A refrigerator oil composition for carbon dioxide coolant, which dissolves in supercritical carbon dioxide in an amount of 0.1 mass % or more at a temperature of 100°C under a pressure of 15 MPa. The above refrigerator oil composition is used in a refrigeration system using a carbon dioxide coolant in a supercritical state, and, in particular, can enhance the heat exchange efficiency during the pass of supercritical carbon dioxide through a heat exchanger and also exhibits good durability and lubricity.
The amount of refrigerator oil dissolved in CO₂ (% by mass)
REFRIGERATOR OIL COMPOSITION FOR CARBON DIOXIDE COOLANT

TECHNICAL FIELD

[0001] The present invention relates to a refrigerator oil composition for use with carbon dioxide refrigerant. More particularly, the invention relates to a refrigerator oil composition for carbon dioxide refrigerant, which composition is employed in a refrigerating system operated in a supercritical state of carbon dioxide refrigerant. In particular, the composition can enhance heat-exchange efficiency during passage of supercritical carbon dioxide through a heat exchanger and exhibit excellent durability and lubrication performance.

BACKGROUND ART

[0002] In general, in a compression refrigeration cycle for refrigerators; e.g., a compression refrigerator having a compressor, a condenser, an expansion valve, and an evaporator, a fluid mixture of a refrigerant and a lubricating oil is circulated in a closed system. Hitherto, in such a compression refrigerator, chlorofluorocarbon such as dichlorodifluoromethane (R-12) or chlorodifluoromethane (R-22) is employed as a refrigerant, and a variety of lubricating oils have been produced and employed in combination with such a refrigerant. Thus, when the aforementioned chlorofluorocarbons that have heretofore been employed as refrigerant are released in air, the ozonosphere in the stratosphere may be depleted, resulting in environmental pollution. Therefore, recently, use of the Flon compound is more and more rigorously controlled throughout the world. Under such circumstances, hydrofluorocarbons and fluorocarbons such as 1,1,1,2-tetrafluoroethane (R-134a) have become of interest as new refrigerants. Although these hydrofluorocarbons and similar compounds are less destructive to the ozonosphere, they have a long life in the atmosphere, possibly resulting in global warming. Therefore, in recent years, there has been investigated use of naturally occurring refrigerant that does not raise the aforementioned problems.

[0003] Carbon dioxide is an excellent candidate, since it is harmless to the environment and is safe to human beings. In addition, carbon dioxide has advantages such as easy availability at any place and considerably low cost without necessity for recovery. By virtue of being harmless to the global environment, being free of flammability, and having low toxicity, naturally occurring carbon dioxide coolant has attracted attention in recent years. Possible applications of carbon dioxide refrigerants include electric air conditioners for automobile use, heating apparatuses for use in cold areas, and hot-water supplying systems.

[0004] Among these applications, hot-water supplying apparatus will be further described in terms of further enhancement of energy conservation and efficiency, which is demanded in relation to global environmental issues. One advantage of carbon dioxide is that, when carbon dioxide is employed in a heat-pump hot-water supplier, running cost of the supplier is reduced to about ½ and coefficient of performance (COP) is enhanced to 3.0 or higher, as compared with gas-system hot-water suppliers generally employed as domestic hot-water suppliers. In contrast, when the aforementioned HFC coolant is employed in heat-pump hot-water supplies, the maximum temperature of water supplied by the suppliers is limited to about 60°C, because of thermal properties of the coolant. In this case, a compressor of considerably higher output must be further employed. However, when carbon dioxide is employed as a coolant, hot water at about 90°C can be supplied by virtue of the thermal properties of carbon dioxide. Thus, employment of carbon dioxide is advantageous.

[0005] Meanwhile, refrigerator oil is used in a closed-type electric compressor and plays roles including lubrication, sealing, cooling, etc. of sliding parts. However, use of carbon dioxide as a refrigerant often raises the problem that a system employing carbon dioxide therein requires higher discharge pressure and has a higher temperature, as compared with the case where R-134a or the like is employed. As a result, the refrigerator oil in the system is exposed to carbon dioxide under supercritical conditions. Therefore, if a conventionally used lubricating oil is employed for lubrication, unexpected problems arise. For example, the lubricating oil becomes less stable, failing to ensure long-term stable use, and lubrication performance such as wear resistance becomes poor.

[0006] Conventionally, synthetic oils having miscibility with refrigerant (e.g., polyalkylene glycol and polyol ester) are generally employed refrigerator oils for use in a refrigeration cycle employing carbon dioxide or a compressor.

[0008] However, some polyalkylene glycols have poor insulating performance attributed to the molecular structure thereof. Since refrigerating oils employed in a closed-type electric compressor are required to serve as electrically insulating oil, when such a polyalkylene glycol species is employed, a short circuit may occur between hermetic terminals provided so as to supply external electric power to a motor of the compressor. Furthermore, high dielectric constant and dielectric tangent result in large leakage current, which may cause accidents by an electric shock.

[0009] Polyester-polyol, having excessively high miscibility with carbon dioxide refrigerant, considerably lowers viscosity when it is in a compressor and forms a solution with carbon dioxide, impairing sealing performance on the high-pressure side. In this case, compressing efficiency lowers, and flow of the refrigerating oil into the refrigeration cycle increases, possibly causing a drop in heat exchanging efficiency.

