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TECHNOLOGIES FOR CONTROL FLOW 
EXPLOIT MITIGATION USING PROCESSOR 

TRACE 

CROSS - REFERENCE TO RELATED U . S . 
PATENT APPLICATION 

JOP exploits using indirect branch target security are further 
described in U . S . patent application Ser . No . 14 / 570 , 507 , 
filed on Dec . 15 , 2014 , and entitled Technologies for Indirect 
Branch Target Security . 
[ 0006 ] Address space layout randomization ( ASLR ) is a 
security technique implemented by certain operating sys 
tems ( e . g . , WindowsTM , LinuxTM , and OS X® ) . ASLR may 
mitigate ROP and JOP exploits . However , separate memory 
disclosure attacks may be used by malware to bypass ASLR . 

[ 0001 ] This application is a continuation application of 
U . S . application Ser . No . 14 / 670 , 988 , entitled “ TECH 
NOLOGIES FOR CONTROL FLOW EXPLOIT MITIGA 
TION USING PROCESSOR TRACE , ” which was filed on 
Mar . 27 , 2015 . 

BACKGROUND 
[ 0002 ] Return - oriented programming ( ROP ) exploits are 
an increasingly common form of malicious software ( mal 
ware ) that may circumvent certain defenses that mark loca 
tions of memory as non - executable . An ROP exploit works 
by stringing together a large number of existing segments of 
executable code that each end with a “ return ” instruction 
( known as gadgets ) . Each ROP gadget is typically short , and 
typically does not correspond to an existing procedure or 
even an existing instruction boundary in the executable 
code . The attacker constructs a malicious stack including a 
series of return addresses pointing to the desired sequence of 
gadgets . The ROP exploit is performed by causing the 
processor of the computer to execute software using the 
malicious stack instead of the legitimate system stack . For 
example , the malicious stack may be introduced by smash 
ing the stack , using a buffer overflow exploit , pivoting to a 
new stack , or otherwise corrupting the system stack . Jump 
oriented programming ( JOP ) exploits are similar , but target 
gadgets that end with an indirect jump instruction rather than 
a return instruction . 
[ 0003 ] Certain ROP exploits may be prevented by main 
taining a “ shadow stack ” in parallel with the ordinary system 
stack ( also called the “ legacy stack ” ) . The shadow stack 
maintains a copy of the legacy stack in memory inaccessible 
to ordinary software , and may be used to determine if the 
legacy stack has been tampered with by malware . The 
shadow stack may be implemented using binary instrumen 
tation , which introduces a significant performance slow 
down for some usages . Technologies for protecting from 
ROP exploits using a shadow stack are further described in 
U . S . patent application Ser . No . 14 / 498 , 075 , filed on Sep . 
26 , 2014 , and entitled Hardware Shadow Stack Support for 
Legacy Guests . 
[ 0004 ] Other measures are available to help prevent ROP 
exploits . For example , " canary ” values may be inserted near 
return addresses in the stack , and may be monitored for 
changes . As another example , " control transfer terminating 
instructions ” may be inserted into binaries to specifically 
identify legitimate return targets . However such measures 
may require recompiling or otherwise modifying guest soft 
ware . Additionally , certain processor architectures may pro 
vide a call stack that is inaccessible to certain software . For 
example , certain microcontrollers may maintain a call stack 
that is inaccessible to software . As another example , certain 
processor architectures may maintain call stack information 
in a separate memory region from other stack values such as 
automatic variables . 
[ 0005 ] Certain JOP exploits may be prevented by tagging 
or otherwise identifying authorized target locations for indi - 
rect branch instructions . Technologies for protecting from 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0007 ] The concepts described herein are illustrated by 
way of example and not by way of limitation in the accom 
panying figures . For simplicity and clarity of illustration , 
elements illustrated in the figures are not necessarily drawn 
to scale . Where considered appropriate , reference labels 
have been repeated among the figures to indicate corre 
sponding or analogous elements . 
