PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 96/13108
HO4L 12/56 A2 _ o

(43) International Publication Date: 2 May 1996 (02.05.96)

(21) International Application Number: PCT/IB95/01027 | (81) Designated States: AU, JP, European patent (AT, BE, CH, DE,

(22) International Filing Date: 24 October 1995 (24.10.95)

(30) Priority Data:

08/328,513 25 October 1994 (25.10.94) us

(71) Applicant: CABLETRON SYSTEMS, INC. [US/US]; 35
Industrial Way, Rochester, NH 03867 (US).

(72) Inventors: AGGARWAL, Ajay; 601 Tri City Road, Somer-
sworth, NH 03878 (US). SCOTT, Walter; 6 Lansing Drive,
Salem, NH 03079 (US). RUSTICI, Eric; 1 Wyandot Cir-
cle, Londonderry, NH 03053 (US). BUCCIERO, David;
12 Hillside Drive, Nashua, NH 03060 (US). HASKINS,
Andrew: 11 Riverside Rarm Drive, Lee, NH 03824 (US).
MATTHEWS, Wallace; 12 Hall Place, Exeter, NH 03833
(US).

(74) Agent: HENDRICKS, Therese, A.; Wolf, Greenfield & Sacks,
P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and 1o be republished
upon receipt of that report.

(54) Title: METHOD AND APPARATUS FOR DETERMINING IP COMMUNICATIONS PATH

(57) Abstract

Method and apparatus for

determining a data path between
source (11) and destination (12)
IP devices. A TTL mecha-
nism is used, in combination
with loose-source routing, to in-
crementally discover the routers
on the path, wherein the query-
ing node (13) sending the UDP
probe packets need not be the
source node. Once an inter-
mediate router on the path is
known which can communicate
via SNMP, an SNMP query may
be sent to determine the next-

QUERYING
NODE

hop router from the IP routing table. If this fails, the method reverts to the incrementing TTL mechanism.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

AT Austria GB United Kingdom MR Mauritania

AU Australia GE Georgia Mw Malawi

BB Barbados GN Guinea NE Niger

BE Belgium GR Greece NL Netherlands

BF Burkina Faso HU Hungary NO Norway

BG Bulgaria IE Ireland NZ New Zealand

BJ Benin IT Ttaly PL Poland

BR Brazil JP Japan PT Portugal

BY Belarus KE Kenya RO Romania

CA Canada KG Kyrgystan RU Russian Federation
CF Central African Republic KP Democratic People’s Republic SD Sudan

CG Congo of Korea SE Sweden

CH Switzerland KR Republic of Korea SI Slovenia

CI Coee d'Ivoire Kz Kazakhstan SK Slovakia

CM Cameroon LI Liechtenstein SN Senegal

CN China LK Sri Lanka D Chad

Ccs Czechoslovakia LU Luxembourg TG Togo

cz Czech Republic LV Latvia TJ Tajikistan

DE Germany MC Monaco TT Trinidad and Tobago
DK Denmark MD Republic of Moldova UA Ukraine

ES Spain MG Madagascar us United States of America
F1 Finland ML Mali vz Uzbekistan

FR France MN Mongolia VN Viet Nam

GA Gabon

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

Field of the I .
This invention relates to computer network
communication systems, and in particular to a method and

apparatus for determining data paths on an IP network.

Background of the Invention

In an Internet, several networks are connected
together through the use of gateways and an internetworking
protocol. The gateways (often called routers), using the
protocol, hide the underlying details of the actual networks, in
order to provide uniform service across the network.

The leading internetworking technology is the Internet
suite of protocols, commonly referred to as TCP/IP, after the
two-core protocols in the suite. TCP, the transmission control
protocol, is a connection-oriented transport service. IP, the
Internet protocol, is a connectionless-mode network service.

IP is called a connectionless-mode network protocol,
which means that it is datagram-oriented. When some entity on
the network wishes to send data using IP, it sends that data as
a series of datagrams. Associated with each datagram is an
address indicating where the datagram should be delivered. This
address consists of an IP address, an upper-layer protocol
number. IP takes the user-data and encapsulates it in an IP
datagram, which contains all of the information necessary to
deliver the datagram to the IP entity at the destination. The
remote IP entity will examine the IP datagram it receives, and
then strip off the data and pass it up to the appropriate
upper-layer protocol. See, M. Rose, "The Simple Book - An
Introduction To Management Of TCcp/IP-Based Internets,” Prentice
Hall, 1991.

SNMP, Simple Network Management Protocol, has become
the de facto operational standard for network management of
TCP/IP-based internets. A managed network may be considered as
consisting of three components: (1) several managed nodes, each

containing an agent; (2) at least one network management station

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 2 -

(NMS) ; and (3) a network lmanagement protocol, which is used by
the station and the agents to exchange management information.
The managed node may consist of a host system, e.g.,
workstation, terminal server, or printer; a gateway system,
€.g9., a router; or a media device, e.qg., a bridge, hub or
multiplexor. One activity of the network management system is
to compile a topology of the network, defining the connections
between various devices on the network. The network management
System may query the IP routing table at each gateway, to
determine what devices are located at each port on the gateway.
This information may be used to construct a data path between
any two devices on the internet.

Associated with IP is another protocol providing
low-level feedback about how the internet layer is operating.
This protocol is termed the "Internet Control Method Protocol"”
(ICMP). 1ICMP provides basic control messages for error
reporting.

One useful tool in troubleshooting connectivity
problems at the internet layer is a program called "traceroute."
The traceroute program sends a series of "probe packets" using
UDP to an IP address and awaits an ICMP reply. More
specifically, IP datagrams carrying the UDP packets are sent
with monotonically increasing values in the "time to live" (TTL)
field, and the UDP port chosen is one most likely not to be in
use. For each TTL value, the traceroute program sends a fixed
number of packets (usually three), and reports back the IP
addresses of the devices responding. This process continues
until an ICMP port unreachable packet is received or some TTL
threshold is reached (usually 30).

