Single-viewer environ
ments. Thus, a graphics System is desired which is capable
of matching the variable nature of the human resolution
System (i.e., capable of putting the quality where it is needed
or most perceivable).
While the number of pixels is an important factor in

determining graphics System performance, another factor of
equal import is the quality of the image. For example, an
image with a high pixel density may still appear unrealistic
if edges within the image are too sharp or jagged (also
referred to as “aliased”). One well-known technique to
overcome these problems is anti-aliasing. Anti-aliasing
involves Smoothing the edges of objects by shading pixels
along the borders of graphical elements. More specifically,
anti-aliasing entails removing higher frequency components
from an image before they cause disturbing visual artifacts.
For example, anti-aliasing may Soften or Smooth high con
trast edges in an image by forcing certain pixels to inter
mediate values (e.g., around the Silhouette of a bright object
Superimposed against a dark background).

Another visual effect used to increase the realism of
computer images is alpha blending. Alpha blending is a
technique that controls the transparency of an object, allow
ing realistic rendering of translucent Surfaces Such as water
or glass. Another effect used to improve realism is fogging.
Fogging obscures an object as it moves away from the
Viewer. Simple fogging is a special case of alpha blending in
which the degree of alpha changes with distance So that the
object appears to Vanish into a haze as the object moves
away from the viewer. This simple fogging may also be
referred to as "depth cueing or atmospheric attenuation,
i.e., lowering the contrast of an object So that it appears leSS
prominent as it recedes. More complex types of fogging go
beyond a simple linear function to provide more complex
relationships between the level of translucence and an
objects distance from the viewer. Current state of the art
Software Systems go even further by utilizing atmospheric
models to provide low-lying fog with improved realism.
While the techniques listed above may dramatically

improve the appearance of computer graphics images, they
also have certain limitations. In particular, they may intro
duce their own aberrations and are typically limited by the
density of pixels displayed on the display device.
AS a result, a graphics System is desired which is capable

of utilizing increased performance levels to increase not
only the number of pixels rendered but also the quality of the
image rendered. In addition, a graphics System is desired
which is capable of utilizing increases in processing power
to improve the results of graphics effects Such as anti
aliasing.

Prior art graphics Systems have generally fallen short of
these goals. Prior art graphics Systems use a conventional
frame buffer for refreshing pixel/video data on the display.
The frame buffer stores rows and columns of pixels that
exactly correspond to respective row and column locations
on the display. Prior art graphics System render 2D and/or
3D images or objects into the frame buffer in pixel form, and
then read the pixels from the frame buffer during a Screen
refresh to refresh the display. Thus, the frame buffer stores
the output pixels that are provided to the display. To reduce
Visual artifacts that may be created by refreshing the Screen
at the same time the frame buffer is being updated, most
graphics systems frame buffers are double-buffered.

US 6,417,861 B1
3

To obtain more realistic images, Some prior art graphics
Systems have gone further by generating more than one
Sample per pixel. AS used herein, the term "sample” refers
to calculated color information that indicates the color, depth
(Z), transparency, and potentially other information, of a
particular point on an object or image. For example a Sample
may comprise the following component values: a red value,
a green Value, a blue value, a Z value, and an alpha value
(e.g., representing the transparency of the Sample). A sample
may also comprise other information, e.g., a Z-depth value,
a blur value, an intensity value, brighter-than-bright
information, and an indicator that the Sample consists par
tially or completely of control information rather than color
information (i.e., "sample control information”). By calcu
lating more samples than pixels (i.e., Super-Sampling), a
more detailed image is calculated than can be displayed on
the display device. For example, a graphics System may
calculate four Samples for each pixel to be output to the
display device. After the Samples are calculated, they are
then combined or filtered to form the pixels that are stored
in the frame buffer and then conveyed to the display device.
Using pixels formed in this manner may create a more
realistic final image because overly abrupt changes in the
image may be Smoothed by the filtering process.

These prior art Super-Sampling Systems typically generate
a number of Samples that are far greater than the number of
pixel locations on the display. These prior art Systems
typically have rendering processors that calculate the
Samples and Store them into a render buffer. Filtering hard
ware then reads the samples from the render buffer, filters
the Samples to create pixels, and then Stores the pixels in a
traditional frame buffer. The traditional frame buffer is
typically double-buffered, with one side being used for
refreshing the display device while the other side is updated
by the filtering hardware. Once the samples have been
filtered, the resulting pixels are Stored in a traditional frame
buffer that is used to refresh to display device. These
Systems, however, have generally Suffered from limitations
imposed by the conventional frame buffer and by the added
latency caused by the render buffer and filtering. Therefore,
an improved graphics System is desired which includes the
benefits of pixel Super-Sampling while avoiding the draw
backs of the conventional frame buffer.

SUMMARY OF THE INVENTION

The present invention comprises a computer graphics
System that utilizes a graphics processor, a Sample buffer,
and a programmable Sample-to-pixel calculation unit. In one
embodiment, the graphics System may be programmable to
generate Sample positions according to a number of different
Sample position algorithms. This programmability may
potentially reduce visual artifacts or improve the realism of
the image displayed (depending upon the implementation
and algorithm or algorithms Selected).

In one embodiment, the graphics processor maybe con
figured generate a plurality of Samples according to a
Selected Sample position algorithm and Stores them into a
Sample buffer. The graphics processor preferably generates
and Stores more than one Sample for at least a Subset of the
pixel locations on the display. Thus, the Sample buffer may
be a Super-Sampled Sample buffer which Stores a number of
Samples that, in Some embodiments, may be far greater than
the number of pixel locations on the display. In other
embodiments, the total number of Samples may be closer to,
equal to, or even less than the total number of pixel locations
on the display device, but the Samples may be more densely
positioned in certain areas and leSS densely positioned in
other areas.

15

25

35

40

45

50

55

60

65

4
The Sample-to-pixel calculation unit is configured to read

the Samples from the Super-Sampled Sample buffer and filter
or convolve the Samples into respective output pixels,
wherein the output pixels are then provided to refresh the
display. Note as used herein the terms “filter” and “con
Volve” are used interchangeably and refer to mathematically
manipulating one or more Samples to generate a pixel (e.g.,
by averaging, by applying a convolution function, by
Summing, by applying a filtering function, by weighting the
Samples and then manipulating them, by applying a ran
domized function, etc.). The sample-to-pixel calculation unit
Selects one or more Samples and filters them to generate an
output pixel. Note the number of Samples Selected and or
filtered by the Sample-to-pixel calculation unit may be one
or, in the preferred embodiment, greater than one.

In Some embodiments, the number of Samples used to
form each pixel may vary. For example, the underlying
average Sample density in the Sample buffer may vary, the
extent of the filter may vary, or the number of samples for
a particular pixel may vary due to Stochastic variations in the
Sample density. In Some embodiments the number may vary
on a per-pixel basis, on a per-Scan line basis, on a per-region
basis, on a per-frame basis, or the number may remain
constant. The Sample-to-pixel calculation unit may acceSS
the Samples from the Super-Sampled Sample buffer, perform
a real-time filtering operation, and then provide the resulting
output pixels to the display in real-time. The graphics System
may operate without a conventional frame buffer, i.e., the
graphics System does not utilize a conventional frame buffer
which Stores the actual pixel values that are being refreshed
on the display. Note Some displayS may have internal frame
buffers, but these are considered an integral part of the
display device, not the graphics System. Thus, the Sample
to-pixel calculation units may calculate each pixel for each
Screen refresh on a real time basis. AS used herein, the term
“real-time” refers to a function that is performed at or near
the display device’s “refresh rate.” “On-the-fly” means at,
near, or above the human visual System's perception capa
bilities for motion fusion (how often a picture must be
changed to give the illusion of continuous motion) and
flicker fusion (how often light intensity must be changed to
give the illusion of continuous). These concepts are further
described in the book “Spatial Vision” by Russel L. De
Valois and Karen K. De Valois, Oxford University Press,
1988.
The Sample-to-pixel calculation unit may be programmed

to vary the number of Samples used to generate respective
output pixels. For example, the number of Samples used may
vary according to the location of the output pixel, e.g., the
distance of the output pixel from a viewer's point of fove
ation. As used herein, the term “point of foveation” refers to
a point (e.g., on a display Screen) on which the center of a
viewer's eyes' field of vision is focused. This point may
move as the viewer's eyes move. For example, the point of
foveation (which moves as the viewer's eyes move) may be
located at the exact center of the display Screen when the
Viewer is focussing on a Small object displayed at the center
of the Screen.
The human visual System has varying levels of acuity,

with the highest level of acuity occurring in the vicinity of
the foveal pit of the retina. The foveal region receives light
from the point of foveation and typically accounts for only
a few degrees at the center of a humans of field of vision.
Thus, to best match the human visual System, the graphics
System may, in Some embodiments, be configured to detect
where the viewer's point of foveation is relative to the
display device. This allows the graphics System to match the

US 6,417,861 B1
S

Sample density to the human eye's acuity. Thus, more
Samples (and more processing power) will be allocated to
areas of the display device that will be perceived by the
highest acuity regions of the human visual System. Similarly,
leSS Samples and processing power will be devoted to
regions that will be perceived by the lower acuity regions of
the human visual system. Note however, it is not just the
density of rods and cones in the eye that may be matched.
Other factorS also influence the perception of the human
Visual System, including the lens System, chromatic
aberrations, and the neural pathways to the eye. For the
purposes of matching computer displays to human retinal
perception, the human brain's processing limits for Visual
input provides a useful target that future graphics Systems
may strive to match or exceed.

This type of graphics System may be implemented in a
number of different ways. For example, eye-tracking Sensors
may be used to determine in what direction the viewer's eyes
are directed. This may provide data with which to predict
where the viewer's point of foveation is. Typically, head
mounted eye-tracking Sensors may use an additional head
tracking Sensor. Taken together, the eye- and head-tracking
Sensors can provide useful information about the position
and movement of a viewer's point of foveation relative to
the display device. Even further accuracy may be obtained
using two eye-tracking Sensors (i.e., one for each of the
viewer's eyes). Thus two points of foveation may be
detected for each viewer. Furthermore, in Some configura
tions multiple viewers may each have their points of fove
ation detected. Other configurations may utilize a hand
tracking Sensor (e.g., pointing wand or data glove) in
combination with head- and or eye-tracking Sensors.
Another configuration may utilize a head-mounted display
with various motion, direction, eye-tracking and or head
tracking Sensors. A higher number of Samples may be
allocated to a region of a predetermined size centered at the
calculated point of foveation to compensate for inaccuracies
in the Sensors (i.e., to ensure that the actual point of
foveation will receive pixels generated from a high Sample
density). Note as used herein, the term "gaze tracking unit
refers to any combination of eye-tracking, head-tracking,
hand tracking, and or body tracking Sensors that provide
information concerning one or more viewers points of
foveation (there can be two points of foveation for each
viewer). Examples of gaze tracking units may include one or
more of the following: video cameras, “EMG' sensors that
detect electrical currents in muscles, an eye-and-head
tracker, an eye tracker, a head tracker, a hand tracker, a data
glove, a wand, a data Suit, a mouse, a body position Sensor,
a body position Sensing chair, motion Sensors, pressure
Sensors, acoustic Sensors, and infra-red ScannerS/Sensors. In
other embodiments, the System may assume that the View
er's point of foveation is located at a fixed location near the
center of the Screen, or at a varying point of interest on the
display created by the Software application being executed.

Thus, the graphics System may be configured to utilize a
greater number of Samples in computing pixel values in
areas where the viewers are able to perceive them, and a
Second lesser number of Samples in computing pixel values
in other areas where the Viewers are not able to perceive
them. The Sample-to-pixel calculation unit, in varying the
number of Samples used, preferably varies the extent of the
filter (e.g., the radius of the filter if a circularly Symmetrical
filter is used) used for generation of respective output pixels,
which affects the number of Samples used in calculating the
output pixel (in addition, the rendering unit could have
already varied the sample density). Alternatively, the

5

15

25

35

40

45

50

55

60

65

6
Sample-to-pixel calculation unit may select Samples using
other methods, e.g., randomly Selecting/discarding Samples
to vary the number of Samples during the filtering process.
The graphics processor may be Similarly configured to

vary the density of Samples generated or rendered into the
Super-Sampled Sample buffer for different regions of the
displayed image. These different Sample density regions
may be positioned based on the point of interest, cursor
position, eye tracking, head tracking, etc. In other
embodiments, the Sample density may be varied on a Scan
line basis, a per-pixel basis, or a per-frame region basis.