10008 ] . FIG . 1 is a simplified block diagram of at least one 
embodiment of a computing device for control flow exploit 
mitigation ; 
[ 0009 ] FIG . 2 is a simplified block diagram of at least one 
embodiment of an environment of the computing device of 
FIG . 1 ; 
[ 0010 FIGS . 3A and 3B are a simplified flow diagram of 
at least one embodiment of a method for control flow exploit 
mitigation that may be executed by the computing device of 
FIGS . 1 and 2 ; 
[ 0011 ] FIG . 4 is a simplified flow diagram of at least one 
embodiment of a method for heuristic control flow exploit 
detection that may be executed by the computing device of 
FIGS . 1 and 2 ; 
[ 0012 ] . FIG . 5 is a simplified flow diagram of at least one 
embodiment of a method for processor instruction tracing 
that may be executed by the computing device of FIGS . 1 
and 2 ; 
[ 0013 ] . FIG . 6 is a simplified flow diagram of at least one 
embodiment of a method for processor instruction tracing 
and exploit detection that may be executed by the computing 
device of FIGS . 1 and 2 ; 
[ 00141 . FIG . 7 is a simplified flow diagram of at least one 
embodiment of a method for control flow exploit detection 
that may be executed by the computing device of FIGS . 1 
and 2 ; and 
[ 0015 ] FIG . 8 is a schematic diagram illustrating a 
memory page that may be executed by the method of FIG . 

DETAILED DESCRIPTION OF THE DRAWINGS 
10016 ] While the concepts of the present disclosure are 
susceptible to various modifications and alternative forms , 
specific embodiments thereof have been shown by way of 
example in the drawings and will be described herein in 
detail . It should be understood , however , that there is no 
intent to limit the concepts of the present disclosure to the 
particular forms disclosed , but on the contrary , the intention 
is to cover all modifications , equivalents , and alternatives 
consistent with the present disclosure and the appended 
claims . 
[ 0017 ] References in the specification to “ one embodi 
ment , " " an embodiment , " " an illustrative embodiment , " etc . , 
indicate that the embodiment described may include a 
particular feature , structure , or characteristic , but every 
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embodiment may or may not necessarily include that par 
ticular feature , structure , or characteristic . Moreover , such 
phrases are not necessarily referring to the same embodi 
ment . Further , when a particular feature , structure , or char - 
acteristic is described in connection with an embodiment , it 
is submitted that it is within the knowledge of one skilled in 
the art to effect such feature , structure , or characteristic in 
connection with other embodiments whether or not explic 
itly described . Additionally , it should be appreciated that 
items included in a list in the form of at least one A , B , and 
C ” can mean ( A ) ; ( B ) ; ( C ) ; ( A and B ) ; ( A and C ) ; ( B and C ) ; 
or ( A , B , and C ) . Similarly , items listed in the form of “ at 
least one of A , B , or C ” can mean ( A ) ; ( B ) ; ( C ) ; ( A and B ) ; 
( A and C ) ; ( B and C ) ; or ( A , B , and C ) . 
[ 0018 ] The disclosed embodiments may be implemented , 
in some cases , in hardware , firmware , software , or any 
combination thereof . The disclosed embodiments may also 
be implemented as instructions carried by or stored on a 
transitory or non - transitory machine - readable ( e . g . , com 
puter - readable ) storage medium , which may be read and 
executed by one or more processors . A machine - readable 
storage medium may be embodied as any storage device , 
mechanism , or other physical structure for storing or trans 
mitting information in a form readable by a machine ( e . g . , 
a volatile or non - volatile memory , a media disc , or other 
media device ) . 
[ 0019 ] In the drawings , some structural or method features 
may be shown in specific arrangements and / or orderings . 
However , it should be appreciated that such specific arrange 
ments and / or orderings may not be required . Rather , in some 
embodiments , such features may be arranged in a different 
manner and / or order than shown in the illustrative figures . 
Additionally , the inclusion of a structural or method feature 
in a particular figure is not meant to imply that such feature 
is required in all embodiments and , in some embodiments , 
may not be included or may be combined with other 
features . 