If a gateway receives an IP datagram and decrements
the TTL to zero, then it returns an ICMP time exceeded packet.
If the IP datagram eventually reaches the network device in
question, an ICMP port unreachable packet will be returned.
Combining the information from all the replies, the traceroute
program can report on the whole route. See M. Rose, supra, at
66-67. A copy of the traceroute progam is shown below.

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

-3 -

*Copyright (c) 1988 Regents of the University of California.
*All rights reserved.

*

*Redistribution and use in source and binary forms are permitted
*provided that the above copyright notice and this paragraph are
*duplicated in all such forms and that any documentation,
*advertising materials, and other materials related to such
*distribution and use acknowledge that the software was
*developed by the University of California, Berkeley. The name
*of the University may not be used to endorse or promote
*products derived from this software without specific prior
*written permission.

*THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
*IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
*WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
*PURPOSE.

*/
[7m--Mor
[;H[2T

#include
#include
#include
#include

#include
#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include

e--[m

<stdio.h>
<errno.h>
<strings.h>
<sys/time.h>

<sys/param.h>
<sys/socket.h>
<sys/file.h>
<sys/ioctl.h>

<netinet/in_systm.h>
<netinet/in.h>
<netinet/ip.h>
<netinet/ip_var.h>
<netinet/ip_icmp.h>
<netinet/udp.h>
<netdb.h>

<ctype.h>

#define MAXPACKET 65535 /* max ip packet size */
#ifndef MAXHOSTNAMELEN

#define MAXHOSTNAMELEN 64

[7m--More--[m

[;H[2J
#endif
#ifndef FD SET
#define NFDBITS (8*sizeof (fd_set))
#define FD SETSIZE NFDBITS
#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] = (1 << ((n)
$ NFDBITS)))
#define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= ~(1 <<
- ((n) % NFDBITS)))
#define FD_ISSET(n, p) ((p)—>fds_bits[(n)NFDBITS] £§(1 << ((n) %

NFDBITS)))

10

15

20

25

30

35

40

45

S0

55

WO 96/13108

PCT/IB95/01027

4 -

bzero ((char *) (p), sizeof (* (p)))

/* sequence number of this packet*/
/* ttl packet left with*/

#define FD_ZERO (p)
#endif
#define Fprintf (void) fprintf
#define Sprintf (void) sprintf
#define Printf (void)printf
extern int errno;
extern char *malloc () ;
extern char *inet ntoa();
extern u_long inet_addr();
/*
*format of a (udp) probe packet.
*/
[7m--More--[m
[;H[27
struct opacket {
struct ip ip;
struct udphdr udp;
u_char seq;
u_char ttl;
struct timeval tv; /+*

}:

u_char packet[512];
struct opacket *outpacket;
char *inetname();

int s;

int sndsock;

struct timezone tz;

/*

struct sockaddr whereto;
int datalen;

char *source = 0;
char *hostname;
char hnamebuf[MAXHOSTNAMELEN];

[/m--More--[m
[/H[27

int nprobes
int max ttl =
u_short ident;

3;
30;

/*
/*
/*
/*
/*

time packet left*/

last inbound (icmp) packet*/
last output (udp) packet*/

receive (icmp) socket file
descriptor*/

send (udp) socket file
descriptor*/

leftover*/

Who to try to reach*/

/*

/*

/*

time

How much data*/

start udp dest port#for probe
packets*/

socket options */

to wait for response

(in seconds) */

u_short port = 32768+666;
int options;

int verbose;

int waittime = 5; /*
int nflag;

/*

print addresses numerically*/

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

char usagel] =

"Usage: traceroute [-dnrv] [-w wait] [-m max_ttl] [-p port#]
[-q nqueries] [-t tos] [-s srcC addr] [-g gateway] host [data
sizel\n"; -

main(argc, argv)
char *argv(];

{
struct sockaddr_in from;
char **av = argv;
struct sockaddr_in *to
int on = 1;
struct protocent *pe;
int ttl, probe, i;

(struct sockaddr_in*)&whereto;

[7m--More--[m
[;H[2T
int seq = 0;
int tos = 0;
struct hostent *hp:;
int 1lsrr = 0;
u_long gw;
u_char optlist[MAX_IPOPTLEN], *oix;

oix = optlist;
bzero (optlist, sizeof (optlist));

argc--, av++t;
while (argc && *av(O0] =='_') |
while (*++av[0])
switch (*av[0]){

case 'd':
options |= SO_DEBUG;
break;
case 'g':
argc--, avtt;
if ({(lsrr+l) >= ((MAX_IPOPTLEN-—IPOPT_
MINOFF)

/sizeof (u_long)))

Fprintf (stderr, "No more than $/d
gateways\n",
((MAX_IPOPTLEN_IPOPT_MINOFF)
/sizeof (u_[7m--
More--i{m
[;H[2J
long))-1);
exit (1)
}
if (Isrr == 0){
*olx++ = IPOPT_LSRR;
oix++; / Fill in total
: length later*/
oix++ = IPOPT MINOFF; / Pointer to LSRR addresses*/
}

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

- 6 -~

lsrr++;
if (isdigit(*av([0])) {
gw = inet_addr(*av);
if (gw) {
bcopy (&gw, oix, sizeof(u_long));
} else {
Fprintf (stderr, "Unknown host
$s\n",av([0]);
exit (1) ;
}
} else {
hp=gethostbyname(av[0]);
if (hp) {
bcopy(hp—>h_addr, oix,
sizeof (u_long));
} else {
[7m--More--[m
[;H[27

Fprintf(stderr, "Unknown host
$s\n",av([0]);
exit(1l);
}
}
O0ix += sizeof (u_long);
goto nextarg;

case 'm':
argc--, av++;
max ttl = atoi(av(0]);
if (max_ttl <= 1) {

Fprintf (stderr, "max ttl
must be >1\n");

exit(1l);
}
goto nextarg;
case 'n':
nflag++;
break;
case 'p':

argc--, av++;
port = atoi(av([0]);
if (port < 1) ¢{
Fprintf (stderr, "port
must be >0\n");
exit (1l);
[7m——More--[m
[;H[27
}
goto nextarg;
case 'q':
argc--, av++;
nprobes = atoi(av([0]);
if (nprobes < 1) {
Fprintf (stderr, "nprobes
must be >0\n");
exit(1);