In Some embodiments, the graphics processor is further
configurable to vary the positioning of the Samples gener
ated. For example, the Samples may be positioned according
to a regular grid, a perturbed regular gird, or a random
distribution acroSS the image. The Sample positions may be
Stored in one or more Sample position memories for fast
access. In one embodiment, the Sample positions may be
Stored as offsets, rather than absolute addresses or coordi
nates. In one embodiment, the graphics processor is operable
to programmatically configure or vary the Sample positions
on a frame-by-frame basis or within a single frame.
A Software program embodied on a computer medium and

a method for operating a graphics Subsystem are also
contemplated. In one embodiment, the method comprises
first calculating a plurality of Sample locations, and then
generating a Sample for each Sample pixel location. The
Samples may then be stored (e.g., into the Super-Sampled
Sample buffer). The sample locations may be specified
according to any number of positioning or spacing Schemes,
e.g., a regular grid, a perturbed regular grid, or a stochastic
grid. The Stored Samples may then be Selected and filtered to
form output pixels, which are provided in real time directly
to the display without being Stored in a traditional frame
buffer. The Samples may be Selected according to their
distance from the center of the convolution kernel (which
corresponds to the estimated center of the output pixel). The
Selected Samples may be multiplied by a weighting factor
and Summed. The output pixel is also normalized (e.g.,
through the use of pre-normalized weighting factors that are
looked up, or by dividing the Summed Sample values by a
calculated or pre-calculated normalization factor). In Some
embodiments, the Selection process, weighting process, and
normalization proceSS are each programmable and change
able within each particular frame on a real-time basis.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing, as well as other objects, features, and
advantages of this invention may be more completely under
stood by reference to the following detailed description
when read together with the accompanying drawings in
which:

FIG. 1 illustrates one embodiment of a computer system
that includes one embodiment of a graphics System;

FIG. 2 is a simplified block diagram of the computer
system of FIG. 1;

FIG. 3 is a block diagram illustrating more details of one
embodiment of the graphics system of FIG. 1;

FIG. 4 is diagram illustrating traditional pixel calculation;
FIG. 5A is diagram illustrating one embodiment of Super

Sampling;
FIG. 5B is diagram illustrating a random distribution of

Samples;
FIG. 6 is a diagram illustrating details of one embodiment

of a graphics System having one embodiment of a variable
resolution Super-Sampled Sample buffer;

US 6,417,861 B1
7

FIG. 7 is a diagram illustrating details of another embodi
ment of a graphics System having one embodiment of a
variable resolution Super-Sampled Sample buffer;

FIG. 8 is a diagram illustrating details of three different
embodiments of Sample positioning Schemes,

FIG. 9 is a gram illustrating details of one embodiment of
a Sample positioning Scheme;

FIG. 10 is a diagram illustrating details of another
embodiment of a Sample positioning Scheme;

FIG. 11 is a diagram illustrating details of method of
converting Samples to pixels in parallel;

FIG. 11A is a diagram illustrating more details of the
embodiment from FIG. 11;

FIG. 11B is a diagram illustrating details of one embodi
ment of a method for dealing with boundary conditions,

FIG. 12 is a flowchart illustrating one embodiment of a
method for drawing Samples into a Super-Sampled Sample
buffer;

FIG. 12A is a diagram illustrating one embodiment for
coding triangle vertices,

FIG. 13 is a diagram illustrating one embodiment of a
method for calculating pixels from Samples,

FIG. 14. is a diagram illustrating details of one embodi
ment of a pixel convolution for an example set of Samples,

FIG. 15 is a diagram illustrating one embodiment of a
method for dividing a Super-Sampled Sample buffer into
regions,

FIG. 16 is a diagram illustrating another embodiment of
a method for dividing a Super-Sampled Sample buffer into
regions,

FIG. 17 is a diagram illustrating yet another embodiment
of a method for dividing a Super-Sampled Sample buffer into
regions,

FIGS. 18A-B are diagrams illustrating one embodiment
of a graphics System configured to utilize input from an eye
tracking or head tracking device;

FIGS. 19A-B are diagrams illustrating one embodiment
of a graphics System configured to vary region position
according to the position of a cursor or visual object; and

FIG. 20 is a diagram of one embodiment of a computer
network connecting multiple computers.

FIG. 21A illustrates an example of one embodiment of a
texture map;

FIG. 21B illustrates an example of one embodiment of
texture mapping onto a cube,

FIG. 21C illustrates an example of texture mapping onto
a spherical object;

FIG. 22 illustrates an example of one embodiment of a
mip-map;
While the invention is susceptible to various modifica

tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the Spirit and Scope of the present invention as defined by the
appended claims.

15

25

35

40

45

50

55

60

65

8
DETAILED DESCRIPTION OF SEVERAL

EMBODIMENTS
Computer System-FIG. 1

Referring now to FIG. 1, one embodiment of a computer
system 80 that includes a three-dimensional (3-D) graphics
System is shown. The 3-D graphics System may be com
prised in any of various Systems, including a computer
System, network PC, Internet appliance, a television, includ
ing HDTV Systems and interactive television Systems, per
Sonal digital assistants (PDAS), and other devices which
display 2D and or 3D graphics, among others.
AS shown, the computer System 80 comprises a System

unit 82 and a video monitor or display device 84 coupled to
the system unit 82. The display device 84 may be any of
various types of display monitors or devices (e.g., a CRT,
LCD, or gas-plasma display). Various input devices may be
connected to the computer System, including a keyboard 86
and/or a mouse 88, or other input device (e.g., a trackball,
digitizer, tablet, six-degree of freedom input device, head
tracker, eye tracker, data glove, body Sensors, etc.). Appli
cation software may be executed by the computer system 80
to display 3-D graphical objects on display device 84. AS
described further below, the 3-D graphics system in com
puter System 80 includes a Super-Sampled Sample buffer
with a programmable real-time Sample-to-pixel calculation
unit to improve the quality and realism of images displayed
on display device 84.
Computer System Block Diagram-FIG. 2

Referring now to FIG. 2, a simplified block diagram
illustrating the computer system of FIG. 1 is shown. Ele
ments of the computer System that are not necessary for an
understanding of the present invention are not shown for
convenience. As shown, the computer System 80 includes a
central processing unit (CPU) 102 coupled to a highspeed
memory bus or system bus 104 also referred to as the host
bus 104. A system memory 106 may also be coupled to
high-speed bus 104.

Host processor 102 may comprise one or more processors
of varying types, e.g., microprocessors, multi-processors
and CPUs. The system memory 106 may comprise any
combination of different types of memory Subsystems,
including random access memories, (e.g., Static random
acceSS memories or “SRAMs', Synchronous dynamic ran
dom access memories or “SDRAMs”, and Rambus dynamic
access memories or “RDRAM”, among others) and mass
storage devices. The system bus or host bus 104 may
comprise one or more communication or host computer
buses (for communication between host processors, CPUs,
and memory Subsystems) as well as Specialized Subsystem
buses.
A 3-D graphics System or graphics System 112 according

to the present invention is coupled to the high-speed
memory bus 104. The 3-D graphics system 112 may be
coupled to the bus 104 by, for example, a crossbar Switch or
other bus connectivity logic. It is assumed that various other
peripheral devices, or other buses, may be connected to the
high-speed memory bus 104. It is noted that the 3-D
graphics System may be coupled to one or more of the buses
in computer system 80 and/or may be coupled to various
types of buses. In addition, the 3D graphics System may be
coupled to a communication port and thereby directly
receive graphics data from an external Source, e.g., the
Internet or a network. AS shown in the figure, display device
84 is connected to the 3-D graphics system 112 comprised
in the computer system 80.

Host CPU 102 may transfer information to and from the
graphics System 112 according to a programmed input/

US 6,417,861 B1
9

output (I/O) protocol over host bus 104. Alternately, graph
ics system 112 may access the memory Subsystem 106
according to a direct memory access (DMA) protocol or
through intelligent bus mastering.
A graphics application program conforming to an appli

cation programming interface (API) Such as OpenGL or Java
3D may execute on host CPU 102 and generate commands
and data that define a geometric primitive (graphics data)
Such as a polygon for output on display device 84. AS
defined by the particular graphics interface used, these
primitives may have Separate color properties for the front
and back Surfaces. Host processor 102 may transfer these
graphics data to memory subsystem 106. Thereafter, the host
processor 102 may operate to transfer the graphics data to
the graphics system 112 over the host bus 104. In another
embodiment, the graphics System 112 may read in geometry
data arrays over the hostbus 104 using DMA access cycles.
In yet another embodiment, the graphics System 112 may be
coupled to the System memory 106 through a direct port,
such as the Advanced Graphics Port (AGP) promulgated by
Intel Corporation.
The graphics System may receive graphics data from any

of various sources, including the host CPU 102 and/or the
System memory 106, other memory, or from an external
Source Such as a network, e.g., the Internet, or from a
broadcast medium, e.g., television, or from other Sources.
As will be described below, graphics system 112 may be

configured to allow more efficient microcode control, which
results in increased performance for handling of incoming
color values corresponding to the polygons generated by
host processor 102. Note while graphics system 112 is
depicted as part of computer System 80, graphics System 112
may also be configured as a Stand-alone device (e.g., With its
own built-in display). Graphics System 112 may also be
configured as a Single chip device or as part of a System
on-a-chip or a multi-chip module.
Graphics System-FIG. 3

Referring now to FIG. 3, a block diagram illustrating
details of one embodiment of graphics System 112 is shown.
AS shown in the figure, graphics System 112 may comprise
one or more graphics processors 90, one or more Super
Sampled Sample bufferS 162, and one or more Sample-to
pixel calculation units 170A-D. Graphics system 112 may
also comprise one or more digital-to-analog converters
(DACs) 178A-B. Graphics processor 90 may be any suit
able type of high performance processor (e.g., specialized
graphics processors or calculation units, multimedia
processors, DSPs, or general purpose processors). In one
embodiment, graphics processor 90 may comprise one or
more rendering units 150A-D. In the embodiment shown,
however, graphics processor 90 also comprises one or more
control units 140, one or more data memories 152A-D, and
one or more schedule units 154. Sample buffer 162 may
comprises one or more sample memories 160A-160N as
shown in the figure.

A. Control Unit
Control unit 140 operates as the interface between graph

ics system 112 and computer system 80 by controlling the
transfer of data between graphics System 112 and computer
system 80. In embodiments of graphics system 112 that
comprise two or more rendering units 150A-D, control unit
140 may also divide the stream of data received from
computer System 80 into a corresponding number of parallel
Streams that are routed to the individual rendering units
150A-D. The graphics data may be received from computer
System 80 in a compressed form. This may advantageously
reduce the bandwidth requirements between computer Sys

15

25

35

40

45

50

55

60

65

10
tem 80 and graphics system 112. In one embodiment, control
unit 140 may be configured to split and route the data stream
to rendering units 150A-D in compressed form.
The graphics data may comprise one or more graphics

primitives. AS used herein, the term graphics primitive
includes polygons, parametric Surfaces, Splines, NURBS
(non-uniform rational B-splines), Sub-divisions Surfaces,
fractals, Volume primitives, and particle Systems. These
graphics primitives are described in detail in the text book
entitled “Computer Graphics: Principles and Practice” by
James D. Foley, et al., published by Addison-Wesley Pub
lishing Co., Inc., 1996. Note polygons are referred to
throughout this detailed description for simplicity, but the
embodiments and examples described may also be used with
graphics data comprising other types of graphics primitives.

B. Rendering Units
Rendering units 150A-D (also referred to herein as draw

units) are configured to receive graphics instructions and
data from control unit 140 and then perform a number of
functions, depending upon the exact implementation. For
example, rendering units 150A-D may be configured to
perform decompression (if the data is compressed),
transformation, clipping, lighting, texturing, depth cueing,
transparency processing, Set-up, and Screen Space rendering
of various graphics primitives occurring within the graphics
data. Each of these features is described Separately below.

Depending upon the type of compressed graphics data
received, rendering units 150A-D may be configured to
perform arithmetic decoding, run-length decoding, Huffinan
decoding, and dictionary decoding (e.g., LZ77, LZSS,
LZ78, and LZW). In another embodiment, rendering units
150A-D may be configured to decode graphics data that has
been compressed using geometric compression. Geometric
compression of 3D graphics data may achieve significant
reductions in data Size while retaining most of the image
quality. Two methods for compressing and decompressing
3D geometry are described in U.S. Pat. No. 5,793,371,
application Ser. No. 08/511,294, (filed on Aug. 4, 1995,
entitled “Method And Apparatus For Geometric Compres
sion Of Three-Dimensional Graphics Data,”) and U.S.
patent application Ser. No. 09/095,777, filed on Jun. 11,
1998, entitled “Compression of Three-Dimensional Geom
etry Data Representing a Regularly Tiled Surface Portion of
a Graphical Object,”). In embodiments of graphics System
112 that Support decompression, the graphics data received
by each rendering unit 150 is decompressed into one or more
graphics “primitives” which may then be rendered. The term
primitive refers to components of objects that define its
shape (e.g., points, lines, triangles, polygons in two or three
dimensions, polyhedra, or free-form Surfaces in three
dimensions). Rendering units 150 may be any suitable type
of high performance processor (e.g., specialized graphics
processors or calculation units, multimedia processors,
DSPs, or general purpose processors).

Transformation refers to manipulating an object and
includes translating the object (i.e., moving the object to a
different location), Scaling the object (i.e., Stretching or
Shrinking), and rotating the object (e.g., in three-dimensional
Space, or "3-space').

Clipping refers to defining the limits of the displayed
image (i.e., establishing a clipping region, usually a
rectangle) and then not rendering or displaying pixels that
fall outside those limits.

Lighting refers to calculating the illumination of the
objects within the displayed image to determine what color
and or brightness each individual object will have. Depend
ing upon the shading algorithm being used (e.g., constant,

US 6,417,861 B1
11

Gourand, or Phong), lighting may be evaluated at a number
of different locations. For example, if constant shading is
used (i.e., each pixel of a polygon has the same lighting),
then the lighting need only be calculated once per polygon.
If Gourand Shading is used, then the lighting is calculated
once per vertex. Phong Shading calculates the lighting on a
per-pixel basis.

Set-up refers to mapping primitives to a three
dimensional viewport. This involves translating and trans
forming the objects from their original “world-coordinate”
system to the established viewport's coordinates. This cre
ates the correct perspective for three-dimensional objects
displayed on the Screen.

Screen-space rendering refers to the calculations per
formed to actually calculate the data used to generate each
pixel that will be displayed. In prior art Systems, each pixel
is calculated and then stored in a frame buffer. The contents
of the frame buffer are then output to the display device to
create the final image. In the embodiment of graphics System
112 shown in the figure, however, rendering units 150A-D
calculate “samples' instead of actual pixel data. This allows
rendering units 150A-D to “super-sample” or calculate
more than one sample per pixel. Super-Sampling is described
in greater detail below. Note that rendering units 150A-B
may comprises a number of Smaller functional units, e.g., a
Separate Set-up/decompress unit and a lighting unit.
More details on Super-Sampling are discussed in the

following books: “Principles of Digital Image Synthesis” by
Andrew Glassner, 1995, Morgan Kaufman Publishing
(Volume 1); and “Renderman Companion:” by Steve
Upstill, 1990, Addison Wesley Publishing.

