(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
13 May 2004 (13.05.2004)

—
A
ﬁggA o

¥

JHIPO:

(10) International Publication Number

WO 2004/040584 A1l

(51) International Patent Classification’: G11C 16/34
(21) International Application Number:
PCT/US2003/028215

(22) International Filing Date:
10 September 2003 (10.09.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/281,823 28 October 2002 (28.10.2002) US
(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 140 Caspian Court,

Sunnyvale, CA 94089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHANG, Robert
[US/US]; 10 Stanton Court, Danville, CA 94506 (US).
QAWAMI, Bahman [US/US]; 5899 killarney Circle,
San Joe, CA 95138 (US). SABET-SHARGHI, Farshid
[US/US]; 5634 Snowdon Place, San Jose, CA 95138 (US).

(74) Agent: SU, Peggy; Ritter, Lang & Kaplan LLP, 12930
Saratoga Ave., Suite D1, Saratoga, CA 95070 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, T]J, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
of inventorship (Rule 4.17(iv)) for US only

Published:
with international search report

[Continued on next page]

(54) Title: MAINTAINING AN AVERAGE ERASE COUNT IN A NON-VOLATILE STORAGE SYSTEM

LEAST FREQUENTLY ERASED 466

BLOCK TABLE
BLOCK# EC
BLOCK # EC
BLOCK # EC

47040584 A1 |0V 0 Y O

BLOCK 0 EC
AVERAGE ERASE |, ~474 BLOCK 1 EC
COUNT SYSTEM MEMORY BLOCKZEC
BLOCK MAPPING TABLE © 02
PHYSICAL BLOCK PO FOR
LOGICAL BLOCK 0
PHYSICAL BLOCK P1FOR |~~~ " ==~__
LOGICAL BLOCK 1 Ry N
Sl 480
o
PHYSICAL BLOCK PN FOR
LOGICAL BLOCK N BLOCK PO DATA _EC..
MOST FREQUENTLY ERASED 470 BLOCK P1DATA :.EC..
BLOCK TABLE BLOCK P2 DATA | EC..
BLOCK # EC BLOCK P3 ERASED
BLOCK # EC BLOCK P4 DATA _ ;-EC..|
BLOCK # EC 465

BLOCK P(N-2) ERASED
BLOCK P(N-1) DATA {.EC..
BLOCK PN DATA |-EC.

A

460
{454

& (57) Abstract: Methods and apparatus for maintaining an average erase count in a system memory of a non-volatile memory system
are disclosed. According to one aspect of the present invention, a method for determining an average number of times each block of
a number of blocks within a non-volatile memory of a memory system has been erased includes obtaining an erase count for each
O block that indicates a number of times each block has been erased. Once all the erase counts have been obtained, the erase counts are

=

summed, and an average erase count that indicates the average number of times each block of the number of blocks has been erased
is created by substantially dividing the sum by the number of blocks.

WO 2004/040584 A1 I} N1 0000 00000 OO0 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215

MAINTAINING AN AVERAGE ERASE COUNT IN A NON-VOLATILE
STORAGE SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS

The present invention is related to co-pending U.S. Patent Application No. (Atty.
Docket No. SANDP005/SDK0278.000US) entitled “AUTOMATED WEAR LEVELLING IN
NON-VOLATILE STORAGE SYSTEMS”, co-pending U.S. Patent Application No. 10/281,739
(Atty. Docket No. SANDP023/SDK0366.000US) entitled “WEAR-LEVELING IN NON-
VOLATILE STORAGE SYSTEMS,” filed October 28, 2002, co-pending U.S. Patent
Application No. 10/281,670 (Atty. Docket No. SANDP025/SDK0366.002US) entitled
“TRACKING THE MOST FREQUENTLY ERASED BLOCKS IN NON-VOLATILE
MEMORY SYSTEMS”, filed October 28, 2002, co-pending U.S. Patent Application No.
10/281,824 (Atty. Docket No. SANDP026/SDK0366.003) entitled “TRACKING THE LEAST
FREQUENTLY ERASED BLOCKS IN NON-VOLATILE MEMORY SYSTEMS, filed
October 28, 2002, co-pending U.S. Patent Application No. 10/281,631 (Atty. Docket No.
SANDP028/SDK0371.000US) entitled “METHOD AND APPARATUS FOR SPLITTING A
LOGICAL BLOCK, filed October 28, 2002, co-pending U.S. Patent Application No. 10/281,855
(Atty. Docket No. SANDP029/SDK0410.000US) entitled “METHOD AND APPARATUS FOR
GROUPING PAGES WITHIN A BLOCK,” filed October 28, 2002, co-pending U.S. Patent
Application No. 10/281,762 (Atty. Docket No. SANDP030/SDK0416.000US) entitled
“METHOD AND APPARATUS FOR RESOLVING PHYSICAL BLOCKS ASSOCIATED
WITH A COMMON LOGICAL BLOCK,” filed October 28, 2002, co-pending U.S. Patent
Application No. 10/281,696 (Atty. Docket No. SANDP031/SDK0420.000US) entitled
“MAINTAINING ERASE COUNTS IN NON-VOLATILE STORAGE SYSTEMS,” filed
October 28, 2002, co-pending U.S. Patent Application No. 10/281,626 (Atty. Docket No.
SANDP032/SDK0420.001US) entitled “METHOD AND APPARATUS FOR MANAGING AN
ERASE COUNT BLOCK,” filed October 28, 2002, co-pending U.S. Patent Application No.
10/281,804 (Atty. Docket No. SANDP033/SDK0426.000US) entitled “METHOD AND
APPARATUS FOR PERFORMING MULTI-PAGE READ AND WRITE OPERATIONS IN A
NON-VOLATILE MEMORY SYSTEM,” filed October 28, 2002, U.S. Patent No. 6,081,447,
and U.S. Patent No. 6,230,233, which are each incorporated herein by reference in their

entireties.

BACKGROUND OF THE INVENTION
1. Field of Invention

The present invention relates generally to mass digital data storage systems. More

particularly, the present invention relates to systems and methods for efficiently enabling erase

1

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
counts, which are used to allow the wear associated with storage areas in a non-volatile storage

system to be spread out across substantially all storage areas, to be maintained.

2. Description of the Related Art

The use of non-volatile memory systems such as flash memory storage systems is

increasing due to the compact physical size of such memory systems, and the ability for non-
volatile memory to be repetitively reprogrammed. The compact physical size of flash memory
storage systems facilitates the use of such storage systems in devices which are becoming
increasingly prevalent. Devices which use flash memory storage systems include, but are not
limited to, digital cameras, digital camcorders, digital music players, handheld personal
computers, and global positioning devices. The ability to repetitively reprogram non-volatile
memory included in flash memory storage systems enables flash memory storage systems to be
used and reused.

In general, flash memory storage systems may include flash memory cards and flash
memory chip sets. Flash memory chip sets generally include flash memory components and a
controller components. Typically, a flash memory chip set may be arranged to be assembled into
an embedded system. The manufacturers of such assemblies or host systems typically acquire
flash memory in component-form, as well as other components, then assemble the flash memory
and the other components into a host system.

Although non-volatile memory or, more specifically, flash memory storage blocks within
flash memory systems may be repetitively programmed and erased, each block or physical
location may only be erased a certain number of times before the block wears out, i.e., before
memory begins to become smaller. That is, each block has a program and erase cycle limit. In
some memory, a block may be erased up to approximately ten thousand times before the block is
considered to be unusable. In other memory, a block may be erased up to approximately one
hundred thousand times or even up to a million times before the block is considered to be worn
out. When a block is worn out, thereby causing a loss of use or a significant degradation of
performance to a portion of the overall storage volume of the flash memory system, a user of the
flash memory system may be adversely affected, as for the example through the loss of stored
data or the inability to siore data.

The wear on blocks, or physical locations, within a flash memory system varies
depending upon how much each of the blocks is programmed. If a block or, more generally, a
storage element, is programmed once, then effectively never reprogrammed, the number of
program and erase cycles and, hence, wear associated with that block will generally be relatively
low. However, if a block is repetitively written to and erased, e.g., cycled, the wear associated
with that block will generally be relatively high. As logical block addresses (LBAs) are used by

hosts, e.g., systems which access or use a flash memory system, to access data stored in a flash

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
memory system, if a host repeatedly uses the same LBAs to write and overwrite data, the same

physical locations or blocks within the flash memory system are repeatedly written to and erased,
as will be appreciated by those of skill in the art.

When some blocks are effectively worn out while other blocks are relatively unworn, the
existence of the worn out blocks generally compromises the overall performance of the flash
memory system. In addition to degradation of performance associated with worn out blocks
themselves, the overall performance of the flash memory system may be compromised when an
insufficient number of blocks which are not worn out are available to store desired data. Often, a
flash memory system may be deemed unusable when a critical number worn out blocks are
present in the flash memory system, even when many other cells in the flash memory system are
relatively unworn. When a flash memory system which includes a substantial number of
relatively unworn blocks is considered to be unusable, many resources associated with the flash
memory system are effectively wasted.

In order to increase the likelihood that blocks within a flash memory system are worn
fairly evenly, wear leveling operations are often performed. Wear leveling operations, as will be
understood by those skilled in the art, are generally arranged to allow the physical locations or
blocks which are associated with particular LBAs to be changed such that the same LBAs are not
always associated with the same physical locations or blocks. By changing the block
associations of LBAs, it is less likely that a particular block may wear out well before other
blocks wear out.

One conventional wear leveling process involves swapping physical locations to which
two relatively large portions of customer or host LBAs are mapped. That is, the LBAs associated
with relatively large sections of storage cells are swapped. Such swapping is initiated through a
manual command from a customer, e.g., through the use of a host and, as a result, is not
transparent to the customer. Also, swapping operations that involve moving data between two
relatively large sections of storage cells are time consuming and, hence, inefficient.

Additionally, the performance of the overall flash memory system may be adversely affected by
swapping operations of a relatively long duration which consume significant resources associated
with the overall flash memory system. As will be appreciated by those skilled in the art, moving
data from a first location typically involves copying the data into another location and erasing the
data from the first location.

Another conventional wear leveling process involves allowing blocks to wear. Once the
blocks have effectively worn out, the sectors assigned to the blocks may be reassigned by
mapping the addresses associated with the sectors to spare areas once the blocks in which the
sectors have been stored have worn out, or have become unusable. As the number of spare areas

or blocks is limited and valuable, there may not always be spare areas to which sectors associated

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
with unusable blocks may be mapped. In addition, effectively remapping sectors only after

blocks have become unusable generally allows performance of the overall flash memory system
to degrade.

Therefore, what are desired are a method and an apparatus for efficiently and
substantially transparently performing wear leveling within a flash memory storage system. That
is, what is needed is a system which facilitates a wear leveling process which promotes more
even wear in physical locations associated with the flash memory storage system without

requiring a significant use of computational resources.

SUMMARY OF THE INVENTION

The present invention relates to a system and a method for maintaining an average erase
count in a system memory of a non-volatile memory system. According to one aspect of the
present invention, a method for determining an average number of times each block of a number
of blocks within a non-volatile memory of a memory system has been erased includes obtaining
an erase count for each block that indicates a number of times each block has been erased. Once
all the erase counts have been obtained, the erase counts are summed, and an average erase count
that indicates the average number of times each block of the number of blocks has been erased is
created by substantially dividing the sum by the number of blocks.

In one embodiment, the erase counts are obtained from the blocks. In such an
embodiment, the erase counts may be obtained from redundant or overhead areas of the blocks.
In another embodiment, the erase counts are obtained from an erase count block in the memory
system that contains the erase counts for each block of the number of blocks.

