US 20170351639A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0351639 A1

Borikar 43) Pub. Date: Dec. 7, 2017
(54) REMOTE MEMORY ACCESS USING (52) US. CL
MEMORY MAPPED ADDRESSING AMONG CPC .. GOGF 15/17331 (2013.01); HO4L 69/16

(71)

(72)

(73)

@

(22)

(1)

MULTIPLE COMPUTE NODES

Applicant: CISCO TECHNOLOGY, INC., San
Jose, CA (US)

Inventor: Sagar Borikar, San Jose, CA (US)

Assignee: CISCO TECHNOLOGY, INC., San
Jose, CA (US)

Appl. No.: 15/174,718
Filed: Jun. 6, 2016

Publication Classification

Int. CL.

GO6F 15/173 (2006.01)
GO6F 13/42 (2006.01)
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)

(2013.01); GOGF 13/4282 (2013.01); HO4L
67/1097 (2013.01)

(57) ABSTRACT

An example method for facilitating remote memory access
with memory mapped addressing among multiple compute
nodes is executed at an input/output (IO) adapter in com-
munication with the compute nodes over a Peripheral Com-
ponent Interconnect Express (PCIE) bus, the method includ-
ing: receiving a memory request from a first compute node
to permit access by a second compute node to a local
memory region of the first compute node; generating a
remap window region in a memory element of the 10
adapter, the remap window region corresponding to a base
address register (BAR) of the second compute node; and
configuring the remap window region to point to the local
memory region of the first compute node, wherein access by
the second compute node to the BAR corresponding with the
remap window region results in direct access of the local
memory region of the first compute node by the second
compute node.

J /

CHASSIS 1
/
OWPUTENCOES ¥
HOST?
E l =
¥ b 7
/%
sl || MEMORY T 4 OADAPTER | 45
» [SRR
| \{EMET \ T Ry
U N | [HELPER REGI&:TER%\@“\\

~ NETWORK

"CPUCOREIH %

S0CKET 32~ PROCESSCR \ E

[

Patent Application Publication Dec. 7,2017 Sheet 1 of 9 US 2017/0351639 A1
10
12 /
CHASSIS 14
COMPUTE NODES ﬁ/
HOST! HOST?
B B 22H
/] ek
oL [NEMORY | OADRPIER | .45
T TINERMENT . TIRUIRRETT
oL 3R \ [REMABWINDOW | ~>5-m== 18
“ TNREVRE WINDOW \ HELPER REGISTER

VENCRY |
FLEMENT |
PROCESSOR \ 5
[CPUCOR: ! %

Dec. 7,2017 Sheet 2 of 9 US 2017/0351639 Al

Patent Application Publication

{1y

/

\som_/ W %_p.i

B~ 0omA ", \W VYO _,, J/ 0omA LTS
2 1S0H AT X | 150H
% _‘\ /,/ \u\ / *
lZoe~] 7 Lyo0d S | Mod L~ (0g
3 0d / s A4 0d
/ / %
8l / I
0 OINA ._m._z:: N 0ONA
q,_wT\\\ Y ANl EoyY g N
2 LSOH OLd1NO, O, - OLAN N0 | 1SOH g
CNONIN
S N S
7 thic i

Dec. 7,2017 Sheet 3 of 9 US 2017/0351639 Al

Patent Application Publication

-
—

LIS0H et

tizp—"

¢ Ol

(e}t
\
3y
i (Liph
\ \
3 3
7l
= oo D s@ffiomrrrmononet A, - 3
{o:pbppesdh |} 1SOH
‘qhson)
TR NOILOYSNL
e — Ol
RN e WY GRIVO0SSY quogey [adf ey | P
T18¥L 308N0S Y g e g C11SOH
v
{318V HOLYIN dve)
L8

Patent Application Publication Dec. 7,2017 Sheet 4 of 9 US 2017/0351639 A1

E VAR SO IR
s
> |
| APPLICATIONA ||
HOSTI | WNCO | |
[DRVER]
N s AP WINDOH)
5612) ”/’! ll;‘ A \\
2l
(}! - ii’
28 ,,,"” \\\\ ’!’
N’ 0B ™~
[DRIVER ADDRESS :

HOSTZ | WNICD

| APPLICATIONB |

MEMORY
SPACE IN
HOST 2

¥

RIS

‘a"@

REVAP WINDOW

%o °~§- ‘n

%

1A7

it}

S maa

FIG. 4

/

58

Dec. 7,2017 Sheet S of 9 US 2017/0351639 Al

Patent Application Publication

G Ol

{[YI ONISNIAOVES HISA N

J9YSN 404 MOGNIM 933400V IHL Savi NOILLYOddY

dVNY SV FUYMARI ’
YA IHL 40 SSTHAY YIS AHd
3HL 04 553400 (3dd YW

AIOWAN 3TN0 S0
e g9
1 - S0 0K $3853400Y
,&{m &ﬂ_)mum J/“\O_m ,n .,n_., ; d\:,m\ Wil
A31LNEC) ONY SHA TV 03 OISAHd L0 U SEvE oYl
0
QYO YIANC N
| 2 | ™
W i 09
2 1o 7

US 2017/0351639 Al

Dec. 7,2017 Sheet 6 of 9

Patent Application Publication

VIVA VLN kL
NELIE A LG MV

Eleliiilel EWAS
031410368 135440
1y &vd Qv 3

%
L\ Y0 0 HOLY LN
31100 0¥ ,agmg‘i,,,,..,,i;u_m,_,ow ;;;;;
B oo = B A 4 0INASNODY
i OINASNOD YIvd
%
QER
33,01 150 311 04
E
% 3
HIHASNGO i
N! 2248 20 MOONIN e
“ H | 39N0 ANO
iR FANDIENOD | MOGNIM FANDNOD S
. LI ALY
135340 SRl HLIM 135440
BYAR S 19¥1Y]
AOENOD EINEY
08 ALY
1NOBY oA ALON y
. " L, lsoH) /
SNOD T VA b 30000 0

Patent Application Publication Dec. 7,2017 Sheet 7 of 9 US 2017/0351639 A1

1O ADAPTER INCLUDES RESOURCE MAP PROVIDING |~ 102
RESOURCE LOCATION, LENGTHAND OFFSETS

:

MAP, INCLUDING COMPUTE NODES PRESENT IN CHASSIS

:

INTENT TO READ CONTENTS OF MEMORY OF HOST!

;

FRMWARE DECODES REQUEST FROM CONSUMER APPLICATION,

NOTIFICATION TO YNIC FROM WHICH MEMORY 15 TO BE READ

!

MEMORY REGION TO FRMWARE

é

QFFSETAND NOTIFIES CONSUMER WNIC

é

FIRMWARE MAPS ADDRESS BELONGING

YNIC'S BARZ REMAP WINDOW REGION AT KNOWN OFFSET

é

CONSUMER YNIC PASSES METADATATO CONSUMER |~ 118
APPLICATION

é

DEVICE DRIVER IDENTIFIES RESOURCE LAYOUT FROM RESOURCE| 104

CONSUMER APPLICATION NOTIFIES FIRMWARE OF 108

IDENTIFIES SOURCE AND DESTINATION VNICS AND SENDS - 110

PRODUCER APPLICATION PROVIDES INFCRMATION OF 112

FIRMWARE SENDS DATATC CONSUMER YNIC'S BARZ AT KNOWN |~ 114

T0 PRODUCER APPLICATION VNIC INTOCONSUMER 1118

CONSUMER APPLICATION READS DATA FROM TS MEMORY MAPPED BAR?
WHICH CORRESPONDS TO MEMORY OF PRODUCER APPLICATION

1

FIG. 7

Patent Application Publication

Dec. 7,2017 Sheet 8 of 9

ADMINISTRATOR CONFIGURES VNIC ON HOST'S
SERVICE PROFILE

Y

US 2017/0351639 Al

130

P

13

UCSM SENDS WNIC DETAILS CONFIGURED BY ADMINISTRATOR TO 10
ADAPTER FIRMWARE USING CONTROL MANAGEMENT PROTOCOL

FIRMWARE POPULATES VNIC INFORMATION AND
MAKES IT READY AND DISCOVERABLE FROMHOST

¥
FIRMWARE ADDG BAR SIZE OF BARZ IN VNIC AG 16MB TO
ACCOMMODATE FOUR REMAP WINDOW REGIONS

v
HOST IS POWERED UP

140

¥

BIOS ENUMERATION SOFTWARE DISCOVERS PCIE ENDPOINT AND
THROUGH PCI ENUMERATION PROTOCOL, IDENTIFIES BAR SIZE
REQUIREMENTS AND ASSOCIATES PHYSICALADDRESS TO EACH BAR