C. Data Memories
Each rendering unit 150A-D may be coupled to an

instruction and data memory 152A-D. In one embodiment,
each data memory 152A-D may be configured to store both
data and instructions for rendering units 150A-D. While
implementations may vary, in one embodiment each data
memory 152A-D may comprise two 8 MByte SDRAMs
providing a total of 16 MBytes of Storage for each rendering
unit 150A-D. In another embodiment, RDRAMs (Rambus
DRAMs) may be used to support the decompression and
set-up operations of each rendering unit, while SDRAMs
may be used to Support the draw functions of rendering units
150A-D.

D. Schedule Unit
Schedule unit 154 may be coupled between the rendering

units 150A-D and the sample memories 160A-N. Schedule
unit 154 is configured to Sequence the completed Samples
and store them in Sample memories 160A-N. Note in larger
configurations, multiple Schedule units 154 may be used in
parallel. In one embodiment, schedule unit 154 may be
implemented as a crossbar Switch.

E. Sample Memories
Super-Sampled Sample buffer 162 comprises Sample

memories 160A-160N, which are configured to store the
plurality of Samples generated by the rendering units. AS
used herein, the term “sample buffer” refers to one or more
memories which Store Samples. AS previously noted, one or
more samples are filtered to form output pixels (i.e., pixels
to be displayed on a display device). The number of Samples
Stored may be greater than, equal to, or less than the total
number of pixels output to the display device to refresh a
Single frame. Each Sample may correspond to one or more
output pixels. AS used herein, a Sample “corresponds' to an
output pixel when the Sample's information contributes to
final output value of the pixel. Note, however, that some
Samples may contribute Zero to their corresponding output
pixel after filtering takes place.

15

25

35

40

45

50

55

60

65

12
Stated another way, the Sample buffer Stores a plurality of

Samples that have positions that correspond to locations in
Screen Space on the display, i.e., the Samples contribute to
one or more output pixels on the display. The number of
Stored Samples may be greater than the number of pixel
locations, and more than one Sample may be combined in the
convolution (filtering) process to generate a particular output
pixel displayed on the display device. Any given Sample
may contribute to one or more output pixels.

Sample memories 160A-160N may comprise any of a
number of different types of memories (e.g., SDRAMs,
SRAMS, RDRAMs, 3DRAMs, or next-generation
3DRAMs) in varying sizes. In one embodiment, each sched
ule unit 154 is coupled to four banks of sample memories,
wherein each bank comprises four 3DRAM-64 memories.
Together, the 3DRAM-64 memories may form a 116-bit
deep Super-Sampled Sample buffer that Stores multiple
Samples per pixel. For example, in one embodiment, each
sample memory 160A-160N may store up to sixteen
Samples per pixel.
3DRAM-64 memories are specialized memories config

ured to support full internal double buffering with single
buffered Z in one chip. The double buffered portion com
prises two RGBX buffers, wherein X is a fourth channel that
can be used to Store other information (e.g., alpha).
3DRAM-64 memories also have a lookup table that takes in
window ID information and controls an internal 2-1 or 3-1
multiplexer that selects which buffers contents will be
output. 3DRAM-64 memories are next-generation 3DRAM
memories that may soon be available from Mitsubishi
Electric Corporation's Semiconductor Group. In one
embodiment, four chipS used in combination are Sufficient to
create a double-buffered 1280x1024 Super-sampled Sample
buffer. Since the memories are internally double-buffered,
the input pins for each of the two frame buffers in the
double-buffered System are time multiplexed (using multi
plexers within the memories). The output pins may similarly
be time multiplexed. This allows reduced pin count while
still providing the benefits of double buffering. 3DRAM-64
memories further reduce pin count by not having Z output
pins. Since Z comparison and memory buffer Selection is
dealt with internally, this may simplify sample buffer 162
(e.g., using less or no selection logic on the output Side). Use
of 3DRAM-64 also reduces memory bandwidth since infor
mation may be written into the memory without the tradi
tional process of reading data out, performing a Z
comparison, and then writing data back in. Instead, the data
may be simply written into the 3DRAM-64, with the
memory performing the StepS described above internally.

However, in other embodiments of graphics System 112,
other memories (e.g., SDRAMs, SRAMs, RDRAMs, or
current generation 3DRAMs) may be used to form sample
buffer 162.

Graphics processor 90 may be configured to generate a
plurality of Sample positions according to a particular
Sample positioning Scheme (e.g., a regular grid, a perturbed
regular grid, etc.). Alternatively, the sample positions (or
offsets that are added to regular grid positions to form the
Sample positions) may be read from a sample position
memory (e.g., a RAM/ROM table). Upon receiving a poly
gon that is to be rendered, graphics processor 90 determines
which Samples fall within the polygon based upon the
Sample positions. Graphics processor 90 renders the Samples
that fall within the polygon and Stores rendered Samples in
sample memories 160A-N. Note as used herein the terms
render and draw are used interchangeable and refer to
calculating color values for Samples. Depth values, alpha

US 6,417,861 B1
13

values, and other per-Sample values may also be calculated
in the rendering or drawing process.

E. Sample-to-pixel Calculation Units
Sample-to-pixel calculation units 170A-D may be

coupled between sample memories 160A-N and DACs
178A-B. Sample-to-pixel calculation units 170A-D are
configured to read Selected Samples from Sample memories
160A-N and then perform a convolution (e.g., a filtering and
weighting function or a low pass filter) on the samples to
generate the output pixel values which are output to DACS
178A-B. The sample-to-pixel calculation units 170A-D
may be programmable to allow them to perform different
filter functions at different times, depending upon the type of
output desired. In one embodiment, the Sample-to-pixel
calculation units 170A-D may implement a 5x5 Super
Sample reconstruction band-pass filter to convert the Super
Sampled Sample buffer data (stored in Sample memories
160A-N) to single pixel values. In other embodiments,
calculation units 170A-D may filter a selected number of
Samples to calculate an output pixel. The filtered Samples
may be multiplied by a variable weighting factor that gives
more or leSS weight to Samples having positions close the
center of the pixel being calculated. Other filtering functions
may also be used either alone or in combination, e.g., tent
filters, circular and elliptical filters, Mitchell filters, band
pass filters, Sync function filters, etc.

Sample-to-pixel calculation units 170A-D may also be
configured with one or more of the following features: color
look-up using pseudo color tables, direct color, inverse
gamma correction, filtering of Samples to pixels, and con
version of pixels to non-linear light Space. Other features of
sample-to-pixel calculation units 170A-D may include pro
grammable Video timing generators, programmable pixel
clock Synthesizers, and crossbar functions. Once the Sample
to-pixel calculation units have manipulated the timing and
color of each pixel, the pixels are output to DACs 178A-B.

F. DACS
DACs 178A-B operate as the final output stage of graph

ics system 112. The DACs 178A-B serve to translate the
digital pixel data received from cross units 174A-B into
analog video signals that are then Sent to the display device.
Note in one embodiment DACs 178A-B may be bypassed
or omitted completely in order to output digital pixel data in
lieu of analog video signals. This may be useful when
display device 84 is based on a digital technology (e.g., an
LCD-type display or a digital micro-mirror display).
Super-Sampling-FIGS. 4-5

Turning now to FIG. 4, an example of traditional, non
Super-Sampled pixel value calculation is illustrated. Each
pixel has exactly one data point calculated for it, and the
Single data point is located at the center of the pixel. For
example, only one data point (i.e., Sample 74) contributes to
value of pixel 70.

Turning now to FIG. 5A, an example of one embodiment
of Super-Sampling is illustrated. In this embodiment, a
number of Samples are calculated. The number of Samples
may be related to the number of pixels or completely
independent of the number of pixels. In this example, there
are 18 Samples distributed in a regular grid acroSS nine
pixels. Even with all the Samples present in the figure, a
Simple one to one correlation could be made (e.g., by
throwing out all but the Sample nearest to the center of each
pixel). However, the more interesting case is performing a
filtering function on multiple samples to determine the final
pixel values. Also, as noted above, a single Sample can be
used to generate a plurality of output pixels, i.e., Sub
Sampling.

15

25

35

40

45

50

55

60

65

14
A circular filter 72 is illustrated in the figure. In this

example, samples 74A-B both contribute to the final value
of pixel 70. This filtering proceSS may advantageously
improve the realism of the image displayed by Smoothing
abrupt edges in the displayed image (i.e., performing anti
aliasing). Filter 72 may simply average samples 74A-B to
form the final value of output pixel 70, or it may increase the
contribution of sample 74B (at the center of pixel 70) and
diminish the contribution of sample 74A (i.e., the sample
farther away from the center of pixel 70). Circular filter 72
is repositioned for each output pixel being calculated So the
center of filter 72 coincides with the center position of the
pixel being calculated. Other filters and filter positioning
Schemes are also possible and contemplated.

Turning now to FIG. 5B, another embodiment of Super
Sampling is illustrated. In this embodiment, however, the
Samples are positioned randomly. More Specifically, differ
ent Sample positions are Selected and provided to graphics
processor 90 (and render units 150A-D), which calculate
color information to form Samples at these different loca
tions. Thus the number of samples falling within filter 72
may vary from pixel to pixel.
Super-Sampled Sample Buffer with Real-Time
Convolution-FIGS. 6-13

Turning now to FIG. 6, a diagram illustrating one possible
configuration for the flow of data through one embodiment
of graphics System 112 is shown. AS the figure shows,
geometry data 350 is received by graphics system 112 and
used to perform draw process 352. The draw process 352 is
implemented by one or more of control unit 140, rendering
units 150, memories 152, and schedule unit 154. Geometry
data 350 comprises data for one or more polygons. Each
polygon comprises a plurality of Vertices (e.g., three vertices
in the case of a triangle), Some of which may be shared. Data
Such as x, y, and Z coordinates, color data, lighting data and
texture map information may be included for each vertex.

In addition to the vertex data, draw process 352 (which
may be performed by rendering units 150A-D) also receives
Sample coordinates from a Sample position memory 354. In
one embodiment, position memory 354 is embodied within
rendering units 150A-D. In another embodiment, position
memory 354 may be realized as part of texture and render
memories 152A-152D, or as a separate memory. Sample
position memory 354 is configured to Store position infor
mation for Samples that are calculated in draw proceSS 352
and then stored into Super-sampled sample buffer 162. In
one embodiment, position memory 354 may be configured
to Store entire Sample addresses. However, this may involve
increasing the size of position memory 354. Alternatively,
position memory 354 may be configured to Store only X- and
y-offsets for the Samples. Storing only the offsets may use
leSS Storage Space than Storing each Sample's entire position.
The offsets may be relative to bin coordinates or relative to
positions on a regular grid. The Sample position information
stored in sample position memory 354 may be read by a
dedicated Sample position calculation unit (not shown) and
processed to calculate example Sample positions for graph
ics processor 90. More detailed information on sample
position offsets is included below (see description of FIGS.
9 and 10).

In another embodiment, sample position memory 354
may be configured to Store a table of random numbers.
Sample position memory 354 may also comprise dedicated
hardware to generate one or more different types of regular
grids. This hardware may be programmable. The Stored
random numbers may be added as offsets to the regular. grid
positions generated by the hardware. In one embodiment,

US 6,417,861 B1
15

the Sample position memory may be programmable to
access or “unfold’ the random number table in a number of
different ways. This may allow a smaller table to be used
without Visual artifacts caused by repeating Sample position
offsets. In one embodiment, the random numbers may be
repeatable, thereby allowing draw process 352 and Sample
to-pixel calculation process 360 to utilize the same offset for
the same Sample without necessarily Storing each offset.
AS shown in the figure, Sample position memory 354 may

be configured to Store Sample offsets generated according to
a number of different Schemes Such as a regular Square grid,
a regular hexagonal grid, a perturbed regular grid, or a
random (Stochastic) distribution. Graphics System 112 may
receive an indication from the operating System, device
driver, or the geometry data 350 that indicates which type of
Sample positioning Scheme is to be used. Thus the Sample
position memory 354 is configurable or programmable to
generate position information according to one or more
different Schemes. More detailed information on several
Sample position Schemes are described further below (See
description of FIG. 8).

In one embodiment, Sample position memory 354 may
comprise a RAM/ROM that contains stochastic sample
points (or locations) for different total Sample counts per bin.
AS used herein, the term “bin” refers to a region or area in
Screen-space and contains however many Samples are in that
area (e.g., the bin may be 1x1 pixels in area, 2x2 pixels in
area, etc.). The use of bins may simplify the storage and
access of samples in sample buffer 162. A number of
different bin sizes may be used (e.g., one sample per bin,
four Samples per bin, etc.). In the preferred embodiment,
each bin has an Xy-position that corresponds to a particular
location on the display. The bins are preferably regularly
Spaced. In this embodiment the bins' Xy-positions may be
determined from the bin's Storage location within Sample
buffer 162. The bins' positions correspond to particular
positions on the display. In Some embodiments, the bin
positions may correspond to pixel centers, while in other
embodiments the bin positions correspond to points that are
located between pixel centers. The Specific position of each
Sample within a bin may be determined by looking up the
sample's offset in the RAM/ROM table (the offsets may be
Stored relative to the corresponding bin position). However,
depending upon the implementation, not all bin sizes may
have a unique RAM/ROM entry. Some bin sizes may simply
read a Subset of the larger bin sizes entries. In one
embodiment, each Supported size has at least four different
Sample position Scheme variants, which may reduce final
image artifacts due to repeating Sample positions.

In one embodiment, position memory 354 may store pairs
of 8-bit numbers, each pair comprising an X-offset and a
y-offset (other possible offsets are also possible, e.g., a time
offset, a Z-offset, etc.). When added to a bin position, each
pair defines a particular position in Screen Space. The term
"Screen Space” referS generally to the coordinate System of
the display device. To improve read times, memory 354 may
be constructed in a wide/parallel manner So as to allow the
memory to output more than one sample location per clock
cycle.