By maintaining an average erase count, a characterization of a number of times an
average block within an overall memory system has been erased may be readily obtained. When
a block is erased, there may be no indication of how many times that block has been erased. Asa
result, the amount of wear associated with the block may not be readily determined or estimated.
Using an average erase count to indicate how many times such a block is likely to have been
erased allows a reasonable estimate of the wear of the block to be determined. As such, wear
leveling may occur more efficiently.

According to another aspect of the present invention, a data structure includes a first
indicator that provides an indication of a number of times each usable block of the plurality of
blocks has been erased, and a second indicator that indicates a total number of blocks included in
the plurality of blocks. In one embodiment, the data structure also includes a header that
contains the first indicator and the second indicator.

According to yet another aspect of the present invention, a method for substantially

preparing an erased block for use includes obtaining the erased block,

10

15

WO 2004/040584 PCT/US2003/028215
obtaining an indicator that characterizes a number of times each block of a plurality of blocks has

been erased, and storing the indicator that characterizes a number of times each block of the
plurality of blocks has been erased in the erased block as an indication of a number of times the
erased block has been erased. In one embodiment, the method also includes determining when
an indicator of a number of times the erased block has been erased is available, and storing the
indicator of the number of times the erased block has been erased in the erased block when it is
determined that the indicator of the number of times the erased block has been erased is
available. In such an embodiment, obtaining the indicator that characterizes a number of times
each block in the plurality of blocks has been erased includes obtaining the indicator that
characterizes the number of times each block in the plurality of blocks has been erased
substantially only when it is determined that the indicator of the number of times the erased
block has been erased is not available, and storing the indicator that characterizes the number of
times each block in the plurality of blocks has been erased includes storing the indicator that
characterizes the number of times each block in the plurality of blocks has been erased
substantially only when it is determined that the indicator of the number of times the erased
block has been erased is not available.

These and other advantages of the present invention will become apparent upon reading

the following detailed descriptions and studying the various figures of the drawings.

10

15

20

25

30

WO 2004/040584) PCT/US2003/028215

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description taken in
conjunction with the accompanying drawings in which:

Fig. la is a diagrammatic representation of a general host system which includes a non-
volatile memory device in accordance with an embodiment of the present invention.

Fig. 1b is a diagrammatic representation a memory device, e.g., memory device 120 of
Fig. 1a, in accordance with an embodiment of the present invention.

Fig. 1c is a diagrammatic representation of a host system which includes an embedded
non-volatile memory.

Fig. 2 is a diagrammatic representation of a portion of a flash memory in accordance with
an embodiment of the present invention.

Fig. 3 is a process flow diagram which illustrates the steps associated with processing an
initialization request with respect to a flash memory system, in accordance with an embodiment
of the present invention.

Fig. 4 is a process flow diagram which illustrates the steps associated with one method of
processing a static block in accordance with an embodiment of the present invention.

Fig. 5a is a diagrammatic block diagram representation of a system memory in
accordance with an embodiment of the present invention.

Fig. 5b is a diagrammatic representation of normal blocks, least frequently erased blocks,
and most frequently erased blocks in accordance with an embodiment of the present invention.

Fig. 6 is a diagrammatic representation of one method of performing a block swap/update
in the system memory an overall memory system to allow for more even wear of the blocks in
accordance with an embodiment of the present invention.

Fig. 7 is a diagrammatic block diagram representation of a system architecture in
accordance with an embodiment of the present invention. ‘

Fig. 8a is a diagrammatic representation of an erase count block in accordance with an
embodiment of the present invention.

Fig. 8b is a diagrammatic representation of a page within an erase count block, e.g., page
810a of erase count block 800 of Fig. 8a, with the page divided substantially into locations in
accordance with an embodiment of the present invention.

Fig. 8c is a diagrammatic representation of a page within an erase count block, e.g., page
810a of erase count block 800 of Fig. 8a, with the page substantially divided into bytes in

accordance with an embodiment of the present invention.

10

15

20

25

30

35

WO 2004/040584) PCT/US2003/028215
Fig. 8d is a diagrammatic representation of a page in an erase count block, e.g., page 810a

of erase count block 800 of Fig, 8a, which contains erase counts and an entry which indicates
that a particular block is unusable in accordance with an embodiment of the present invention.

Fig. 9 is a diagrammatic representation of a header of an erase count block, e.g., header
820 of erase count block 800 of Fig. 8a, in accordance with an embodiment of the present
invention.

Fig. 10 is a process flow diagram which illustrates the steps associated with one method
of initializing an erase count block when a non-volatile memory of a non-volatile memory
system is first formatted in accordance with an embodiment of the present invention.

Fig. 11 is a process flow diagram which illustrates the steps associated with one method
of updating an erase count block in response to an initialization request in accordance with an
embodiment of the present invention.

Fig. 12 is a process flow diagram which illustrates the steps associated with one method
of obtaining an erase count for a spare block in accordance with an embodiment of the present
invention.

Fig. 13 is a process flow diagram which illustrates one method of calculating an average

erase count in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Non-volatile memory storage blocks within flash memory storage systems may be
repetitively programmed and erased, although each block may generally only be erased a finite
number of times before the block wears out. When a block wears out, a relatively significant
degradation of performance associated with the portion of the overall storage volume of the flash
memory storage system that includes the worn out block occurs, and data stored in that portion
may be lost, or it may become impossible to store data in that portion.

In order to increase the likelihood that blocks wear out more evenly within a flash
memory storage system, blocks may be more evenly utilized. By keeping track of how many
times each block has been erased, as for example through the utilization of an erase count,
memory within a system may be more evenly used. An erase count management technique may
store an erase count which keeps track of how many times a particular block has been erased in a
redundant area associated with the block. Tables may be built in system memory which
substantially enables blocks that are in use to effectively be separated from blocks which have
relatively high erase counts and blocks which have relatively low erase counts. When a block in
use is erased, the block may be “added” to either a table of blocks which have relatively high
erase counts or a table of blocks which have relatively low erase counts, as appropriate.

Likewise, blocks may be “moved” from either the table of blocks which have relatively high

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
erase counts or the table of blocks which have relatively low erase counts into a block mapping

table, i.e., a set of tables of blocks which are in use, to substantially replace any block which has
been reassigned from the block mapping table.

By categorizing blocks, blocks may be more evenly utilized as the use of each block may

~ be more effectively managed to even out the wear associated with the blocks. Further,

categorizing blocks into tables enables blocks with a low erase count and blocks with a high
erase count to be readily identified and, hence, does not utilize a significant amount of
computational resources. Hence, wear leveling occurs relatively efficiently. As a result, the life
of the flash memory system may be extended substantially without significantly affecting the
performance of the flash memory system.

In order to facilitate the categorizing of blocks, an erase count block may be allocated
within a flash memory system. Such a block may be arranged to contain the erase counts of
substantially all blocks which may be used to store data within the flash memory system. When
a block is erased, the erase count of the block is typically erased. By storing the erase counts of
substantially all blocks which have an associated erase count in the erase count block, the erase
count of an erased block may be readily obtained, e.g., by reading the erase count from the erase
count block.

Flash memory systems or, more generally, non-volatile memory devices generally
include flash memory cards and chip sets. Typically, flash memory systems are used in
conjunction with a host system such that the host system may write data to or read data from the
flash memory systems. However, some flash memory systems include embedded flash memory
and software which executes on a host to substantially act as a controller for the embedded flash
memory. Referring initially to Fig. 1a, a general host system which includes a non-volatile
memory device, e.g., a CompactFlash memory card or an embedded system, will be described.
A host or computer system 100 generally includes a system bus 104 which allows a
microprocessor 108, a random access memory (RAM) 112, and input/output circuits 116 to
communicate. It should be appreciated that host system 100 may generally include other
components, e.g., display devices and networking device, which are not shown for purposes of
illustration.

In general, host system 100 may be capable of capturing information including, but not
limited to, still image information, audio information, and video image information. Such
information may be captured in real-time, and may be transmitted to host system 100 in a
wireless manner. While host system 100 may be substantially any system, host system 100 is
typically a system such as a digital camera, a video camera, a cellular communications device, an

audio player, or a video player. It should be appreciated, however, that host system 100 may

10

15

20

25

30

35

WO 2004/040584 v PCT/US2003/028215
generally be substantially any system which stores data or information, and retrieves data or

information.

It should be appreciated that host system 100 may also be a system which either only
captures data, or only retrieves data. That is, host system 100 may be a dedicated system which
stores data, or host system 100 may be a dedicated system which reads data. By way of example,
host system 100 may be a memory writer which is arranged only to write or store data.
Alternatively, host system 100 may be a device such as an MP3 player which is typically
arranged to read or retrieve data, and not to capture data.

A non-volatile memory device 120 which, in one embodiment, is a removable non-
volatile memory device, is arranged to interface with bus 104 to store information. An optional
interface block 130 may allow non-volatile memory device 120 to interface indirectly with bus
104. When present, input/output circuit block 130 serves to reduce loading on bus 104, as will
be understood by those skilled in the art. Non-volatile memory device 120 includes non-volatile
memory 124 and an optional memory control system 128. In one embodiment, non-volatile
memory device 120 may be implemented on a single chip or a die. Alternatively, non-volatile
memory device 120 may be implemented on a multi-chip module, or on multiple discrete
components which may form a chip set and may be used together as non-volatile memory device
120. One embodiment of non-volatile memory device 120 will be described below in more
detail with respect to Fig. 1b.

Non-volatile memory 124, e.g., flash memory such as NAND flash memory, is arranged
to store data such that data may be accessed and read as needed. Data stored in non-volatile
memory 124 may also be erased as appropriate, although it should be understood that some data
in non-volatile memory 124 may not be erasable. The processes of storing data, reading data,
and erasing data are generally controlled by memory control system 128 or, when memory
control system 128 is not present, by software executed by microprocessor 108. The operation of
non-volatile memory 124 may be managed such that the lifetime of non-volatile memory 124 is
substantially maximized by essentially causing sections of non-volatile memory 124 to be worn
out substantially equally.

Non-volatile memory device 120 has generally been described as including an optional
memory control system 128, i.e., a controller. Often, non-volatile memory device 120 may
include separate chips for non-volatile memory 124 and memory control system 128, i.e.,
controller, functions. By way of example, while non-volatile memory devices including, but not
limited to, PC cards, CompactFlash cards, MultiMedia cards, and Secure Digital cards include
controllers which may be implemented on a separate chip, other non-volatile memory devices
may not include controllers that are implemented on a separate chip. In an embodiment in which

non-volatile memory device 120 does not include separate memory and controller chips, the

10

15

20

25

30

35

WO 2004/040584 o PCT/US2003/028215
memory and controller functions may be integrated into a single chip, as will be appreciated by

those skilled in the art. Alternatively, the functionality of memory control system 128 may be
provided by microprocessor 108, as for example in an embodiment in which non-volatile
memory device 120 does not include memory controller 128, as discussed above.

With reference to Fig. 1b, non-volatile memory device 120 will be described in more
detail in accordance with an embodiment of the present invention. As described above, non-
volatile memory device 120 includes non-volatile memory 124 and may include memory control
system 128. Memory 124 and control system 128, or controller, may be components of non-
volatile memory device 120, although when memory 124 is an embedded NAND device, as will
be discussed below with reference to Fig. 1c, non-volatile memory device 120 may not include
control system 128. Memory 124 may be an array of memory cells formed on a semiconductor
substrate, wherein one or more bits of data are stored in the individual memory cells by storing
one of two or more levels of charge on individual storage elements of the memory cells. A non-
volatile flash electrically erasable programmable read only memory (EEPROM) is an example of
a common type of memory for such systems.