[ 0020 ] Referring now to FIG . 1 , an illustrative computing 
device 100 for control flow exploit detection and mitigation 
includes a processor 120 having hardware real - time instruc 
tion tracing ( RTIT ) support . In use , as described below , the 
computing device 100 executes software with RTIT support 
enabled and the processor 120 automatically outputs trace 
data indicative of the control flow of the software . An exploit 
detector periodically analyzes the trace data to identify 
potential control flow exploits . For example , the exploit 
detector may apply one or more heuristic checks to the trace 
data to identify suspicious behavior , or may maintain a 
shadow stack based on the trace data that may be used to 
identify suspicious behavior . In some embodiments , the 
processor 120 may support real - time control flow exploit 
detection . The processor 120 may automatically output trace 
data indicative of the control flow of executing software and , 
in response to detecting mispredicted return instructions , 
invoke a mispredicted return handler . The mispredicted 
return handler may maintain a shadow stack based on the 
trace data that may be used to identify suspicious behavior . 
Thus , the computing device 100 may provide for efficient 
monitoring for control flow exploits ( including both return 
oriented programming and jump - oriented programming 
exploits ) without modifying client software . The RTIT 
based monitoring of the computing device 100 may be used 
to enable shadow stack monitoring and may be resistant to 
memory disclosure attacks . 

[ 0021 ] The computing device 100 may be embodied as 
any type of device capable of real - time instruction tracing 
and otherwise performing the functions described herein . 
For example , the computing device 100 may be embodied 
as , without limitation , a computer , a desktop computer , a 
workstation , a server computer , a laptop computer , a note 
book computer , a tablet computer , a smartphone , a mobile 
computing device , a wearable computing device , a distrib 
uted computing system , a multiprocessor system , a con 
sumer electronic device , a smart appliance , and / or any other 
computing device capable of real - time instruction tracing . 
As shown in FIG . 1 , the illustrative computing device 100 
includes the processor 120 , an I / O subsystem 124 , a memory 
126 , and a data storage device 128 . Of course , the computing 
device 100 may include other or additional components , 
such as those commonly found in a computer ( e . g . , various 
input / output devices ) , in other embodiments . Additionally , 
in some embodiments , one or more of the illustrative com 
ponents may be incorporated in , or otherwise form a portion 
of , another component . For example , the memory 126 , or 
portions thereof , may be incorporated in the processor 120 
in some embodiments . 
[ 0022 ] The processor 120 may be embodied as any type of 
processor capable of performing the functions described 
herein . For example , the processor 120 may be embodied as 
a single or multi - core processor ( s ) , digital signal processor , 
microcontroller , or other processor or processing / controlling 
circuit . The processor 120 includes real - time instruction 
tracing ( RTIT ) support 122 . The RTIT support 122 may be 
embodied as any hardware , microcode , firmware , or other 
components of the processor 120 capable of generating trace 
data that may be used to reconstruct the control flow 
executed by the processor 120 . The RTIT support 122 may 
log data packets relating to whether conditional branches are 
taken or not taken , target addresses of indirect branch 
instructions , target addresses of mispredicted return instruc 
tions , and other data related to control flow . The trace data , 
in combination with the in - memory image of the executed 
application , may be used to reconstruct the control flow 
executed by the processor 120 . For example , the RTIT 
support 122 may log the return addresses associated with 
call instructions as they are executed . When a return instruc 
tion is executed , the RTIT support 122 may determine 
whether the target address of the return instruction matches 
the logged return address of the corresponding call instruc 
tion . If those addresses do not match that is , if the return 
instruction is mispredicted — the RTIT support 122 may 
output a data packet including the target address of the return 
instruction . In some embodiments , the RTIT support 122 
may compress the trace data for some or all predicted returns 
by outputting only a bit indicating that a return instruction 
was taken . A processing device implementing minimizing 
bandwidth to track return targets by an instruction tracing 
system is described in Strong et al . , U . S . Patent Application 
Publication No . 2014 / 0337604 , filed on May 9 , 2013 . The 
RTIT support 122 may be embodied as , for example , Intel® 
Processor Trace ( PT ) technology . 