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

}
goto nextarg;

case 'r':
options |= SO_DONTROUTE;
break:;

case 's':
/*

* set the ip source address of
the outbound
* probe (e.g., on a multi-homed
host) .
*/
argc--, av++;
source = av[0];
goto nextarg;
case 't':
argc--, av++;
[7m--More--[m
[;H[2J
tos = atoi(avi[O]):;
if (tos < 0 Il tos > 255) {
Fprintf (stderr, "tos
must be 0 to 255\n");
exit(1l);
}
goto nextarg;
case 'v':
verbose++;
break;
case 'w':
argc--, av++;
waittime = atoi(av(O]):;
if (waittime <= 1) {
Fprintf (stderr, "wait
must be > 1 sec\n");
exit (1)
}
goto nextarg;
nextarg:
argc--, av++;
}
[Tm--More--[m
[;H[2J
if (argc < 1) |
Printf (usage);
exit(l):
}
setlinebuf (stdout);

(void) bzero((char *)s&whereto, sizeof (struct sockaddr)):

to->sin family = AF_INET;
to->sin_addr.s_addr=inet_addr(av(0]);
if (to->sin addr.s_addr != -1) {
(void) strcpy(hnamebuf, av[O]);
hostname = hnamebuf;

WO 96/13108 PCT/IB95/01027

- 8 -
} else {
hp = gethostbyname (av[0]) ;
if (hp) {
to->sin_family = hp->h_addrtype;
bcopy (hp->h_addr, (caddr_t)&to->sin_
addr, hp-
>h_length);
hostname = hp->h name;
} else {

Printf("%s: unknown host gs\n",
argv[0], av[0]);
exit(1l);

}
[7m--More--[m
(;H[2J
if (argc >= 2)
datalen = atoi(av[l]);
if (datalen < 0 | datalen >= MAXPACKET - sizeof
(struct opacket)) {
Fprintf (stderr, "traceroute: packet size
must be 0 <= s < $1d\n",
MAXPACKET - sizeof (struct opacket)) ;
exit (1) ;
}
datalen += sizeof (struct opacket) ;
outpacket = (struct opacket
*)malloc((unsigned)datalen);
if (! outpacket) {
perror ("traceroute: malloc");
exit(l);
}
(void) bzero((char *)outpacket, datalen) ;
outpacket->ip.ip_dst = to->sin addr;
outpacket—>ip.ip_tos tos;

ident = (getpid() & OXffff | 0x8000;

if ((pe getprotobyname ("icmp")) == NULL) {
Fprintf (stderr, "icmp: unknown protocol\n") ;

[7m--More--[m

(;H[2J
exit (10);

}

if ((s = socket (AF INET, SOCK_RAW, pe->p proto)) < 0 {
perror ("traceroute: icmp socket");
exit (5);

}

else

printf ("Opened recv side RAW socket, proto [ICMP]
= %d\n",
pe->p _proto);

if (options & SO_DEBUG)

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

- 9 -

(void) setsockopt (s, SOL_SOCKET, SO_DEBUG,
(char *)&on,sizeof(on));
if (options & SO_DONTROUTE)
(void) setsockopt (s, SOL_SOCKET,
SO_DONTROUTE,
(char *)gon, sizeof(on));

if ((sndsock = socket (AF_INET, SOCK_RAW, IPPROTO_RAW))

< 0) {
perror ("traceroute: raw socket");
exit (5);
[?21h= }
else
[Tm--More--(m
[;H[2J

{
printf ("Opened send side RAW socket, proto=IPPROTO_RAW
\n");

if (Isrr > 0) {
lsrr++;
optlist[IPOPT_QLEN]=IPOPT_MINOFF—1+(lsrr*sizeof
(u_long));
printf ("optlist[IPOPT_OLEN] = $d\n", optlist[IPOPT_OLEN]):;

bcopy ((caddr_t) &to->sin_addr, oix,

sizeof (u_long));

oix += sizeof(u_long);

while ((oix - optlist)é&3) oix++; /* Pad to an
even
boundry*/

hex_display (optlist, (optlist [IPOPT OLEN] + 4));

if ((pe = getprotobyname ("ip")) == NULL) |
perror ("traceroute: unknown protocol ip\n");

exit (10);
}
if ((setsockopt (sndsock, pe->p_proto,
IP_OPTIONS, optlist,oix-optlist)) < 0) {
[7m--More--[m
[;H[2J
perror ("traceroute: lsrr options");
exit (5);
}
else
{
printf ("Set IP_OPTIONS (for loose routing), proto
used=%d\n",
pe->p_proto):
}
}

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

- 10 -
#ifdef SO_SNDBUF
printf ("Using setsockopt SOL_SOCKET, SO_SNDBUF, \n");

if (setsockopt (sndsock, SOL_SOCKET, SO_SNDBUF,
(char*) &datalen,
sizeof (datalen)) < 0) {
perror ("traceroute: SO _SNDBUF");
exit(6);
}
#endif SO_SNDBUF
#ifdef IP_HDRINCL

printf ("IP_HDRINCL defined \n");
[Tm--More--[m
[;H[2J

if (setsockopt (sndsock, IPPROTO_IP, IP_HDRINCL,
(char *)gon,
sizeof(on)) < 0) {
perror ("traceroute: IP_HDRINCL") ;
exit (6);

}
#endif IP_HDRINCL
if (options & SO DEBUG)
(void) setsockopt (sndsock, SOL_SOCKET, SO _DEBUG,
(char *)s&on, sizeof(on));
if (options & SO_DONTROUTE)
(void) setsockopt (sndsock, SOL_SOCKET,
SO_DONTROUTE,
(char *)s&on, sizeof (on));
if (source) {
(void) bzero((char *)&from, sizeof (struct

sockaddr)) ;
from.sin_family = AF INET;
from.sin_addr.s addr == inet_addr (source) ;

if (from.sin_addr.s_addr == -1) |
Printf ("traceroute: unknown host
$s\n", source);
exit(1l);
}
outpacket—>ip.ip_src = from.sin_addr;