[0010] Under such circumstances, an object of the present invention is to provide a refrigerator oil composition for carbon dioxide refrigerant, of which composition is employed in a refrigerating system operated in a supercritical state of carbon dioxide refrigerant and, particularly, to provide such a composition which can enhance heat-exchange efficiency during passage of supercritical carbon
dioxide through a heat exchanger as well as which has excellent durability and lubrication performance.

DISCLOSURE OF THE INVENTION

[0011] The present inventors have carried out extensive studies in order to attain the aforementioned objects, and have found that the objects can be attained by a refrigeration oil composition which comprises in an amount of a specific value or more in a supercritical carbon dioxide under specific pressure and temperature conditions, and particularly by a refrigerator oil composition wherein, when the composition is dissolved to saturation in a supercritical carbon dioxide under the above conditions, the resultant mixture exhibits a viscosity, a dielectric constant, a density, and a thermal conductivity each falling within a predetermined range. The present invention has been accomplished on the basis of this findings.

[0012] Accordingly, the present invention provides the following:

[0013] (1) A refrigerator oil composition for use with carbon dioxide refrigerant, characterized in that the composition dissolves in an amount of at least 0.1% by mass in a supercritical carbon dioxide at a temperature of 100°C. under a pressure of 15 Mpa.

[0014] (2) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C. under a pressure of 15 Mpa and the refrigerator oil composition dissolved in the supercritical carbon dioxide to saturation has a viscosity of at most 1 mPa-s.

[0015] (3) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C. under a pressure of 15 Mpa and the refrigerator oil composition has a dielectric constant of 1 to 5.

[0016] (4) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C. under a pressure of 15 Mpa and the refrigerator oil composition has a density of 0.1 to 0.9 g/cm³.

[0017] (5) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C. under a pressure of 15 Mpa and the refrigerator oil composition has a thermal conductivity of 0.0001 to 0.01 W/m·K.

[0018] (6) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, which comprises at least one base oil selected from the groups consist of polyalkylene glycol and a derivative thereof, polyvinyl ether, polyol ester, poly(α-olefin), alkylbenzene, and mineral oil, and has a kinematic viscosity of 3 to 1,000 mm²/s at 40°C. and a hue (ASTM) at most 1.

[0019] (7) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, which comprises at least one member selected from the groups of an extreme pressure agent, an antioxidant, an acid scavenger, and a defoaming agent.

[0020] (8) A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in (1) above, which is for use in a hot-water supplying machine, an automobile air-conditioner, an air-conditioner, a refrigerator, a heat pump, a hot-water supplying system employed in an automatic vending machine or a showcase, or a refrigeration-heating system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Each of FIGS. 1 to 4 is a flow chart showing an exemplary compression refrigeration cycle to which the refrigerator oil composition of the present invention can be applied.

[0022] FIG. 5 shows an essential configuration of a heat-pump hot-water supplying machine, and FIG. 6 is a graph showing the relationship between the amount of refrigerator oil dissolves in CO₂ and heat exchange efficiency.

BEST MODES FOR CARRYING OUT THE INVENTION

[0023] Characteristics of the refrigerator oil composition of the present invention for use with carbon dioxide refrigerant will now be described.

[0024] The refrigerator oil composition essentially dissolves in an amount of at least 0.1% by mass in a supercritical carbon dioxide at a temperature of 100°C. under a pressure of 15 Mpa. When the refrigerator oil composition dissolves in an amount of less than 0.1% by mass, a refrigerator fluid composition containing supercritical carbon dioxide and the refrigerator oil composition exhibits poor heat exchange efficiency during passage of the fluid composition through a heat exchanger. The amount is preferably at least 0.3%, more preferably at least 0.5% by mass. No particular limitation is imposed on the upper limit of the amount, and the amount is generally about 10% by mass.

[0025] In order for the refrigerator oil composition containing supercritical carbon dioxide and the refrigerator oil composition to attain desired heat exchange efficiency, durability, and lubrication performance during passage of the fluid composition through a heat exchanger, the mixture of a 100°C., 15 Mpa supercritical carbon dioxide and the refrigerator oil composition dissolved to saturation therein preferably exhibits (1) a viscosity of at most 1 mPa-s; (2) a dielectric constant of 1 to 5; (3) a density of 0.1 to 0.9 g/cm³; and (4) a thermal conductivity of 0.0001 to 0.01 W/m·K.

[0026] The viscosity is more preferably at most 0.5 mPa-s. No particular limitation is imposed on the lower limit thereof, and the lower limit is generally about 0.02 mPa-s. The dielectric constant is more preferably 1 to 2, and the density is more preferably 0.2 to 0.7 g/cm³. The thermal conductivity is more preferably 0.001 to 0.01 W/m·K. Methods for determining these properties will be described hereinafter.

[0027] Next, the base oil of the refrigerator oil composition will be described.

[0028] No particular limitation is imposed on the base oil employed in the refrigerator oil composition of the present invention, so long as the base oil provides a refrigerator oil composition which exhibits the aforementioned physical properties. For example, at least one species selected from
among polyoxyalkylene glycol and a derivative thereof, polyvinyl ether, polyol ester, poly(α-olefin), alkylbenzene, and mineral oil is employed.