When present, control system 128 communicates over a bus 15 to a host computer or
other system that is using the memory system to store data. Bus 15 is generally a part of bus 104
of Fig. 1a. Control system 128 also controls operation of memory 124, which may include a
memory cell array 11, to write data provided by the host, read data requested by the host and
perform various housekeeping functions in operating memory 124. Control system 128
generally includes a general purpose microprocessor which has associated non-volatile software
memory, various logic circuits, and the like. One or more state machines are often also included
for controlling the performance of specific routines.

Memory cell array 11 is typically addressed by control system 128 or microprocessor 108
through address decoders 17. Decoders 17 may apply the correct voltages to gate and bit lines of
array 11 in order to program data to, read data from, or erase a group of memory cells being
addressed by the control system 128. Additional circuits 19 may include programming drivers
that control voltages applied to elements of the array that depend upon the data being
programmed into an addressed group of cells. Circuits 19 may also include sense amplifiers and
other circuits necessary to read data from an addressed group of memory cells. Data to be
programmed into array 11, or data recently read from array 11, may be stored in a buffer memory
21 that may either be external to control system 128 or within control system 128, as shown.
Control system 128 may also usually contain various registers for temporarily storing command
and status data, and the like.

Array 11 is divided into a large number of BLOCKS 0 — N memory cells. As is common
for flash EEPROM systems, the block may be the smallest unit of erase. That is, each block may

10

10

15

20

25

30

35

WO 2004/040584 o PCT/US2003/028215
contain the minimum number of memory cells that are erased together. Each block is typically

divided into a number of pages, as also illustrated in Fig. 2. A page may be the smallest unit of
programming. That is, a basic programming operation may write data into or read data from a
minimum of one page of memory cells. One or more sectors of data are typically stored within
each page. As shown in Fig. 1b, one sector includes user data and overhead data. Overhead data
typically includes an error correction code (ECC) that has been calculated from the user data of
the sector. A portion 23 of the control system 128 may calculate the ECC when data is being
programmed into array 11, and may also check the ECC when data is being read from array 11.

Alternatively, the ECCs may be stored in different pages, or different blocks, than the user data

- to which they pertain.

A sector of user data is typically 512 bytes, corresponding to the size of a sector in
magnetic disk drives. Overhead data is typically an additional 16 bytes, although it should be
appreciated that the number of bytes included in overhead data may vary. One sector of data is
most commonly included in each page, but two or more sectors may instead form a page. Any
number of pages may generally form a block. By way of example, a block may be formed from
eight pages up to 512, 1024 or more pages. The number of blocks is chosen to provide a desired
data storage capacity for the memory system. Array 11 may be divided into a few sub-arrays
(not shown), each of which contains a proportion of the blocks, which operate somewhat
independently of each other in order to increase the degree of parallelism in the execution of
various memory operations. An example of the use of multiple sub-arrays is described in U.S.
Patent No. 5,890,192, which is incorporated herein by reference in its entirety.

In one embodiment, non-volatile memory such as a NAND flash memory is embedded
into a system, e.g., a host system. Fig. 1c is a diagrammatic representation of a host system
which includes an embedded non-volatile memory. A host or computer system 150 generally
includes a system bus 154 which allows a microprocessor 158, a RAM 162, and input/output
circuits 166, among other components (not shown) of host system 150, to communicate. A non-
volatile memory 174, e.g., a flash memory, allows information to be stored within host system
150. An interface 180 may be provided between non-volatile memory 174 and bus 154 to enable
information to be read from and written to non-volatile memory 174.

Non-volatile memory 174 may be managed by microprocessor 158 which effectively
executes either or both software and firmware which is arranged to control non-volatile memory
174. That is, microprocessor 158 may run code devices (not shown), i.e., software code devices
or firmware code devices, which allow non-volatile memory 174 to be controlled. Such code
devices, which may be a flash memory packaged with CPU inside microprocessor 158, a

separate flash ROM, or inside non-volatile memory 174, which will be described below, may

11

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215

enable physical blocks in non-volatile memory 174 to be éddressed, and may enable information
to be stored into, read from, and erased from the physical blocks.

When a particular section, e.g., storage element, of non-volatile memory 124 of Fig. la is
programmed continuously, e.g., written to and erased repeatedly, that particular area generally
wears out more quickly than an area which is not programmed continuously. In order to
effectively “even out” the wear of different areas within non-volatile memory 124, wear leveling
may be substantially automatically performed such that areas which are programmed
continuously are programmed less, while areas that are not programmed continuously may be
programmed more.

Generally, to perform wear leveling, a block, e.g., a set of sectors which are associated
with a physical location, which is programmed repeatedly may be swapped with a block which is
associated with a physical location which is not programmed repeatedly. That is, a physical
block which has been programmed and, hence, erased repeatedly may be swapped with a
physical block which has been programmed and erased less often.

In one embodiment of the present invention, in order for it to be readily determined
whether a particular physical block has been programmed and erased repeatedly, an erase count
may be stored with the block. That is, a counter which keeps track of how many times a block
has been erased may be maintained and incremented each time the block is erased. Such an erase
count may be used to facilitate a determination of whether a particular block should be swapped
with another block which has been erased less often. Fig. 2 is a diagrammatic representation of a
portion of a flash memory in accordance with an embodiment of the present invention. Flash
memory 200 may be divided into pages 204. Each page 204, which generally contains
approximately 512 bytes of user data, effectively includes a redundant area 206, e.g., pége 204a

includes redundant area 206a. Each redundant area 206 or overhead area may include up to

. approximately sixteen bytes of information which typically includes, but is not limited to, a

group identifier 216, an update index 212, and an erase count 214,

Typically, any number of pages 204 are included in a block 210. For ease of illustration,
pages 204a, 204b are shown as being included in block 210, although it should be appreciated
that the number of pages 204 included in block 210 may vary widely. In the described
embodiment, block 210 may be arranged to include approximately 64 pages. For example, when
flash memory 200 includes approximately 512 Megabits (Mb), flash memory 200 may
effectively be divided into approximately 2048 blocks of 64 pages each.

As previously mentioned, erase count 214 may be incremented each time user data is
erased from an associated block. For instance, erase count 214, which is associated with block

210, may be incremented each time data is erased from block 210. Since each page 204a, 204b

12

10

15

20

25

30

35

WO 2004/040584) PCT/US2003/028215
included in block 210 generally has an erase count 214, the erase count 214 associated with each

page 204a, 204b may be incremented when block 210 is erased.

In general, when a block containing data is erased, both the data areas and the redundant
areas of the block are erased or emptied. The erased block is typically added to a spare block
pool, which contains the erased blocks with smaller erase counts than those of other erased
blocks, e.g., erased blocks of other tables. The spare block table may essentially be the least
frequently erased block table, which will be described below. In one embodiment of the present
invention, an erased block which has large erase count is added to the pool containing the erased
blocks containing larger erase count comparing to erased blocks of other tables. The pool which
contains erased blocks with large erase counts may be a most frequently erased block table,
which will also be described below. The erase count of a just erased block is incremented by one
and is saved in either the least frequently erased block table or the most frequently erased block
table depending on the value of the count.

Returning to Fig. 2, an erase count such as erase count 214 may be accessed during an
initialization request. An initialization request may be made, for example, when a system, e.g., a
system which includes embedded flash memory, is powered up, when spare blocks within a
system are running low, when a user makes a request to balance block allocation, and when a
user makes a request for block usage to occur more evenly. Fig. 3 is a process flow diagram
which illustrates the steps associated with processing an initialization request with respect to a
flash memory system, in accordance with an embodiment of the present invention. In general, an
initialization request may either be initiated by a user or substantially automatically initiated by a
controller associated with flash memory system, e.g., periodically or when a triggering condition
is met. A process 300 of responding to an initialization request begins at step 304 in which an
initialization request is effectively received. An initialization request may be received by a
controller or a processor which is in communication with flash memory which is to be initialized.
Such a request may be provided by a user via a host at power up, or when block allocation is to
be balanced, for example.

Once the initialization request is received, an average erase count is obtained in step 306.
In one embodiment, the average erase count is stored in an erase count block which is written
into NAND memory associated with the system, although it should be appreciated that the
average erase count may be stored or written into substantially any data structure in NAND
memory associated with the structure. The erase count block (ECB) containing the average erase
count and the erase count of each block is stored in a block of the flash memory. It should be
appreciated that when an erase count block is created, e.g., when the system is initially formatted,
the average erase count and the erase count of each block in the table is typically initialized to a

value of zero. An erase count block will be described in below with respect to Fig. 8a. After the

13

10

15

20

25

30

35

WO 2004/040584 o PCT/US2003/028215
average erase count is obtained, erase counts for substantially all blocks within the system are

obtained. As described above with respect to Fig. 2, the erase count for a particular block
containing data may be stored in a redundant area that is associated with that block. Hence,
obtaining the erase count for substantially all blocks containing data may include accessing a
redundant area associated with each block, and storing each erase count into the erase count
block.

At an initialization request, the erase count of an erased block is obtained from an erase
count block. The erase count block generally retains its value because the redundant area of that
block is erased. When the overall system is shut down, a termination request is typically made
so the erase count table is updated to contain the latest erase count of substantially all blocks. At
any given time, a block belongs in a most frequently erased block table, a least frequently erased
block table, an erase count block, or in a block mapping table. The erase count of a block that
belongs to an erase count block is stored in a redundant area of the block. The erase count of a
block that contains data often belongs to a block mapping table and is stored in the redundant
area. The erase count of an erased block that belongs to a block mapping table has a zero erase
count because the block has effectively never been used. Obtaining erase counts from blocks in
a least frequently erased block table or a most frequently erased block table involves getting the
value from the table since each entry of the tables generally contains both the block number of an
erased block and its erase count. Upon the completion of the processing of an initialization
request, the erase count block is generally updated with the current erase count of all blocks.

In step 320, a block mapping table is allocated in the system memory, e.g., the host
system memory. As will be appreciated by those skilled in the art, a block mapping table may be
arranged to provide a mapping between a logical block address (LBA) and a physical block
address (PBA). Additionally, a most frequently erased block table and a least frequently erased
block table are also allocated in step 320.

A most frequently erased block table is typically sized or otherwise configured to
effectively hold information relating to erased blocks which have been erased most frequently.
That is, a most frequently erased block is arranged to hold information, e.g., erase counts and
mapping information, pertaining to erased blocks with the highest erase counts in the system.
Similarly, a least frequently erased block table is generally sized or otherwise configured to
accommodate information pertaining to erased blocks with the lowest erase counts. Although the
size of the most frequently erased block table and the size of the least frequently erased block
table may vary widely, the sizes are dependent upon the number of blocks which are to be
designated as most frequently erased and the number of blocks which are to be designated as
least frequently erased. Typically, the most frequently erased block table is generally sized to

accommodate information for fewer erased blocks than the least frequently erased block table.

14

10

15

20

25

30

35

WO 2004/040584 o PCT/US2003/028215
By way of example, the most frequently erased block table may be sized to accommodate

information for approximately eighteen erased blocks, while the least frequently erased block
table may be sized to accommodate information relating to approximately seventy erased blocks.
Alternatively, the most frequently erased block table may be sized to accommodate information
for approximately ten erased blocks, while the least frequently erased block table may be sized to
accommodate information for approximately fifty erased blocks.

After tables are allocated in step 320, erased blocks are identified in step 324. Then, in
step 328, “N” erased blocks may be assigned to the most frequently erased blocks and essentially
be assigned to the most frequently erased table. In one embodiment, the “N” erased blocks may
be the “N” erased blocks with the highest erase counts as determined by a comparison of all
erase counts. Alternatively, the “N” erased blocks to store in the most frequently erased block
table may be determined based upon a comparison against the average erase count obtained in
step 306. For instance, the “N” erased blocks may be “N” erased blocks which have an erase
count that is at least a given percentage, e.g., approximately twenty-five percent, higher than the
average erase count.