[7Tm--More--[m
[;H[2T
#ifndef IP_HDRINCL

if (bind(sndsock, (struct sockaddr *)s&from, sizeof
(from)) < 0) {
perror ("traceroute: bind:");
exit (1);
}
#endif IP_HDRINCL
}

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/1B95/01027

- 11 -

Fprintf (stderr, "traceroute to s (%s)", hostname,
inet ntoa(to->sin_addr));
if (source)
Fprintf (stderr, " from $s", source);
Fprintf (stderr, ", %d hops max, $d byte packets\n",
max_ttl, datalen);
(void) fflush(stderr);

for (ttl = 1; ttl <= max_ttl; ++ttl) |
u_long lastaddr = 0;
int got_there = 0;
int unreachable = 0;

Printf("%2d", ttl):;
for (probe = 0; probe < nprobes; ++probe) {
[7m--More--[m
[;H[2J
int cc;
struct timeval tv;
struct ip *ip:

(void) gettimeofday(&tv, &tz);
send _probe (++seq, ttl);
while (cc = wait_for_reply(s,

&from)) {
if ((i = packet_ok(packet, cc,
sfrom, seq))) |

int dt = deltaT(&tv);

if (from.sin_addr.s_
addr !
= lastaddr) {
print (packet,
cc, &from);
lastaddr =
from.sin_
addr.s_addr;

Printf (" %d ms",
dt):
switch(i - 1) {
case ICMP_UNREACH_
PORT:
#ifndef ARCHAIC
ip = (struct
ip *) packet;
if (ip->ip_ttl
= 1)
Printf("!");
#endif ARCHAIC
++got_there;
break;
[7m--More--[m
[;H[2J
case ICMP_UNREACH_NET:
++unreachable;

10

15

20

25

30

35

40

45

50

S5

WO 96/13108 PCT/IB95/01027

- 12 -
Printf (" IN");
break;

case ICMP_UNREACH HOST:
++unreachable;
Printf (" 'H");
break;

case ICMP_UNREACH_

PROTOCOL:

++got there;
Printf (" 'p");

break;
case ICMP_UNREACH_
NEEDFRAG:
++unreachable;
Printf (" 'F");
break;
case ICMP_UNREACH
SRCFAIL:
++unreachable;
Printf("!s");
break;
}
break;

[7m--More--[m

[;H[2T

}

}

if (cc ==0)
Printf("*");

(void) fflush(stdout) ;

putchar ('\n"');
if (got_there Il unreachable >= nprobes~-1)

}

}

exit (0);

wait_for reply(sock, from)

int sock;
struct sockaddr in *from;

fd_set fds;

struct timeval wait;

int cc = 0;

int fromlen = sizeof (*from) ;

FD_ZERO (&fds) ;
FD_SET (sock, &fds);
wait.tv_sec = waittime; wait.tv_usec = 0;

[7m--More--[m

[;H[2T

if (select(sock+l, &fds, (fd_set *)0O, (fd_set *)o,
&wait) > 0)
cc--recvfrom(s, (char *)packet,

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

}

- 13 -

sizeof (packet), O,
(struct sockaddr *)from,
&fromlen) ;

return{cc);

send _probe (seq, ttl)

{

struct opacket *op = outpacket;
struct ip *ip = &op->ip;

struct udphdr *up = &op->udp;
int 1i;

ip->ip_off = 0;
ip->ip p = IPPROTO_UDP;
ip->ip_len = datalen;
ip->ip_ttl ttl;

up->uh_sport htons (ident):;

up->uh_dport htons (port+seq) ;

up->uh_ulen = htons ((u_short) (datalen - sizeof (struct
ip)));

[7m--More--[(m

[;H[2J

}

up->uh_sum = 0;

op->seq = seq;
op->ttl = ttl;
(void) gettimeofday (&op->tv, &tz);

i = sendto (sndsock, (char *)outpacket, datalen, O,
&whereto,
sizeof (struct sockaddr));

if (i < 0l i !'= datalen) {

if (i<0)

perror ("sendto");

Printf ("traceroute: wrote %s %d chars, ret=%d\n", hostname,

datalen, 1i);
(void) fflush(stdout);

deltaT (tp)

{

struct timeval *tp;
struct timeval tv;

(void) gettimeofday(&tv, &tz);

[7m--More--[m

[;H[2J

tvsub (&tv, tp);
return (tv.tv_sec* 1000 + (tv.tv_usec + 500) /1000) ;

10

15

20

25

30

35

40

45

50

S5

WO 96/13108 PCT/IB95/01027

- 14 -

/*
* Convert an ICMP "type" field to a printable string.
*/
char*
pr-type(t)
u_char t;
{

static char *ttab[] = {

"Echo Reply", "ICMP 1", "ICMP 2", "Dest
Unreachable",

"Source Quench", "Redirect" "ICMP 6", "ICMP 7",
"Echo", "ICMP 9", "ICMP 10" "Time

Exceeded”,

"Param Problem", "Timestamp"”, "Timestamp Reply", "Info
Request",

"Info Reply"

}:

if(t > 16)
return ("OUT-OF-RANGE") ;

return(ttab(t]);
[7Tm--More--[m
[;H[2T
}

packet_ok(buf, cc, from, seq)
u_char *buf;
int cc;
struct sockaddr in *from;
int seq;

register struct icmp *icp;
u_char type, code;
int hlen;
#ifndef ARCHAIC
struct ip *ip;

ip = (struct ip *) buf;
hlen = ip->ip hl << 2;
if (cc < hlen + ICMP_MINLEN) {
if (verbose)
Printf ("packet too short (%d bytes)
from %s\n", cc,
inet_ntoa(from->sin addr)) ;
return (0);
}
cc -= hlen;
[Tm~-More--[m
[;H[2J
icp = (struct icmp *) (buf + hlen);
#else
icp = (struct icmp *)buf;
#endif ARCHAIC
type = icp->icmp type; code = icp->icmp code;