[ 0023 ] Similarly , the memory 126 may be embodied as 
any type of volatile or non - volatile memory or data storage 
capable of performing the functions described herein . In 
operation , the memory 126 may store various data and 
software used during operation of the computing device 100 
such as operating systems , applications , programs , libraries , 
and drivers . The memory 126 is communicatively coupled to 
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the processor 120 via the I / O subsystem 124 , which may be 
embodied as circuitry and / or components to facilitate input / 
output operations with the processor 120 , the memory 126 , 
and other components of the computing device 100 . For 
example , the I / O subsystem 124 may be embodied as , or 
otherwise include , memory controller hubs , input / output 
control hubs , firmware devices , communication links ( i . e . , 
point - to - point links , bus links , wires , cables , light guides , 
printed circuit board traces , etc . ) and / or other components 
and subsystems to facilitate the input / output operations . In 
some embodiments , the I / O subsystem 124 may form a 
portion of a system - on - a - chip ( SOC ) and be incorporated , 
along with the processor 120 , the memory 126 , and other 
components of the computing device 100 , on a single 
integrated circuit chip . 
[ 0024 ] The data storage device 128 may be embodied as 
any type of device or devices configured for short - term or 
long - term storage of data such as , for example , memory 
devices and circuits , memory cards , hard disk drives , solid 
state drives , or other data storage devices . 
[ 0025 ] In some embodiments , the computing device 100 
may also include communication circuitry 130 and one or 
more peripheral devices 132 . The communication circuitry 
130 of the computing device 100 may be embodied as any 
communication circuit , device , or collection thereof , capable 
of enabling communications between the computing device 
100 and other remote devices over a computing network . 
The communication circuitry 130 may be configured to use 
any one or more communication technology ( e . g . , wired or 
wireless communications , Ethernet , Bluetooth® , Wi - Fi® , 
WiMAX , Infiniband , etc . ) and associated protocols ( e . g . , 
TCP , UDP , iWARP , RDMA , etc . ) to effect such communi 
cation . The peripheral devices 132 may include any number 
of additional input / output devices , interface devices , and / or 
other peripheral devices . For example , in some embodi 
ments , the peripheral devices 132 may include a display , 
touch screen , graphics circuitry , keyboard , mouse , speaker 
system , and / or other input / output devices , interface devices , 
and / or peripheral devices . 
[ 0026 ] Referring now to FIG . 2 , in the illustrative embodi 
ment , the computing device 100 establishes an environment 
200 during operation . The illustrative embodiment 200 
includes a process / thread 202 , a processor trace module 204 , 
an exploit detector module 208 , and a security response 
module 216 . The various modules of the environment 200 
may be embodied as hardware , firmware , software , or a 
combination thereof . For example , the various modules , 
logic , and other components of the environment 200 may 
form a portion of , or otherwise be established by , the 
processor 120 or other hardware components of the com 
puting device 100 . As such , in some embodiments , any one 
or more of the modules of the environment 200 may be 
embodied as a circuit or collection of electrical devices ( e . g . , 
a processor trace circuit , an exploit detector circuit , etc . ) . 
[ 0027 ] The process / thread 202 may be embodied as any 
operating system process , thread , lightweight process , or 
other program executed by the computing device 100 . The 
process / thread 202 executes a stream of instructions that 
may include control flow instruction such as call instruc 
tions , return instructions , and indirect branch instructions . 
The process / thread 202 may maintain a stack in the memory 
126 used to store return addresses , stack base pointers , 
function parameters , and other data . In some embodiments , 
each thread of a process may maintain its own stack . The 

process / thread 202 may execute in user mode or otherwise 
execute with limited privileges . 
[ 0028 ] The processor trace module 204 is configured to 
generate trace data indicative of control flow of the process / 
thread 202 executed by the computing device 100 . The 
processor trace module 204 may include , invoke , or other 
wise use the RTIT support 122 of the processor 120 to 
generate part or all of the trace data . The trace data may be 
stored in a trace data area 206 in the memory 126 . The trace 
data area 206 may be marked as write - only or otherwise 
protected from unauthorized access or modification . In some 
embodiments , the trace data area 206 may be inaccessible to 
unprivileged software . Additionally , in some embodiments , 
the processor trace module 204 may be configured to detect 
a mispredicted return instruction as it is executed and invoke 
a mispredicted return handler 210 , described below , in 
response to detecting the mispredicted return instruction . 