Once the Sample positions have been read from Sample
position memory 354, draw process 352 selects the samples
positions that fall within the polygon currently being ren
dered. Draw process 352 then calculates the Z and color
information (which may include alpha or other depth of field
information values) for each of these samples and Stores the
data into sample buffer 162. In one embodiment, the sample
buffer may only single-buffer Z values (and perhaps alpha

15

25

35

40

45

50

55

60

65

16
values) while double buffering other Sample components
Such as color. Unlike prior art Systems, graphics System 112
may double buffer all Samples (although not all sample
components may. be double-buffered, i.e., the samples may
have components that are not double-buffered, or not all
samples may be double-buffered). In one embodiment, the
samples are stored into sample buffer 162 in bins. In some
embodiments, the size of bins, i.e., the quantity of Samples
within a bin, may vary from frame to frame and may also
vary across different regions of display device 84 within a
Single frame. For example, bins along the edges of display
device may comprise only one Sample, while bins corre
sponding to pixels near the center of display device 84 may
comprise Sixteen Samples. Note the area of bins may vary
from region to region. The use of bins will be described in
greater detail below in connection with FIG. 11.

In parallel and independently of draw process 352, filter
process 360 is configured to read Samples from Sample
buffer 162, filter (i.e., filter) them, and then output the
resulting output pixel to display device 84. Sample-to-pixel
calculation units 170 implement filter process 380. Thus, for
at least a Subset of the output pixels, the filter process is
operable to filter a plurality of Samples to produce a respec
tive output pixel. In one embodiment, filter process 360 is
configured to: (i) determine the distance from each sample
to the center of the output pixel being filtered; (ii) multiply
the sample's components (e.g., color and alpha) with a filter
value that is a specific (programmable) function of the
distance; (iii) Sum all the weighted Samples that contribute
to the output pixel, and (iv) normalize the resulting output
pixel. The filter process 360 is described in greater detail
below (see description accompanying FIGS. 11, 12, and 14).
Note the extent of the filter need not be circular (i.e., it may
be a function of X and y instead of the distance), but even if
the extent is, the filter need not be circularly Symmetrical.
The filter’s “extent” is the area within which samples can
influence the particular pixel being calculated with the filter.

Turning now to FIG. 7, a diagram illustrating an alternate
embodiment of graphics System 112 is shown. In this
embodiment, two or more sample position memories 354A
and 354B are utilized. Thus, the sample position memories
354A-B are essentially double-buffered. If the sample posi
tions are kept the same from frame to frame, then the Sample
positions may be single buffered. However, if the Sample
positions may vary from frame to frame, then graphics
System 112 may be advantageously configured to double
buffer the Sample positions. The Sample positions may be
double buffered on the rendering side (i.e., memory 354A
may be double buffered) and or the filter/convolve side (i.e.,
memory 354B may be double buffered). Other combinations
are also possible. For example, memory 354A may be
single-buffered, while memory 354B is doubled buffered.
This configuration may allow one side of memory 354B to
be used for refreshing (i.e., by filter/convolve process 360)
while the other side of memory 354B is used being updated.
In this configuration, graphics System 112 may change
Sample position Schemes on a per-frame basis by shifting the
sample positions (or offsets) from memory 354A to double
buffered memory 354B as each frame is rendered. Thus, the
positions used to calculate the Samples (read from memory
354A) are copied to memory 354B for use during. the
filtering process (i.e., the sample-to-pixel conversion
process). Once the position information has been copied to
memory 354B, position memory 354A may then be loaded
with new Sample position offsets to be used for the Second
frame to be rendered. In this way the Sample position
information follows the samples from the draw/render pro
ceSS to the filter process.

US 6,417,861 B1
17

Yet another alternative embodiment may store tags to
offsets with the Samples themselves in Super-Sampled
sample buffer 162. These tags may be used to look-up the
offset/perturbation associated with each particular Sample.
Sample Positioning Schemes

FIG. 8 illustrates a number of different sample positioning
Schemes. In regular grid positioning Scheme 190, each
Sample is positioned at an interSection of a regularly-spaced
grid. Note however, that as used herein the term “regular
grid” is not limited to Square grids. Other types of grids are
also considered “regular as the term is used herein,
including, but not limited to, rectangular grids, hexagonal
grids, triangular grids, logarithmic grids, and Semi-regular
lattices Such as Penrose tiling.

Perturbed regular grid positioning scheme 192 is based
upon the previous definition of a regular grid. However, the
Samples in perturbed regular grid Scheme 192 may be offset
from their corresponding grid intersection. In one
embodiment, the Samples may be offset by a random angle
(e.g., from 0 to 360) and a random distance, or by random
X and y offsets, which may or may not be limited to a
predetermined range. The offsets may be generated in a
number of ways, e.g., by hardware based upon a Small
number of Seeds, looked up from a table, or by using a
pseudo-random function. Once again, perturbed regular gird
Scheme 192 may be based on any type of regular grid (e.g.,
Square, or hexagonal). A rectangular or hexagonal perturbed
grid may be particularly desirable due to the geometric
properties of these grid types.

Stochastic Sample positioning Scheme 194 represents a
third potential type of Scheme for positioning Samples.
Stochastic Sample positioning involves randomly distribut
ing the Samples acroSS a region (e.g., the displayed region on
a display device or a particular window). Random position
ing of Samples may be accomplished through a number of
different methods, e.g., using a random number generator
Such as an internal clock to generate pseudo-random num
berS. Random numbers or positions may also be pre
calculated and Stored in memory.

Turning now to FIG. 9, details of one embodiment of
perturbed regular grid scheme 192 are shown. In this
embodiment, Samples are randomly offset from a regular
Square grid by X- and y-offsets. AS the enlarged area shows,
sample 198 has an x-offset 134 that specifies its horizontal
displacement from its corresponding grid interSection point
196. Similarly, sample 198 also has a y-offset 136 that
Specifies its vertical displacement from grid interSection
point 196. The random offset may also be specified by an
angle and distance. AS with the previously disclosed
embodiment that utilized angles and distances, X-Offset 134
andy-offset 136 may be limited to a particular minimum and
or maximum value or range of values.

Turning now to FIG. 10, details of another embodiment of
perturbed regular grid scheme 192 are shown. In this
embodiment, the samples are grouped into “bins' 138A-D.
In this embodiment, each bin comprises nine (i.e., 3x3)
samples. Different bin sizes may be used in other embodi
ments (e.g., bins Storing 2x2 Samples or 4x4 samples). In the
embodiment shown, each Sample's position is determined as
an offset relative to the position of the bin. The position of
the bins may be defined as any convenient position related
to the grid, e.g., the lower left-hand corners 132A-D as
shown in the figure. For example, the position of sample 198
is determined by Summing x-offset 124 and y-offset 126 to
the X and y coordinates of the corner 132D of bin 138D. As
previously noted, this may reduce the Size of the Sample
position memory used in Some embodiments.

15

25

35

40

45

50

55

60

65

18
Turning now to FIG. 11, one possible method for rapidly

converting Samples Stored in Sample buffer 162 into pixels
is shown. In this embodiment, the contents of sample buffer
162 are organized into columns (e.g., Cols. 1-4). Each
column in Sample buffer 162 may comprise a two
dimensional array of bins. The columns may be configured
to horizontally overlap (e.g., by one or more bins), and each
column may be assigned to a particular Sample-to-pixel
calculation unit 170A-D for the convolution process. The
amount of the Overlap may depend upon the extent of the
filter being used. The example shown in the figure illustrates
an overlap of two bins (each Square Such as Square 188
represents a single bin comprising one or more samples).
Advantageously, this configuration may allow Sample-to
pixel calculation units 170A-D to work independently and
in parallel, with each Sample-to-pixel calculation unit
170A-D receiving and converting its own column. Over
lapping the columns will eliminate Visual bands or other
artifacts appearing at the column boundaries for any opera
tors larger than a pixel in extent.

Turning now to FIG. 11A, more details of one embodi
ment of a method for reading the Samples from a Super
Sampled Sample buffer are shown. AS the figure illustrates,
the convolution filter kernel 400 travels across column 414
(See arrow 406) to generate output pixels. One or more
Sample-to-pixel calculation units 170 may implement the
convolution filter kernel 400. A bin cache 408 may used to
provide quick access to the Samples that may potentially
contribute to the output pixel. AS the convolution process
proceeds, bins are read from the Super-Sampled Sample
buffer and stored in bin cache 408. In one embodiment, bins
that are no longer needed 410 are overwritten in the cache
by new bins 412. As each pixel is generated, convolution
filter kernel 400 shifts. Kernel 400 may be visualized as
proceeding in a Sequential fashion within the column in the
direction indicated by arrow 406. When kernel 400 reaches
the end of the column, it may shift down one or more rows
of Samples and then proceed again. Thus the convolution
process proceeds in a Scan line manner, generating one
column of output pixels for display.

Turning now to FIG. 11B, a diagram illustrating potential
border conditions is shown. In one embodiment, the bins
that fall outside of sample window 420 may be replaced with
Samples having predetermined background colorS Specified
by the user. In another embodiment, bins that fall outside the
window are not used by Setting their weighting factors to
Zero (and then dynamically calculating normalization
coefficients). In yet another embodiment, the bins at the
inside edge of the window may be duplicated to replace
those outside the window. This is indicated by outside bin
430 being replaced by mirror inside bin 432.

FIG. 12 is a flowchart of one embodiment of a method for
drawing or rendering Sample pixels into a Super-Sampled
sample buffer. Certain of the steps of FIG. 12 may occur
concurrently or in different orders. In this embodiment, the
graphics System receives graphics commands and graphics
data from the host CPU 102 or directly from main memory
106 (step 200). Next, the instructions and data are routed to
one or more rendering units 150A-D (step 202). If the
graphics data is compressed (Step 204), then the rendering
units 150A-D decompress the data into a useable format,
e.g., triangles (step 206). Next, the triangles are processed,
e.g., converted to Screen space, lit, and transformed (Step
208A). If the graphics system implements variable resolu
tion Super Sampling, then the triangles are compared with the
sample density region boundaries (step 208B). In variable
resolution Super-Sampled Sample buffer implementations,

US 6,417,861 B1
19

different regions of the display device may be allocated
different Sample densities based upon a number of factors
(e.g., the center of the attention on the Screen as determined
by eye or head tracking). Sample density regions are
described in greater detail below (see Section entitled Vari
able Resolution Sample buffer below). If the triangle crosses
a region boundary (step 210), then the triangle may be
divided into two Smaller polygons along the region bound
ary (step 212). This may allow each newly formed triangle
to have a single Sample density. In one embodiment, the
graphics System may be configured to Simply use the entire
triangle twice (i.e., once in each region) and then use a
bounding box to effectively clip the triangle.

Next, one of the sample position Schemes (e.g., regular
grid, perturbed regular grid, or stochastic) are selected from
the sample position memory 184 (step 214). The sample
position Scheme will generally have been pre-programmed
into the sample position memory 184, but may also be
selected “on the fly”. Based upon this sample position
Scheme and the Sample density of the region containing the
triangle, rendering units 150A-D determine which bins may
contain Samples located within the triangle's boundaries
(step 216). The offsets for the samples within these bins are
then read from sample position memory 184 (step 218).
Each Sample's position is then calculated using the offsets
and is compared with the triangle's vertices to determine if
the sample is within the triangle (step 220). Step 220 is
discussed in greater detail below.

For each sample that is determined to be within the
triangle, the rendering unit draws the Sample by calculating
the Sample's color, alpha and other attributes. This may
involve lighting calculation and interpolation based upon the
color and texture map information associated with the
Vertices of the triangle. Once the Sample is rendered, it may
be forwarded to Schedule unit 154, which then stores the
sample in sample buffer 162 (step 224).

Note the embodiment of the method described above is
used for explanatory purposes only and is not meant to be
limiting. For example, in Some embodiments the Steps
shown in the figure as occurring Serially may be imple
mented in parallel. Furthermore, Some Steps may be reduced
or eliminated in certain embodiments of the graphics System
(e.g., steps 204-206 in embodiments that do not implement
geometry compression or Steps 210-212 in embodiments
that do not implement a variable resolution Super-Sampled
sample buffer).
Determination of which Samples Reside within the Polygon
Being Rendered
The comparison may be performed in a number of dif

ferent ways. In one embodiment, the deltas between the
three vertices defining the triangle are first determined. For
example, these deltas may be taken in the order of first to
second vertex (V2-v1)=d 12, second to third vertex (v3-v2)=
d23, and third vertex back to the first vertex (v1-v3)=d31.
These deltas form vectors, and each vector may be catego
rized as belonging to one of the four quadrants of the
coordinate plane (e.g., by using the two sign bits of its delta
X and Y coefficients). A third condition may be added
determining whether the vector is an X-major vector or
Y-major vector. This may be determined by calculating
whether abs(delta X) is greater than abs(delta y).

Using these three bits of information, the Vectors may
each be categorized as belonging to one of eight different
regions of the coordinate plane. If three bits are used to
define these regions, then the X-sign bit (shifted left by two),
the Y-sign bit (shifted left by one), and the X-major bit, may
be used to create the eight regions as shown in FIG. 12A.

15

25

35

40

45

50

55

60

65

20
Next, three edge equations may be used to define the

inside portion of the triangle. These edge equations (or
half-plane equations) may be defined using slope-intercept
form. To reduce the numerical range needed, both X-major
and Y-major equation forms may be used (such that the
absolute value of the Slope value may be in the range of 0
to 1). Thus, the two edge equations are:

X-major:y-mix-b-0, when the point is below the line

Y-major: x-my-b-0, when the point is to the left of the line

The X-major equations produces a negative versus posi
tive value when the point in question is below the line, while
the Y-major equation produces a negative verSuS positive
value when the point in question is to the left of the line.
Since which side of the line is the “accept” side is known,
the sign bit (or the inverse of the sign bit) of the edge
equation result may be used to determine whether the
sample is on the “accept side or not. This is referred to
herein as the “accept bit'. Thus, a Sample is on the accept
side of a line if:

X-major: (y-mix-b-0)<xor-accept

Y-major: (x-my-b-0)<xors accept

The accept bit may be calculated according to the fol
lowing table, wherein cw designates whether the triangle is
clockwise (cw=1) or counter-clockwise (cw=0):

1: accept=cw
: accept=CW
accept=CW
accept=cW
accept=CW
accept=cw
accept=cw

: accept=cw
Tie breaking rules for this representation may also be

implemented (e.g., coordinate axes may be defined as
belonging to the positive octant). Similarly, X-major may be
defined as owning all points that tie on the Slopes.