[0029] The polyoxyalkylene glycol or a derivative thereof which may be employed in the invention is, for example, a compound represented by the formula (I):

$$\text{R}^1=\text{R}^2\text{O}\text{R}^3\text{OR}^4$$ \hspace{1cm} (I)

(wherein R1 represents a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, an acyl group having from 2 to 10 carbon atoms, or an aliphatic hydrocarbon group having from 1 to 10 carbon atoms and having from 2 to 6 bonding sites; R2 represents an alkylene group having from 2 to 4 carbon atoms; R3 represents a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, or an acyl group having from 2 to 10 carbon atoms; n is an integer of 1 to 6; m is a number which gives an average value of m/n of 6 to 80), or a polyoxyalkylene glycol derivative having at least one structural unit represented by the formula (II):

$$\text{R}^6\text{O}\text{R}^7\text{OR}^4$$ \hspace{1cm} (II)

(wherein each of R4 to R7 represents a hydrogen atom, a monovalent hydrocarbon group having from 1 to 10 carbon atoms, or a group represented by the formula (III):

$$\text{R}^8\text{O}(\text{R}^{10}\text{O})\text{R}^{11}$$ \hspace{1cm} (III)

(wherein each of R8 and R9 represents a hydrogen atom, a monovalent hydrocarbon group having from 1 to 10 carbon atoms, or an alkyl group having from 2 to 5 carbon atoms, an alkyl-substituted alkylene group having 2 to 5 carbon atoms in total, or an alkyl-substituted alkylene group having from 4 to 10 carbon atoms in total; n is an integer of 0 to 20; and R11 represents a monovalent hydrocarbon group having from 1 to 10 carbon atoms; and at least one of R4 to R7 is represented by the formula (III)).

[0031] Examples of preferred polyoxyalkylene glycols represented by the aforementioned formula (I) include polypropylene glycol dimethyl ether, polyethylene-propylene glycol copolymer dimethyl ether, polypropylene glycol monobutyl ether, and polypropylene glycol diacetate.

[0032] Examples of the polyvinyl ether include a polyvinyl ether compound having a structural unit represented by, for example, the formula (IV):

$$\text{R}^{12}\text{R}^{14}\text{O}\text{R}^{13}\text{O}\text{R}^{15}\text{R}^{16}$$ \hspace{1cm} (IV)

(wherein R12, R13, and R14, which may be identical to or different from one another, each represent a hydrogen atom, a hydrocarbon group having from 1 to 8 carbon atoms; R15 represents a divalent hydrocarbon group having from 1 to 10 carbon atoms; R15 represents a hydrocarbon group having from 1 to 20 carbon atoms; k is an average number of 0 to 10; each of R12 to R15 in one structural unit and its counterpart in another structural unit may be identical to or different from each other; and when a plurality of R15s are present, the R15s may be identical to or different from one another).

[0033] Alternatively, there may also be employed a polyvinyl ether compound formed of a block or random copolymer having a structural unit represented by the aforementioned (IV) and a structural unit represented by the formula (V):

$$\text{R}^{17}\text{R}^{18}\text{R}^{19}\text{R}^{20}$$ \hspace{1cm} (V)

(wherein R17 to R20, which may be identical to or different from one another, each represent a hydrogen atom or a hydrocarbon group having from 1 to 20 carbon atoms; and each of R17 to R20 in one structural unit and its counterpart in another structural unit may be identical to or different from each other).

[0035] Examples of preferred polyvinyl ethers include polyethylene vinyl ether and polyethylene-vinyl ether-polyisobutylene vinyl ether copolymer.

[0036] Examples of the polyol ester include esterification products between a polyhydric alcohol and a saturated or unsaturated fatty acid having from 5 to 20 carbon atoms. Examples of the polyhydric alcohol include hexamethylen glycol, neopentyl glycol, decamethylene glycol, pentamethylenetriol, dipentaerythritol, trimethylolpropane, and trimethylolpropane. Examples of the saturated or unsaturated fatty acid having from 5 to 20 carbon atoms include pentanoic acid, caproic acid, caprylic acid, capric acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, eicosanoic acid, and oleic acid.

[0037] Specific examples of the polyol esters include hexamethylen glycol caprylic acid ester, hexamethylen glycol nonanoic acid ester, decamethylene glycol caprylic acid ester, trimethylolpropane caproic acid ester, trimethyl-
lolpropane caprylic acid ester, pentaerythritol 2-ethylhexanoic acid ester, and pentaerythritol 3,5,5-trimethylhexanoic acid ester.

[0038] Examples of preferred poly(α-olefin) include α-olefin oligomers, ethylene-α-olefin copolymers, and hydrogenated products thereof. Among them, α-olefin oligomers having from 6 to 14 carbon atoms are particularly preferred poly(α-olefins), with 1-decene oligomer being particularly preferred. Among ethylene-α-olefin copolymers, ethylene-propylene copolymer is preferably employed.

[0039] Examples of the alkylbenzenes include propylbenzene and butylbenzene. Examples of the mineral oil include paraffinic mineral oil, naphthenic mineral oil, and intermediate mineral oil. Specific examples include solvent-refined or hydrogenated light neutral oil, medium neutral oil, heavy neutral oil, and bright stock.