[ 0029 ] The exploit detector module 208 is configured to 
analyze the trace data to identify a suspected control flow 
exploit and determine a cost value associated with the 
suspected control flow exploit . The exploit detector module 
208 may be configured to analyze the trace data using a 
heuristic algorithm to identify suspected return - oriented 
programming exploits , or to analyze the trace data for 
illegitimate branch targets to identify suspected jump - ori 
ented programming exploits . 
[ 0030 ] The exploit detector module 208 may be config 
ured to update a shadow stack associated with the process 
thread 202 based on the trace data and analyze the shadow 
stack using a heuristic algorithm to identify suspected 
return - oriented programming exploits . The shadow stack 
may be stored in a shadow stack area 214 in the memory 
126 , which may be marked as inaccessible or otherwise 
protected from unauthorized access or modification by 
unprivileged software . In some embodiments , the exploit 
detector module 208 may be further configured to determine 
whether the current shadow stack is valid ( e . g . , the current 
shadow stack has not been tampered with ) in response to 
invocation of the mispredicted return handler 210 . The 
mispredicted return handler 210 may be embodied as any 
function , interrupt service routine , or other procedure that 
may be executed in the context of the process / thread 202 in 
response to detection of a mispredicted return instruction . 
The mispredicted return handler 210 may encode data in the 
trace data area 206 using a handler key 212 . The handler key 
212 may be protected from memory disclosure attacks . For 
example , the handler key 212 may be stored as an immediate 
value in a memory page marked execute - only using 
extended page tables ( EPT ) support of the processor 120 . 
[ 0031 ] The security response module 216 is configured to 
handle the suspected control flow exploit based on the cost 
value . The security response module 216 may be configured 
to , for example , notify the user of the suspected exploit , 
terminate the process / thread 202 , or perform any other 
appropriate security response . The security response module 
216 may be configured to handle the suspected control flow 
exploit if a total cost budget has been exceeded . The exploit 
detector module 208 may be further configured to identify a 
non - suspicious instruction or instruction pattern based on 
the trace data and then reset the total cost budget . In some 
embodiments , the security response module 216 may be 
configured to handle the suspected control flow exploit in 
response to the mispredicted return handler 210 determining 
that the current shadow stack is not valid . 
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[ 0032 ] Referring now to FIGS . 3A and 3B , in use , the 
computing device 100 may execute a method 300 for control 
flow exploit mitigation . The method 300 begins in block 
302 , in which the computing device 100 initializes real - time 
instruction tracing using the RTIT support 122 of the pro 
cessor 120 . The computing device 100 may , for example , 
execute one or more specialized processor instructions , 
write to one or more control registers , or otherwise com 
mand the processor 120 to enable the RTIT support 122 . 
After enabling the RTIT support 122 , the processor 120 
generates trace data based on the executed instruction flow . 
As described above , the trace data may be stored by the 
processor 120 in the trace data area 206 . In some embodi 
ments , in block 304 , the computing device 100 may inject 
additional data into the trace data stream to allow shadow 
stack monitoring . For example , the computing device 100 
may inject additional data packets for direct call instruc 
tions , return instructions , or other data . The computing 
device 100 may inject the data , for example , using a spe 
cialized processor instruction such as PTWRITE . The pro 
cess / thread 202 may be modified to include those special 
ized processor instructions to output the additional data 
packets . One illustrative embodiment of a method for out 
putting additional data packets is described further below in 
connection with FIG . 5 . 
[ 0033 ] In block 306 , the computing device 100 monitors 
for preemption of the process / thread 202 . For example , the 
computing device 100 may monitor for the expiration of a 
timeslice assigned to the process / thread 202 . The computing 
device 100 may use a hypervisor to monitor for changes to 
active memory page translation tables , for example moni 
toring for MOV instructions targeting the CR3 register . By 
monitoring for preemption of the process / thread 202 , the 
computing device 100 may regularly perform exploit detec 
tion while the process / thread 202 is executing . Additionally 
or alternatively , the computing device 100 may perform 
exploit detection at other times . For example , in some 
embodiments the computing device 100 may monitor for 
other , similar events that recur regularly during execution of 
the process / thread 202 . As another example , in some 
embodiments the computing device 100 may monitor for 
one or more events that indicate that the state of the 
process / thread 202 should be inspected to detect exploits , 
such as mispredicted return instructions or one or more ROP 
heuristics as described in Fischer et al . , U . S . Patent Appli 
cation Pub . No . 2014 / 0123281 and Fischer et al . , U . S . Patent 
Application Pub . No . 2014 / 0123286 . 