In an alternate embodiment, the accept Side of an edge
may be determined by applying the edge equation to the
third vertex of the triangle (the vertex that is not one of the
two vertices forming the edge). This method may incur the
additional cost of a multiply–add, which may not be used by
the technique described above.
To determine the “faced-ness” of a triangle (i.e., whether

the triangle is clockwise or counter-clockwise), the delta
directions of two edges of the triangle may be checked and
the slopes of the two edges may be compared. For example,
assuming that edge 12 has a delta-direction of 1 and the
Second edge (edge23) has a delta-direction of 0, 4, or 5, then
the triangle is counter-clockwise. If, however, edge23 has a
delta-direction of 3, 2, or 6, then the triangle is clockwise. If
edge23 has a delta-direction of 1 (i.e., the same as edge 12),
then comparing the slopes of the two edges breaks the tie
(both are X-major). If edge 12 has a greater slope, then the
triangle is counter-clockwise. If edge23 has a delta-direction
of 7 (the exact opposite of edge12), then again the slopes are
compared, but with opposite results in terms of whether the
triangle is clockwise or counter-clockwise.
The same analysis can be exhaustively applied to all

combinations of edge 12 and edge23 delta-directions, in
every case determining the proper faced-ness. If the slopes
are the same in the tie case, then the triangle is degenerate

US 6,417,861 B1
21

(i.e., with no interior area). It can be explicitly tested for and
culled, or, with proper numerical care, it could be let through
as it will cause no pixels to render. One Special case is when
a triangle splits the View plane, but that may be detected
earlier in the pipeline (e.g., when front plane and back plane
clipping are performed).

Note in most cases only one Side of a triangle is rendered.
Thus, after the faced-ness of a triangle is determined, if the
face is the one to be rejected, then the triangle can be culled
(i.e., Subject to no further processing with no pixels
generated). Further note that this determination of faced
ness only uses one additional comparison (i.e., of the slope
of edge 12 to that of edge23) beyond factors already com
puted. Many traditional approaches may utilize more com
plex computation (though at earlier Stages of the set-up
computation).

FIG. 13 is a flowchart of one embodiment of a method for
filtering Samples Stored in the Super-Sampled Sample buffer
to generate output pixels. First, a Stream of bins are read
from the Super-sampled sample buffer (step 250). These may
be stored in one or more caches to allow the Sample-to-pixel
calculation units 170 easy acceSS during the convolution
process (step 252). Next, the bins are examined to determine
which may contain Samples that contribute to the output
pixel currently being generated by the filter process (Step
254). Each sample that is in a bin that may contribute to the
output pixel is then individually examined to determine if
the sample does indeed contribute (steps 256-258). This
determination may be based upon the distance from the
Sample to the center of the output pixel being generated.

In one embodiment, the Sample-to-pixel calculation units
170 may be configured to calculate this distance (i.e., the
extent of the filter at sample's position) and then use it to
indeX into a table Storing filter weight values according to
filter extent (step 260). In another embodiment, however, the
potentially expensive calculation for determining the dis
tance from the center of the pixel to the sample (which
typically involves a Square root function) is avoided by
using distance Squared to indeX into the table of filter
weights. Alternatively, a function of X and y may be used in
lieu of one dependent upon a distance calculation. In one
embodiment, this may be accomplished by utilizing a float
ing point format for the distance (e.g., four or five bits of
mantissa and three bits of exponent), thereby allowing much
of the accuracy to be maintained while compensating for the
increased range in values. In one embodiment, the table may
be implemented in ROM. However, RAM tables may also
be used. Advantageously, RAM tables may, in Some
embodiments, allow the graphics System to vary the filter
coefficients on a per-frame basis. For example, the filter
coefficients may be varied to compensate for known short
comings of the display or for the user's personal preferences.
The graphics System can also vary the filter coefficients on
a Screen area basis within a frame, or on a per-output pixel
basis. Another alternative embodiment may actually calcu
late the desired filter weights for each Sample using Special
ized hardware (e.g., multipliers and adders). The filter
weight for Samples outside the limits of the convolution
filter may simply be multiplied by a filter weight of zero
(step 262), or they may be removed from the calculation
entirely.

Once the filter weight for a Sample has been determined,
the sample may then be multiplied by its filter weight (Step
264). The weighted sample may then be summed with a
running total to determine the final output pixel’s color value
(step 266). The filter weight may also be added to a running
total pixel filter weight (step 268), which is used to normal

15

25

35

40

45

50

55

60

65

22
ize the filtered pixels. Normalization advantageously pre
vents the filtered pixels (e.g., pixels with more samples than
other pixels) from appearing too bright or too dark by
compensating for gain introduced by the convolution pro
ceSS. After all the contributing Samples have been weighted
and Summed, the total pixel filter weight may be used to
divide out the gain caused by the filtering (step 270). Finally,
the normalized output pixel may be output for gamma
correction, digital-to-analog conversion (if necessary), and
eventual display (step 274).

FIG. 14 illustrates a simplified example of an output pixel
convolution. As the figure shows, four bins 288A-D contain
Samples that may possibly contribute to the output pixel. In
this example, the center of the output pixel is located at the
boundary of bins 288A-288D. Each bin comprises sixteen
Samples, and an array of 2 four bins (2x2) is filtered to
generate the output pixel. ASSuming circular filters are used,
the distance of each Sample from the pixel center determines
which filter value will be applied to the sample. For
example, Sample 296 is relatively close to the pixel center,
and thus falls within the region of the filter having a filter
value of 8. Similarly, samples 294 and 292 fall within the
regions of the filter having filter values of 4 and 2, respec
tively. Sample 290, however, falls outside the maximum
filter extent, and thus receives a filter value of 0. Thus
sample 290 will not contribute to the output pixel’s value.
This type of filter ensures that the samples located the closest
to the pixel center will contribute the most, while pixels
located the far from the pixel center will contribute less to
the final output pixel values. This type of filtering automati
cally performs anti-aliasing by Smoothing any abrupt
changes in the image (e.g., from a dark line to a light
background). Another particularly useful type of filter for
anti-aliasing is a windowed Sinc filter. Advantageously, the
windowed Sinc filter contains negative lobes that resharpen
Some of the blended or “fuzzed' image. Negative lobes are
areas where the filter causes the Samples to Subtract from the
pixel being calculated. In contrast Samples on either side of
the negative lobe add to the pixel being calculated.

Example values for samples 290–296 are illustrated in
boxes 300-308. In this example, each sample comprises red,
green, blue and alpha values, in addition to the Sample's
positional data. Block 310 illustrates the calculation of each
pixel component value for the non-normalized output pixel.
As block 310 indicates, potentially undesirable gain is
introduced into the final pixel values (i.e., an out pixel
having a red component value of 2000 is much higher than
any of the sample's red component values). AS previously
noted, the filter values may be Summed to obtain normal
ization value 308. Normalization value 308 is used to divide
out the unwanted gain from the output pixel. Block 312
illustrates this proceSS and the final normalized example
pixel values.

Note the values used herein were chosen for descriptive
purposes only and are not meant to be limiting. For example,
the filter may have a large number of regions each with a
different filter value. In one embodiment, Some regions may
have negative filter values. The filter utilized may be a
continuous function that is evaluated for each Sample based
on the Sample's distance from the pixel center. Also note that
floating point values may be used for increased precision. A
variety of filters may be utilized, e.g., cylinder, cone,
gaussian, Katmull-Rom, windowed Sinc, Mitchell filter, box,
tent.

Full-Screen Anti-aliasing
The vast majority of current 3D graphics Systems only

provide real-time anti-aliasing for lines and dots. While

US 6,417,861 B1
23

Some Systems also allow the edge of a polygon to be
“fuzzed”, this technique typically works best when all
polygons have been pre-Sorted in depth. This may defeat the
purpose of having general-purpose 3D rendering hardware
for most applications (which do not depth pre-Sort their
polygons). In one embodiment, graphics System 112 may be
configured to implement full-screen anti-aliasing by Sto
chastically Sampling up to Sixteen Samples per output pixel,
filtered by a 4x4-convolution filter.
Variable Resolution Super-Sampling

Currently, the straight-forward brute force method of
utilizing a fixed number of Samples per pixel location, e.g.,
an. 8x. Super-Sampled Sample buffer, would entail the use of
eight times more memory, eight times the fill rate (i.e.,
memory bandwidth), and a convolution pipe capable of
processing eight Samples per pixel. Given the high resolu
tion and refresh rates of current displays, a graphics System
of this magnitude may be relatively expense to implement
given today's level of integration.

In one embodiment, graphics System 112 may be config
ured to overcome these potential obstacles by implementing
variable resolution Super-Sampling. In this embodiment,
graphics System 112 mimics the human eye's characteristics
by allocating a higher number of Samples per pixel at one or
more first locations on the Screen (e.g., the point of foveation
on the Screen), with a drop-off in the number of Samples per
pixel for one or more second locations on the Screen (e.g.,
areas farther away from the point of foveation). Depending
upon the implementation, the point of -foveation may be
determined in a variety of ways. In one embodiment, the
point of foveation may be a predetermined area around a
certain object displayed upon the Screen. For example, the
area around a moving cursor or the main character in a
computer game may be designated the point of foveation. In
another embodiment, the point of foveation on the Screen
may be determined by head-tracking or eye-tracking. Even
if eye/head/hand-tracking, cursor-based, or main character
based points of foveation are not implemented, the point of
foveation may be fixed at the center of the Screen, where the
majority of Viewers attention is focused the majority of the
time. Variable resolution Super-Sampling is described in
greater detail below.
Variable-Resolution Super-Sampled Sample Buffer-FIGS.
15-19
A traditional frame buffer is one rectangular array of

uniformly Sampled pixels. For every pixel on the final
display device (CRT or LCD), there is a single pixel or
location of memory storage in the frame buffer (perhaps
double buffered). There is a trivial one-to-one correspon
dence between the 2D memory address of a given pixel and
its 2D Sample address for the mathematics of rendering.
Stated another way, in a traditional frame buffer there is no
Separate notion of Samples apart from the pixels themselves.
The output pixels are stored in a traditional frame buffer in
a row/column manner corresponding to how the pixels are
provided to the display during display refresh.

In a variable-resolution Super-Sampled Sample buffer, the
number of computed Samples per output pixel varies on a
regional basis. Thus, output pixels in regions of greater
interest are computed using a greater number of Samples,
thus producing greater resolution in this region, and output
pixels in regions of lesser interest are computed using a
lesser number of Samples, thus producing lesser resolution
in this region.
AS previously noted, in Some embodiments graphic SyS

tem 112 may be configured with a variable resolution
Super-Sampled Sample buffer. To implement variable reso

15

25

35

40

45

50

55

60

65

24
lution Super-Sampling, Sample buffer 162 may be divided
into Smaller pieces, called regions. The size, location, and
other attributes of these regions may be configured to vary
dynamically, as parameterized by run-time registers on a
per-frame basis.

Turning now to FIG. 15, a diagram of one possible
scheme for dividing sample buffer 162 is shown. In this
embodiment, sample buffer 162 is divided into the following
three nested regions foveal region 354, medial region 352,
and peripheral region 350. Each of these regions has a
rectangular shaped outer border, but the medial and the
peripheral regions have a rectangular shaped hole in their
center. Each region may be configured with certain constant
(per frame) properties, e.g., a constant density Sample den
sity and a constant size of pixel bin. In one embodiment, the
total density range may be 256, i.e., a region could Support
between one sample every 16 Screen pixels (4x4) and 16
Samples for every 1 Screen pixel. In other embodiments, the
total density range may be limited to other values, e.g., 64.
In one embodiment, the Sample density varies, either lin
early or non-linearly, acroSS a respective region. Note in
other embodiments the display may be divided into a
plurality of constant sized regions (e.g., Squares that are 4x4
pixels in size or 40x40 pixels in size).
To Simply perform calculations for polygons that encom

pass one or more region corners (e.g., a foveal region
corner), the sample buffer may be further divided into a
plurality of Subregions. Turning now to FIG. 16, one
embodiment of sample buffer 162 divided into Sub-regions
is shown. Each of these Sub-regions are rectangular, allow
ing graphics System 112 to translate from a 2D address with
a Sub-region to a linear address in Sample buffer 162. Thus,
in Some embodiments each Sub-region has a memory base
address, indicating where Storage for the pixels within the
Sub-region Starts. Each Sub-region may also have a “stride'
parameter associated with its width.

Another potential division of the Super-Sampled Sample
buffer is circular. Turning now to FIG. 17, one such embodi
ment is illustrated. For example, each region may have two
radii associated with it (i.e., 360-368), dividing the region
into three concentric circular-regions. The circular-regions
may all be centered at the same Screen point, the fovea center
point. Note however, that the fovea center-point need not
always be located at the center of the foveal region. In Some
instances it may even be located off-screen (i.e., to the Side
of the visual display surface of the display device). While the
embodiment illustrated Supports up to Seven distinct
circular-regions, it is possible for Some of the circles to be
shared acroSS two different regions, thereby reducing the
distinct circular-regions to five or less.
The circular regions may delineate areas of constant

Sample density actually used. For example, in the example
illustrated in the figure, foveal region 354 may allocate a
Sample buffer density of 8 Samples per Screen pixel, but
outside the innermost circle 368, it may only use 4 Samples
per pixel, and outside the next circle 366 it may only use two
Samples per pixel. Thus, in this embodiment the rings need
not necessarily save actual memory (the regions do that), but
they may potentially Save memory bandwidth into and out of
the sample buffer (as well as pixel convolution bandwidth).
In addition to indicating a different effective Sample density,
the rings may also be used to indicate a different Sample
position Scheme to be employed. AS previously noted, these
Sample position Schemes may stored in an on-chip RAM/
ROM, or in programmable memory.
AS previously discussed, in Some embodiments Super

sampled sample buffer 162 may be further divided into bins.