[0040] In the present invention, preferably, one or more base oils to be employed are appropriately selected from the aforementioned base oils so that the refrigerant oil composition having the aforementioned properties can be produced. The base oil preferably has a kinematic viscosity of 3 to 1,000 mm²/s at 40°C, and a hue (ASTM) of at most 1. When the kinematic viscosity falls within the above range, excellent lubrication performance can be attained. More preferably, the kinematic viscosity is 5 to 500 mm²/s at 40°C, with 5 to 200 mm²/s at 40°C, being particularly preferred. A base oil having a hue (ASTM) of at most 1 exhibits excellent durability.

[0041] The refrigerator oil composition may further contain at least one species selected from among an extreme pressure agent, an antioxidant, an acid scavenger, and a defoaming agent.

[0042] Examples of the extreme pressure agent include a carboxylic acid metal salt. In the present invention, the carboxylic acid metal salt is preferably a carboxylic acid metal salt having from 3 to 60 carbon atoms, more preferably a carboxylic acid metal salt having from 3 to 30 carbon atoms, particularly preferably a carboxylic acid metal salt having from 12 to 30 carbon atoms. The extreme pressure agent may be a dimer acid or trimer acid of the fatty acid(s) or a dicarboxylic acid metal salt having from 3 to 30 carbon atoms. Of these, a fatty acid metal salt having from 12 to 30 carbon atoms and a dicarboxylic acid metal salt having from 3 to 30 carbon atoms are particularly preferred.

[0043] The metal element forming the metal salts is preferably an alkali metal or an alkaline earth metal, with an alkali metal being particularly preferred.

[0044] Examples of the carboxylic acid forming the metal salts include variety of carboxylic acid such as an aliphatic saturated monocarboxylic acid, an aliphatic unsaturated carboxylic acid, an aliphatic dicarboxylic acid, and an aromatic carboxylic acid. Specific examples of the aliphatic unsaturated carboxylic acid include linear saturated acids such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, erucic acid, and laetic acid; and branched fatty acids such as isopentanoic acid, 2-methylpentanoic acid, 2-methylbutanoic acid, 2,2-dimethylbutanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 2,2-dimethylheptanoic acid, 2-ethyl-2-methylbutanoic acid, 2-ethylhexanoic acid, dimethylhexanoic acid, 2-n-propyl-pentanoic acid, 3,5,5-trimethylhexanoic acid, dimethyloctanoic acid, isoradecanoic acid, isomyristic acid, isostearic acid, isoarachidic acid, and isohexanoic acid. Specific examples of the unsaturated carboxylic acid include palmitoleic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid; and unsaturated hydroxy acids such as ricinoleic acid. Specific examples of the aliphatic dicarboxylic acid include adipic acid, azelaic acid, and sebacic acid. Specific examples of the aromatic carboxylic acid include benzoic acid, phthalic acid, trimellitic acid, and pyromellitic acid. Alicyclic fatty acids such as napthenic acid may be employed. These carboxylic acids may be used singly or in combination of two or more species.

[0045] No particular limitation is imposed on the metal species forming the carboxylic acid metal salts. Examples include alkali metals such as lithium, potassium, and sodium; alkaline earth metals such as magnesium, calcium, and strontium; and other metals such as zinc, nickel, and aluminum. Among them, alkali metals and alkaline earth metals are preferred, with alkali metals being particularly preferred. Only one metal species or two or more metal species may be introduced to one carboxylic acid species.

[0046] The refrigerator oil composition of the present invention preferably has a carboxylic acid metal salt content of 0.001 to 5% by mass, particularly preferably 0.005 to 3% by mass. When the salt content is less than 0.001% by mass, wear resistance is insufficient, whereas when the salt content exceeds 5% by mass, stability may decrease. Needless to say, both cases are not preferred.

[0047] Examples of the extreme pressure agent employed in the present invention include a phosphate ester, an acid phosphate ester, a phosphite ester, an acid phosphite ester, and a phosphorous compound such as an amine salt thereof. Examples of the phosphate ester include triaryl phosphates, trialkyl phosphates, triaryl alkyl phosphates, and trialkenyl phosphates. Specific examples include triphenyl phosphate, trierseryl phosphate, benzyl diphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, ethylphenyl diphenyl phosphate, diethylphenyl phenyl phosphate, propyldiphenyl phosphate, dipropyldiphenyl phenyl phosphate, triethyldiphenyl phosphate, tripolyphenyl phosphate, butylphenyl diphenyl phosphate, dibutylphenyl phenyl phosphate, tributylphenyl phosphate, trihexyl phosphate, tri(2-ethylhexyl) phosphate, tridecyl phosphate, trilauryl phosphate, trimyristyl phosphate, tripalmitin phosphate, tristearin phosphate, and trilinolein phosphate.

[0048] Examples of the acid phosphate ester include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, and isostearic acid phosphate.