¥

DEVICE DRIVER OF HOGT UPON LOADING REQUESTS 08 PROVIDE
MEMORY MAPPED EQUIVALENT OF PHYSICAL ADDRESS FOR EACH BAR

¥

DEVICE DRIVER IDENTIFIES THAT BARZ 1S REMAP WINDOW REGION
ACCORDING T

NG 70 PRECONFIGURED PROTOCOL WITH FIRMWARE

APPLICATION RUNNING IN HOGT OS MAKING USE OF DEVICE DRIVER
UNDERSTANDS CAPABILITY OF REMAP WINDOW EXPOSED BY DEVICE DRIVER

¥
APPLICATION EXCHANGES HANDLES WITH PEER HOST THROUGH
FIRMIWARE AND PERMITS MEMORY TG BE ACCESSED BY PEER HOST

FIG. 8

Patent Application Publication Dec. 7,2017 Sheet 9 of 9 US 2017/0351639 A1

PRODUCER APPLICATION SENDS IOVMU MAPPED ADDRESS T0 DEVICE DRVER |

é

DEVICE DRIVER TRIGGERS FIRMWARE TO CONFIGURE REMAPWINDOW |~ 164
BASE WITH ASGOCIATED ADDRESS AND DESTINATION WNIC

%

FIRMWARE CONFIGURES REMAP WINDOW BASE WITH ASSOCIATED ADDRESS

'

FIRMWARE SETUPS ASIC DATA STRUCTURES TO BE| .~ 168
READY FOR REMAP WINDOW REGICN ACCESS

'

FIRMWARE DISCOVERS DtSTiE\ IONVNIC — |~170
ASSOCIATED WITH CONSUMER APPLICATION

!

FRMWARE CONFIGURES BRT0 MAPPED IN BARZ OF DESTINATION | _—~172
YNIC WITH REMAP WINDOW REGION ADDRESS AND OFFSET

!

FIRMWARE SENDS NOTIFICATION EVENTTO DEVICEDRIVERIN. 1 _~174
CONSUMER THAT TS BARZ 1S READY TO ACCESS PRODUCER S MEMORY

!

DEVICE DRIVER IN CONSUMER PASSES EVENT TO CONSUMER .
APPLICATION WITH MEMORY MAPPED TO CORRESPONDING BAR2 176
REGION IN USER SPACE WITH APPROPRIATE IOMMU CONFIGURATICN

'

CONSUMER APPLICATION'S READMWRITE ACCESS TO ITSBARZMAPS | 178
TO REMOTE MEMORY REGION OF PRODUCER'S MEMORY DOMAIN

(>3
D

o

FIG. 9

US 2017/0351639 Al

REMOTE MEMORY ACCESS USING
MEMORY MAPPED ADDRESSING AMONG
MULTIPLE COMPUTE NODES

TECHNICAL FIELD

[0001] This disclosure relates in general to the field of
communications and, more particularly, to remote memory
access with memory mapped addressing among multiple
compute nodes.

BACKGROUND

[0002] Compute nodes such as microservers and hypervi-
sor-based virtual machines executing in a single chassis can
provide scaled out workloads in hyper-scale data centers.
Microservers are an emerging trend of servers for processing
lightweight workloads with large numbers (e.g., tens or even
hundreds) of relatively lightweight server nodes bundled
together in a shared chassis infrastructure, for example,
sharing power, cooling fans, and input/output components,
eliminating space and power consumption demands of
duplicate infrastructure components. The microserver topol-
ogy facilitates density, lower power per node, reduced costs,
and increased operational efficiency. Microservers are gen-
erally based on small form-factor, system-on-a-chip (SoC)
boards, which pack processing capability, memory, and
system input/output onto a single integrated circuit. Unlike
the relatively newer microservers, hypervisor-based virtual
machines have been in use for several years. Yet, sharing
data across the compute nodes with more effective and
efficient inter-process communication has always been a
challenge.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] To provide a more complete understanding of the
present disclosure and features and advantages thereof,
reference is made to the following description, taken in
conjunction with the accompanying figures, wherein like
reference numerals represent like parts, in which:

[0004] FIG. 1 is a simplified block diagram illustrating a
communication system for facilitating remote memory
access with memory mapped addressing among multiple
compute nodes;

[0005] FIG. 2 is a simplified block diagram illustrating
other example details of embodiments of the communication
system,

[0006] FIG. 3 is a simplified block diagram illustrating yet
other example details of embodiments of the communication
system,

[0007] FIG. 4 is a simplified block diagram illustrating yet
other example details of embodiments of the communication
system,

[0008] FIG.5 is a simplified sequence diagram illustrating
example operations that may be associated with an embodi-
ment of the communication system;

[0009] FIG. 6 is a simplified sequence diagram illustrating
other example operations that may be associated with an
embodiment of the communication system;

[0010] FIG. 7 is a simplified flow diagram illustrating yet
other example operations that may be associated with an
embodiment of the communication system;

[0011] FIG. 8 is a simplified flow diagram illustrating yet
other example operations that may be associated with an
embodiment of the communication system; and

Dec. 7,2017

[0012] FIG. 9 is a simplified flow diagram illustrating yet
other example operations that may be associated with an
embodiment of the communication system.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

[0013] An example method for facilitating remote
memory access with memory mapped addressing among
multiple compute nodes is executed at an input/output (I0)
adapter in communication with the compute nodes over a
Peripheral Component Interconnect Express (PCIE) bus, the
method including: receiving a memory request from a first
compute node to permit access by a second compute node to
a local memory region of the first compute node; generating
a remap window region in a memory element of the 10
adapter, the remap window region corresponding to a base
address register (BAR) ofthe second compute node in the IO
adapter; and configuring the remap window region to point
to the local memory region of the first compute node,
wherein access by the second compute node to the BAR
corresponding with the remap window region results in
direct access of the local memory region of the first compute
node by the second compute node. As used herein, the term
“compute node” refers to a hardware processing apparatus,
in which user applications (e.g., software programs) are
executed.

Example Embodiments

[0014] Turning to FIG. 1, FIG. 1 is a simplified block
diagram illustrating a communication system 10 for facili-
tating remote memory access with memory mapped address-
ing among multiple compute nodes in accordance with one
example embodiment. FIG. 1 illustrates a communication
system 10 comprising a chassis 12, which includes a plu-
rality of compute nodes 14 that communicate with network
16 through a common input/output (I/O) adapter 18. An
upstream switch 20 facilitates north-south traffic between
compute nodes 14 and network 16. Shared 10 adapter 18
presents network and storage devices on a Peripheral Com-
ponent Interconnect Express (PCIE) bus 22 to compute
nodes 14. In various embodiments, each compute node
appears as a PCIE device to other compute nodes in chassis
12.

[0015] In a general sense, compute nodes 14 include
capabilities for processing, memory, network and storage
resources. For example, as shown in greater detail in the
figure, compute node Hostl runs (e.g., executes) an operat-
ing system 24 and various applications 26. A device driver
(also referred to herein as a driver) 28 operates or controls
a particular type of device that is attached to compute node
14. For example, each PCIE device visible to (e.g., acces-
sible by) Hostl may be associated with a separate device
driver in some embodiments. In another example, all PCIE
endpoints visible to Hostl may be associated with a single
PCIE device driver. In a general sense device driver 28
provides a software interface to hardware devices, enabling
operating system 24 and applications 26 to access hardware
functions (e.g., memory access) without needing to know
precise details of the hardware being used.