US 6,417,861 B1
25

For example, a bin may store a Single Sample or an array of
Samples (e.g., 2x2 or 4x4 samples). In one embodiment,
each bin may store between one and Sixteen Sample points,
although other configurations are possible and contem
plated. Each region may be configured with a particular bin
size, and a constant memory Sample density as well. Note
that the lower density regions need not necessarily have
larger bin sizes. In one embodiment, the regions (or at least
the inner regions) are exact integer multiples of the bin size
enclosing the region. This may allow for more efficient
utilization of the sample buffer in some embodiments.

Variable-resolution Super-Sampling involves calculating a
variable number of Samples for each pixel displayed on the
display device. Certain areas of an image may benefit from
a greater number of Samples (e.g., near object edges), while
other areas may not need extra Samples (e.g., Smooth areas
having a constant color and brightness). To save memory
and bandwidth, extra Samples may be used only in areas that
may benefit from the increased resolution. For example, if
part of the display is colored a constant color of blue (e.g.,
as in a background), then extra Samples may not be particu
larly useful because they will all simply have the constant
value (equal to the background color being displayed). In
contrast, if a Second area on the Screen is displaying a 3D
rendered object with complex textures and edges, the use of
additional Samples may be useful in avoiding certain arti
facts Such as aliasing. A number of different methods may be
used to determine or predict which areas of an image would
benefit from higher Sample densities. For example, an edge
analysis could be performed on the final image, and with that
information being used to predict how the Sample densities
should be distributed. The Software application may also be
able to indicate which areas of a frame should be allocated
higher sample densities.
A number of different methods may be used to implement

variable-resolution Super Sampling. These methods tend to
fall into the following two general categories: (1) those
methods that concern the draw or rendering process, and (2)
those methods that concern the convolution process. For
example, Samples may be rendered into the Super-Sampling
sample buffer 162 using any of the following methods:

1) a uniform Sample density;
2) varying Sample density on a per-region basis (e.g.,

medial, foveal, and peripheral); and
3) Varying Sample density by changing density on a

Scan-line basis (or on a small number of Scan lines
basis).

Varying Sample density on a Scan-line basis may be
accomplished by using a look-up table of densities. For
example, the table may specify that the first five pixels of a
particular Scan line have three Samples each, while the next
four pixels have two Samples each, and So on.
On the convolution Side, the following methods are poS

sible:

1) a uniform convolution filter;
2) continuously variable convolution filter; and
3) a convolution filter operating at multiple spatial fre

quencies.
A uniform convolve filter may, for example, have a

constant extent (or number of Samples selected) for each
pixel calculated. In contrast, a continuously variable convo
lution filter may gradually change the number of Samples
used to calculate a pixel. The function may be vary con
tinuously from a maximum at the center of attention to a
minimum in peripheral areas.

Different combinations of these methods (both on the
rendering side and convolution Side) are also possible. For

15

25

35

40

45

50

55

60

65

26
example, a constant Sample density may be used on the
rendering Side, while a continuously variable convolution
filter may be used on the Samples.

Different methods for determining which areas of the
image will be allocated more Samples per pixel are also
contemplated. In one embodiment, if the image on the
Screen has a main focal point (e.g., a character like Mario in
a computer game), then more samples may be calculated for
the area around Mario and fewer Samples may be calculated
for pixels in other areas (e.g., around the background or near
the edges of the Screen).

In another embodiment, the viewer's point of foveation
may be determined by eye/head/hand-tracking. In head
tracking embodiments, the direction of the viewer's gaze is
determined or estimated from the orientation of the viewer's
head, which may be measured using a variety of mecha
nisms. For example, a helmet or visor worn by the viewer
(with eye/head tracking) may be used alone or in combina
tion with a handtracking mechanism, wand, or eye-tracking
Sensor to provide orientation information to graphics System
112. Other alternatives include head-tracking using an infra
red reflective dot placed on the user's forehead, or using a
pair of glasses with head- and or eye-tracking Sensors built
in. One method for using head- and hand-tracking is dis
closed in U.S. Pat. No. 5,446,834 (entitled “Method and
Apparatus for High Resolution Virtual Reality Systems
Using Head Tracked Display,” by Michael Deering, issued.
Aug. 29, 1995), which is incorporated herein by reference in
its entirety. Other methods for head tracking are also pos
Sible and contemplated (e.g., infrared sensors, electromag
netic Sensors, capacitive Sensors, Video cameras, Sonic and
ultraSonic detectors, clothing based Sensors, Video tracking
devices, conductive ink, Strain gauges, force-feedback
detectors, fiber optic Sensors, pneumatic Sensors, magnetic
tracking devices, and mechanical Switches).
AS previously noted, eye-tracking may be particularly

advantageous when used in conjunction with head-tracking.
In eye-tracked embodiments, the direction of the viewer's
gaze is measured directly by detecting the orientation of the
viewer's eyes in relation to the viewer's head. This
information, when combined with other information regard
ing the position and orientation of the viewer's head in
relation to the display device, may allow an accurate mea
surement of viewer's point of foveation (or points of fove
ation if two eye-tracking Sensors are used). One possible
method for eye tracking is disclosed in U.S. Pat. No.
5,638,176 (entitled “Inexpensive Interferometric Eye Track
ing System'). Other methods for eye tracking are also
possible and contemplated (e.g., the methods for head track
ing listed above).

Regardless of which method is used, as the viewer's point
of foveation changes position, So does the distribution of
Samples. For example, if the viewer's gaze is focused on the
upper left-hand corner of the Screen, the pixels correspond
ing to the upper left-hand corner of the Screen may each be
allocated eight or Sixteen Samples, while the pixels in the
opposite corner (i.e., the lower right-hand corner of the
Screen) may be allocated only one or two Samples per pixel.
Once the viewer's gaze changes, So does the allotment of
Samples per pixel. When the viewers gaze moves to the
lower right-hand corner of the Screen, the pixels in the upper
left-hand corner of the Screen may be allocated only one or
two Samples per pixel. Thus the number of Samples per pixel
may be actively changed for different regions of the Screen
in relation the viewer's point of foveation. Note in some
embodiments, multiple users may be each have head/eye/
hand tracking mechanisms that provide input to graphics

US 6,417,861 B1
27

System 112. In these embodiments, there may conceivably
be two or more points of foveation on the Screen, with
corresponding areas of high and low Sample densities. AS
previously noted, these Sample densities may affect the
render proceSS only, the filter process only, or both pro
CCSSCS.

Turning now to FIGS. 18A-B, one embodiment of a
method for apportioning the number of Samples per pixel is
shown. The method apportions the number of Samples based
on the location of the pixel relative to one or more points of
foveation. In FIG. 18A, an eye- or head-tracking device 360
is used to determine the point of foveation 362 (i.e., the focal
point of a viewer's gaze). This may be determined by using
tracking device 360 to determine the direction that the
viewer's eyes (represented as 364 in the figure) are facing.
AS the figure illustrates, in this embodiment, the pixels are
divided into foveal region 354 (which may be centered
around the point of foveation 362), medial region 352, and
peripheral region 350.

Three Sample pixels are indicated in the figure. Sample
pixel 374 is located within foveal region 314. Assuming
foveal region 314 is configured with bins having eight
Samples, and assuming the convolution radius for each pixel
touches four bins, then a maximum of 32 Samples may
contribute to each pixel. Sample pixel 372 is located within
medial region 352. ASSuming medial region 352 is config
ured with bins having four Samples, and assuming the
convolution radius for each pixel touches four bins, then a
maximum of 16 Samples may contribute to each pixel.
Sample pixel 370 is located within peripheral region 350.
ASSuming peripheral region 370 is configured with bins
having one Sample each, and assuming the convolution
radius for each pixel touches one bin, then there is a one
Sample to pixel correlation for pixels in peripheral region
350. Note these values are merely examples and a different
number of regions, Samples per bin, and convolution radius
may be used.

Turning now to FIG. 18B, the same example is shown, but
with a different point of foveation 362. As the figure
illustrates, when tracking device 360 detects a change in the
position of point of foveation 362, it provides input to the
graphics System, which then adjusts the position of foveal
region 354 and medial region 352. In some embodiments,
parts of Some of the regions (e.g., medial region 352) may
extend beyond the edge of display device 84. In this
example, pixel 370 is now within foveal region 354, while
pixels 372 and 374 are now within the peripheral region.
ASSuming the Sample configuration as the example in FIG.
18A, a maximum of 32 samples may contribute to pixel 370,
while only one sample will contribute to pixels 372 and 374.
Advantageously, this configuration may allocate more
Samples for regions that are near the point of foveation (i.e.,
the focal point of the viewer's gaze). This may provide a
more realistic image to the viewer without the need to
calculate a large number of Samples for every pixel on
display device 84.

Turning now to FIGS. 19A-B, another embodiment of a
computer System configured with a variable resolution
Super-Sampled Sample buffer is shown. In this embodiment,
the center of the viewer's attention is determined by position
of a main character 362. Medial and foveal regions are
centered around main character 362 as it moves around the
Screen. In Some embodiments main character may be a
Simple cursor (e.g., as moved by keyboard input or by a
mouse).

In Still another embodiment, regions with higher Sample
density may be centered around the middle of display device

15

25

35

40

45

50

55

60

65

28
84's Screen. Advantageously, this may require leSS control
Software and hardware while Still providing a shaper image
in the center of the Screen (where the viewer's attention may
be focused the majority of the time).
Computer Network-FIG. 20

Referring now to FIG. 20, a computer network 500 is
shown comprising at least one Server computer 502 and one
or more client computers 506A-N. (In the embodiment
shown in FIG. 4, client computers 506A-B are depicted).
One or more of the client Systems may be configured
Similarly to computer System 80, with each having one or
more graphics systems 112 as described above. Server 502
and client(s) 506 may be joined through a variety of con
nections 504, such as a local-area network (LAN), a wide
area network (WAN), or an Internet connection. In one
embodiment, server 502 may store and transmit 3-D geom
etry data (which may be compressed) to one or more of
clients 506. The clients 506 receive the compressed 3-D
geometry data, decompress it (if necessary) and then render
the geometry data. The rendered image is then displayed on
the client's display device. The clients render the geometry
data and display the image using Super-Sampled Sample
buffer and real-time filter techniques described above. In
another embodiment, the compressed 3-D geometry data
may be transferred between client computers 506.
Additional Graphics System Features

Depending upon the implementation, computer System 80
may be configured to perform one or more of the following
techniques in real-time using graphics System 112 (and
Super-Sampled Sample buffer 162): high-quality texture
filtering, bump mapping, displacement mapping, multiple
texture mapping, decompression of compressed graphics
data, per-pixel Phong Shading, depth of field effects, alpha
buffering, Soft-key output, 12-bit effective linear output, and
integral eye-head-hand tracking. Each of these techniques
will be described in detail further below.

A. Texture Filtering-FIGS. 21-22
One popular technique to improve the realism of images

displayed on a computer System is texture mapping. Texture
mapping maps an image comprising a plurality of pixel
values or texel values (called a "texture map’) onto the
Surface of an object. A texture map is an image which can
be wrapped (or mapped) onto a three-dimensional (3D)
object. An example of a texture map 20 is illustrated in FIG.
21 A. Texture map 20 is defined as a collection of texture
elements 22a-n (“texels'), with coordinates U and V
(similar to X and Y coordinates on the display or “screen
Space”). In FIG. 21B, an example of texture mapping is
shown. AS the figure illustrates, texture map 20 is mapped
onto two sides of a three dimensional cube. FIG. 21C shows
another example of texture mapping, but this time onto a
Spherical object. Another example would be to map an
image of a painting with intricate details onto a Series of
polygons representing a Vase.
While texture mapping may result in more realistic

Scenes, awkward Side effects of texture mapping may occur
unless the graphics Subsystem can apply texture maps with
correct perspective. Perspective-corrected texture mapping
involves an algorithm that translates texels (i.e., pixels from
the bitmap texture image) into display pixels in accordance
with the Spatial orientation of the Surface.

In conjunction with texture mapping, many graphics
Subsystems utilize bilinear filtering, anti-aliasing, and mip
mapping to further improve the appearance of rendered
imageS. Bilinear filtering improves the appearance of texture
mapped Surfaces by considering the values of a number of
adjacent texels (e.g., four) in order to determine the value of

US 6,417,861 B1
29

the displayed pixel. Bilinear filtering may reduce Some of
the “blockiness” that results from Simple point Sampling
when adjacent display pixel values are defined by a single
texel.
AS previously described, aliasing refers to the jagged

edges that result from displaying a Smooth object on a
computer display. Aliasing may be particularly disconcert
ing at the edges of texture maps. Anti-aliasing (i.e., mini
mizing the appearance of jagged edges) avoids this distrac
tion by reducing the contrast between the edges where
different Sections of the texture map meet. This is typically
accomplished by adjusting pixel values at or near the edge.
Mip-mapping involves Storing multiple copies of texture

maps, each digitized at a different resolution. When a
texture-mapped polygon is Smaller than the texture image
itself, undesirable effects may result during texture mapping.
Mip mapping avoids this problem by providing a large
version of a texture map for use when the object is close to
the viewer (i.e., large), and Smaller versions of the texture
map for use when the object shrinks from view.
A mip-map may be visualized as a pyramid of filtered

versions of the same texture map. Each map has one-half the
linear resolution of its preceding map, and has therefore one
quarter the number of texels. The memory cost of this
organization, where the coarsest level has only one texel, is
V3 (i.e.,1+/4+/16+ . . .) the cost of the original map. The
acronym “mip' Stands for “multum in parvo' a Latin phrase
meaning “many things in a Small place'. The mip-map
Scheme thus provides pre-filtered textures, one of which is
Selected at run time for use in rendering. In general, the
desired level will not exactly match one of the predeter
mined levels in the mip-map. Thus, interpolation may be
involved to calculate the desired level. Bilinear interpolation
may be used if the texel to be looked up is not exactly on the
integer boundaries of the predetermined mip-map levels.
Similar two-dimensional linear interpolations are computed
in each mip-map when Scaled (u, v) values for texture table
lookup are not integer values. To assure continuity when
rapidly changing images (e.g., during animation), the effects
of the four texels which enclose the Scaled (u, v) values are
considered, based upon their linear distances from the ref
erence point in texel Space. For example, if the Scaled (u, v)
values are (3.7, 6.8), the weighted average of texels (3, 6),
(4., 6), (3, 7), and (4, 7) is taken.