Once the most frequently erased block table is effectively populated, “M” erased blocks
may be identified and effectively be assigned to the least frequently erased block table in step
332. The “M “ erased blocks may generally be the “M” erased blocks with the lowest erase
counts of all erased blocks associated with the system, or the “M” erased blocks may be “M”
erased blocks which have an erase count that is at least a given percentage lower than the average
erase count. The “M” erased blocks are effectively spare blocks which will be assigned to the
block mapping table as appropriate.

Remaining erased blocks, i.e., erased blocks which have not be assigned to either the least
frequently erased block table or the most frequently erased block table, are assigned to the block
mapping table along with “unerased” blocks in step 336. In other words, remaining erased
blocks as well as blocks containing data other than in associated redundant areas are associated
with the block mapping table.

After the block mapping table, the least frequently erased block table, and the most
frequently erased block table are effectively populated, e.g., with erase counts and mapping
information pertaining to corresponding blocks, an average erase count may be determined in
step 338. Determining the average erase count typically involves summing the erase counts of
individual blocks which were obtained in step 308, and dividing the sum by the total number of
blocks. While the average erase count may be determined in response to an initialization request,
it should be appreciated that the average erase count may be updated or otherwise determined at
substantially any time. The steps associated with one method of calculating an average erase

count will be described below with respect to Fig. 13.

15

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
The average erase count calculated in step 338 is stored into the erase count block

associated with the system. As previously mentioned, the average erase count is stored in an
erase count block which is written into NAND memory associated with the system. Upon
storing the average erase count into the erase count block, static blocks, or blocks which contain
data and have a relatively low associated erase count, may be processed in step 342. The steps
associated with one method of processing a static block will be described below with respect to
Fig. 4. Once the static blocks are processed, the process of processing an initialization request is
completed.

Within a group of blocks associated with a flash memory, there are usually blocks which
are erased and blocks which contain data, i.e., user data, at any given time. Some of the blocks
which contain data may be considered to be “normal” blocks, while others may be considered to
be static blocks. Static blocks are blocks that contain data which is rarely changed. In other
words, static blocks are rarely erased. Typically, static blocks may be associated with relatively
old documents stored in flash memory, an executable program stored in the flash memory, or an
operating system stored in the flash memory. A static block may generélly have an erase count
that is substantially lower than the erase count of the majority of blocks within flash memory. In
one embodiment, a block which contains data may be considered to be a static block if the erase
count of the block is below a certain percentage, e.g., approximately twenty percent, of the
average erase count associated with a flash memory system.

Since a static block contains data that is rarely changed, the data contained in the static
block may be copied into a block which has a relatively high erase count. That is, when the
contents of a particular physical block are relatively static and, hence, are generally not changed,
the contents may effectively be reassigned to a different physical block which has a relatively
high erase count in order to enable the original physical block, which has a relatively low erase
count, to be used to store contents which are changed more frequently. With reference to Fig. 4,
the steps associated with processing a static block, i.e., step 342 of Fig. 3, will be described in
accordance with an embodiment of the present invention. A process 342 of processing a static
block of a system begins at step 404 in which the erase count of a non-erased block, e.g., block
“A,” is accessed. Once the erase count of block “A” is accessed, a determination is made in step
408 regarding whether the erase count of a non-erased block “A” is very low compared to the
average erase count associated with the system.

Although a determination of whether the erase count of a non-erased block “A” is low
compared to the average erase count may be based on substantially any suitable criteria, in one
embodiment, the determination is made based on whether the erase count of block “A” has a

value that is less than a value associated with a fraction of the average erase count. For example,

16

10

15

20

25

30

35

WO 2004/040584 o PCT/US2003/028215
the erase count of block “A” may be considered to be low when the erase count is less than a

predetermined percentage of the average erase count.

If it is determined in step 408 that the erase count of block “A” is not very low compared
to the average erase count, then the indication is that block “A” is most likely not a static block.
It should be appreciated that while block “A” may still be a static block even if the erase count of
block “A” is not considered to be very low, the erase count of block “A” in such a case would
effectively not trigger a swap of block “A” with another block. Accordingly, the process of
processing a static block is completed.

Alternatively, if it is determined in step 408 that the erase count of block “A” is very low
compared to the average erase count, then the implication is that the contents of block “A” may
be written into a block with a relatively high erase count such that block “A” with its low erase
count may be free to store data that is changed relatively frequently. In other words, the
indication when the erase count of block “A” is very low compared to the average erase count is
that block “A” is a static block. As such, process flow moves from step 408 to step 412 in which
block “A” is identified as a static block. Once block “A” is identified as a static block, a block,
namely block “B,” may be obtained from a group of most frequently erased blocks as identified
by the most frequently erased block table in step 416.

After block “B” is obtained, the contents of block “A” are copied into block “B” in step
420. That is, the user data contained in block “A” is copied into block “B” in step 420. Once the
contents of block “A” are copied into block “B,” block “A” is erased in step 424. Typically,
when block “A” is erased, the erase count associated with block “A” is incremented. A block,
e.g., block “C,” may be moved from the group of least frequently erased blocks into the group of
most frequently erased blocks in step 428 such that the association of block “C” is effectively
changed to the most frequently erased block table from the least frequently erased block table. In
other words, block “C” is disassociated from the least frequently erased block table and
associated with the most frequently erased block table. Such a move allows a space in the least
frequently erased block table to effectively be opened up to accommodate block “A,” which has
a low erase count and, hence, is one of the least frequently erased blocks in the system.
Typically, block “C” is the block with the highest erase count in the least frequently erased block
table.

Upon moving block “C” out of the group of least frequently erased blocks, or otherwise
disassociating block “C” from the least frequently erased block table, process flow moves from
step 428 to step 432 in which block “A” is effectively moved from the block mapping table into
the least frequently erased block table in step 432. Then, in step 434, block “B,” which includes
contents that were previously contained in block “A,” is associated with the block mapping table.

As will be appreciated by those skilled in the art, “moving” block “B” into the block mapping

17

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
table typically includes updating the mapping of a logical block address that was associated with

block “A” to now be associated with block “B.” When information pertaining to block “C” is
present in the most frequently erased block table, information pertaining to block “B” is present
in the block mapping table, and information pertaining to block “A” is present in the least
frequently erased block table, the process of processing a static block is completed. It should be
understood that process 342 may be repeated until substantially all static blocks associated with a
system have been identified and processed.

In general, a block mapping table, a least frequently erased block table, and a most
frequently erased block table may be created in system memory, e.g., RAM 112 of Fig. 1a, when
an initialization request is sent to an overall flash memory system. To build the tables, space
may first be allocated in system memory to accommodate the tables.

As mentioned above, a block mapping table, a least frequently erased block table, and a

most frequently erased block table are created in system memory, as is an average erase count.

" An average erase count and the erase count of each block are also written to an erase count

block. Fig. 5a is a diagrammatic block diagram representation of a system memory in accordance
with an embodiment of the present invention. A system memory 454 and a flash memory 460
are included in an overall system, and may, for example, effectively be components of a memory
card or components of a host device in which flash memory 460 such as NAND memory is
embedded. System memory 454 is arranged to store a block mapping table 462 with which
blocks may be associated. Typically, block mapping table 462 may be used in order to associate
LBAs with physical blocks associated with flash memory 460.

System memory 454 also holds a least frequently erased block table 466 and a most
frequently erased block table 470 which, like block mapping table 462, are generally formed in
response to an initialization request. An average erase count 474, which is arranged to hold the
average erase count of blocks within flash memory 460, is created when an overall flash memory
system is formatted. In one embodiment, an erase count block 480 is arranged to contain the
erase counts of substantially all blocks 465 within flash memory 460. Each time an initialization
request is made, an updated average erase count may be calculated, and stored into erase count
block 480.

Fig. 5b is a diagrammatic representation of a group of “normal” blocks, a group of least
frequently erased blocks, and a group of most frequently erased blocks in accordance with an
embodiment of the present invention. A group of blocks 502 includes blocks 514 which may be
normal or static blocks which generally contain user data, or which may be erased may be erased
but may not be either a most frequently erased block or a least frequently erased block. A group
least frequently erased blocks 506 generally includes blocks 518 which have the lowest erase

counts of the erased blocks within an overall system, while a group of most frequently erased

18

10

15

20

25

30

35

WO 2004/040584 o PCT/US2003/028215
blocks 510 generally includes blocks 522 which have the highest erase counts of the erased

blocks within the overall system. In general, blocks 518 are effectively used as spare blocks.

When a block 514 is erased, it may be determined whether erased block 514 has a
relatively low associated erase count or a relatively high associated erase count. When erased
block 514 has a relatively low associated erase count, erased block 514 may be added to group of
least frequently erased blocks 506. On the other hand, when erased block 514 has a relatively
high associated erase count, erased block 514 may be reassigned to group of most frequently
erased blocks 510.

Group of least frequently erased blocks 506, which may be of substantially any size, may
be a sorted group. That is, blocks 518 may be substantially sorted based on erase counts. The
sorting is typically reflected in a corresponding least frequently erased block table (not shown)
which contains entries associated with blocks 518. For instance, each time a new block 518 is
moved into or added to, or otherwise associated with, group of least frequently erased blocks
506, blocks 518 may essentially be sorted based on erase counts such that the least frequently
erased block 518 in group of least frequently erased blocks 506 may be the next block 518 to be
reassigned, as for example to group 502. In other words, when a new block into which data is to
be copied is needed, the least erased block 518 of blocks 518 is identified using a least frequently
erased block table, and taken from group of least frequently erased blocks 506. Typically, when
a block 514 which contains data that is not needed is erased, that block 514 may be stored into
group of least frequently erased blocks 506, and the least frequently erased block table may be
updated accordingly, i.e., an entry which corresponds to the added block may be included in the
least frequently erased block table.

Blocks 522 in group of most frequently erased blocks 510, like blocks 518 stored in
group of least frequently erased blocks 506, may also be substantially sorted based on erase
counts. The sorting is typically implemented by sorting entries in a most frequently erased block
table (not shown) which serves to identify blocks 522. In one embodiment, an average erase
count associated with blocks 522 may be calculated, i.e., an average erase count for group of
most frequently erased blocks 510 may be determined. When a block 514 from group 502 is
erased, and the erase count of the erased block 514 is found to exceed the average erase count for
group of most frequently erased blocks 510 by more than a given percentage, e.g., more than
approximately twenty percent, the erased block 514 may be added to group of most frequently
erased blocks 510. When a new block 522 is effectively added to group of most frequently
erased blocks 510, a block 522 within group of frequently erased blocks 510 that has the lowest
erase count may be reassigned into group 502. Such reassignments are typically reflected by
updating an associated block mapping table, least frequently erased block table, and most
frequently erased block table (not shown).

19

10

15

20

25

30

35

WO 2004/040584 - PCT/US2003/028215
The swapping or updating of blocks between group 502, group of least frequently erased

blocks 506, and most frequently erased blocks 510 may generally occur when a block 514
included in group 502 is to be erased or updated. Alternatively, the swapping or updating of
blocks may occur substantially any time it is desired for a spare block to be allocated for use in
group 502. Referring next to Fig. 6, one method of performing a block swap or update in an
overall memory system such as a host system with embedded flash memory to allow for more
even wear of the blocks will be described in accordance with an embodiment of the present
invention. A process 600 of performing a block swap or update begins at step 604 in which a
block, e.g., block “Y,” is “obtained” from a block mapping table or otherwise identified using the
block mapping table. The block that is obtained is the block that is to be effectively swapped out
of the block mapping table for copying or updating its contents.