10

15

20

25

30

35

40

45

S0

55

WO 96/13108 PCT/IB95/01027

- 15 -
if ((type == ICMP_TIMXCEED && code == ICMP_TIMXCEED_
INTRANS |
type == ICMP_UNREACH) {

struct ip *hip;
struct udphdr *up;

hip = &icp->icmp_ip;

hlen = hip->ip_hl << 2;

up = (struct udphdr *) ((u_char *)hip + hlen);

if (hlen + 12 <= cc && hip->ip_p ==
IPPROTO_UDP &&

up->uh_sport == htons(ident) &&
up->uh_dport == htons (port+seq))
return (type == ICMP_IIMXCEED? -1
code+l) ;

}
#ifndef ARCHAIC
if (verbose) {
int 1i;
u_long *lp = (u_long *)gicp->icmp_ip:

[7m--More--[m
[;H[2J
Printf ("\n%d bytes from %s to 3%s", ccC,
inet_ntoa(from->sin_addr), inet_ntoa
(ip->ip_dst));
Printf(": icmp type %d (%s) code 3d\n", type,
pr_type(type),
icp->icmp_code);
for (i = 4; i < cc; i += sizeof (long))
Printf ("%2d: x%8.81x\n", i, *1lp++);
}
#endif ARCHAIC
return(0);

}

print (buf, cc, from)
u_char *buf;
int cc;
struct sockaddr_in *from;

struct ip *ip:
int hlen;

ip = (struct ip *) buf;
hlen = ip->ip_hl << 2;
cc -= hlen;

[7m--More--[m
[;H[2J0
if (nflag)
Printf (" %s", inet_ntoa(from->sin_addr));
else
Printf (" $s (%s)", inetname(from->sin_addr),
inet_ntoa(from->sin_addr));

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

- 16 -

if (verbose)
Printf (" %d bytes to %s", cc, inet ntoa
(ip->ip_dst));
}

#ifdef notyet
/*
* Checksum routine for Internet Protocol family headers
(C Version)
*/
in_cksum(addr, len)
u_short *addr;
int len;

{

register int nleft.= len;
register u_short *w = addr;
register u_short answer;
register int sum = 0;

[7m--More--[m
[(;H[2J
/*
* Our algorithm is simple, using a 32 bit
* accumulator (sum),we add sequential 16 bit words
* to it, and at the end, fold back all the carry
* bits from the top 16 bits into the lower 16 bits.
*/
while (nleft > 1) {
sum += *w++;
nleft -= 2;
}

/* mop up an odd byte, if necessary */
if (nleft == 1)
Sum += * (u char *)w;

/*

* add back carry outs from top 16 bits to low 16 bits

*/

sum = (sum >> 16) + (sum & OXffff); /* add hi 16 to
low 16*/

sum += (sum >> 16); /* add carry */

answer = ~sum; /* truncate to
16 bits*/

return (answer);

}

[7m--More--[m
[;H[2]
#endif notyet

/*
*Subtract 2 timeval structs: out=out - in.
* Out is assumed to be >= in.

10

15

20

25

30

35

40

45

50

55

WO 96/13108 PCT/IB95/01027

- 17 -

*/
tvsub (out, in)
register struct timeval *out, *in;
{
if ((out->tv_usec -= in->tv_usec) < 0) {
out->t_sec--;
out->tv_usec += 1000000;
}

out->tv_sec -= in->tv_sec;

/*

* Construct an Internet address representation.

* If the nflag has been supplied, give

* pnumeric value, otherwise try for symbolic name.
*/

char

inetname (in)
[Tm--More--[m
[;H[2J
struct in_addr in;
{
register char *cp;
static char line([50];
struct hostent *hp;
static char domain[MAXHOSTNAMELEN + 1];
static int first = 1;

if (first && !nflag){

first = 0;
if (gethostname (domain, MAXHOSTNAMELEN)
==0 &&

(cp = index(domain, !!)))
(void) strcpy(domain, cp + 1);
else
domain (0] = 0;
}
cp = 0;
if (!nflag && in.s_addr!= INADDR_ANY) {
hp = gethostbyaddr ((char *)gin, sizeof (in),

AF_INET);
if (hp){
if ((cp = index (hp->h_name, L)) &&
!strcmp(cp + 1, domain))
*cp = 0;

[7m--More--[m
(;H[2Jd
cp = hp->h name;

}
}
if (cp)

(void) strcpy(line, cp):
else {

10

15

20

25

30

35

40

45

WO 96/13108 PCT/IB95/01027

- 18 -

in.s_addr = ntohl(in.s_addr);
#define C(x) ((x) & Oxff)
Sprintf(line, "%lu.%lu.%lu.%lu",
C(in.s_addr >> 24),
C(in.s_addr >> 16), C(in.s_addr >> 8),
C(in.s_addr));
}
return (line);
}

hex display (ptr, how_much)
unsigned char * ptr;
int how_much;
{
int i;

for (i=0; i < how_much; i++)
{

if((i ¢ 8) == 0)
[7m--More--[m
[;H[2T

{
printf ("\n");
}
printf ("$4x", ptr(i));
}

printf ("\n");

Unfortunately, traceroute does not provide any
information about which ports of the routers are on the path.

In addition, not all devices on the network support IP options
needed to implement traceroute.

An SNMP query to a router is another method for
tracing a route, i.e., by determining the next-hop router on the
current router IP routing table. Unfortunately, not all routers
can be accessed by SNMP.

It would thus be desirable to provide a method of
tracing a route from any source to any destination, regardless
of whether one router is known, and regardless of whether each

router on the path can be accessed using SNMP.

=ummary of the Invention

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 19 -

The present invention is a method and apparatus for
determining a communications path between a source node and a
destination node on a network using IP. The method includes
compiling a path list of IP addresses for next-hop routers on
the path between the source IP address and the destination IP
address.