[0016] In many embodiments, substantially all PCIE end-
points appear as hardware device to the accessing compute

US 2017/0351639 Al

node, irrespective of its actual form. For example, in some
embodiments, compute nodes 14 may comprise virtual
machines; however, because one compute node is visible as
a PCIE device to another compute node, they appear as
hardware devices to each other and are associated with
corresponding device drivers. Driver 28 communicates with
the hardware device through PCIE bus 22. When one of
applications 26 invokes a routine in driver 28, driver 28
issues commands to the hardware device it is associated
with. Thus, driver 28 facilitates communication (e.g., acts as
a translator) between its associated hardware device and
applications 26. Driver 28 is hardware dependent and oper-
ating-system-specific.

[0017] In various embodiments, each of compute nodes
14, as shown using example Hostl, includes various hard-
ware components, such as one or more sockets 30 (e.g.,
socket refers to a hardware receptacle that enables a collec-
tion of central processing unit (CPU) cores with a direct pipe
to memory); each socket holds one processor 32; each
processor comprises one or more CPU cores 34; each CPU
core 34 executes instructions (e.g., computations, such as
Floating-point Operations Per Second (FLOPS)); a memory
element 36 may facilitate operations of CPU cores 34.
[0018] Common IO adapter 18 facilitates communication
to and from each of compute nodes 14. In various embodi-
ments, IO adapter 18 services both network and storage
access requests from compute nodes 14 in chassis 12,
facilitating a cost efficient architecture. In various embodi-
ments, a memory element 38 may be associated with (e.g.,
accessed by) IP adapter 18. Memory element 38 includes
various base address registers (BARs) 40 and remap win-
dows 42 for various operations as described herein. A remap
window helper register 44 and firmware 46 are also included
(among other components) in 1O adapter 18. As used herein
the term “firmware” comprises machine-readable and
executable instructions and associated data that are stored in
(e.g., embedded in, forming an integral part of, etc.) hard-
ware, such as a read-only memory, or flash memory, or an
ASIC, or a field programmable gate array (FPGA) and
executed by one or more processors (not shown) in IO
adapter 18 to control the operations of 10 adapter 18. In a
general sense, firmware 46 comprises a combination of
software and hardware used exclusively to control opera-
tions of IO adapter 18.

[0019] In a general sense, network traffic between com-
pute nodes 14 and network 16 may be termed as “North-
South Traffic”; network traffic among compute nodes 14
may be termed as “Hast-West Traffic”. Note that compute
nodes 14 are unaware of the physical location of other
compute nodes, for example, whether they exist in same
chassis 12, or are located remotely, over network 16. Thus,
compute nodes 14 are agnostic to the direction of network
traffic they originate or terminate, such as whether the traffic
is North-South, or East-West, and thereby use the same
addressing mechanism (e.g., .2 Ethernet MAC address/IP
address) for addressing nodes located in same chassis 12 or
located in a remote node in same [.2/L.3 domain.

[0020] According to various embodiments of communi-
cation system 10, a memory access scheme using low
latency and low overhead protocols implemented in IO
adapter 18 allows any one (or more) compute nodes 14, for
example, Hostl, to share and access remote memory of
another compute node (e.g., across different servers; across
a hypervisor; across different operating systems), for

Dec. 7,2017

example, Host2. Host2 may include an operating system
different from that of Hostl without departing from the
scope of the embodiments. The protocols as described herein
do not require any particularized (e.g., custom) support from
the operating systems or networking stack of Hostl or
Host2. The scheme is completely transparent to the operat-
ing systems of Host1 and Host2, allowing suitable through-
put while communicating in different memory domains.
[0021] For purposes of illustrating the techniques of com-
munication system 10, it is important to understand the
communications that may be traversing the system shown in
FIG. 1. The following foundational information may be
viewed as a basis from which the present disclosure may be
properly explained. Such information is offered earnestly for
purposes of explanation only and, accordingly, should not be
construed in any way to limit the broad scope of the present
disclosure and its potential applications.

[0022] In any server ecosystem, typical challenges to
achieving better inter-process communication or sharing the
data across the servers include reliable tunnels for the data
sharing, low latency for the communication, low overhead
while working with remote server etc. There are several
solutions available in the market that predominantly use
network tunnels to communicate in two distinct physical
servers. Typical examples would be Remote Direct Memory
Access (RDMA), RDMA over Converged Ethernet (RoCE)
and InfiniBand. Although proven and in use for several
years, such network based communication can be limited by
various parameters, such as latency, networking stack
dependency (e.g., network stack awareness), OS interfer-
ence (e.g., OS dependency, OS awareness, OS configura-
tion), IO semantics and key exchanges for security, necessity
for protocol awareness, complex channel semantics and
tedious channel setup procedures. Moreover, not all operat-
ing systems support RDMA (and its variants).

[0023] For example, RDMA communication is based on a
set of three queues: (i) a send queue and (ii) a receive queue,
comprising a Queue Pair (QP) and (iii) a Completion Queue
(CQ). Posts in the QP are used to initiate the sending or
receiving of data. A sending application (e.g., driver) places
instructions, called Work Queue Elements (WQE), on its
work queues that generate buffers in the sender’s adapter to
send data. The WQE placed on the send queue contains a
pointer to the message to be sent; a pointer in the WQE on
the receive queue contains a pointer to a buffer where an
incoming message can be placed. The sender’s adapter
consumes WQE from the send queue at the egress side and
streams the data from the memory region to the remote
receiver. When data arrives at the remote receiver, the
receiver’s adapter consumes the WQEs at the receive queue
at the ingress side and places the received data in appropriate
memory regions of the receiving application. Any memory
sharing or access between a sending compute node and the
receiving compute node thus requires tedious channel setup,
RDMA protocols, etc.

[0024] Moreover, in a chassis where several compute
nodes share a common IO adapter, such remote memory
access sharing protocols can have unnecessary overhead.
For example, every packet from any compute node, say
Host1, has to hit a port of upstream switch 20 and then return
on the same pipe back to IO adapter 18, which then redirects
it to the destination compute node, say Host2. Such east-
west data sharing can cause inefficient utilization of band-
width in the common pipe, which is potentially used by

US 2017/0351639 Al

various other compute nodes performing extensive north-
south traffic with network 16. The east-west traffic pattern
also increases application response latency, for example, due
to longer path to be traversed by network packets.

[0025] Communication system 10 is configured to address
these issues (among others) to offer a system and method for
facilitating remote memory access with memory mapped
addressing among multiple compute nodes 14 sharing 10
adapter 18. In various embodiments, PCIE, which is typi-
cally supported by almost all operating systems, is used to
share data from a memory region on one compute node, say
Host1, with a different memory region of another compute
node, say Host2. As used herein, the term “memory region”
comprises a block (e.g., section, portion, slice, chunk, piece,
space, etc.) of memory that can be accessed through a
contiguous range of memory addresses (e.g., a memory
address is a unique identifier (e.g., binary identifier) used by
a processor for tracking a location of each memory byte
stored in the memory). As used herein, the term “window”
in the context of memory regions refers to a memory region
comprising a contiguous range of memory addresses, either
virtual or physical.

[0026] In various embodiments, IO adapter 18 is con-
nected to compute nodes 14 by means of PCIE bus 22. 1O
adapter 18 includes an embedded operating system hosting
multiple VNICs configured with memory resources of
memory element 38. Each VNIC accesses a separate, exclu-
sive region of memory element 38. Each PCIE endpoint,
namely VNICs is typically associated with a host software
driver, namely device driver 28. In an example embodiment,
each VNIC that requires a separate driver is considered a
separate PCIE device.

[0027] For ease of explanation of various embodiments, a
brief overview of PCIE protocol is provided herein. A PCle
data transfer subsystem in a computing system (such as that
of an 10 adapter) includes a PCle root complex comprising
a computer hardware chipset that handles communications
between the PCIE endpoints. The root complex enables
PCle endpoints to be discovered, enumerated and worked
upon by the host operating system. The base PCle switching
structure of a single root complex has a tree topology, which
addresses PCle endpoints through a bus numbering scheme.
Configuration software on the root complex detects every
bus, device and function (e.g., storage adapter, networking
adapter, graphics adapter, hard drive interface, device con-
troller, Ethernet controller, etc.) within a given PCle topol-
ogy.