[0049] Examples of the phosphate ester include triethyl phosphate, tributyl phosphate, triphenyl phosphate, trierseryl phosphate, tri(nonylphenyl) phosphate, tri(2-ethylhexyl) phosphate, tridecyl phosphate, trilauryl phosphate, trisooctyl phosphate, diphenyl isodecyl phosphate, tristearyl phosphate, trioleyl phosphate, and 2-ethylhexyl diphenyl phosphate.
Examples of the acid phosphite ester include dibutyl hydrogen phosphite, dialkyl hydrogen phosphite, dioleoyl hydrogen phosphite, distearoyl hydrogen phosphite, and diphenyl hydrogen phosphite.

Examples of the amines which formamine salts with the phosphate esters include monosubstituted amines, disubstituted amines, and trisubstituted amines, which are represented by the formula (VI):

\[R_nNH_2 \]

(\text{VI})

(wherein \(R \) represents an alkyl group or alkenyl group having from 3 to 30 carbon atoms, an aryl group or aralkyl group having from 6 to 30 carbon atoms, or a hydroxyalkyl group having from 2 to 30 carbon atoms; \(s \) is 1, 2, or 3; when a plurality of Rs are present, these Rs may be identical to or different from one another). The alkyl or alkenyl group having from 3 to 30 carbon atoms represented by \(R \) in formula (VI) may be linear, branched, or cyclic.

Examples of the monosubstituted amines include butylamine, pentylamine, hexylamine, cyclohexylamine, octylamine, laurylamine, stearylamine, oleylamine, and benzylamine. Examples of the disubstituted amines include dibutylamine, dipentylamine, dihexylamine, dicyclohexylamine, dioleylamine, dihexylamine, di(2-ethylhexyl)amine, stearylmonoethanolamine, decylnonoethanolamine, hexylmonoorthopropionate, benzylmonoorthopropionate, phenylmonoorthopropionate, and tolyl monoorthopropionate. Examples of the trisubstituted amines include tributylamine, trihexylamine, tricyclohexylamine, tri(octyl)amine, tri(2-ethylhexyl)amine, and tri(2-ethylhexyl)amine.

Among these phosphorus compound extreme pressure agents, tricresyl phosphate, tri(nonylphenyl)phosphate, dioleoyl hydrogen phosphite, and 2-ethylhexyl diphenyl phosphate are particularly preferred from the viewpoint of properties such as extreme pressure performance and tribological characteristics.

Other than the aforementioned extreme pressure agents, there may be employed sulfur compounds extreme pressure agents such as sulfided fats and oils, sulfurized fatty acid, sulfurized esters, sulfurized olefins, dihydrocarbaryl polysulfides, thiocarbamate compounds, thieterpene compounds, and dialkyl thiodydropionate compounds. The sulfurized fats and oils are produced through reaction of a fat or an oil (e.g., lard, whale oil, vegetable oil, or fish oil) with sulfur or a sulfur-containing compound. Although no particular limitation is imposed on the sulfur content, the content is preferably 5 to 30% by mass. Specific examples include sulfided lard, sulfured rapeseed oil, sulfurized castor oil, sulfurized soy bean oil, and sulfurized rice bran oil. Examples of the sulfurized fatty acids include sulfurized oleic acid. Examples of the sulfurized esters include sulfurized methyl oleate and sulfurized octyl ester of rice bran fatty acid.

Examples of the sulfurized olefins include compounds represented by the following formula (VII):

\[R^{23}S_2R^{24} \]

(VII)

(wherein \(R^{23} \) represents an alkyl group having from 2 to 15 carbon atoms, \(R^{24} \) represents an alkyl group or alkenyl group having from 2 to 15 carbon atoms; and \(t \) is an integer of 1 to 8). These compounds are produced through reaction between an olefin having from 2 to 15 carbon atoms or a dimer to tetramer thereof and a sulfidizing agent such as sulfur or sulfur chloride. Preferred olefins are propylene, isobutene, and dibutylene.

Examples of the dihydrocarbaryl polysulfides include compounds represented by the following formula (VIII):

\[R^{25}S_nR^{26} \]

(VIII)

(wherein \(R^{25} \) and \(R^{26} \), which may be identical to or different from each other, each represent an alkyl group or cyclic alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 20 carbon atoms, an alkyl aryl group having from 7 to 20 carbon atoms, or an aralkyl group having from 7 to 20 carbon atoms; and \(n \) is an integer of 2 to 8). When each of \(R^{25} \) and \(R^{26} \) is an alkyl group, the compound is called alkyl sulfide.

Examples of the group represented by \(R^{25} \) or \(R^{26} \) in the formula (VIII) include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl groups, hexyl groups, heptyl groups, octyl groups, nonyl groups, decyl groups, dodecyl groups, cyclohexyl, cyclooctyl, phenyl, napthyl, tolyl, xylol, benzyl, and phenethyl.

Examples of preferred dihydrocarbaryl polysulfides include dibenzyl polysulfides, di-tert-nonyl polysulfides, didodecyl polysulfides, di-tert-butyl polysulfides, dioctyl polysulfides, diphenyl polysulfides, and dicyclohexyl polysulfides.

Examples of the thioether compounds include zinc dithiocarbamate. Examples of the thieterpene compounds include a reaction product of phosphorus pentasulfide and pinene. Examples of the dialkyl thiodyropionate compounds include dialkyl thiodyropionate and diisobutyl thiodyropionate.