Turning now to FIG. 22, a Set of mip maps is shown. AS
the figure illustrates, each mip map is a two dimensional
image, where each Successive mip map is one half the size
of the previous one. For example, if level 0 (i.e., texture map
20) is sixteen by sixteen texels, then level 1 (mip map 22)
is eight by eight texels, level 2 (mip map 24) is four by four
texels, level 3 (mip map 24) is two by two texels, and level
4 (mip map 28) is a single texel. Each Subsequent mip map
is one half the dimension of the previous mip map. Thus,
each Subsequent mip map has one quarter the area, number
of texels, and resolution of the previous mip map. Note
however, that other ratios are also possible and that mip
maps need not be Square.

Tri-linear filtering may be used to Smooth out edges of
mip mapped polygons. and prevent moving objects from
displaying a distracting sparkle resulting from mismatched
texture interSections. Trilinear filtering involves blending
texels from two neighboring mip maps (e.g., blending texels
from mip map 20 and mip map 22). The texel addresses in
the neighboring mip maps are related by their addresses. For
example, a particular texel at address (U,V) in level N
corresponds to the texel at address (U/2, V/2) in level N+1.
This is represented by texels 30 and 32 in the figure (each
marked with an “X”).

15

25

35

40

45

50

55

60

65

30
Current texture mapping hardware tends to implement

Simple bi- or tri-linear interpolation of mip-map textured
images. Bi-linear filters, however, are effectively “tent”
filters that are uniform in texture Space, not Screen Space.
Uniformity in Screen Space, however, tends to result in a
more realistic image.

Currently, most high quality texture mapping is actually
performed by software. While a variety of different tech
niques are used, most may be classified generally as “ellip
tical filters” (i.e., elliptical in texture space, but circular in
Screen Space). These elliptical filters produce more realistic
results, but are also considerably more complex than a tent
filter. This complexity has prevented most real-time hard
ware implementations.

In one embodiment, graphics System 112 may be config
ured to perform real-time high quality texture mapping by
converting texels into micro-polygons (e.g., triangles) at
render time. These micro-polygons are then rendered into
Super-Sampled Sample buffer 162 using bi-linear interpola
tion. The final filtering (which produces the high quality
image) is deferred until the convolution is performed. This
allows all Samples that might effect the final pixel value to
be written into sample buffer 162 before the pixel value is
calculated. The final filtering may then advantageously be
performed in Screen Space. In one embodiment, one to two
hundred Samples may be filtered to generate a single pixel.
This may significantly improve the appearance of the final
image in Some embodiments when compared with tradi
tional hardware texture mapping Systems that only filter four
to eight texels to create a pixel.

In one embodiment, graphics System 112 may also be
configured to perform one or more of the following
advanced texturing techniques: bump mapping, displace
ment mapping, and multiple texture mapping.

B. Bump Mapping
Bump mapping perturbs the normal on a Surface to create

what appears to be Small wrinkles or bumps on the Surface.
This technique breaks down near the Silhouette of an object
(because the Silhouette of the object is in fact unchanged, the
bumps implied by the shading are not visible in the
geometry), and at near-glancing angles to the Surface
(because there is no blocking or geometric attenuation due
to the bumps. In general, though, as long as the bumps are
very Small and the object is Some distance away, bump
mapping is an effective way to imply Small deformations to
a shape without actually changing the geometry.

C. Displacement Mapping
Displacement mapping actually moves the Surface by a

given amount in a given direction. Rendering displacement
mapped Surfaces can present a challenge to Some Systems,
particularly when the displacements become large. The
results are often much better than with bump mapping,
because displacement mapped objects may actually exhibit
Self-hiding and potentially shelf-shadowing features, as well
as a changed Silhouette.

D. Multiple Texture Mapping
Multiple texture mapping involves blending a number of

different texture maps together to from the texture applied to
the object. For example, a texture of fabric may be blended
with a texture of marble So that it may appear that the fabric
is Semi-transparent and covering a marble object.

Another example of multiple texture mapping is taking a
texture map of corresponding light and dark areas (i.e., a
low-frequency shadow map), and then blending the Shadow
map with a texture (e.g., a high-frequency texture map).
Multiple texture mapping may also be used for “micro
detail” applications. For example, when a viewer Zooms in

US 6,417,861 B1
31

on a texture-mapped wall, the texture map for the wall may
be blended with a low-resolution intensity map to provide
more realistic imperfections and variations in the finish of
the wall.

E. Decompression of Compressed Graphics Data
AS previously noted, Some embodiments of graphics

System 112 may be configured to receive and decompress
compressed 3D geometry data. This may advantageously
reduce the memory bandwidth requirements within graphics
System 112, as well as allow objects with a larger number of
polygons to be rendered in real time.

F. Per-pixel Phong Shading
AS previously noted, in Some embodiments graphics

System 112 may be configured to break textures into Sub
pixel triangle fragments (see Texture Filtering above). By
combining this feature with geometry compression (See
Decompression of Compressed Graphics Data above) and an
extremely high triangle render rate, graphics System 112
may, in Some embodiments, be capable of achieving image
quality rivaling, equaling, or even Surpassing that of per
pixel Phong shading. These high quality images may be
achieved by finely tessellating the objects to be rendered
using micro-polygons. By finely teSSelating the objects, a
Smoother and more accurate image is created without the
need for per-pixel Phong Shading. For example, hardware in
graphics System may be configured to automatically turn all
primitives into micro-triangles (i.e., triangles that are one
pixel or less in size) before lighting and texturing is per
formed.

G. Soft-key Output
In Some environments, users of graphics Systems may

desire the ability to output high quality anti-aliased rendered
images that can be overlaid on top of a live video stream.
While some systems exist that offer this capability, they are
typically quite expensive. In one embodiment, graphics
System 112 may be configured to inexpensively generate
high quality over layS. In one embodiment, graphics System
112 may be configured to generate an accurate Soft edge
alpha key for Video output and down Stream alpha keying.
The alpha key may be generated by Sample-to-pixel calcu
lation units 170, which may perform a filtering function on
the alpha values stored in sample buffer 162 to form “alpha
pixels. Each alpha pixel may correspond to a particular
output pixel. In one embodiment, the alpha pixels may be
output using DAC 178A while the color output pixels may
be output by DAC 178B.

In another embodiment, this Soft edge alpha key overlay
is then output in a digital format to an external mixing unit
which blends the overlay with a live video feed. The alpha
pixels corresponding to each output pixel will determine
how much of the live video shows through the correspond
ing pixel of the overlay. In one embodiment, for example,
the greater the alpha pixel value, the more opaque the pixel
becomes (and the less the live video feed shows through the
pixel). Similarly, the Smaller the alpha pixel value, the more
transparent the pixel becomes. Other embodiments are also
possible and contemplated. For example, the live Video feed
could be input into computer System 80 or graphics System
112. Graphics system 112 could then blend the two sources
internally and output the combined video signal.

H. 12-bit Effective Linear Output
While 12-bit (linear light) color depth (i.e., 12-bits of data

for each of red, green, and blue) is considered ideal in many
embodiments, possible limitations in Sample memories 162
may limit the Storage space per sample to a lesser value (e.g.,
10-bits per color component). In one embodiment, graphics
System 112 may be configured to dither Samples from

15

25

35

40

45

50

55

60

65

32
12-bits to 10-bits before they are stored in sample buffer
162. During the final anti-aliasing computation in Sample
to-pixel calculation units 170A-D, the additional bits may
effectively be recovered. After normalization, the resulting
pixels may be accurate to 12-bits (linear light). The output
pixels may be converted to nonlinear light, and after the
translation, the results may be accurate to 10 bits (non-linear
light). After conversion from linear to non-linear light, the
resulting pixels may thus be accurate to 10-bits.

I. Integrated Eye-Head-Hand Tracking
AS previously noted, Some embodiments of graphics

System 112 may be configured to Support eye, head, and or
hand tracking by modifying the number of Samples per pixel
at the viewer's point of foveation.

J. Alpha Blending, Fogging, and Depth-Cueing
Alpha blending is a technique that controls the transpar

ency of an object, allowing realistic rendering of translucent
Surfaces Such as glass or water. Additional atmospheric
effects that are found in rendering engines include fogging
and depth cueing. Both of these techniques obscure an object
as it moves away from the viewer. Blur is also somewhat
related and may be implemented by performing low-pass
filtering during the filtering and Sample-to-pixel calculation
process (e.g., by using a larger extent during the filtering
process) by sample-to-pixel calculation units 170A-D. An
alpha value may be generated that can be used to blend the
current Sample into the Sample buffer.

Although the embodiments above have been described in
considerable detail, other versions are possible. Numerous
variations and modifications will become apparent to those
skilled in the art once the above disclosure is fully appre
ciated. It is intended that the following claims be interpreted
to embrace all Such variations and modifications. Note the
headings used herein are for organizational purposes only
and are not meant to limit the description provided herein or
the claims attached hereto.
What is claimed is:
1. A graphics System comprising:
a graphics processor configured to calculate a plurality of

Samples, wherein Said graphics processor is program
mable to vary the positions of Said Samples,

a Sample buffer coupled to Said graphics processor and
configured to receive and Store Said plurality of
Samples, wherein Said Samples are double-buffered in
Said Sample buffer; and

a Sample-to-pixel calculation unit coupled to read and
filter said samples from said sample buffer to form
output pixels in real time.

2. The graphics System as recited in claim 1, wherein Said
Sample-to-pixel calculation unit directly deliverS Said output
pixels to a display device without an intervening frame
buffer.

3. The graphics System as recited in claim 1, wherein Said
graphics processor is configured to vary the positions of Said
Samples on one of the following bases: a per-frame basis, a
per-pixel basis, a per-Scan line basis, a per region basis, a
group of pixels basis, and a group of Scan lines basis.

4. The graphics System as recited in claim 1, wherein Said
graphics processor is configured to vary the density of Said
plurality of Samples using a basis Selected from the group
comprising: a per-frame basis, a per-pixel basis, a per-Scan
line basis, a per region basis, a group of pixels basis, and a
group of Scan lines basis.

5. The graphics System as recited in claim 1, further
comprising a Sample position memory coupled to Said
graphics processor, wherein Said Sample position memory is
configured to Store sample position information according to

US 6,417,861 B1
33

one or more Sample position Schemes, wherein Said graphics
processor is configured to read Said Sample position infor
mation from Said Sample position memory.

6. The graphics System as recited in claim 1, further
comprising a Sample position memory coupled to Said
graphics processor, wherein Said Sample position memory is
configured to Store sample position information according to
one or more Sample position Schemes and one or more
Sample densities, wherein Said graphics processor is config
ured to read Said Sample position information corresponding
to a Selected Sample position Scheme and a Selected Sample
position density from Said Sample position memory.

7. The graphics System as recited in claim 1, further
comprising a programmable Sample position memory
coupled to Said graphics processor, wherein graphics pro
ceSSor is configured to read Sample position information
from Said Sample position memory.

8. The graphics System as recited in claim 7, wherein Said
Sample position memory is configured to Store Said Sample
position information as X-offsets and y-offsets.

9. The graphics System as recited in claim 7, wherein Said
Sample position memory is double-buffered.

10. The graphics system as recited in claim 8, wherein
Said graphics processor is configured to generate Said
Samples according to Sample positions calculated by com
bining Said X- and y-offsets with coordinates Selected from
the group comprising: predetermined bin coordinates and
predetermined pixel center coordinates.

11. The graphics System as recited in claim 7, wherein
Said Sample-to-pixel calculation unit is configured to filter
Samples read from Said Sample buffer according to Sample
position information Stored in Said Sample position memory.

12. The graphics System as recited in claim 11, wherein
said Sample-to-pixel calculation unit is configured to filter
Samples read from Said Sample buffer once per pixel per
frame in real time.

13. The graphics System as recited in claim 1, wherein
Said graphics processor is programmable to Select one of a
plurality of algorithms with which to generate Said Sample
positions.

14. The graphics System as recited in claim 13, wherein
Said graphics processor is programmable to Select an algo
rithm with which to generate Said Sample positions for the
group comprising: regular grid Spacing, Stochastic spacing;
and perturbed regular grid Spacing.

15. The graphics System as recited in claim 1, wherein
Said Sample buffer is Super-Sampled.

16. The graphics System as recited in claim 1, further
comprising a dedicated Sample position calculation unit.

17. The graphics system as recited in claim 16, wherein
Said Sample position calculation unit comprises hardware
Selected from the group consisting of: a random number
generator, a pseudo-random function generator, a table of
random numbers, and a table of random number Seeds.

18. A method for rendering images using a graphics
System, the method comprising:

receiving a set of 3D graphics data, wherein Said 3D
graphics data comprises at least one graphics primitive;

generating a plurality of Sample positions,
Selecting the Sample positions that are within Said at least

one primitive;
calculating Samples corresponding to the Selected Samples

positions,
Storing the calculated Samples into a Sample buffer; and
filtering the Stored Samples to generate output pixels,

wherein the filtering is performed once per output pixel
per frame.

15

25

35

40

45

50

55

60

65

34
19. The method as recited in claim 18, wherein said

generating further comprises Selecting one of a plurality of
Sample position generating algorithms.

20. The method as recited in claim 18, wherein said
generating further comprises Selecting one of the following
Sample position generating algorithms Stochastic, regular
grid, or perturbed regular grid.

21. The method as recited in claim 18, wherein said
generating comprises calculating random offsets to be added
to regular grid positions.