[0028] The IO adapter’s operating system assigns address
space in the IO adapter memory element 38 to each PCle
endpoint (e.g., VNIC) so that the PCle endpoint can under-
stand at what address space it is identified by the 10 adapter
and map the corresponding interrupts accordingly. After the
configuration of the PCle endpoint device is complete, the
PCle’s device driver 28 compatible with the host operating
system 24 can work efficiently with the PCle endpoint and
facilitate appropriate device specific functionality.

[0029] Each PCIE endpoint is enabled on 1O adapter 18 by
being mapped into a memory-mapped address space in
memory element 18 referred to as configuration space (e.g.,
register, typically consisting of 256 bytes). The configura-
tion space contains a number of base address registers
(BARs) 40, comprising the starting address of a contiguous
mapped address in IO adapter memory element 38. For
example, a 32-bit BARO is offset 10 h in PCI Compatible

Dec. 7,2017

Configuration Space—and post enumeration would contain
the start address of BAR. Any other PCIE endpoint, to
access (e.g., read data from or write data to) the PCIE
endpoint associated with a specific BAR, would submit a
request with the address of that BAR. An enumeration
software allocates memory for the PCIE endpoints and
writes to corresponding BARs. Firmware 46 programs the
PCle endpoint’s BARs to inform the PCle endpoints of its
address mapping. When the BAR for a particular PCle
endpoint is written, all memory transactions generated to
that bus address range are claimed by the particular PCle
endpoint.

[0030] Typically, when a PCIE endpoint, say a flash
memory device, is discovered on one of the compute nodes,
say, Hostl, OS 24 provides a physical address to BAR 40
and allocates the address space for device driver 28 to
interact with the flash memory device. When device driver
28 is loaded, it requests the memory mapped address from
OS 24 corresponding to the physical address so that it can
work with the flash memory device using the address handle.
Subsequent accesses to BAR 40 from device driver 28 are
completely transparent to OS 24 as it has already carved out
the address space sufficient to work with the flash memory
device. Thus, typical PCIE data access is between applica-
tion 26 and the PCIE endpoint, such as the flash memory
device. PCIE data access is not typically used across two
different compute nodes 14. In other words, one compute
node typically cannot share its memory space with another
compute node using native PCIE protocols.

[0031] Nevertheless, according to various embodiments,
appropriate configuration of IO adapter 18 with multiple
ports and remap window feature can support memory shar-
ing between compute nodes 14 using PCIE. Remap window
feature includes a remap window base and remap window
region for memory mapping for the purpose of remapping
root complex 10 and memory BARs to address ranges that
are directly addressable by the processor. Remap window
base is used to configure a start address of a memory region
which can be mapped to any other memory region. The
remap window region refers to the mapped region in
memory element 38 differentiated according to a virtual
network interface card (VNIC) identifier (ID) configured in
remap window helper register 44 in 10 adapter 18.

[0032] The VNIC ID could map to any host-based VNIC
or root complex VNIC. In some embodiments, four remap
window regions, each capable of addressing 4 MB may be
allocated for the remap window feature, permitting easy
access of up to 16 MB of memory either in host memory or
Root Complex endpoint device memory. Moreover, multiple
PCIE ports on PCIE bus 22 distinguish different PCIE lanes
associated with distinct compute nodes 14. Each memory
region in Root Complex endpoint device memory is asso-
ciated with a distinct PCIE lane that is completely indepen-
dent of each other such that no two memory regions share
any PCIE activity with each other.

[0033] In an example embodiment, an administrator con-
figures the VNIC ID of computing nodes 14 through respec-
tive service profiles. A unified computing system manager
(e.g., network management application such as Cisco®
UCSM) programs the VNIC ID in 1O adapter 18 through
appropriate control management protocol. Upon reception,
firmware 46 populates the VNIC ID information in remap
window helper register 44 and also makes the VNICs ready
and discoverable from corresponding computing nodes 14.

US 2017/0351639 Al

Firmware 46 adds the BAR size of a specific BAR, for
example, BAR3, to the memory region allocated with each
VNIC ID. In an example embodiment, 16 MB may be added
to accommodate all four remap window regions.

[0034] After one of computing nodes 14, say Hostl is
powered up, the enumeration software (BIOS) of IO adapter
18 discovers the new PCIE device. Through PCI enumera-
tion protocol, the BIOS identifies BAR size requirements,
and associates a physical address to corresponding Host1 in
BAR 40. In various embodiments, three separate BARs are
provided for each VNIC, namely, BARO, BAR1 and BAR2.
Device driver 28 upon loading in Hostl requests OS 24 to
provide memory mapped equivalent of the physical address
for each BAR. It identifies that BAR2 is the remap window
region according to a preconfigured protocol between firm-
ware 46 and driver 28. The memory mapped 10 address
comprises an address handle given by OS 24 to access the
BAR2 region of memory element 38 in 1O adapter 18.
Applications 26 using device driver 28 understands the
capability of remap window exposed by device driver 28.
Similar sequence of events occurs in another compute node,
say Host2, when it powers up and its device driver is loaded
in its OS. Through a pre-determined protocol, applications
26 in compute nodes 14, say Hostl and Host2, exchange
their respective address handles through firmware 46 and
request corresponding memory access.

[0035] The memory access mechanisms described herein
can present one of the lowest latency protocols to commu-
nicate with different servers, virtual machines, or other such
compute nodes 14. In some embodiments, the memory
access mechanisms described herein can also be used as IPC
between two compute nodes 14. Note that the operating
system or network stacks do not need any separate, or
distinct configuration to enable such remote memory access.
In some embodiments, 1O adapter 18 servicing a hypervisor
can use the described mechanisms to allow various appli-
cations executing in separate virtual machines (e.g., guest
domains) to communicate with each other without having to
go through specially installed IPC software (e.g., VMWARE
ESX/ESXi) or other external memory management/sharing
applications.

[0036] In an example embodiment wherein compute
nodes 14 comprise microservers the storage and network is
shared across multiple servers (e.g., in some cases sixteen
servers). The network ecosystem (e.g., of network 16) may
support different classes and QoS policies for network
traffic, which can result in different priority flows. However,
storage traffic does not typically have any associated QoS.
Such differentiated traffic types (e.g., some traffic having
QoS, other traffic not having QoS) can create imbalance of
traffic performance across different servers causing some
servers using (or allocated) larger bandwidths and other
servers using (or allocated) poor bandwidth. With large
amounts of input/output among (or from/to) servers, the
condition can become worse with performance drops
becoming noticeable in some servers. In other words, per-
formance of some servers drops when other unrelated serv-
ers are experiencing heavy network traffic.

[0037] To have balanced throughput across the servers, a
cooperative /O scheduling across the servers may be imple-
mented. For example, every server monitors and records a
number of 10 requests issued to 10 adapter 18. Such 10
statistics are shared with other servers through the local
memory mapped scheme in BAR3 as described herein. Such

Dec. 7,2017

data sharing can facilitate decisions at the individual servers
regarding whether to send a SCSI_BUSY message to its OS
storage stack. Thus, even though the associated storage
VNIC has bandwidth to push the 10s to 1O adapter 18, it will
not schedule the 10 requests, voluntarily relinquishing claim
on storage for some time, until the network traffic bottleneck
clears up. Such actions can lead to other VNICs balancing
out storage traffic pattern in chassis 12, maintaining the 10
equilibrium therein.

[0038] In various embodiments, IO adapter 18 receives a
memory request from one of compute nodes 14, say Hostl,
to permit access by another of compute nodes 14, say Host2,
to a local memory region of Hostl (assume the local
memory region is in memory element 36). The memory
request comprises a host identifier of Host2 and address of
the local memory region of Hostl in some embodiments.
The host identifier can be obtained from a resource map
providing identifying information of compute nodes 14 in
communication with IO adapter 18 over PCIE bus 22.
[0039] Firmware 46 in IO adapter 18 generates remap
window region 42 in memory element 38 of IO adapter 18,
remap window region 42 corresponding to BAR 40 (e.g.,
BAR2) of Host2 in 10 adapter 18. Firmware 46 configures
remap window region 42 to point to the local memory region
of Hostl, access by Host2 to BAR2 corresponding with
remap window region 42 resulting in direct access of the
local memory region of Hostl by Host2. Note that compute
nodes 14 are associated with unique PCIE endpoints on
PCIE bus 22; therefore, each has distinct BARs 40 associ-
ated therewith. Moreover, the direct access of the local
memory region of Hostl by Host2 does not involve oper-
ating systems of Host1 and/or Host2. BAR2 associated with
remap window region 42 can comprise one of a plurality of
BARs associated with Host2.