In the present invention, the aforementioned extreme pressure agents may be used singly or in combination of two or more species. In a preferred embodiment, one or more species selected from among carboxylic acid metal salts and phosphorus compound extreme pressure agents are used in combination. Particularly preferably, a combination of a carboxylic acid metal salt and a phosphorus compound extreme pressure agent is preferred. In this case, one or more carboxylic acid metal salts and one or more phosphorus compound extreme pressure agents are used in combination.

Generally, the amount of extreme pressure agent(s) other than the aforementioned phosphorus compound extreme pressure agent incorporated into the composition is preferably 0.001 to 5% by mass, particularly preferably 0.01 to 3% by mass. When the amount is less than 0.001% by mass, lubricity may be poor, whereas when the amount exceeds 5% by mass, sludge formation may be promoted.

Examples of preferably incorporated antioxidants include phenol-based compounds such as 2,6-di-tert-butyl-
In a method for lubrication of a refrigerator employing the refrigerator oil composition of the present invention, the aforementioned carbon dioxide refrigerant and the refrigerator oil composition are preferably employed at a ratio (refrigerant/refrigerator oil composition) by mass of 99/1 to 10/90, more preferably 95/5 to 30/70. When the amount of refrigerant is smaller than the above range, freezing performance is impaired, whereas when the amount exceeds the above range, lubrication performance is poor. The refrigerator oil composition of the present invention can be employed in a variety of refrigerators and is particularly suitably employed in a compression refrigeration cycle of a compression refrigerator. For example, the refrigerator oil composition of the present invention is most effectively employed in compression refrigeration cycles having an oil separator and/or a hot gas line, which are shown in attached FIGS. 1 to 4. In general, a compression refrigeration cycle includes a compressor, a condenser, an expansion valve, and an evaporator.

In FIGS. 1 to 4, numeral 1 denotes a compressor, 2 denotes a condenser, 3 denotes an expansion valve, 4 denotes an evaporator, 5 denotes an oil separator, 6 denotes a hot gas line, and 7 denotes a hot gas line valve.

When the refrigerator oil composition of the present invention is employed for lubrication in a refrigerator based on a refrigeration cycle employing the aforementioned carbon dioxide-based refrigerant, excellent heat exchange efficiency can be attained, and the composition exhibits excellent stability and lubricity, ensuring long-term stable use thereof.

The refrigerator oil composition of the present invention may be used in, for example, a hot-water suppliesing machine, an automobile air-conditioner, an air-conditioner, a refrigerator, a heat pump, a hot-water suppliesing system employed in an automatic vending machine or a showcase, or a refrigeration-heating system.

Next, the hot-water suppliesing system will be described.

FIG. 5 shows an essential configuration of a heat-pump hot-water suppliesing machine. As shown in FIG. 5, the hot-water suppliesing system includes a refrigeration cycle in which carbon dioxide refrigerant is circulated, and a heating cycle for heating supplied water.

The refrigeration cycle will be described. A closed-type electric compressor 11, which is placed in a sealable container or a similar container, compresses refrigerant gas (carbon dioxide refrigerant) at low temperature and pressure, and in turn discharges high-temperature, high-pressure refrigerant gas to a water-coolant heat exchanger 12 (heat exchanger for heat radiation). The refrigerant gas fed to the water-coolant heat exchanger 12 gives the heat to low-temperature water through sensible heat exchange. Subsequently, the refrigerant passes through a pressure-reducer 13, to thereby form low-temperature, low-pressure refrigerant, which is transferred to a heat exchanger 14 (heat exchanger for heat absorption). The refrigerant fed to the
heat exchanger 14 absorbs heat to evaporate, and cold air is radiated by means of a blowing fan 15.

[0076] The low-temperature, low-pressure refrigerant gas is transferred again, from the heat exchanger 14, to the compressor 11 through suction. The above cycle is repeated. Since carbon dioxide refrigerant can realize a supercritical cycle, supercritical conditions are ensured at high pressure. Thus, a desired high pressure can be attained, and water of about 100°C can be readily provided.

[0077] The water-heating cycle will next be described. First, low-temperature water fed through a water intake hole 16 is transferred to the water-coolant heat exchanger 12, where water absorbs heat to provide hot water. The hot water is transferred to a hot water reservoir tank 17, and supplied through a water outlet hole 18. In order to control water temperature, the supplied water may be mixed with hot water fed directly through the water-coolant heat exchanger 12.

[0078] The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

[0079] The following is the description of the refrigerator oils employed in the Examples.