Once block “Y” is obtained, a block, e.g., block “X,” is effectively obtained in step 608

from the least frequently erased block table. That is, a spare block is obtained from the group of

least frequently erased blocks using the least frequently erased block table to identify an
appropriate spare block. In general, block “X” is the block with the lowest erase count in the
group of least frequently erased blocks, although it should be appreciated that block “X” may be
substantially any block associated with the group of least frequently erased blocks and, hence,
the least frequently erased block table. The data contents stored in block “Y,” or new contents
which are to replace the original contents of block “Y,” are copied into block “X” in step 612.

After the contents of block “Y™ are copied into block “X,” block “X” is effectively
moved into, or associated with, the block mapping table in step 616. In other words, mappings
associated with block “Y” and block “X” are effectively updated such that an LBA which was
previously mapped to block “Y” is remapped to block “X.” When block “X” is effectively
moved into the block mapping table, block “Y” is erased in step 620. Specifically, the data
contents, e.g., user contents, stored in block “Y” may be erased using substantially any suitable
technique. The erase count associated with block “Y,” which is stored in a redundant area
associated with block “Y,” is then incremented in step 624 to indicate that block “Y” has once
again been erased. It should be appreciated that in one embodiment, an erase count for “Y”
which is effectively stored in an erase count block may be updated.

In step 628, the block with the lowest erase count in the most frequently erased block
table is identified. As described above, in one embodiment, blocks referenced in the most
frequently erased block table are sorted according to their respective erase counts. Sorting the
blocks may include positioning the references to the blocks within the most frequently erased
block table according to the erase counts of the blocks. Hence, identifying the block with the

lowest erase count generally involves accessing the block reference in the position within the

20

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215

lowest erase count.

Once the block with the lowest erase count referenced in the most frequently erased block
table is identified, process flow moves from step 628 to step 632 in which it is determined if the
erase count of block “Y” is greater than the erase count of the block with the lowest erase count
referenced in the most frequently erased block table. If it is determined that the erase count of
block “Y” is not greater than the erase count of the block with the lowest erase count referenced
in the most frequently erased block table, then the indication is that block “Y” is not considered
to be frequently erased. Accordingly, process flow proceeds from step 632 to step 636 in which
block “Y” is moved into the group of least frequently erased blocks and effectively moved into
the least frequently erased block table, i.e., an entry corresponding to block “Y” is added into the
least frequently erased block table. It should be appreciated that, in one embodiment, moving
block “Y” into the group of least frequently erased blocks may include resorting substantially all
block references in the least frequently erased block table using the erase count of each block.
After block “Y” is effectively moved into the least frequently erased block table, the process of
swapping or updatiﬁg blocks is completed.

Returning to step 632, if the determination is step 632 is that the erase count of block “Y”
exceeds the lowest erase count associated with the most frequently erased block table, the
indication is that block “Y” should be moved into the group of most frequently erased blocks and
effectively into the most frequently erased block table. In order for there to be room for block
“Y” to be referenced in the most frequently erased block table, a block, e.g., the block with the
lowest erase count referenced in the most frequently erased block table, effectively needs to be
removed from the most frequently erased block table. As such, in step 640, the block with the
lowest erase count referenced in the most frequently erased block table is moved into the group
of least frequently erased blocks, and effectively moved into the least frequently erased block
table. Moving the block into the group of least frequently erased blocks may include resorting
the block references in the least frequently erased block table according to the erase count of
each block.

After the block with the lowest erase count in the most frequently erased block table is
effectively moved out of the most frequently erased block table, block “Y™ is effectively moved
into the most frequently erased block table in step 644. In one embodiment, moving block “Y”
into the group of most frequently erased blocks and, hence, effectively into the most frequently
erased block table, may include resorting the most frequently erase blocks according to the erase
count of each block, including block “Y.” When block “Y” is effectively moved into the most
frequently erased block table, the process of swapping or updating blocks is completed..

21

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
In general, the functionality associated with maintaining tables, handling initialization

requests, and performing wear leveling, e.g., responding to requests to swap or update blocks, is
provided in software, e.g., as program code devices, or as firmware to a host system. One
embodiment of a suitable system architecture associated with the software or firmware provided
to a host system to enable wear leveling to occur is shown in Fig. 7. A system architecture 700
generally includes a variety of modules which may include, but are not limited to, an application
interface module 704, a system manager module 708, a data manager module 712, a data
integrity manager 716, and a device manager and interface module 720. In general, system
architecture 700 may be implemented using software code devices or firmware which may be
accessed by a processor, e.g., processor 108 of Fig. 1a.

In general, application interface module 704 may be arranged to communicate with a
flash memory (not shown) or, more generally, a media, to initialize the media during the course
of an initialization request. Application interface module 704 may also read from, as well as
write to, a sector, a cluster, or a page associated with the media. Typically, in addition to
communicating with a media, application interface module 704 is also in communication with
system manager module 708 and data manager module 712.

In general, application interface module 704 may be arranged to communicate with the
host, operating system or the user directly. Application interface module 704 is also in
communication with system manager module 708 and data manager module 712. When the user
wants to read, write or format a flash memory, the user sends requests to the operating system,
the requests are passed to the application interface module 704. Application interface module
704 directs the requests to system manager module 708 or data manager module 712 depending
on the requests.

System manager module 708 includes a system initialization submodule 724, an erase
count block management submodule 726, and a power management block submodule 730.
System initialization submodule 724 is generally arranged to enable an initialization request to be
processed, and typically communicates with erase count block management submodule 726. In
one embodiment, system initialization submodule 724 allows erase counts of blocks to be
updated, and is substantially responsible for creating a least frequently erased block table and a
most frequently erased block table.

Erase count block management submodule 726 includes functionality to cause erase
counts of blocks to be stored, as for example in erase count blocks, and functionality to cause an
average erase count to be calculated, as well as updated, using individual erase counts. In other
words, erase count block management submodule 726 effectively allows erase counts to be
cataloged and allows an average erase count to be maintained. Further, in one embodiment,

erase count block management submodule 726 also substantially synchronizes the erase count of

22

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
substantially all blocks in erase count blocks during a initialization request of an overall system.

While erase count block management submodule 726 may be arranged to cause an average erase
count to be stored in erase count blocks, it should be appreciated that power management block
submodule 730 may instead be used to enable the average erase count to be stored.

In addition to being in communication with application interface module 704, system
manager module 708 is also in communication with data manager module 712, as well as device
manager and interface module 720. Data manager module 712, which communicates with both
system manager module 708 and application interface module 704, may include functionality to
provide page or block mapping. Data manager module 712 may also include functionality
associated with operating system and file system interface layers.

Device manager and interface module 720, which is in communication with system
manager module 708, data manager 712, and data integrity manager 716, typically provides a
flash memory interface, and includes functionality associated with hardware abstractions, e.g., an
/O interface. Data integrity manager module 716 provides ECC handling, among other
functions.

As described above, erase counts for each block in a non-volatile memory system may be
stored in erase count blocks, which is a reserved block that is stored in a system or NAND
memory associated with the non-volatile memory system. The erase count blocks may also
contain an average erase count average erase count, in addition to the erase count of each block.
Fig. 8a is a diagrammatic representation of erase count blocks in accordance with an embodiment
of the present invention. An erase count block 800 is generally sized such that erase count block
800 includes a certain number of bits for each block, i.e., physical block, within the overall non-
volatile system which includes. erase count block 800. The number of bits effectively allocated
to each block may be chosen such that the entire erase count for a block may be accommodated -
by the allocated bits. In one embodiment, erase count block 800 may include approximately
three bytes for each block, as three bytes are generally sufficient to accommodate erase counts on
the order of approximately one hundred thousand. When three bytes are allocated for each
block, in a 512 Mb system that includes approximately 2048 blocks with 64 pages per block,
erase count block 800 maybe sized to include approximately 12 pages, e.g., approximately six
thousand bytes.

Erase count block 800 includes pages 810 which, as will be appreciated by those skilled
in the art, often include approximately 512 bytes which may be used to store data such as erase
counts. As shown, a first page 810a may be arranged to contain erase count entries for blocks ‘0’
through 169,” while second page 810b may be arranged to contain erase count entries for blocks
‘170’ through 339. * When an erase count for block ’1,’ i.e., physical block ’1,’ is to be written or
read, bytes three through five of first page 810a may be accessed, as bytes three through five of

23

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
first page 810a are arranged to contain an erase count entry which corresponds to block ‘1,” as

will be described below with respect to Figs. 8b and 8c.

Erase count block 800, in addition to including pages 810, also includes a header 820
which may generalily be located substantially anywhere within erase count block 800. Header
820, which will be discussed below with reference to Fig. 9, may be a page in erase count block
800 which includes information relating to the non-volatile flash memory which includes the
blocks associated with the erase counts stored in pages 810.

Fig. 8b is a diagrammatic representation of a page within an erase count block, e.g., page
810a of erase count block 800 of Fig. 8a, in accordance with an embodiment of the present
invention. Page 810a is arranged to hold entries 830 which correspond to approximately one
hundred and seventy physical blocks. As shown, entries 830 contain erase counts for blocks
such that a first entry 830a in page 810a is arranged to contain an erase count for block ‘0,” and a
second entry 830b is arranged to contain an erase count for block ‘1.” A final entry 830d in page
810a is arranged to hold an erase count for block ‘169.” -

Each entry 830 includes substantially the same number of bytes. As shown in Fig. 8c,
entry 830a which corresponds to block ‘0’ may be bytes zero through two in page 810a, while
entry 830c which corresponds to block ‘2’ may be bytes six through eight in page 810a. As
previously mentioned, each entry 830 may include approximately three bytes, although it should
be appreciated that the number of bytes in each entry 830 and, hence, the number of entries 830
in page 810a, may vary. By way of example, in one embodiment, each entry 830 may include
approximately four bytes.

While each entry 830 in page 810a is arranged to contain an erase count, entries 830 may
not necessarily contain an erase count. For instance, when a particular block is unusable and
may not be written to or read from, e.g., due to a manufacturing or factory defect, that block will
generally not have an erase count. As such, an erase count block such as erase count block 800
of Fig. 8a will generally not have an entry which contains an erase count for an unusable block.
Instead, in lieu of holding erase counts, entries 830 for unusable blocks may hold indicators or
markings which are arranged to identify blocks as being unusable.

Fig. 8d is a diagrammatic representation of a page in an erase count block, e.g., page 810a
of erase count block 800 of Fig. 8a, which contains erase counts and an entry which indicates
that a particular block is unusable in accordance with an embodiment of the present invention.
When a block is usable, or may be written to or read from, the block will generally have an erase
counts. For example, entry 830a of page 810a, which is arranged to contain an erase count that
corresponds to block ‘0,” may contain a value of ‘100’ when block ‘0’ has been erased one
hundred times. Similarly, entry 830b of page 810a may contain a value of ‘30’ when block ‘1’

has been erased thirty times.

24

10

15

20

25

30

35

WO 2004/040584 _ WPVCT/US2003/028215
If block ‘2’ has been identified as being an unusable block, as for example through a

marking stored within block 2,” then entry 830c of page 810a, which corresponds to block 2’
may contain a marking which is arranged to indicate that block ‘2’ is not usable. In one
embodiment, a marking of ‘FFFFFF’ in entry 830c may indicate that block €2’ is unusable due to
a factory defect. It should be appreciated that substantially any marking may be used to indicate
that a block is unusable. '

As discussed above, an erase count block such as erase count block 800 of Fig. 8a
typically includes a header 820 which, in one embodiment, is a page within erase count block
800 which contains information that generally relates to the blocks within a non-volatile memory
system. Referring next to Fig. 9, a header of an erase count block, e.g., header 820 of erase count
block 800 of Fig. 8a, will be described in accordance with an embodiment of the present
invention. Header 820, which may be located substantially anywhere within an erase count
block, may include approximately 512 bytes which may be used to store information. The
information stored in header 820 includes a signature 850a and partitioning information 850b.
Signature 850a may be used for security checks.