In its broadest sense, the method includes the steps
of: (a) sending a series of UDP probe packets out a socket of a
first node to find successive next-hop routers on the path;

(b) setting the socket of the first node to "loose route" the
UDP probe packets through the source IP address; and

(c) recording in the path list the next-hop router IP address
returned following each one of the series of UDP probe packets.
The UDP probe packets have a destination field set with the
destination IP address. The time to live (TTL) field of the UDP
probe packet is set with an initial value of one, and
monotonically increased (i.e., incremented by one) to find each
successive next-hop router until the destination is reached.

In a further embodiment, the method includes the step
of alternatively sending an SNMP query to a router on the path
in order to find the next-hop router on the path. Then, if the
SNMP query fails, the method reverts to sending the next UDP
probe packet. Thus, if a specific router on the path is
discovered and can accept SNMP messages, we can then read its
routing table to find out the next router on the way to the
destination. The routing table also provides the port which
leads to the next router.

In a still further embodiment, if both the UDP probe
packet and/or SNMP query fail to provide the next-hop router IP
address, then an unknown next-hop router IP address is selected
and recorded in the path list. We later use a topology
information database from a network management system to resolve
this unknown router.

In a still further embodiment, the method includes
sending a query to a topology information database to determine

any unknown next-hop router IP addresses, as well as any

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 20 -

intra-router (i.e., layer-2 devices, such as hubs, bridges,
etc.) on the path.

In this manner, we can determine a complete route from
a source node to a destination node. Apparatus for implementing
the method is further provided, including a station with a
memory and processor for storing and running the traceroute
program and/or a network management station for maintaining a
management database and sending SNMP queries to various routers
on the network which are SNMP compatible.

Brief Description of the Figqures

FIG. 1 is a schematic diagram of a portion of a
network in which there is a source node, a destination node, and
a querying node.

FIG. 2 is a flowchart illustrating a mechanism by
which the distance, in TTL units, is determined between the
querying node and the source node.

FIG. 3 is a flowchart illustrating a mechanism for
locating the next-hop router along the path from the source node
to the destination node using TTL.

FIG. 4 is a flowchart illustrating the overall
mechanism for locating the next router utilizing either an SNMP
query or UDP probe packet.

FIG. 5 is a block diagram of a general purpose
computer, for implementing the various path determination
methods of this invention.

led .

FIG. 1 illustrates a general example, where there is a
source node 11, a destination node 12, and a querying node 13.
Additionally, there are routers rl and r2 between the querying
node 13 and the source node 11, and routers r3, r4 and rb5
between the source node 11 and destination node 12. This
representative network will be used to illustrate the method of
the present invention.

In a first incremental TTL mechanism, illustrated in

FIG. 2, we set a socket in query node 13, used for sending the

10

15

20

25

30

35

WO 96/13108 PCT/1B95/01027

- 21 -

UDP probe packets, to "1oose route" all packets through the
source node 11. In this manner, we determine the number of
routers between the querying node 13 and the source node 11,
i.e., rl and r2.

' Once we know one router on the path, i.e., by the
above incremental TTL mechanism, we can send an SNMP query to
read its routing table to find out the next router on the path
for the destination, along with the port which takes us to the
next router. If this fails, we revert to the incremental TTL
mechanism to find the next-hop router. If both fail, we still
continue, adding an unknown router to the path list. our
subsequent discovery of a network management system topology
database, e.g., the Spectrum™ program sold by Cabletron Systems,
Inc. of Rochester, New Hampshire, may enable us to determine all
unknown router nodes as well as identify any intra-router
devices on the path.

More specifically, FIG. 2 illustrates the "how_far_is
source (source, dest)" portion of our program. In step 21, we
set the "loose-source routing"” IP option on the socket through
which we are sending the UDP packets out. The source is the
loose route we specify to the socket. Thus, all packets going
through this socket will be routed through this loose route,
i.e., source. See D. Comer, "Internetworking With TCP/IP, Vol.
I, Principles, Protocols, And Architecture, " Prentice Hall, 2nd
ed., pp. 103-104 (1991). In step 22, we initialize by setting
ttl = 1, and in step 23 we send a UDP probe packet to the
destination where TTL = ttl. 1In step 24 we wait for the TTL
EXCEEDED ICMP message. If this message is received from the
source, then we return(ttl). If not, in step 25 we increment
ttl by one and send another UDP probe packet.

If we are unable to contact a router with an SNMP
query, or if we choose to continue using the TTL mechanism, we
then utilize the "find_next_hop_using_ttl(source, dest, ttl)"
portion of our program illustrated in FIG. 3. Again, in step 51
we send a UDP probe packet to the destination with TTL = ttl and
in step 52 we wait for one of the following ICMP responses: TTL
EXCEEDED, or PORT_UNREACHABLE. If the message TTL_EXCEEDED 1is

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

22

received, this message has come from one of the intermediate
hosts and in step 53 we set IP address = sender of the ICMP
message and record its Ip address in our path list. If in sStep
54 no response is received within a designated time period, in
step 55 we increment the retry_count and send another UDP probe
packet (return to step 51). If (in step 54) we have reached the
maximum period, i.e., MAX_RETRY, then we set the IP address to
an unknown IP address (step 56) and enter the same in the path
list.

If a PORT_UNREACHABLE message is received (step 57),
this message can only come from the destination and therefore we
enter the IP address of the destination in our path list and we
are finished.

FIG. 4 illustrates generally a preferred method in
which we first try an SNMP search 31 (assuming we have a known
router), and if it is Successful (step 32), we continue to
increment TTL (step 34) and then return to conduct an SNMpP
search (step 31) on the next-hop router. 1If the SNMP search is
not successful, we send (step 33) a UDP probe packet to
determine the next-hop router. 1IFf this is successful (step 35),
wWe again increment TTL (step 34) and then conduct an SNMP search
on the next-hop router. If the UDP probe packet Search is not
successful, we add (step 36) an unknown router address to our
path list and then increment TTL (step 34). Once we have
reached the destination, we can then query our management
database (i.e., Spectrum™) (step 37) to determine all the
intra-router devices, i.e. layer-2 devices including hubs,
bridges, etc., between each pair of routers discovered
Previously. We can also use the management database to try to
resolve the unknown router nodes in the path list. Essentially,
Weé use management database's knowledge of how the various device
models are connected to each other. For example, Spectrum™
acquires this knowledge during an "autodiscovery" process of all
the devices on the network. The Spectrum™ network management
platform
is described in U.s. Patent No. 5,261,044 and in copending and
commonly owned U.S. Serijal No. 07/797,121 filed November 22,

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 23 -

1991 by R. Dev et al., which are hereby incorporated by
reference in their entirety. Spectrum™ implements the
Autodiscovery process described in copending and commonly owned
U.S. Serial No. 08/115,232 filed September 1, 1993 by T. Orr et
al., which is also incorporated by reference in its entirety.
The present invention is not limited to use of the Spectrum™
database, but contemplates the use of any such topology database
which defines the relative location of devices on the network.