[0080] A1: Polypropylene glycol dimethyl ether, kinematic viscosity (at 40°C): 42 mm²/s, and hue (ASTM): <0.5

[0081] A2: Polypropylene-polyethylene glycol copolymer dimethyl ether, (PO/PE=8/2 (mass)), kinematic viscosity (at 40°C): 100 mm²/s, and hue (ASTM): <0.5

[0082] A3: Polyethyl vinyl ether-polyisobutyl vinyl ether copolymer, (EV/BV=1/9 (mass)), viscosity (at 40°C): 68 mm²/s, and hue (ASTM): <0.5

[0083] A4: Polyethyl vinyl ether, viscosity (at 40°C): 430 mm²/s, and hue (ASTM): <0.5

[0084] A5: Pentaerythritol ester of 2-ethylhexanoic acid/3,5,5-trimethylhexanoic acid mixture (1/1 (mass)), kinematic viscosity (at 40°C): 65 mm²/s, and hue (ASTM): <0.5

[0085] A6: poly(α-olefin), kinematic viscosity (at 40°C): 28 mm²/s, and hue (ASTM): <0.5

[0086] A7: Paraffinic mineral oil, hydrogenated product, kinematic viscosity (at 40°C): 32 mm²/s, and hue (ASTM): <0.5

[0087] A8: Naphthenic mineral oil, kinematic viscosity (at 40°C): 56 mm²/s, S content: 0.03% by mass, and hue (ASTM): <0.5

[0088] A9: Polypropylene glycol dimethyl ether, kinematic viscosity (at 40°C): 56 mm²/s, and hue (ASTM): 1.5

[0089] A10: Polyethyl vinyl ether, kinematic viscosity (at 40°C): 570 mm²/s, and hue (ASTM): 1.5

[0090] A11: Pentaerythritol ester of 2-ethylhexanoic acid/3,5,5-trimethylhexanoic acid mixture (1/1 (mass)), kinematic viscosity (at 40°C): 65 mm²/s, and hue (ASTM): 2.0

[0091] A12: Paraffinic mineral oil, solvent purified, kinematic viscosity (at 40°C): 450 mm²/s, and hue (ASTM): 2.0

[0092] B1: Polybutene, kinematic viscosity (at 40°C): 1,500 mm²/s, and hue (ASTM): <0.5

[0093] B2: CO₂ (single component)

[0094] Refrigerator oil samples A1 to A6 and B1 were produced under an atmosphere (nitrogen >99% by volume, oxygen <1% by volume) through respective methods, and refrigerator oil samples A9 to A11 were produced under an atmosphere (nitrogen 95% by volume, oxygen 5% by volume) through respective methods.

EXAMPLES 1 TO 8, COMPARATIVE EXAMPLE 1, AND REFERENTIAL EXAMPLE 1

[0095] Characteristic values of the refrigerator oil samples shown in Table 1 were determined through the method described below. Table 1 shows the results. FIG. 6 is a graph showing the relationship between the amount of refrigerator oil dissolves in CO₂ and heat exchange efficiency.

(1) The amount of refrigerator oil dissolves in 15 MPa-100°C C. supercritical CO₂

[0096] A mixture containing a refrigerator oil dissolved in 15 MPa-100°C C. supercritical CO₂ was sampled and weighed. After removal of CO₂, the remaining refrigerator oil was weighed. From two mass values, the amount of refrigerator oil dissolves was calculated.

(2) Viscosity of Mixtures

[0097] Viscosity of a mixture containing a refrigerator oil dissolved to saturation in 15 MPa-100°C C. supercritical CO₂ was determined by means of a viscometer set in a pressure container.

(3) Dielectric Constant of Mixtures

[0098] Dielectric constant of a mixture containing a refrigerator oil dissolved to saturation in 15 MPa-100°C C. supercritical CO₂ was determined by means of a dielectric constant meter set in a pressure container.

(4) Density of Mixtures

[0099] Density of a mixture containing a refrigerator oil dissolved to saturation in 15 MPa-100°C C. supercritical CO₂ was determined by means of a density measuring cell.

(5) Heat Exchange Efficiency

[0100] Heat exchange efficiency of a heat exchanger (condenser) during operation in a supercritical state employing a CO₂ refrigeration cycle was determined. The efficiency is represented by an index with respect to 100, which is a heat exchange efficiency obtained in the case where CO₂ was used as a single component.
TABLE 1

<table>
<thead>
<tr>
<th>Refrigerator oil</th>
<th>The amount of refrigerator oil dissolved in supercritical CO₂ (mass %)</th>
<th>Viscosity of mixture (mPa·s)</th>
<th>Dielectric constant of mixture</th>
<th>Density of mixture (g/cm³)</th>
<th>Heat exchange efficiency [index]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1</td>
<td>A1</td>
<td>3.2</td>
<td>0.07</td>
<td>1.9</td>
<td>0.49</td>
</tr>
<tr>
<td>Ex. 2</td>
<td>A2</td>
<td>2.1</td>
<td>0.06</td>
<td>1.8</td>
<td>0.48</td>
</tr>
<tr>
<td>Ex. 3</td>
<td>A3</td>
<td>3.7</td>
<td>0.07</td>
<td>1.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Ex. 4</td>
<td>A4</td>
<td>4.1</td>
<td>0.12</td>
<td>2.2</td>
<td>0.50</td>
</tr>
<tr>
<td>Ex. 5</td>
<td>A5</td>
<td>4.3</td>
<td>0.08</td>
<td>2.1</td>
<td>0.51</td>
</tr>
<tr>
<td>Ex. 6</td>
<td>A6</td>
<td>0.2</td>
<td>0.02</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Ex. 7</td>
<td>A7</td>
<td>0.2</td>
<td>0.03</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Ex. 8</td>
<td>A8</td>
<td>0.3</td>
<td>0.04</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Comp. Ex. 1</td>
<td>B1</td>
<td>0.05</td>
<td>0.01</td>
<td>1.4</td>
<td>—</td>
</tr>
<tr>
<td>Ref. Ex. 1</td>
<td>B2</td>
<td>—</td>
<td>0.01</td>
<td>1.3</td>
<td>—</td>
</tr>
</tbody>
</table>

EXAMPLES 9 TO 16

[0101] Each of the refrigerator oils shown in Table 2 (50 g), CO₂ (50 g), and catalytic amounts of Fe, Cu, and Al were placed in an autoclave. A durability test of the mixture was performed by maintaining the mixture at 25°C for 10 days. Acid value of the oil was determined, and appearance of the oil and sludge formation were checked.