Although an average erase count may be stored substantially anywhere in a system
memory of a non-volatile memory system, in the described embodiment, an average erase count
is stored as information 850b in header 820

An erase count block is generally initialized, or otherwise created, when power is first
provided to a non-volatile memory system which includes the erase count block. In other words,
an erase count block is typically initialized when a non-volatile memory of a non-volatile
memory system is first formatted. With reference to Fig. 10, the steps associated with one
method of initializing an erase count block when a non-volatile memory of a non-volatile
memory system is first formatted will be described in accordance with an embodiment of the
present invention. A process 1000 begins at step 1004 in which all blocks or, more specifically,
all physical blocks, within the non-volatile memory system are examined. Examining the blocks
may include examining the contents of the blocks to determine which of the blocks may be
unusable, i.e., identified by a manufacturer of the non-volatile memory as being unusable.
Accordingly, in step 1008, unusable blocks within the non-volatile memory are identified.
Identifying the unusable blocks may involve identifying each block which contains a marking,
e.g., a particular marking such as ‘FFFFFF’, which is known to identify the block as having or
otherwise including a factory defect.

Once substantially ail unusable blocks are identified, the unusable blocks are marked or
otherwise identified in the erase count block as being unusable in step 1012. Marking a
particular block as being unusable may include placing a particular marking or code in the

portion of the erase count block that is reserved for the block that identifies the block as being

25

10

15

20

25

30

35

WO 2004/040584 . PCT/US2003/028215
unusable. It should be appreciated that marking unusable blocks in the erase count block

typically also includes updating the header of the erase count block to include a count of the total
number of unusable blocks within the non-volatile memory.

After the unusable blocks are marked in the erase count block, the erase counts of usable
blocks, or blocks which do not have factory defects, which are not erased are initialized in step
1016. Initializing the erase counts may include setting the erase count of each block which is not
erased to a value of zero. An erase count for a block is typically stored in at least one of the
redundant or overhead areas associated with the block. The erase counts corresponding to the
usable blocks, both erased and unerased usable blocks, may then be set in the erase count block
in step 1020. Typically, an erase count stored in the erase count block may be set or otherwise
initialized to a value of zero, or in the case of an unerased block, the same value as the erase
count as stored in its corresponding unerased block. In other words, the erase count for an
unerased block is generally the same as the erase count stored into the erase count block in a
location which corresponds to the block. Once the erase counts are set as entries in the erase
count block, then the average erase count may be set in step 1034 in the erase count block. As °
previously discussed, the average erase count may be stored into the header of the erase count
block. When the erase counts of the usable blocks are all initialized to a value of zero, then the
average erase count may initially be set to a value of zero. The process of formatting a non-
volatile memory included in a non-volatile memory system is completed after the average erase
count is set.

Each time an initialization process is to be processed within a non-volatile memory
system, entries in the erase count block may be updated. It should be appreciated, however, that
the erase count block may generally be updated at substantially any time, e.g., in response to a
command issued by a user. Referring next to Fig. 11, the steps associated with one method of
updating an erase count block in response to an initialization request will be described in
accordance with an embodiment of the present invention. A process 1100 of updating an erase
count block begins at step 1108 in which an unerased usable block is obtained. As will be
appreciated by those skilled in the art, an unerased usable block generally contains data, and is
effectively in use. The erase count entry stored for the unerased usable block in the erase count
block is obtained in step 1108. In other words, the entry in the erase count block which
corresponds to the erase count of the unerased usable block is read. Once the entry for the erase
count of the unerased usable block obtained in step 1108 is read, it is determined in step 1116
whether the erase count entry has a value that is less than the erase count stored in the unerased
usable block.

If it is determined in step 1116 that the erase count entry stored in the erase count block

for the unerased usable block is less than the erase count stored in the unerased usable block,

26

10

15

20

25

30

35

WO 2004/040584 - PCT/US2003/028215

then the indication is that the erase count entry stored in the erase count block is not current.
Accordingly, process flow moves from step 1116 to step 1120 in which the erase count stored in
the erase count block as an entry which corresponds to the unerased usable block is updated.
Updating the erase count entry typically involves storing the current erase count of the unerased
usable block into the erase count block. Once the erase count entry is updated, a determination is
made in step 1124 regarding whether there are more unerased usable blocks to process.

When the determination in step 1124 is that there are more unerased usable blocks to
process, then process flow returns to step 1108 in which another unerased usable block is
obtained. Alternatively, when it is determined that substantially all unerased usable blocks have
been processed, e.g. that the erase count entries for substantially all unerased usable blocks in the
erase count block for have been updated, the average erase count of all usable blocks within the
non-volatile memory is recalculated in step 1128. As will be appreciated by those skilled in the
art, the average erase count may be determined by summing all erase counts stored in the erase
count block, then dividing by the number of erase counts stored in the erase count block, as will
be described below with respect to Fig. 13. After the average erase count is recalculated, the
recalculated average erase count is stored in the erase count block in step 1132. As previously
discussed, the average erase count may be stored in a header of the erase count block. Once the
average erase count is stored, the process of updating the erase count block in response to an
initialization request is completed.

Returning to step 1116, when it is determined that the erase count entry in an erase count
block for an obtained unerased usable block is not less than the erase count stored in the obtained
unerased usable block, then the implication is that the erase count entry in the erase count block
is up-to-date. As such, process flow moves substantially directly from step 1116 to step 1124 in
which it is determined whether there are more unerased usable blocks to process.

As previously discussed, an erase count for a block is stored in at least one of the
redundant or overhead areas associated with the block. For example, an erase count for a block
may be stored in at least the redundant area associated with a first page within the block.
However, when a block is erased, substantially all contents of the block, including the erase
count, are typically erased. Hence, when an erased block is obtained for use, i.e., when an erased
block is obtained from a spare block pool such as a least frequently erased block table, the erased
block will not include an erase count.

Typically, an erase count for an erased block that has been obtained from a spare block
pool for use, i.e., a spare block, may be read from an erase count block. Fig. 12 is a process flow
diagram which illustrates the steps associated with one method of obtaining an erase count for a
spare block in accordance with an embodiment of the present invention. A process of obtaining

an erase count 1200 of a spare block begins at step 1204 in which the erase count entry for the

27

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
obtained spare block is read from the erase count block. Specifically, the bits stored in the erase

count block which correspond to an erase count for the spare block are read. A determination is
then made in step 1208 regarding whether the bits in the erase count entry are valid. That is, it is
determined whether the bits in the erase count entry for the spare block represent a previously
stored erase count, or whether the bits in the erase count entry for the spare block represent
something else, e.g., whether the bits identify the spare block as previously being unavailable due
to a growing defect.

If it is determined in step 1208 that the erase count entry, or the erase count read from the
erase count block, is effectively not a valid erase count, then process flow moves from step 1208
to step 1212 in which this erased block is either removed from the spare block pool, if the erased
block was obtained from the spare block pool, or not added to the spare block pool, if the erased
block was not obtained from the spare block pool.

Alternatively, if it is determined in step 1208 that the contents of the erase count entry in
the erase count block for the spare block is valid for use as an erase count, then process flow
proceeds from step 1208 to step 1216 in which the contents of the erase count entry are set as the
erase count of the spare block. In other words, if the erase count read from the erase count block
for the spare block is a valid erase count, then the erase count read from the erase count block is
set as the actual erase count of the spare block. After the erase count of the spare block is set to

the erase count read from the erase count block, the process of obtaining an erase count for the

" spare block is completed.

In general, the steps associated with calculating or recalculating an average erase count
may be widely varied. Fig. 13 is a process flow diagram which illustrates one method of
calculating an average erase count in accordance with an embodiment of the present invention.
A process 1300 of calculating an average erase count begins at step 1304 in which the erase
counts for all usable blocks are obtained. As usable blocks which are in unerased and usable
blocks which are erased have associated erase counts, while unusable blocks generally either do
not have erase counts or do not have obtainable erase counts, substantially only the erase counts
of the usable blocks are obtained. The erase counts are typically obtained from an erase count
block, although it should be appreciated that the erase counts for unerased usable blocks may
instead be obtained from the redundant areas of the unerased usable blocks.

Once the erase counts for usable blocks are obtained, the erase counts for the usable
blocks are summed in step 1308. That is, the erase counts for the usable blocks are added
together. Then, in step 1312, a total number of usable blocks is determined in step 1312. The
total number of usable blocks may be determined by obtaining a total number of blocks and a
total number of unusable blocks from the erase count block, then subtracting the total number of

unusable blocks from the total number of blocks. Alternatively, the total number of usable

28

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
blocks may be obtained by effectively cycling through the all blocks and maintaining a running

count of all usable blocks.

After the total number of usable blocks is obtained, the sum of the erase counts for all the
usable blocks is divided by the total number of usable blocks in step 1316 to generate an average
erase count. Once the total number of usable blocks is divided into the sum of the erase counts,
the process of generating an average erase count is completed.

Although only a few embodiments of the present invention have been described, it should
be understood that the present invention may be embodied in many other specific forms without
departing from the spirit or the scope of the present invention. By way of example, the size of an
erase count block and the location of a header within the erase count block may vary widely. In
addition, the contents of the header of an erase count block may also vary depehding upon the
requirements of a particular system.

While non-volatile memory systems have been described as being controlled by
associated memory controllers or being controlled using software or firmware associated with a
host system, it should be understood that wear leveling processes which include erase count
management may be applied to non-volatile memory systems which are in communication with
controllers which are substantially external to the non-volatile memory systems. Suitable
memory systems which use controllers include, but are not limited to, PC cards, CompactFlash
cards, MultiMedia cards, Secure Digital cards, and embedded chip sets which include flash
memory and a flash memory controller. Memory systems which are controlled through the use
of software or firmware loaded onto a host system include embedded memory devices. In one
embodiment, memory systems which may use the erase management techniques and erase count
block management techniques described above and do not use controllers associated with the
memory systems may use controllers associated with a host, e.g., a host computer system, to
implement wear leveling. That is, a host may directly address and manage memory in which
wear leveling is to occur through the use of a controller on the host.

An erase count block has generally been described as being a block which includes a
number of pages. It should be appreciated, however, that substantially any suitable data structure
in a system memory may be arranged to hold erase counts and an average erase count.

In one embodiment, an erase count block may include substantially only entries which
correspond to erase counts of blocks within a non-volatile memory system. In such an
embodiment, information which is generally contained in a header of an erase count may be
stored in a data structure or a block that is separate from the erase count block. That is,
information such as an average erase count may not necessarily be stored in an erase count block
or, more specifically, a header of the erase count block, when an erase count block is arranged

substantially only to contain entries pertaining to erase counts associated with blocks.

29

10

15

20

25

WO 2004/040584 PCT/US2003/028215
Alternatively, in lieu of being stored in a header of an erase count block, an average erase count

may instead be stored substantially anywhere within an erase count block.

An average erase count has been described as being determined by summing the erase
counts of all usable blocks, then dividing the sum of the erase counts of the usable blocks by a
total number of usable blocks. It should be appreciated that in lieu of dividing the sum by the
total number of usable blocks, the sum may instead be divided by the total number of blocks. In
addition, the average erase count may be determined, in one embodiment, by effectively
summing together erase counts for all blocks by using a current average erase count to represent
the erase count of each unusable block such that each block is essentially accounted for in an
average erase count. The sum of all erase counts, including actual erase counts for usable blocks
and current average erase counts for each unusable block, may then be divided by the total
number of blocks to generate a new or updated average erase count.