The program may be implemented in a general purpose
computer 41 such as shown in FIG. 5. As can be seen, the
general purpose computer includes a computer processing unit
(CPU) 42, memory 43, a processing bus 44 by which the CPU can
access the memory, and access to a network 45.

The following code can be used to illustrate the

method of this invention:

discover_ip_path (source, dest)

(
//Variables used:

//

// source : user specified source IP address

// dest . user specified destination IP address
// curr_ttl : this will be used to find the next

router when the TTL mechanism is
used.

// path_list: 1list used for storing the discovered
path

sending-socket = open a RAW socket to send out
the UDP probe packets.

if (source is same as the station running this
application)
(
curr_ttl = O
)
else

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 24 -

Set the sending-socket to loose-route UDP probe
packets through the source. This will be used in
"how_far_is_source" and "trace_next_hop_using_
ttl" calls below.

curr_ttl = how_far_is_source (source, dest)

curr_node source
path_list = empty list.
while (curr_node != dest)
(

next_hop = NULL

if (curr_node is a router and Spectrum has a SNMP
model for it)
(
next_hop = trace_next_hop_using_snmp (dest.
curr_node)
)
if (! next_hop) // SNMP method failed. Let's try
TTL method.
(
next_hop = trace_next_hop_using_ttl (dest, curr_
ttl);
)
if (! next_hop) // Even the TTL method failed.
(
path_list->add (unknown_router) ;
)
else
(
path_list->add (next_hop)
)

curr_ttl++ // increment curr_ttl

5

10

15

20

25

30

35

)

WO 96/13108 PCT/IB95/01027

- 25 -

curr_node = next_hop

phase_2_discovery (path_list);

how_far_is_source (source, dest)

(

)

Use incremental TTL value program to find out how many hops
away is the source from the station

running this program.

Note: that all UDP packets used herein originate from the
station running this program and are destined for dest.

The loose-routing option set above will force these packets
to take following path:

source -—--—-—----=-"" >dest

application running this program

trace_next_hop_using_ttl (dest, curr_ttl)

(

)

Sending-socket is already set to loose-route the

packets through source.

send a UDP probe packet to dest with TTL value
equal to (curr_ttl+l) and wait for the ICMP TTL_

EXPIRED message.

This message will come from the next router we

are looking for.

trace_next_hop_using_snmp (dest, curr_node)

(

This method uses SNMP queries to find out the next node in
the path. IP routing table is read from the curr_node to

find out the next hop for the given destination.

If the dest address is a.b.d.c., we try to read the next
hop values for the following addresses (in this order)
until one succeeds:

a.b.c.d

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 26 -
a.b.c.0
a.b.0.0
a.0.0.0
If the next hop value is successfully found, we also return
the corresponding port information (i.e. port of curr_node
which connects to the next-hop).

The following is an example of an SNMP routing table:

Destination Next-Hop Out_port

134.141.1.0 via 134.141.150.251 Ethernetl
134.141.7.0 via 134.141.150.251 Ethernetl
134.141.6.0 via 134.141.150.251 Ethernetl
134.141.159.0 via 134.141.155.254 Serial0

134.141.153.0 directly connected Ethernet0
134.141.152.0 directly connected Ethernetl

If a search of the IP routing table fails to find the
next hop, it returns an invalid IP address. This

causes the "discover_ip_path ()" method to use the
"find_next_hop_using_TTL ()" method to find the next
hop.

Example

The following example illustrates a method of the
invention in accordance with the representative network shown in
FIG. 1.

In this example, arrows show the path the UDP

probe packets are going to take.

querying: the node running this program

source: given source IP address

dest: given dest IP address

rl, r2: routers between querying node and source

r3, r4, r5: routers between source and dest

The socket used for sending the UDP probe packets from the

querying node is set to loose-route all packets through source.

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 27 -

Also, all the UDP probe packets are sent to dest on an unused

destination port number, SO that if the probe reaches the dest,
the dest will send us pack a PORT_UNREACHABLE ICMP message.

how_far_is_source (source, dest)

For ttl=1l, rl will send the TTL_EXCEEDED ICMP
message,

for ttl=2, r2 will send the TTL_EXCEEDED ICMP
message

for ttl=3, source will send the TTL_EXCEEDED
ICMP message

and this method will return 3.

subsequent discovery

The subsequent discovery will depend on whether we have
SNMP models for source, r3, r4 and rd5 etc. in our

spectrum™ database, €.9-,

r3 will be discovered by reading the routing table from

the source or using the TTL mechanism with TTL=4

rd4 will be discovered by reading the routing table from

r3 or using the TTL mechanism with TTL=5

Similarly r5 will be discovered by reading the routing

table from r4 or using the TTL mechanism with TTL=6

Finally, we will know that dest is directly connected
to r5, either by reading a direct routing entry for
dest from r5, or using TTL mechanism (TTL=7) we will

recelve a PORT_UNREACHABLE ICMP message from the dest.

Having thus described a particular embodiment of

the invention, various alterations, modifications and

5

WO 96/13108 PCT/IB95/01027

28
improvements will readily occur to those skilled in the art.
Accordingly, the foregoing
description is by way of example only, and not intended to be

limiting. The invention is limited only as defined in the
following claims and the equivalents thereto.