[0102] Heat exchange efficiency of a heat exchanger employing the oil after completion of the durability test was determined in the following manner.

[0103] Specifically, a CO₂ refrigeration cycle was operated in a supercritical state for 2,000 hours. Heat exchange efficiency of the heat exchanger (condenser) during this operation was determined, and the efficiency is represented by an index with respect to 100, which is a heat exchange efficiency obtained in the case where CO₂ was used as a single component.

[0104] The results are shown in Table 2

TABLE 2

<table>
<thead>
<tr>
<th>Refrigerator oil</th>
<th>The amount of refrigerator oil dissolved in supercritical CO₂ (mass %)</th>
<th>Refrigerator oil characteristics after autoclave test</th>
<th>Heat exchange efficiency after durability test [index]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 9</td>
<td>A1</td>
<td>Fair</td>
<td>Acid value (mgKOH/g) 0.01</td>
</tr>
<tr>
<td>Ex. 10</td>
<td>A4</td>
<td>Fair</td>
<td>Acid value (mgKOH/g) 0.01</td>
</tr>
<tr>
<td>Ex. 11</td>
<td>A5</td>
<td>Fair</td>
<td>Acid value (mgKOH/g) 0.02</td>
</tr>
<tr>
<td>Ex. 12</td>
<td>A7</td>
<td>Fair</td>
<td>Acid value (mgKOH/g) 0.01</td>
</tr>
<tr>
<td>Ex. 13</td>
<td>A9</td>
<td>Brown</td>
<td>Acid value (mgKOH/g) 0.05</td>
</tr>
<tr>
<td>Ex. 14</td>
<td>A10</td>
<td>Brown</td>
<td>Acid value (mgKOH/g) 0.04</td>
</tr>
<tr>
<td>Ex. 15</td>
<td>A11</td>
<td>Brown</td>
<td>Acid value (mgKOH/g) 2.3</td>
</tr>
<tr>
<td>Ex. 16</td>
<td>A12</td>
<td>Brown</td>
<td>Acid value (mgKOH/g) 0.04</td>
</tr>
</tbody>
</table>

[0105] As is clear from Table 2, when a refrigerator oil exhibiting a hue (ASTM) greater than 1 was used, the refrigerator oil assumed brown and exhibited an increase in acid value, after the durability test. In addition, sludge was formed, resulting in decrease in heat exchange efficiency.

INDUSTRIAL APPLICABILITY

[0106] The refrigerator oil composition of the present invention for use with carbon dioxide refrigerant is employed in a refrigerating system operated in a supercritical state of carbon dioxide refrigerant. In particular, the composition can enhance heat-exchange efficiency during passage of supercritical carbon dioxide through a heat exchanger as well as has excellent durability and lubrication performance. The a refrigerator oil composition is employed in, for example, a hot-water supplying machine, an automobile air-conditioner, an air-conditioner, a refrigerator, a heat pump, a hot-water supplying system employed in an automatic vending machine or a showcase, or a refrigeration-heating system.

1. A refrigerator oil composition for use with carbon dioxide refrigerant, characterized in that the composition dissolves in an amount of at least 0.1% by mass in a supercritical carbon dioxide at a temperature of 100°C under a pressure of 15 Mpa.

2. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C under a pressure of 15 Mpa and the refrigerator oil composition has a dielectric constant of 1 to 5.

3. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C under a pressure of 15 Mpa and the refrigerator oil composition has a dielectric constant of 1 to 5.
4. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C under a pressure of 15 Mpa and the refrigerator oil composition has a density of 0.1 to 0.9 g/cm³.

5. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, wherein, a mixture of the supercritical carbon dioxide at a temperature of 100°C under a pressure of 15 Mpa and the refrigerator oil composition has a thermal conductivity of 0.0001 to 0.01 W/mK.

6. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, which comprises at least one base oil selected from the groups consist of polyoxyalkylene glycol and a derivative thereof, polyvinyl ether, polyl ester, poly(α-olefin), alkylbenzene, and mineral oil, and has a kinematic viscosity of 3 to 1,000 mm²/s at 40°C. and a hue (ASTM) at most 1.

7. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, which comprises at least one member selected from the groups consist of an extreme pressure agent, an antioxidant, an acid scavenger, and a defoaming agent.

8. A refrigerator oil composition for use with carbon dioxide refrigerant as claimed in claim 1, which is for use in a hot-water supplying machine, an automobile air-conditioner, a refrigerator, a heat pump, a hot-water supply system employed in an automatic vending machine or a showcase, or a refrigeration-heating system.

* * * * *