22. The method as recited in claim 18, wherein said
generating comprises:

reading random offsets from a table of random offsets, and
adding the offsets to regular grid positions.
23. The method as recited in claim 18, wherein said

generating comprises:
reading pseudo-random offsets from a table of random

offsets, and
adding the offsets to regular grid positions.
24. The method as recited in claim 22, wherein said

random offsets comprise X-offsets and y-offsets, and wherein
Said X-offsets and Said y-offsets are limited to predetermined
minimum and maximum values.

25. The method as recited in claim 18, further comprising
Storing Said generated Sample positions in a double-buffered
Sample position memory.

26. The method as recited in claim 18, wherein each
Sample has a corresponding Sample position, wherein the
Samples are organized into bins, wherein each bin has a
particular Screen position, wherein each Sample position is
an X-offset and y-offset from the corresponding bin's X and
y Screen position.

27. The method as recited in claim 18, wherein said
generating comprises evaluating a formula using a Stored
counter value as input.

28. The method as recited in claim 18, wherein said
Sample buffer is Super-Sampled.

29. The method as recited in claim 18, wherein a first
portion of each Sample's information is double-buffered, and
wherein a Second portion of each Sample's information is
single buffered.

30. A computer System comprising:
a microprocessor,
a main memory coupled to Said microprocessor; and
a graphics accelerator coupled to Said main memory,

wherein Said graphics accelerator comprises:
a graphics processor configured to receive instructions

and data from Said microprocessor and Said main
memory and calculate a plurality of Samples corre
sponding thereto;

a Sample buffer coupled to Said graphics processor and
configured to Store said Samples, wherein Said
Samples are at least partially double buffered in Said
Sample buffer; and

a Sample-to-pixel calculation unit couple to Said Sample
buffer, wherein Said calculation unit is configured to
read and filter Samples from Said Sample buffer to
form output pixels.

31. The computer system as recited in claim 30, wherein
Said graphics processor is configured to vary the positioning
Scheme used to generate Said Samples on one of the follow
ing bases: a per-frame basis, a per-pixel basis, a group of
pixels basis, a per-Scan line basis, a multiple-Scan line basis,
or a per frame region basis.

32. The computer system as recited in claim 30, wherein
Said graphics processor is configured to vary the density of

US 6,417,861 B1
35

Said plurality of Samples on one of the following bases: a
per-frame basis, a per-pixel basis, a group of pixels basis, a
per-Scan line basis, a multiple-Scan line basis, or a per frame
region basis.

33. The computer system as recited in claim 30, further
comprising a Sample position memory coupled to Said
graphics processor, wherein Said Sample position memory is
configured to Store sample position information according to
one or more Sample position Schemes, wherein Said graphics
processor is configured to read Said Sample position infor
mation from Said Sample position memory.

34. The computer system as recited in claim 30, further
comprising a Sample position memory coupled to Said
graphics processor, wherein Said Sample position memory is
configured to Store sample position information according to
one or more Sample position Schemes and one or more
Sample densities, wherein Said graphics processor is config
ured to read Said Sample position information corresponding
to a Selected Sample position Scheme and a Selected Sample
position density from Said Sample position memory.

35. The computer system as recited in claim 30, further
comprising a programmable Sample position memory
coupled to Said graphics processor, wherein Said graphics
processor is configured to read Sample position information
from Said Sample position memory.

36. The computer system as recited in claim 35, wherein
Said Sample position memory is configured to Store Said
Sample position information as X-offsets and y-offsets.

37. A graphics device driver embodied on a carrier media,
wherein Said graphics device driver comprises a plurality of
instructions, wherein Said plurality of instructions are con
figured to cause a graphics System to:

Select a particular algorithm for generating Sample posi
tions,

generate a plurality of Sample positions,
Store the generated Sample positions in a Sample position
memory;

read the Sample positions, and
generate corresponding Sample pixels in real time.
38. The graphics device driver as recited in claim 37,

wherein Said plurality of instructions are further configured
to instruct a graphics System to:

read 3D graphics data from a main System memory,
wherein Said 3D graphics data comprises a graphics
primitive;

determine which of the Sample positions from the Sample
position memory are within the graphics primitive;

render a Sample for each Sample position within the
graphics primitive, and

store the samples in a sample buffer in a double buffered
C.

39. The graphics device driver as recited in claim 38,
wherein Said plurality of instructions are further configured
to instruct a graphics System to:

output the Samples Stored in the Sample buffer to a
Sample-to-pixel calculation unit; and

filter the Samples into output pixels for display on a
display device.

40. The graphics device driver as recited in claim 37,
wherein Said particular algorithm is Selected from the group
comprising: Stochastic spacing, perturbed regular grid
Spacing, and regular grid Spacing.

41. The graphics device driver as recited in claim 37,
wherein Said carrier medium is a computer-readable
medium.

36
42. The graphics device driver as recited in claim 37,

wherein Said carrier medium is a transmission medium.
43. A graphics System comprising:
a programmable double-buffered Sample position

5 memory including a first Sample position buffer and a
Second Sample position buffer;

a graphics processor configured to calculate a plurality of
Samples based on Sample positions read from the first

1O Sample position buffer;
a Sample buffer coupled to Said graphics processor and

configured to receive and Store Said plurality of
Samples, wherein Said Samples are double-buffered in
Said Sample buffer; and

a Sample-to-pixel calculation unit coupled to read and
filter Said Samples from Said Sample buffer in real time
to form output pixels according to a programmable
filter, wherein the programmable filter applies weights
to the Samples and Sums the weighted Samples, wherein
the weights are based on the Sample positions from the
Second Sample position buffer.

44. The graphics System of claim 43, wherein the Sample
positions Stored in the first Sample position buffer and the
Second Sample position buffer are offsets relative to a regular

25 grid of Sample bins.
45. A graphics System comprising:

15

a Sample position memory configured to Store positional
information and to generate a first plurality of Sample
positions within a pixel based on the positional infor

3O mation;
a graphics processor configured to receive the first plu

rality of Sample positions from- the sample position
memory and to calculate one or more first samples for
the pixel respectively at one or more Sample positions
of the first plurality, wherein the Sample position
memory is configured to vary the first plurality Sample
positions within the pixel between a first frame and a
Second frame;

35

a Sample buffer coupled to Said graphics processor and
configured to receive and Store Second Samples includ
ing Said one or more first Samples, and

40

a Sample-to-pixel calculation unit coupled to read and
filter said Second Samples from Said Sample buffer to
generate output pixels for display.

46. The graphics system of claim 45, wherein the number
of Sample positions in Said

45

first plurality remains constant between the first frame and
the Second frame.

47. The graphics system of claim 45, wherein the posi
tional information comprises a random number table,
wherein the Sample position memory accesses the random
number table differently in the second frame than in the first
frame So that the first plurality of Sample positions in the
pixel vary between the first frame and the Second frame.

48. The graphics system of claim 45, wherein the sample
position memory is configured to programmably generate
the first plurality of Sample positions according to a Selected
Sample positions Scheme.

49. The graphics of claim 45, wherein the sample position
memory is double buffered.

50. A graphics System for generating displayable images,
the graphics System comprising:

50

55

60

a graphics processor configured to generate a plurality of
Sample positions in a first pixel, to calculate one or
more first Samples at one or more of the Sample
positions respectively, wherein the graphics processor

US 6,417,861 B1
37

is programmable to vary the plurality of Sample posi
tions in the first pixel,

a Sample buffer coupled to Said graphics processor and
configured to receive and Store Second Samples includ
ing Said one or more first Samples, and

a Sample-to-pixel calculation unit coupled to read and
filter said Second Samples from Said Sample buffer to
generate a plurality of pixels.

51. The graphics system of claim 50 wherein graphics
processor is programmable to generate the plurality of
Sample positions in the first bin according to a Selected
Sample positioning Scheme Selected from the group consist
ing of a regular grid positioning Scheme, a perturbed regular
grid positioning Scheme, and a stochastic Sample positioning
Scheme.

52. The graphics system of claim 50 wherein the sample
to-pixel calculation unit is configured to provide the pixels
to a display device without an intervening buffer for frames
of Said pixels.

53. A graphics System for rendering displayable images,
the graphics System comprising:

a graphics processor configured to generate a plurality of
Sample positions for each pixel in at least a Subset of a
plurality of pixels, to determine which of Said plurality
of Sample positions in each pixel of Said at least a
Subset reside interior to a first primitive, to calculate
Samples at the interior Sample positions, wherein Said
graphics processor is programmable to vary Said plu
rality of Samples positions in at least one of Said pixels
in Said at least a Subset;

a Sample buffer coupled to Said graphics processor and
configured to receive and Store the Samples, and

a Sample-to-pixel calculation unit coupled to read and
filter the Samples from the Sample buffer to generate a
plurality of pixels.

54. A graphics System comprising:
a graphics processor configured to calculate a plurality of

Samples corresponding to a first pixel, wherein Said
graphics processor is programmable to vary the posi
tions of Said Samples for the first pixel, wherein the
graphics processor is configured to calculate a first
plurality of Samples at first Sample positions in the first
pixel in a first frame and to calculate a Second plurality
of Samples at Second Sample positions in the first pixel
in a Second frame, wherein Said first Sample positions
are different than Said Second Sample positions,

a Sample buffer configured to receive and Store one or
more of Said first plurality of Samples in the first frame
and to receive and Store one or more of Said Second
plurality of Samples in the Second frame; and

a Sample-to-pixel calculation unit coupled to read and
filter Samples from the Sample buffer to generate output
pixels including Said first pixel, wherein the Sample
to-pixel calculation unit is operable to read and filter at
least Said one or more Samples of Said first plurality of
samples from the sample buffer to form the first pixel
in the first frame, and wherein the Sample-to-pixel
calculation unit is operable to read and filter at least
Said one or more Samples of Said Second plurality of
samples from the sample buffer to form the first pixel
in the Second frame.

55. A graphics System comprising:
a graphics processor configured to calculate a plurality of

Samples for each of a plurality of pixels, wherein Said
graphics processor is programmable to vary the posi
tions of Said Samples within at least one of Said plurality
of pixels,

15

25

35

40

45

50

55

60

65

38
a Sample buffer coupled to Said graphics processor and

configured to receive and Store Said plurality of
Samples, wherein Said Samples are double-buffered in
Said Sample buffer; and

a Sample-to-pixel calculation unit coupled to read and
filter said samples from said sample buffer to form
output pixels in real time.

56. A graphics System comprising:
a Sample position memory configured to Store positional

information and to generate a first plurality of Sample
positions within a bin based on the positional informa
tion;

a graphics processor configured to receive the first plu
rality of Sample positions from the Sample position
memory and to calculate one or more first Samples for
the bin respectively at one or more Sample positions of
the first plurality, wherein the Sample position memory
is configured to vary the first plurality Sample positions
within the bin between a first frame and a second frame;

a Sample buffer coupled to Said graphics processor and
configured to receive and Store Second Samples includ
ing Said one or more first Samples, and

a Sample-to-pixel calculation unit coupled to read and
filter said Second Samples from Said Sample buffer to
generate output pixels for display.

57. The graphics system of claim 56, wherein the number
of Sample positions in Said

first plurality remains constant between the first frame and
the Second frame.

58. The graphics system of claim 56, wherein the posi
tional information comprises a random number table,
wherein the Sample position memory accesses the random
number table differently in the second frame than in the first
frame So that the first plurality of Sample positions in the bin
vary between the first frame and the second frame.

59. The graphics system of claim 56, wherein the sample
position memory is configured to programmably generate
the first plurality of Sample positions according to a Selected
Sample positions Scheme.

60. A graphics System for generating displayable images,
the graphics System comprising:

a graphics processor configured to generate a plurality of
Sample positions in a first bin, to calculate one or more
first Samples at one or more of the Sample positions
respectively, wherein the graphics processor is pro
grammable to vary the plurality of Sample positions in
the first bin;

a Sample buffer coupled to Said graphics processor and
configured to receive and Store Second Samples includ
ing Said one or more first Samples, and

a Sample-to-pixel calculation unit coupled to read and
filter said Second Samples from Said Sample buffer to
generate a plurality of pixels.

61. The graphics system of claim 60 wherein the sample
buffer is double-buffered.

62. The graphics system of claim 60 wherein graphics
processor is programmable to generate the plurality of
Sample positions in the first bin according to a Selected
Sample positioning Scheme.

63. The graphics system of claim 62 wherein the sample
positioning Scheme is Selected from the group consisting of:
a regular grid positioning Scheme, a perturbed regular grid
positioning Scheme, and a Stochastic Sample positioning
Scheme.

64. The graphics system of claim 60 wherein the sample
to-pixel calculation unit is configured to provide the pixels
to a display device without an intervening buffer for frames
of Said pixels.

US 6,417,861 B1
39

65. A graphics System for rendering displayable images,
the graphics System comprising:

a graphics processor configured to generate a plurality of
Sample positions for each bin in at least a Subset of a
plurality of bins, to determine which of said plurality of
Sample positions in each bin of Said at least a Subset
reside interior to a first primitive, to calculate Samples
at the interior Sample positions, wherein Said graphics
processor is programmable to vary Said plurality of
Samples positions in at least one of Said bins in Said at
least a Subset;

a Sample buffer coupled to Said graphics processor and
configured to receive and Store the Samples, and

a Sample-to-pixel calculation unit coupled to read and
filter the Samples from the Sample buffer to generate a
plurality of pixels.

5

15

40
66. The graphics system of claim 65, wherein the graphics

processor is configured to generate the plurality Sample
positions in each bin of Said at least a Subset by accessing a
table of random numbers, wherein the graphics processor
accesses the table of random numbers differently in different
frames resulting in a variation of the plurality of Sample
positions between a first frame and a Second frame.

67. The graphics system of claim 65, wherein the graphics
processor is programmable to generate the plurality of
Sample positions in each bin of Said at least a Subset
according to a Selected Sample positioning Scheme.

68. The graphics system of claim 65, wherein the graphics
processor is configured generate the plurality of Sample
positions for each bin of Said at least a Subset by adding
Sample position offsets to coordinates of Said bin.

k k k k k