5

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 29 -

CLAIMS
1. A method for determining a path list of IP
addresses for next-hop routers on a path between a source IP
address and a destination IP address, the method comprising the
steps of:
sending a series of UDP probe packets out a socket
of a querying node to find successive next-hop routers
on the path, the UDP probe packets having a destination
field set with the destination IP address and a TTL
field set with an initial value of one and being
monotonically incremented to find each successive
next-hop router until the destination is reached;
setting the socket of the querying node to loose
route the UDP probe packets through the source IP
address; and
recording in the path 1ist the next-hop router IP
address returned following each one of the series of

UDP probe packets.

2. The method of claim 1, further including sending
an SNMP query to a router on the path in order to find the
next-hop router on the path, and if the SNMP query fails,
reverting to sending the next UDP probe packet.

3. The method of claim 2, further including if the
UDP probe packet fails to provide the next-hop router IP
address, selecting an unknown next-hop router IP address to

record in the path list.

4. The method of claim 3, further including sending a
query to a topology information database to determine any
unknown next-hop router IP addresses and any intra-router

devices on the path.

5. A method for determining a communications path
between a source and a destination on a network using IP,

comprising the steps of:

10

15

20

25

30

35

WO 96/13108 PCT/1B95/01027

- 30 -

a. determining a current router on the communications
path; and
b. determining a next router on the communications
path from the current router on the communications
path, including the steps of:
b(i) determining the next router via an
SNMP query of the current router;
b(ii) determining the next router by
sending a UDP probe packet when an
SNMP query fails to indicate the

next router.

6. The method of claim 5, further including the Step
of:
€. iterating step b. until the the next router is
determined to be the destination.

7. The method of claim 5, wherein step a. further
including the steps of:

a(i) setting a TTL value to 1;

a(ii) sending a UDP probe packet with
the TTL value to the source;

a(iii) awaiting receipt of a TTL_EXCEEDED
ICMP message from a current
router;

a(iv) determining the IP address of the
current router; and

a(v) incrementing TTL, and repeating
steps a(ii), a(iii), and a (iv)
until the TTL_EXCEEDED ICMP
message is received from the

source.

8. The method of claim 5, wherein Step b(i) includes
the steps of:
b(i) (1) querying the current router for a

routing table; and

5

10

15

20

25

30

35

WO 96/13108 PCT/IB95/01027

- 31 -

b(i) (2) determining the next router from the

routing table.

9. The method of claim 5, wherein step b(ii) further

includes the steps of:

b(ii) (1) setting a TTL value to one plus the
number of routers, including the
source as a router, between a querying
node and the current router;

b(ii) (2) sending a UDP probe packet with the
TTL value to the destination through
the source, with loose source routing
specified;

b(ii) (3) awaiting receipt of a TTL_EXCEEDED
ICMP message;

b(ii) (4) determining the IP address of the next
router; and

b(ii) (5) incrementing TTL, and repeating steps
b(ii) (2)-(4) until the TTL_EXCEEDED
ICMP message 1is received from the

destination.

10. The method of claim 5, wherein step b. includes

the step of adding the next router to a path list.

11. An apparatus for determining a communications path
between a source and a destination on a network using IPF,
comprising:

means for determining a router on the
communications path;

means for determining a next router on the
communications path from a current router on the
communications path;

wherein the means for determining a next router
includes:

meéns for determining the next router via an

SNMP query; and

10

15

20

25

WO 96/13108 PCT/IB95/01027

32

means for determining the next router by
sending a UDP probe packet when an SNMP query
fails to indicate the next router.

12. The apparatus of claim 11, further including:

means for iterating the means for determining a
next router until the the next router is determined to
be the destination.

13. An electronic storage media, containing data
representing a computer Program, wherein the electronic storage
media, when connected with a general purpose computer,
comprises:

means for determining a current router on a
communications path from a source to a destination;
means for determining a next router on the
communications path from a current router on the communications
path, including:
means for determining the next router via an
SNMP query;
means for determining the next router by
sending a UDP probe packet when an SNMP query fails to indicate
the next router;
lmeans for iterating the means for determining
the next router until the next router is determined to be the
destination.

WO 96/13108 PCT/IB95/01027

173

12

DESTINATION
NODE

13

FIG. 1

21

SET THE SOCKET, USED FOR SENDING THE UDP
PROBE PACKETS, TO LOOSE-ROUTE ALL PACKETS
THROUGH source.

22

\
t=A

23

\

SEND A UDP PROBE PACKET TO dest WITH
TTL=1tl, AND WAIT FOR THE

—
TTL_EXCEEDED ICMP MESSAGE.
25 < 24
) NO THE ABOVE
tH=ttiel | RESPONSE FROM

THE source

YES

RETURN (tt1)

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 96/13108

PCT/IB95/01027

51

SEND A UDP PROBE PACKET
TTL=111 AND WAIT FOR ONE OF
ICMP RESPONSES

TTL_EXCEEDED, OR PORT -

UNREACHABLE

TO dest WITH
THE FOLLOWING

:.55

INCREMENT RETRY_COUNT

NO RESPONSE / RESP

\

(TIMEOUT)

RETRY_COUNT

EQUALS TO

MAX_RETRY
?

TYPE

52
(&_ \. TTL_EXCEEDED

PORT
UNREACHABLE

53

v \

THIS MESSAGE HAS COME FROM
ONE OF THE INTERMEDIATE HOST.
| P_LADDRESS=SENDER OF THE
ABOVE

YES
56 ICMP MSG.
lP_ADDRESS="??.??.?’?.’??"
|.E. UNKNOWN IP 57
THIS MESSAGE CAN ONLY
COME FROM dest.
|P_ADDRESS=dest

g

RETURN (IP_ ADDRESS)

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 96/13108

31

SNMP
SEARCH

SUCCESSFUL
?

YES

32

3/3
33
§
UDP PROBE
PACKET
SEARCH
35
NO

YES

PCT/IB95/01027

36

ADD
UNKNOWN

ROUTER
M .P?.7.P?

INCREMENT TTL

37

QUERY
SPECTRUM
DATABASE

34

SUBSTITUTE SHEET (RULE 26)

—

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