[0040] Invarious embodiments, device driver 28 of Host2
associates BAR2 with remap window region, such that
application 26 executing in Host2 can access the local
memory region of Host1 through appropriate access requests
to BAR2 using device driver 28. In various embodiments,
configuring remap window region 42 comprises configuring
a remap window base in a BAR Resource Table (BRT) to be
a start address of the local memory region.

[0041] Turning to the infrastructure of communication
system 10, network topology of the network including
chassis 12 can include any number of compute nodes,
servers, hardware accelerators, virtual machines, switches
(including distributed virtual switches), routers, and other
nodes inter-connected to form a large and complex network.
A node may be any electronic device, client, server, peer,
service, application, or other object capable of sending,
receiving, or forwarding information over communications
channels in a network. Elements of FIG. 1 may be coupled
to one another through one or more interfaces employing
any suitable connection (wired or wireless), which provides
a viable pathway for electronic communications. Addition-
ally, any one or more of these elements may be combined or
removed from the architecture based on particular configu-
ration needs.

[0042] Communication system 10 may include a configu-
ration capable of TCP/IP communications for the electronic
transmission or reception of data packets in a network.
Communication system 10 may also operate in conjunction
with a User Datagram Protocol/Internet Protocol (UDP/IP)
or any other suitable protocol, where appropriate and based

US 2017/0351639 Al

on particular needs. In addition, gateways, routers, switches,
and any other suitable nodes (physical or virtual) may be
used to facilitate electronic communication between various
nodes in the network.

[0043] Note that the numerical and letter designations
assigned to the elements of FIG. 1 do not connote any type
of hierarchy; the designations are arbitrary and have been
used for purposes of teaching only. Such designations should
not be construed in any way to limit their capabilities,
functionalities, or applications in the potential environments
that may benefit from the features of communication system
10. It should be understood that communication system 10
shown in FIG. 1 is simplified for ease of illustration.

[0044] The example network environment may be config-
ured over a physical infrastructure that may include one or
more networks and, further, may be configured in any form
including, but not limited to, local area networks (LANs),
wireless local area networks (WL ANs), VL ANs, metropoli-
tan area networks (MANs), VPNs, Intranet, Extranet, any
other appropriate architecture or system, or any combination
thereof that facilitates communications in a network.

[0045] In some embodiments, a communication link may
represent any electronic link supporting a LAN environment
such as, for example, cable, PCIE, Ethernet, wireless tech-
nologies (e.g., IEEE 802.11x), ATM, fiber optics, etc. or any
suitable combination thereof. In other embodiments, com-
munication links may represent a remote connection through
any appropriate medium (e.g., digital subscriber lines
(DSL), telephone lines, T1 lines, T3 lines, wireless, satellite,
fiber optics, cable, Ethernet, etc. or any combination thereof)
and/or through any additional networks such as a wide area
networks (e.g., the Internet).

[0046] In various embodiments, chassis 12 may comprise
a rack-mounted enclosure, blade enclosure, or a rack com-
puter that accepts plug-in compute nodes 14. Note that
chassis 12 can include, in a general sense, any suitable
network element, which encompasses computers, network
appliances, servers, routers, switches, gateways, bridges,
load-balancers, firewalls, processors, modules, or any other
suitable device, component, element, or object operable to
exchange information in a network environment. Moreover,
the network elements may include any suitably configured
hardware provisioned with suitable software, components,
modules, interfaces, or objects that facilitate the operations
thereof. This may be inclusive of appropriate algorithms and
communication protocols that allow for the effective
exchange of data or information.

[0047] Compute nodes 14 may comprise printed circuit
boards, for example, manufactured with empty sockets.
Each printed circuit board may hold more than one proces-
sor (e.g., within the same processor family, differing core
counts, with a wide range of frequencies and vastly differing
memory cache structures may be included in a single
processor/socket combination). In some embodiments, com-
pute nodes 14 may include hypervisors and virtual
machines. 10 adapter 18 may include an electronic circuit,
expansion card or plug-in module that accepts input and
generates output in a particular format. IO adapter 18
facilitates conversion of data format and electronic timing
between input/output streams and internal computer circuits
of chassis 12. In some embodiments, IO adapter 18 may
comprise a hypervisor, and compute nodes 14 may comprise
separate virtual machines.

Dec. 7,2017

[0048] Turning to FIG. 2, FIG. 2 is a simplified block
diagram illustrating example details according to an embodi-
ment of communication system 10. Assume, merely for
example purposes and not as a limitation that computing
nodes 14, namely Host1 and Host 2 respectively, are to share
data across memory regions according to embodiments of
communication system 10. Each compute node 14, namely
Hostl and Host2 connects to IO adapter 18 through a
respective virtual network interface card (VNIC) 48(1) and
48(2) at the compute node side and a respective PCIE port
50(1) and 50(2) at the 10 adapter side. Firmware 46 exposes
(e.g., creates, generates, provides, etc.) a separate VNIC
52(1) and 52(2) for corresponding PCIE ports 50(1) and
50(2). VNIC 52(1) and 52(2) at IO adapter 18 act as
standalone Ethernet network controller adapters for network
traffic and/or as storage controller adapters for storage traffic
from and to respective compute nodes 14(1) and 14(2). For
example, all traffic from VNIC 48(1) on Hostl is sent to
corresponding PCIE port 50(1), through VNIC 52(1), to the
external facing port, if needed. VNICs 48(1), 48(2), 52(1)
and 52(2) are created based on user configurations, for
example, as specified in a service profile and policy config-
ured at the UCSM and deployed therefrom. Each VNIC
52(1) and 52(2) at 10 adapter 18 is associated with BAR
40(1) and 40(2) respectively, each comprising three separate
memory spaces denoted as: BARO, BAR1 and BAR2. BARs
40(1) and 40(2) predominantly expose hardware function-
ality, such as memory spaces that can be used by host
software, such as applications 26, to work with VNIC 52(1)
and 52(2).

[0049] To explain further, consider Hostl. Note that the
descriptions herein for Hostl apply equally for Host2.
Operating system 24 in Hostl enumerates BARs 40(1)
associated with Hostl and maps 10 address space in host
memory 36 to each BAR such that any access to the
corresponding mapped addresses in the mapped 10 address
space in Hostl will point to (e.g., correspond with, associate
with) the appropriate one of BARs 40(1): BARO, BAR1 and
BAR2 in IO adapter 18. Note that whereas mapped
addresses in Host1 may be virtual, they point to the physical
memory region in 1O adapter 18. Device driver 28 accesses
BARs 40(1) using the memory mapped addresses returned
by OS 24.

[0050] In various embodiments, BAR2 is reserved for
remap window 42, which is identified by the device driver
in respective compute nodes 14. For example, BAR2 of
BAR 40(1) is reserved for remap window region 42(1) and
BAR2 of BAR 40(2) is reserved for remap window region
42(2). In other words, device driver 28 in Hostl understands
BAR2 of 40(1) to be associated with remap window 42(1).
When device driver 28 (or application 26) in Hostl wants to
allow another compute node, such as Host2, to access its
local memory 56(1), firmware 46 configures remap window
42(2) of Host2 to point to memory addressed space 56(1) of
Host1. Similarly, when device driver 28 (or application 26)
in Host2 wants to allow Hostl to access its local memory
56(2), firmware 46 configures remap window 42(1) to point
to memory addressed space 56(2) of Host2.

[0051] In other words, BAR2 of BAR 40(1) associated
with Hostl refers to memory space 56(2) of Host2; likewise,
BAR2 of BAR 40(2) associated with Host2 refers to
memory space 56(1) of Hostl. Anything written to BAR2 of
BAR 40(1) by Hostl will be as if written directly into
memory space 56(2) of Host2, without any intervening

US 2017/0351639 Al

protocols or communication. Thus applications in separate
compute nodes can easily access the memory present in their
peer’s memory domain.