In lieu of calculating an average erase count that effectively reflects an average number of
times each block of a total number of blocks has been erased, other characterizations of a number
of times each block has been erased may instead be calculated. For instance, a median number
of times each block of a total number of blocks, e.g., usable blocks, has been erased may be
determined.

While the use of an erase count block to maintain the erase counts of blocks within a
memory system has been described, it should be understood that the erase count block may
instead be used to maintain the erase counts of substantially any memory elements which may be
erased. By way of examplé, in one embodiment, an erase count block or data structure may
maintain erase counts for pages rather than blocks.

Generally, the steps associated with the various processes and methods of wear leveling
may vary widely. Steps may generally be added, removed, altered, and reordered without
departing from the spirit of the scope of the present invention. Therefore, the present examples
are to be considered as illustrative and not restrictive, and the invention is not to be limited to the

details given herein, but may be modified within the scope of the appended claims.

30

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
WHAT IS CLAIMED IS:

1. A data structure, the data structure being arranged in a system memory
associated with a non-volatile memory system, the non-volatile memory system including a non-
volatile memory which includes a plurality of blocks, the data structure comprising:

a first indicator, the first indicator being arranged to provide an indication of a
number of times each usable block of the plurality of blocks has been erased; and

a second indicator, the second indicator being arranged to indicate a total number

of blocks included in the plurality of blocks.

2. The data structure of claim 1 further including:
a header, wherein the header is arranged to contain the first indicator and the

second indicator.

3. The data structure of claim 1 wherein the first indicator is an average erase
count, the average erase count being arranged to indicate an average number of times each block

in the plurality of blocks has been erased.

4. The data structure of claim 1 wherein the non-volatile memory is a NAND

flash memory. N

5. A non-volatile memory system comprising:

a non-volatile memory, the non-volatile memory including a plurality of blocks;
a system memory; and

means for indicating in the system memory an average number of times each

block included in the plurality of blocks has been erased.

6. The non-volatile memory system of claim 5 wherein the means for
indicating in the system memory the average number of times each block included in the
plurality of blocks has been erased include means for indicating in a data structure the average

number of times each block included in the plurality of blocks has been erased.

7. The non-volatile memory system of claim 6 wherein the data structure is

an erase count block.

8. The non-volatile memory system of claim 5 wherein the non-volatile

memory is a NAND flash memory.

31

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215

9. A method of determining an average number of times each block of a
number of blocks within a non-volatile memory of a memory system has been erased, the method
comprising:

obtaining an erase count for each block of the number of blocks, the erase count
for each block of the number of blocks being arranged to indicate a number of times each block
of the number of blocks has been erased, wherein the number of blocks is a total number of
usable blocks within the non-volatile memory;

creating a sum of the erase counts for the number of blocks; and

creating the average erase count, the average erase count being arranged to
indicate the average number of times each block of the number of blocks has been erased,
wherein creating the average erase count includes substantially dividing the sum by the number
of blocks.

10. The method of claim 9 wherein the erase count for a first block of the

number of blocks is obtained from the first block.

11. The method of claim 10 wherein the erase count for the first block is

obtained from a redundant area of the first block.

12. The method of claim 9 wherein the erase count for a first block of the
number of blocks is obtained from an erase count block in the memory system, the erase count

block being arranged to contain the erase counts for each block of the number of blocks.

13. The method of claim 9 wherein each block of the number of blocks is a
usable block.

14. The method of claim 9 wherein the non-volatile memory is a NAND flash

memory.

15. A method for substantially preparing an erased block for use from a non-
volatile memory of a non-volatile memory system, the non-volatile memory including a plurality
of blocks, wherein the plurality of blocks includes the erased block, the method comprising:

obtaining the erased block;

obtaining an indicator that characterizes a number of times each block in the

plurality of blocks has been erased; and

32

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
storing the indicator that characterizes a number of times each block in the

plurality of blocks has been erased in the erased block as an indication of a number of times the

erased block has been erased.

16. The method of claim 15 further including;

determining when an indicator of a number of times the erased block has been
erased is available, wherein obtaining the indicator that characterizes a number of times each
block in the plurality of blocks has been erased includes obtaining the indicator that characterizes
the number of times each block in the plurality of blocks has been erased when it is determined
that the indicator of the number of times the erased block has been erased is not available, and
storing the indicator that characterizes the number of times each block in the plurality of blocks
has been erased includes storing the indicator that characterizes the number of times each block
in the plurality of blocks has been erased when it is determined that the indicator of the number

of times the erased block has been erased is not available.

17. The method of claim 16 further including:

storing the indicator of the number of times the erased block has been erased in
the erased block when it is determined that the indicator of the number of times the erased block
has been erased is available, wherein when the indicator of the number of times the erased block
has been erased is stored in the erased block, the indicator that characterizes the number of times

each block in the plurality of blocks has been erased is not stored in the erased block.

18. The method of claim 17 wherein the indicator that characterizes the
number of times each block in the plurality of blocks has been erased is an average erase count
which substantially indicates an average number of times each block in the plurality of blocks

has been erased.

19. The method of claim 17 wherein storing the indicator of the number of
times the erased block has been erased includes storing the indicator of the number of times the

erased block has been erased in an overhead area of the erased block.

20. The method of claim 17 wherein storing the that characterizes the number
of times each block in the plurality of blocks has been erased in the erased block includes storing
the indicator that characterizes the number of times each block in the plurality of blocks has been

erased in an overhead area of the erased block.

21. The method of claim 15 further including:

33

10

15

20

25

30

WO 2004/040584 , PCT/US2003/028215
determining when an indicator of a number of times the erased block has been

erased is available; and
storing the indicator of the number of times the erased block has been erased in
the erased block when it is determined that the indicator of the number of times the erased block

has been erased is available.

22. A non-volatile memory system comprising:

a non-volatile memory, the non-volatile memory including a number of blocks;

means for obtaining an erase count for each block of the number of blocks, the
erase count for each block of the number of blocks being arranged to indicate a number of times
each block of the number of blocks has been erased;

means for creating a sum of the erase counts for the number of blocks; and

means for creating the average erase count, the average erase count being
arranged to indicate the average number of times each block of the number of blocks has been
erased, wherein the means for creating the average erase count include means for substantially

dividing the sum by the number of blocks.

23. The non-volatile memory system of claim 22 wherein the erase count for a
first block of the number of blocks is obtained from one of the first block and an erase count
block in the non-volatile memory system, the erase count block being arranged to contain the

erase counts for each block of the number of blocks.

24. A non-volatile memory system comprising:

a non-volatile memory including a plurality of blocks;

means for obtaining an erased block from the plurality of blocks;

means for obtaining an indicator that characterizes a number of times each block
in the plurality of blocks has been erased; and

means for storing the indicator that characterizes a number of times each block in
the plurality of blocks has been erased in the erased block as an indication of a number of times

the erased block has been erased.
25. The non-volatile memory system of claim 24 further including:

means for determining when an indicator of a number of times the erased block

has been erased is available; and

34

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
means for storing the indicator of the number of times the erased block has been

erased in the erased block when it is determined that the indicator of the number of times the

erased block has been erased is available.

26. A memory system comprising

a non-volatile memory which includes a plurality of memory elements;

code devices that obtain an erase count for each memory element of the number of
memory elements, the erase count for each memory element of the number of memory elements
being arranged to indicate a number of times each memory element of the number of memory
elements has been erased, wherein the number of memory elements is a total number of usable
memory elements within the non-volatile memory;

code devices that create a sum of the erase counts for the number of memory
elements;

code devices that create the average erase count, the average erase count being
arranged to indicate the average number of times each memory element of the number of
memory elements has been erased, wherein the code devices that create the average erase count
include code devices that substantially divide the sum by the number of memory elements; and

a memory area that stores the code devices.
27. The memory system of claim 26 wherein the memory elements are blocks.

28. The memory system of claim 27 wherein the erase count for a first
memory element of the number of memory elements is obtained from one of the first memory
element and an erase count block arranged to contain the erase counts for each block of the

number of blocks.

29. The memory system of claim 27 wherein each memory element of the

number of memory elements is a usable block.

30. The memory system of claim 26 wherein the non-volatile memory is a

NAND flash memory.

31. A memory system comprising: .
a non-volatile memory, the non-volatile memory including a plurality of memory
elements, wherein the plurality of memory elements includes the erased memory element;

code devices that obtain the erased memory element;

35

10

15

20

25

30

35

WO 2004/040584 PCT/US2003/028215
code devices that obtain an indicator that characterizes a number of times each

memory element in the plurality of memory elements has been erased;

code devices that store the indicator that characterizes a number of times each
memory element in the plurality of memory elements has been erased in the erased memory
element as an indication of a number of times the erased memory element has been erased; and

a memory area that stores the code devices.

32. The memory system of claim 31 further including:

code devices that determine when an indicator of a number of times the erased
memory element has been erased is available; and

code devices that store the indicator of the number of times the erased memory
element has been erased in the erased block when it is determined that the indicator of the

number of times the erased memory element has been erased is available.

33. The memory system of claim 31 wherein the plurality of memory elements

is a plurality of blocks.

34. The memory system of claim 33 wherein the plurality of blocks are a
plurality of usable blocks.

35. The memory system of claim 31 wherein the non-volatile memory is a
NAND flash memory. ’

36. A method for maintaining an average erase count within a memory
system, the average erase count being arranged to indicate an average number of times each
block of a number of blocks of a non-volatile memory associated with the memory system is
erased, the memory system further including a system memory, the method comprising:

summing erase counts associated with each block of the number of blocks, each
erase count being arranged to indicate a number of times an associated block of the number of
blocks has been erased, wherein summing the erase counts creates a sum;

dividing the sum by the number of blocks, wherein dividing the sum by the
number of blocks creates the average erase count; and

storing the average erase count into the system memory.

37. The method of claim 36 further including:

36

10

15

20

WO 2004/040584 PCT/US2003/028215
initializing the average erase count in response to an initialization request within

the memory system.

38. The method of claim 37 wherein initializing the average erase count

includes setting the average erase count to a value of approximately zero.

39. The method of claim 36 further including:
updating the average erase count after the average erase count is stored into the

system memory.

40. The method of claim 39 wherein updating the average erase count
includes:

summing updated erase counts associated with each block of the number of
blocks, each updated erase count being arranged to indicate the number of times an associated
block of the number of blocks has been erased, wherein summing the updated erase counts
creates an updated sum;

dividing the updated sum by the number of blocks, wherein dividing the updated
sum by the number of blocks creates an updated average erase count; and

storing the average erase count in the system memory with the updated erase

count.