[0052] Turning to FIG. 3, FIG. 3 is a simplified block
diagram illustrating example details according to an embodi-
ment of communication system 10. Memory and /O
requests in 10 adapter 18 are handled using remap window
helper register 44 comprising three cascaded hardware
tables: BAR Match Table (BMT) 44(1), BMT associated
random access memory (RAM) 44(2), and BAR Resource
Table (BRT) 44(3). These tables attempt to resolve memory
and [/O transactions to a 1O adapter memory address in
memory element 38 without involving any processor of 10
adapter 18 or operating system of compute nodes 14. BMT
44(1) provides a mechanism to determine whether a memory
request (e.g., transaction) received from Hostl matches a
valid PCIE device, such as Host2. BMT 44(1) uses a search
key comprising (among other parameters) a host ID and a
BAR address, including length and offset. A hit in BMT
44(1) outputs a Hit Index, which indexes into an associated
RAM entry in table 44(2). BRT 44(3) provides a mechanism
to flexibly map a single BAR to one or more possibly
non-contiguous, adapter memory-mapped resources. In
some embodiments, BRT 44(3) comprises a logical table
implemented in the hardware RAM of 10 adapter 18.

[0053] Firmware 46 of 1O adapter 18 presents a virtualized
view of PCIE endpoints’ configuration space to compute
nodes 14. When Hostl configures memory/IO bar window
(s) in the VNIC’s configuration space, Hostl’s BAR address
windows are translated by remap window helper register 44
to map them to the local root complex endpoint’s BAR
windows in 1O adapter’s local address space. For example,
memory region 56(2) of Hostl is mapped to remap window
region 42(2) of Host2 in memory element 38. After enu-
meration and virtualization of the configuration space of the
PCIE endpoints, the device drivers running on compute
nodes 14 may post work requests using their assigned
memory bar windows.

[0054] During operation, a memory request from Host1 to
allow access to a specific memory region 56(1) by a remote
PCIE endpoint, say Host2 may proceed as follows. Hostl
sends a memory request to firmware 46, including
HostID=identifier of remote peer, say Host2; type=remote_
memory_access; address=address of local memory 56(1).
The memory request is converted into a search key to BMT
44(1), triggering a lookup (e.g., ternary content-addressable
memory (TCAM)) of BMT 44(1), which outputs a hit index
to RAM 44(2) that activates a read of appropriate entry in
BRT 44(3). In some embodiments, the memory request from
Hostl may reference a VNIC number, which may be con-
verted into the corresponding host identifier by suitable
modules. Firmware 46 programs the appropriate entry in
BRT 44(3) to point to the provided address 56(1) of Hostl.
The specific memory region of the appropriate entry in BRT
44(3) is already pre-mapped to BAR2 of Host2 as remap
window 42(2). In other words, the entry in BRT 44(3)
references remap window region 42(2), which now directly
points to memory space 56(1) of Hostl after configuration
by firmware 46. Any memory requests going through remap
window region 42(1) will be tagged with the VNIC of the
destination compute node 14. Any writes by Host1 into local
memory region 56(1) can be directly accessed by Host2
through its mapped remap window region 42(2) without any
intervention by operating systems or CPUs.

Dec. 7,2017

[0055] Turning to FIG. 4, FIG. 4 is a simplified block
diagram illustrating example details according to an embodi-
ment of communication system 10. Assume that application
A in Hostl and application B in Host2 exchanges data
according to mechanisms as described herein. Application B
takes the following actions: Application B sends a memory
mapped address (e.g.,

[0056] IOMMU mapped address) of memory space 56(2)
to driver 28 in Host2 requesting access to the PCIE endpoint
corresponding to Hostl. Driver 28 triggers firmware 46 in
10O adapter 18 to configure a remap window base 58 in BRT
44(3) with the memory mapped address and associate it with
the destination VNIC of Hostl as identified through a
predetermined protocol.

[0057] Firmware 46 configures remap window base 58
with the given address and sets up application specific
integrated circuit (ASIC) data structures to be ready for
remap window region access. Firmware 46 discovers the
destination VNIC of Host1 that wants to access the memory
region as given by driver 28. Firmware 46 configures BRTO0,
corresponding to BAR2 of the destination VNIC Host1, with
the remap window region address and offset that would
correspond to the remap window base 58. Configured BRT0
corresponds to remap window 42(1) and points to memory
region 56(2) of Host2.

[0058] After remap window region 42(1) is configured on
behalf of the destination VNIC, firmware 46 sends notifi-
cation to driver 28 running in Hostl that its BAR2 is ready
to access the Host2 memory. Upon receiving the notification
from firmware 46, driver 28 running in Hostl passes the
notification to application A. Application A already has
memory mapped the BAR2 region with appropriate
IOMMU configuration (e.g., addresses). Subsequently
application A’s read/write access to BAR2 of Host1 maps to
remote memory region 56(2) present in Host2’s memory
domain. Likewise, application B’s read/write access to
memory region 56(2) maps to BAR2 of Hostl. Thus both
application A and application B running in different compute
nodes 14 can communicate with each other without any OS
intervention.

[0059] Turning to FIG. 5, FIG. 5 is a simplified sequence
diagram illustrating example operations 60 according to an
embodiment of communication system 10 associated with a
driver load scenario and discovery of various resources
presented to driver 28 including remap window 42 mapped
in BAR 40. At 62, driver 28 corresponding to VNICO of one
of compute nodes 14, say Hostl, is loaded. At 62, driver 28
reads BAR 40 and identifies BAR2 as the remap BAR. At
66, driver 28 maps the BARs and gets physical addresses
from OS 24. At 68, OS 24 provides memory mapped address
for the physical address of the BAR. At 70, application 26
maps the address in user space (e.g., using MMAP). At 72,
firmware 46 prepares remap window 42 for usage by driver
28.

[0060] Turning to FIG. 6, FIG. 6 is a simplified sequence
diagram illustrating example operations 70 according to an
embodiment of communication system 10 between applica-
tions 26 running on two different compute nodes 14 and
firmware 46 to enable the remap window configuration for
the purpose of accessing remote memory. Assume, merely
for example purposes and not as a limitation that Hostl
includes application 26, which produces data, and is referred
to as producer 72; Host2 includes another application 26,
which consumes the data, and is referred to as consumer 74.

US 2017/0351639 Al

[0061] IO adapter 18 includes a resource map providing
resource information, for example, its memory offset and
length, associated with the corresponding VNIC. In some
embodiments, the resource map associates memory address
offsets (also referred to herein as “memory offsets,” or
simply “offsets”) with the BAR of one or more I/O resources
(the 1/0O resource corresponding to a PCIE device, such as
VNIC). For example, the resource map may include infor-
mation identifying each PCIE device on PCIE bus 22 and its
corresponding BARs. In many embodiments, the resource
map may be comprised in remap window help register 44.
In various embodiments, BARO of each PCIE endpoint may
point to the resource map stored in 10 adapter 18. The PCIE
endpoints may be identified using host indices, or other
suitable identifiers. On parsing the resource map, device
driver 28 in producer 72 identifies other compute nodes 14
present in chassis 12. Consumer 74 notifies firmware 46 of
its intent to read the contents of the memory of Hostl
through a resource update. Firmware 46 decodes the request,
identifies the source and destination VNICs and sends noti-
fication to the VNIC whose associated memory is to be read.
[0062] At 76, producer 72 creates data at memory offset
with dirty bit reset. (Note that the dirty bit is well known in
the art to be associated with a block of memory and indicates
whether or not the corresponding block of memory has been
modified; if the bit is set (or reset), the data has been
modified since the last time it was read). At 78, device driver
28 in Host1 notifies firmware 46 about the data availability.
The notification’s meta-data includes the address to be read
from at its local memory space 56(1) including: address,
length, destination host index of consumer and a key. At 80,
firmware 46 configures remap window base 58 with the
memory offset. At 82, firmware 46 configures remap win-
dow region 42(2) of BAR2 associated with Host2 to point to
memory space 56(1) of Hostl. At 84, firmware 46 configures
remap window 42(2) only once (e.g., for all transactions
between producer 72 and same consumer 74).

[0063] At 86, firmware 46 notifies consumer 74 that the
data is ready. At 88, consumer 74 reads BAR2 at the memory
offset specified by firmware 46. Reading BAR2 at the
memory offset is identical to accessing memory region 56(1)
of producer 72. At 90, consumer 74 marks the dirty bit in the
meta data, indicating that the data has been read. At 92,
consumer 74 may notify firmware 46 that consumer 74 has
completed reading the data. At 94, firmware 46 may notify
producer 72 that data has been consumed by consumer 74.
At 96, producer 72 writes the next set of data to the memory
offset, and the operations resume from 76 and continue
thereafter.

[0064] Turning to FIG. 7, FIG. 7 is a simplified flow
diagram illustrating example operations 100 according to an
embodiment of communication system 10. Assume that
produce 72 in Hostl is providing data to consumer 74 in
Host2, both Hostl and Host2 being connected over PCIE
bus 22 with 10 adapter 18. At 102, IO adapter 18 includes
a resource map providing resource information, such as
resource location (e.g., PCIE host index), length and offsets
where firmware data is present. At 104, device driver 28 in
Host1 identifies the resource layout from the resource map,
including other compute nodes 14 in chassis 12. In an
example embodiment, identifying the resource layout com-
prises parsing the resource map.

[0065] At 108, consumer application 74 notifies firmware
46 of intent to read contents of memory 56(1) of Hostl

Dec. 7,2017

through a resource update message (or other suitable mecha-
nism). At 110, firmware 46 decodes the request, identifies
the source and destination VNICs and sends notification to
Host1l VNIC from which the memory is to be read. At 112,
producer application 72 provides to firmware 46 the address
of memory region 56(1) to be read from, through an appro-
priate memory request. At 114, firmware 46 sends the remap
window region information (e.g., remap window base 58,
remap window region 42(2)) to consumer application 74
(e.g., through associated VNIC) BAR2 at known offset and
notifies the consumer VNIC.

[0066] At 116, firmware 46 maps the address belonging to
the producer application VNIC, namely, address of memory
region 56(1) into the consumer VNIC’s BAR2 remap win-
dow region 42(2) at known offset. At 118, consumer VNIC
passes the remap window information to consumer applica-
tion 74. At 120, consumer application 74 reads the data from
its memory mapped BAR2 which corresponds to memory
56(1) of producer application 72.

[0067] Turning to FIG. 8, FIG. 8 is a simplified flow
diagram illustrating example operations 130 according to an
embodiment of communication system 10. At 132, an
administrator configures VNIC on Hostl’s service profile.
At 134, UCSM sends VNIC details configured by the
administrator to IO adapter 18’s firmware 46 using a suitable
control management protocol. At 136, firmware 46 popu-
lates VNIC information and makes it ready and discoverable
from Hostl. At 138, firmware 46 adds BAR size of BAR2
in VNIC as 16 MB to accommodate four remap window
regions.

[0068] At 140, Hostl is powered up. At 142, BIOS enu-
meration software discovers PCIE endpoint and through
PCIE enumeration protocol, identifies BAR size require-
ments and associates physical address to each BAR. At 144,
device driver 28 of Hostl upon loading, requests OS 24 to
provide memory mapped equivalent of physical address for
each BAR. At 146, device driver 28 identifies that BAR2 is
remap window region according to preconfigured protocol
with firmware 46. At 148, application 26 running in Host1’s
operating system 24 making use of device driver 28 under-
stands capability of remap window exposed by device driver
28. At 150, application 26 exchanges handles with peer host
(e.g., Host2) through firmware 46 and permits memory to be
accessed by the peer host.

[0069] Turning to FIG. 9, FIG. 9 is a simplified flow
diagram illustrating example operations 160 according to an
embodiment of communication system 10. At 162, producer
application 72 (e.g., application 26 running in Hostl) sends
a memory request comprising a destination host (e.g.,
Host2) and IOMMU mapped address of memory region
56(1) to device driver 28. At 164, device driver 28 triggers
firmware 46 to configure remap window base 58 with
destination VNIC (e.g., corresponding to Host2) and asso-
ciated address. At 166, firmware 46 configures remap win-
dow base 58 with associated address. At 168, firmware 46
sets up ASIC data structures to be ready for access to remap
window region 42(2). At 170, firmware discovers destina-
tion VNIC associated with consumer application 74. At 172,
firmware 46 configured BRT0 mapped in BAR2 of destina-
tion VNIC with remap window region address and offset in
BRT 44(3). In other words, firmware 46 maps appropriate
entry in BRT 44(3) corresponding to remap window region
42(2) to point to memory region 56(1). At 174, firmware 46
sends notification event to device driver 28 in Host2 that its

US 2017/0351639 Al

BAR2 is ready to access producer’s memory 56(1). At 176,
device driver 28 in Host2 passes event to consumer appli-
cation 74 running therein with memory mapped to corre-
sponding BAR2 region in user space with appropriate
IOMMU configuration. At 178, consumer application 72’s
read/write access to its BAR2 maps to remote memory
region 56(2) of producer application 74’s memory domain.
[0070] Note that in this Specification, references to vari-
ous features (e.g., elements, structures, modules, compo-
nents, steps, operations, characteristics, etc.) included in
“one embodiment”, “example embodiment”, “an embodi-
ment”, “another embodiment”, “some embodiments”, “vari-
ous embodiments”, ‘“other embodiments”, ‘“alternative
embodiment”, and the like are intended to mean that any
such features are included in one or more embodiments of
the present disclosure, but may or may not necessarily be
combined in the same embodiments. Furthermore, the words
“optimize,” “optimization,” and related terms are terms of
art that refer to improvements in speed and/or efficiency of
a specified outcome and do not purport to indicate that a
process for achieving the specified outcome has achieved, or
is capable of achieving, an “optimal” or perfectly speedy/
perfectly efficient state.

[0071] Embodiments described herein may be used as or
to support firmware instructions executed upon some form
of processing core (such as the processor of 10 adapter 18)
or otherwise implemented or realized upon or within a
machine-readable medium. A machine-readable medium
includes any mechanism for storing or transmitting infor-
mation in a form readable by a machine (e.g., a computer).
For example, a machine-readable medium can include such
as a read only memory (ROM); a random access memory
(RAM); a magnetic disk storage media; an optical storage
media; and a flash memory device, etc. In addition, a
machine-readable medium can include propagated signals
such as electrical, optical, acoustical or other form of
propagated signals (e.g., carrier waves, infrared signals,
digital signals, etc.).

[0072] Inexample implementations, at least some portions
of the activities outlined herein may be implemented in
software in, for example, 10 adapter 18. In some embodi-
ments, one or more of these features may be implemented in
hardware, provided external to these elements, or consoli-
dated in any appropriate manner to achieve the intended
functionality. The various network elements may include
software (or reciprocating software) that can coordinate in
order to achieve the operations as outlined herein. In still
other embodiments, these elements may include any suitable
algorithms, hardware, software, components, modules,
interfaces, or objects that facilitate the operations thereof.
[0073] Furthermore, 10 adapter 18 described and shown
herein (and/or their associated structures) may also include
suitable interfaces for receiving, transmitting, and/or other-
wise communicating data or information in a network envi-
ronment. Additionally, some of the processors and memory
elements associated with the various nodes may be removed,
or otherwise consolidated such that a single processor and a
single memory element are responsible for certain activities.
In a general sense, the arrangements depicted in the FIG-
URES may be more logical in their representations, whereas
a physical architecture may include various permutations,
combinations, and/or hybrids of these elements. It is impera-
tive to note that countless possible design configurations can
be used to achieve the operational objectives outlined here.

2 <

Dec. 7,2017

Accordingly, the associated infrastructure has a myriad of
substitute arrangements, design choices, device possibilities,
hardware configurations, software implementations, equip-
ment options, etc.