37

WO 2004/040584 PCT/US2003/028215
1/15

100
™ 120~
104 NON-VOLATILE
] MEMORY
128—1_
MEMORY
CONTROLLER
116 112 108
[- 4
INPUT/ RAM MICRO-
OUTPUT PROCESSOR
130~ INTERFACE
104
< -~ —
Fig. 1a
y— 120
e —
PAGE 4 (V‘USER DATA|OH|
T PAGE 5 I //724
PAGE 6
P ————
// \\ //_11
BLOCK 0 | BLOCK 1 BLOCKN I
\ //
1 7\\ I 1 - _—19
ADDRESS PROGRAM AND
DECODERS READ
¢ ¢ 128
21— ‘ |- 23
A CONTROLLER
RAM ECC
|
v 15

Fig. 1b

WO 2004/040584

2/15

PCT/US2003/028215

150 174
— -
NON-VOLATILE
EMORY
166 162 158 M \
INPUT/ MICRO- 180
OUTPUT RAM PROCESSOR 4
INTERFACE
—
154J

Fig. 1c

WO 2004/040584

3/15

204b

——206b

~—206d

_—204d

e
el °

—
el

L /5'20269
AT g

o
A1

Fig. 2

=1—"1

PCT/US2003/028215

216 212 214
(7 [(

GROUP|UPDATE|ERASE
INDEX |COUNT

——204¢
AT T o06e

WO 2004/040584 PCT/US2003/028215

4/15

»—300

RECEIVE INITIALIZATION REQUEST 304

OBTAIN AVERAGE ERASE COUNT | 306
OBTAIN ERASE COUNTS FORALL | —308
BLOCKS

ALLOCATE BLOCK MAPPING TABLE,

MOST FREQUENTLY ERASED BLOCK | —320

TABLE, AND LEAST FREQUENTLY
ERASED BLOCK TABLE

v

IDENTIFY ERASED BLOCKS 324

ASSIGN THE N ERASED BLOCKS WITH
THE HIGHEST ERASE COUNTS TO
THE MOST FREQUENTLY ERASED

BLOCK TABLE

v

ASSIGN THE M ERASED BLOCKS WITH

THE LOWEST ERASE COUNTS TO THE |[—332

LEAST FREQUENTLY ERASED BLOCK
TABLE

ASSIGN REMAINING ERASED BLOCKS 336
AND UNERASED BLOCKS TO BLOCK [~
MAPPING TABLE

DETERMINE AN AVERAGE ERASE 338
COUNT USING ERASE COUNTS FOR [~
ALL BLOCKS

v

STORE AVERAGE ERASE COUNT INTO |—340
ERASE COUNT TABLE BLOCK

v

ProcEss staticelocks | o0 Fig. 3

WO 2004/040584

5/15

PCT/US2003/028215

ACCESS ERASE COUNT OF BLOCK'A’

—404

NON-ERASED
BLOCK'A' VERY
LOW COMPARED TO
AVERAGE

IDENTIFY BLOCK 'A' AS STATIC BLOCK [472

OBTAIN BLOCK 'B' FROMMOST | —416
FREQUENTLY ERASED BLOCK TABLE

COPY CONTENTS OF BLOCK 'A' INTO |—420

BLOCK 'B'
ERASE BLOCK A’ AND INCREMENT 494
ERASE COUNT OF BLOCK 'A'
MOVE HIGHEST COUNT BLOCK 'C'
FROM LEAST FREQUENTLY ERASED | —428
BLOCK TABLE INTO MOST

FREQUENTLY ERASED BLOCK TABLE

v

MOVE BLOCK 'A' FROM BLOCK
MAPPING TABLE TO LEAST
FREQUENTLY ERASED BLOCK TABLE

MOVE BLOCK 'B'INTO BLOCK
MAPPING TABLE

Fig. 4

PCT/US2003/028215

WO 2004/040584

6/15

eg ‘b1

09¢
V\

pGr—|

TN

V1vad Nd X001d

g

v.iva (L-N)d M207149

a3asvy3a (z-N)d Xo01d

1) 4 \

03 Vv1iva vd X004
d3asvdd €d X004
037 V1vad 2d X004
03" v.ivad id X001d
RO by V1va 0d X004

08¢y
/

034 2 X009

03 1 0014

03 00014

o4 #0014
OF | #2001
o4 #0014

319vL 10014

995/ QASYEI ATLININOFMA LSV

o3 #0014
o3 #0071d
O3 #X100714d

F1dVL MO01d

0/y—" Qd3SYd3a ATLNINOIHH LSON

T — —

N Y0014 1vII901

d04 Nd Y0019 TVOISAHd

L 007149 TvOI901

404 1d X009 1VOISAHd

00014 TvOI901

d04 0d X004 "1VOISAHd

Z9p_ 3719VL ONIddVIA XO0'149

AHJOWAN INJLSAS

vy

1NNOD
dSVdd FOVHINY

PCT/US2003/028215

WO 2004/040584

7/15

Nwm/

Nwm/

1434
N

ohm\

vhm/

qg 614

mvm/

mhm/

916/

909 |\

145"
\

z06 =7

piG—/

WO 2004/040584

8/15

PCT/US2003/028215

»—600

OBTAIN BLOCK 'Y' FROM BLOCK
MAPPING TABLE

v

OBTAIN BLOCK 'X' FROM LEAST
FREQUENTLY ERASED BLOCK TABLE

COPY CONTENTS OF BLOCK'Y' OR NEW
CONTENTS INTENDED TO REPLACE
CONTENTS OF BLOCK'Y' INTO BLOCK X'

Fig. 6

—612

MOVE BLOCK 'X' INTO BLOCK MAPPING
TABLE i

,—616

v

ERASE BLOCK'Y"

—620

v

INCREMENT ERASE COUNT OF BLOCKY'

624

IDENTIFY LOWEST ERASE COUNT BLOCK
IN MOST FREQUENTLY ERASED BLOCK
TABLE

/‘628

632

ERASE COUNT

OF BLOCKY'
GREATER THAN LOWEST
ERASE COUNT BLOCK IN
MOST FREQUENTLY
ERASED BLOCK

/“640

MOVE LOWEST ERASE COUNT
BLOCK IN MOST FREQUENTLY
ERASED BLOCK TABLE INTO
LEAST FREQUENTLY ERASED
BLOCK TABLE

/—644

MOVE BLOCK 'Y' INTO MOST
FREQUENTLY ERASED BLOCK
- TABLE

MOVE BLOCK 'Y' INTO LEAST
FREQUENTLY ERASED BLOCK TABLE

WO 2004/040584 PCT/US2003/028215
9/15
S USRS S
| {
I
|
{
| APPLICATION INTERFACE |/ 704
|
|
|
|
|
|
|
:
l 708 712
| SYSTEM MANAGER iy
|
l SYSTEM INITIALIZATION <«—»| DPATAMANAGER
|
|
i
| CBM 1
E
| -730
PMB
| UBM 4
|
| =
|
: 726 /-716
| 720
|
| - Y
| DATA
. INTEGRITY
|
|
|
1
|

DEVICE MANAGER AND INTERFACE [<—» MANAGER

WO 2004/040584 PCT/US2003/028215
10/15

0
ERASECOUNTSOTHRU16;W//ZM @

810b
ERASE COUNTS 170 THRU 339/

ERASE COUNTS 170*N THRU |— 870c
170%(N+1)-1

820
HEADER -

ERASE COUNTS _— 810d
170(N+1)THRU 170%(N+2)-1

ERASE COUNTS 170*Z THRU | — 810e
170%(Z+1)-1

800”

Fig. 8a
0 1 2 169
BLOCK O BLOCK 1 | BLOCK?2 BLOCK 169
ERASE ERASE ERASE e ERASE
COUNT COUNT COUNT COUNT
\\\830a \\\830b \\\8300 \\\830d

810a~/’ '
Fig. 8b

WO 2004/040584

11/15

PCT/US2003/028215

0 1 2 169
BLOCKO | BLOCK1 | BLOCK 2 BLOCK 169
ERASE ERASE ERASE ERASE
COUNT COUNT | COUNT COUNT
BYTES 0-2 BYTES 3-5 BYTES 6-8 BYTES 508-510
\ 830a \ 830b \ 830c \ 830d
5100 Fig. 8c
0 1 2 169
100 30 FFFFFF 100

\&303 \830b \8300

A
7 Fig. 8d

\ 830d

//’8508

SIGNATURE

NUMBER OF HIDDEN BLOCKS

//’850b

AVERAGE ERASE COUNT

820-/‘
Fig. 9

WO 2004/040584 PCT/US2003/028215
12/15

1000~

EXAMINE BLOCKS

Y

IDENTIFY UNUSABLE BLOCKS

v

MARK UNUSABLE BLOCKS IN — 1012
ERASE COUNT BLOCK

v

INITIALIZE ERASE COUNTS IN
USABLE BLOCKS WHICH DO NOT | 1076
HAVE FACTORY DEFECTS

v

SET ERASE COUNTS
CORRESPONDING TO USABLE |- 1020
BLOCKS IN ERASE COUNT BLOCK

v

SET AVERAGE ERASE COUNT IN | — 1024
ERASE COUNT BLOCK

1004

_— 1008

Fig. 10

WO 2004/040584
13/15

PCT/US2003/028215

— »| OBTAIN UNERASED USABLE BLOCK | 1108

v

READ ERASE COUNT FOR UNERASED

BLOCK

USABLE BLOCK FROM ERASE COUNT |~ 7772

1120

FROM ERASE
COUNT BLOCK LESS
THAN ERASE COUNT
STORED

UPDATE ERASE COUNT OF

UNERASED USABLE BLOCK

STORED IN ERASE COUNT
BLOCK

IN UNERASED
USABLE
BLOCK?

1124
MORE
UNERASED

Yes

USABLE BLOCKS
TO PROCESS

RECALCULATE AVERAGE ERASE COUNT

1128

v

STORE RECALCULATED AVERAGE
ERASE COUNT IN ERASE COUNT BLOCK

1132

+

Fig. 11

WO 2004/040584
14/15

1200\‘

PCT/US2003/028215

READ ERASE COUNT FOR OBTAINED
SPARE BLOCK FROM ERASE COUNT
BLOCK

1204

1208

ERASE COUNT
READ FROM
ERASE COUNT
BLOCK VALID?

REMOVE OBTAINED SPARE BLOCK

FROM SPARE BLOCK POOL OR DO

NOT ADD OBTAINED SPARE BLOCK
TO SPARE BLOCK POOL

SET ERASE COUNT IN OBTAINED
SPARE BLOCK TO ERASE COUNT
READ FROM ERASE COUNT BLOCK

1216

Fig. 12

WO 2004/040584

1300 —¢

15/15

PCT/US2003/028215

OBTAIN ERASE COUNTS FOR ALL
USABLE BLOCKS

1304

'

SUM ERASE COUNTS FOR ALL USABLE
BLOCKS

1308

'

DETERMINE A TOTAL NUMBER OF
USABLE BLOCKS

l

DIVIDE THE SUM OF THE ERASE COUNTS
FOR ALL USABLE BLOCKS BY THE TOTAL
NUMBER OF USABLE BLOCKS

1316

Fig. 13

INTERNATIONAL SEARCH REPORT

Interna \pplication No

PCT/US 03/28215

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G11C16/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED !

IPC 7 G1IC

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, PAJ

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 230 233 Bl (GUPTA ANIL ET AL) 1-3,5-7,
8 May 2001 (2001-05-08) 9-13,
15-29,
31-34,36
A column 3, Tine 16 —column 7, line 43; 4,8,14,
figures 1-5 ~ 30,35,
37-40
X EP 0 589 597 A (IBM) 1,15,24,
30 March 1994 (1994-03-30) 25,31-34
A column 5, Tine 4 -column 7, 1line 28; 2-14,
figures 2-5 16-23,
26-30,
35-40

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited 19 understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
_m?ﬂts, ?tUCh combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

26 January 2004

Date of mailing of the intermational search report

04/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Harms, J

Form PCT/ISA/210 {second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

ITormarion on patent rtamily membpers

Internz

Application No

PCT/US 03/28215

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6230233 Bl 08-05-2001 US 6594183 Bl 15-07-2003
us 6081447 A 27-06-2000
US 2003227804 Al 11-12-2003

'EP 0589597 A 30-03-1994 JP 2022761 C 26-02-1996
JP 6111588 A 22-04-1994
JP 7050558 B 31-05-1995
EP 0589597 A2 30-03-1994
us 5406529 A 11-04-1995

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