[0074] In some of example embodiments, one or more
memory elements (e.g., memory element 38, memory ele-
ment 36) can store data used for the operations described
herein. This includes the memory element being able to store
instructions (e.g., software, logic, code, etc.) in non-transi-
tory media, such that the instructions are executed to carry
out the activities described in this Specification. A processor
can execute any type of instructions associated with the data
to achieve the operations detailed herein in this Specifica-
tion. In one example, processors could transform an element
or an article (e.g., data) from one state or thing to another
state or thing. In another example, the activities outlined
herein may be implemented with fixed logic or program-
mable logic (e.g., software/computer instructions executed
by a processor) and the elements identified herein could be
some type of a programmable processor, programmable
digital logic (e.g., a field programmable gate array (FPGA),
an erasable programmable read only memory (EPROM), an
electrically erasable programmable read only memory (EE-
PROM)), an ASIC that includes digital logic, software, code,
electronic instructions, flash memory, optical disks, CD-
ROMs, DVD ROMs, magnetic or optical cards, other types
of machine-readable mediums suitable for storing electronic
instructions, or any suitable combination thereof.

[0075] These devices may further keep information in any
suitable type of non-transitory storage medium (e.g., random
access memory (RAM), read only memory (ROM), field
programmable gate array (FPGA), erasable programmable
read only memory (EPROM), electrically erasable program-
mable ROM (EEPROM), etc.), software, hardware, or in
any other suitable component, device, element, or object
where appropriate and based on particular needs. The infor-
mation being tracked, sent, received, or stored in commu-
nication system 10 could be provided in any database,
register, table, cache, queue, control list, or storage structure,
based on particular needs and implementations, all of which
could be referenced in any suitable timeframe. Any of the
memory items discussed herein should be construed as being
encompassed within the broad term ‘memory element.’
Similarly, any of the potential processing elements, mod-
ules, and machines described in this Specification should be
construed as being encompassed within the broad term
‘processor.’

[0076] It is also important to note that the operations and
steps described with reference to the preceding FIGURES
illustrate only some of the possible scenarios that may be
executed by, or within, the system. Some of these operations
may be deleted or removed where appropriate, or these steps
may be modified or changed considerably without departing
from the scope of the discussed concepts. In addition, the
timing of these operations may be altered considerably and
still achieve the results taught in this disclosure. The pre-
ceding operational flows have been offered for purposes of
example and discussion. Substantial flexibility is provided
by the system in that any suitable arrangements, chronolo-
gies, configurations, and timing mechanisms may be pro-
vided without departing from the teachings of the discussed
concepts.

[0077] Although the present disclosure has been described
in detail with reference to particular arrangements and

US 2017/0351639 Al

configurations, these example configurations and arrange-
ments may be changed significantly without departing from
the scope of the present disclosure. For example, although
the present disclosure has been described with reference to
particular communication exchanges involving certain net-
work access and protocols, communication system 10 may
be applicable to other exchanges or routing protocols. More-
over, although communication system 10 has been illus-
trated with reference to particular elements and operations
that facilitate the communication process, these elements,
and operations may be replaced by any suitable architecture
or process that achieves the intended functionality of com-
munication system 10.

[0078] Numerous other changes, substitutions, variations,
alterations, and modifications may be ascertained to one
skilled in the art and it is intended that the present disclosure
encompass all such changes, substitutions, variations, altera-
tions, and modifications as falling within the scope of the
appended claims. In order to assist the United States Patent
and Trademark Office (USPTO) and, additionally, any read-
ers of any patent issued on this application in interpreting the
claims appended hereto, Applicant wishes to note that the
Applicant: (a) does not intend any of the appended claims to
invoke paragraph six (6) of 35 U.S.C. section 112 as it exists
on the date of the filing hereof unless the words “means for”
or “step for” are specifically used in the particular claims;
and (b) does not intend, by any statement in the specifica-
tion, to limit this disclosure in any way that is not otherwise
reflected in the appended claims.

What is claimed is:

1. A method executed at an input/output (IO) adapter in
communication with a plurality of compute nodes over a
Peripheral Component Interconnect Express (PCIE) bus, the
method comprising:

receiving a memory request from a first compute node to

permit access by a second compute node to a local
memory region of the first compute node;

generating a remap window region in a memory element
of the 1O adapter, the remap window region corre-
sponding to a base address register (BAR) of the
second compute node in the 10 adapter; and

configuring the remap window region to point to the local
memory region of the first compute node, wherein
access by the second compute node to the BAR corre-
sponding with the remap window region results in
direct access of the local memory region of the first
compute node by the second compute node.

2. The method of claim 1, wherein the compute nodes are
associated with unique PCIE endpoints on the PCIE bus.

3. The method of claim 1, wherein the direct access of the
local memory region of the first compute node by the second
compute node does not involve operating systems of the first
compute node and the second compute node.

4. The method of claim 1, wherein the BAR of the second
compute node comprises one of a plurality of BARs asso-
ciated with the second compute node.

5. The method of claim 4. wherein a device driver of the
second compute node associates the BAR with the remap
window region, such that an application executing in the
second compute node can access the local memory region of
the first compute node through appropriate access requests
to the BAR using the device driver.

Dec. 7,2017

6. The method of claim 1, wherein configuring the remap
window region comprises configuring a remap window base
in a BAR Resource Table (BRT) to be a start address of the
local memory region.

7. The method of claim 1, wherein the memory request
comprises a host identifier of the second compute node and
address of the local memory region of the first compute
node.

8. The method of claim 7, wherein the host identifier is
obtained from a resource map providing identifying infor-
mation of the compute nodes in communication with the 10
adapter over the PCIE bus.

9. The method of claim 1, wherein the compute nodes
comprise microservers executing in a single chassis.

10. The method of claim 1, wherein the compute nodes
comprise virtual machines executing in a single hypervisor.

11. Non-transitory tangible media that includes instruc-
tions for execution, which when executed by a processor of
a 10 adapter in communication with a plurality of compute
nodes over a PCIE bus, is operable to perform operations
comprising:

receiving a memory request from a first compute node to

permit access by a second compute node to a local
memory region of the first compute node;
generating a remap window region in a memory element
of the 10 adapter, the remap window region corre-
sponding to a BAR of the second compute node in the
10 adapter; and

configuring the remap window region to point to the local
memory region of the first compute node, wherein
access by the second compute node to the BAR corre-
sponding with the remap window region results in
direct access of the local memory region of the first
compute node by the second compute node.

12. The media of claim 11, wherein the BAR of the
second compute node comprises one of a plurality of BARs
associated with the second compute node.

13. The media of claim 11, wherein a device driver of the
second compute node associates the BAR with the remap
window region, such that an application executing in the
second compute node can access the local memory region of
the first compute node through appropriate access requests
to the BAR using the device driver.

14. The media of claim 11, wherein configuring the remap
window region comprises configuring a remap window base
in a BRT to be a start address of the local memory region.

15. The media of claim 11, wherein the compute nodes
comprise microservers executing in a single chassis.

16. An apparatus, comprising:

an 10 adapter;

a plurality of compute nodes in communication with the

10 adapter over a PCIE bus;
a physical memory for storing data; and
a processor, wherein the processor executes instructions
associated with the data, wherein the processor and the
physical memory cooperate, such that the apparatus is
configured for:
receiving a memory request from a first compute node
to permit access by a second compute node to a local
memory region of the first compute node;
generating a remap window region in a memory ele-
ment of the IO adapter, the remap window region
corresponding to a BAR of the second compute node
in the IO adapter; and

US 2017/0351639 Al

configuring the remap window region to point to the
local memory region of the first compute node,
wherein access by the second compute node to the
BAR corresponding with the remap window region
results in direct access of the local memory region of
the first compute node by the second compute node.

17. The apparatus of claim 16, wherein the BAR of the
second compute node comprises one of a plurality of BARs
associated with the second compute node.

18. The apparatus of claim 16, wherein a device driver of
the second compute node associates the BAR with the remap
window region, such that an application executing in the
second compute node can access the local memory region of
the first compute node through appropriate access requests
to the BAR using the device driver.

19. The apparatus of claim 16, wherein configuring the
remap window region comprises configuring a remap win-
dow base in a BRT to be a start address of the local memory
region.

20. The apparatus of claim 16, wherein the compute nodes
comprise microservers executing in a single chassis.

#* #* #* #* #*

10

Dec. 7,2017