[ 0034 ] In block 308 , the computing device 100 determines 
whether process preemption has occurred . If not , the method 
300 loops back to block 304 to continue monitoring for 
process preemption while the processor 120 continues to 
generate trace data . If process preemption has occurred the 
method 300 advances to block 310 . 
[ 0035 ] In block 310 , the computing device 100 analyzes 
the RTIT trace data generated by the processor 120 during 
the previous timeslice to identify potential control - flow 
exploits . In some embodiments , in block 312 the computing 
device 100 may identify suspected return - oriented program 
ming ( ROP ) exploits . The computing device 100 may , for 
example , examine the trace data for suspicious activity using 
one or more heuristic checks . The computing device 100 
may not fully reconstruct the control flow of the process / 
thread 202 , which may improve performance . For example , 
the computing device 100 may apply one or more heuristic 

checks to every target instruction pointer ( TIP ) packet 
included in the trace data . One illustrative embodiment of a 
method for identifying suspected ROP exploits is described 
below in connection with FIG . 4 . 
10036 ] . In some embodiments , in block 314 , the computing 
device 100 may construct and / or maintain a shadow stack in 
the shadow stack area 214 based on the trace data and 
identify suspected ROP exploits by comparing the active 
system stack to the shadow stack . The computing device 100 
may , for example , examine the system stack for suspicious 
activity using one or more heuristic checks as described in 
U . S . patent application Ser . No . 14 / 498 , 075 , filed on Sep . 
26 , 2014 , and entitled Hardware Shadow Stack Support for 
Legacy Guests . Additionally or alternatively , in some 
embodiments the computing device 100 may maintain the 
shadow stack by monitoring for certain control flow instruc 
tions using the hardware RTIT support 122 of the processor 
120 as further described below in connection with FIGS . 
6 - 8 . 
[ 0037 ] In some embodiments , in block 316 , the computing 
device 100 may identify suspected jump - oriented program 
ming ( JOP ) exploits . The computing device 100 may inspect 
the destination of target instruction pointer ( TIP ) packets 
stored in the trace data . TIP packets may be generated , for 
example , in response to invocation of indirect call instruc 
tions or in response to execution of mispredicted return 
instructions ( that is , return instructions that do not corre 
spond to an observed call instruction ) or some or all pre 
dicted return instructions . The computing device 100 may 
compare the target address of each TIP packet to a database 
of allowable branch destinations . Each allowable branch 
destination may correspond , for example , to the beginning 
of a function . Thus , the computing device 100 may detect 
indirect branches to disallowed branch targets . The proces 
sor 120 may not generate TIP packets for direct branch 
instructions ; however , direct branch instructions are implic 
itly authorized by the compiler that emitted them , meaning 
that any unintended direct branches could only be reached 
indirectly after execution of an indirect branch instruction 
with a disallowed target address . 
[ 0038 ] In block 318 , the computing device 100 determines 
whether a suspected exploit has been found . If not , the 
method 300 branches ahead to block 330 , shown in FIG . 3B 
and described below . If a suspected exploit has been found , 
the method 300 advances to block 320 . 
[ 0039 ] In block 320 , the computing device 100 determines 
a cost value associated with the suspected exploit . The cost 
value associated with the suspected exploit indicates the 
likelihood that the suspected exploit is an actual exploit . In 
some embodiments , in block 322 , the computing device 100 
may assign a higher cost value to suspected exploits with a 
shorter gadget length . The gadget length identifies the dis 
tance between the entry point into the ROP gadget and the 
return instruction at the end of the gadget . Typical ROP 
gadgets are short ; thus , short gadget length indicates the 
possibility of malicious behavior and accordingly has a 
higher cost value . 
[ 0040 ] The computing device 100 may estimate the ROP 
gadget length by searching in memory for a return instruc 
tion opcode starting at the target address of a TIP packet . The 
computing device 100 may search within a short distance in 
memory , for example , 280 bytes . The gadget length may be 
reduced by a constant modifier ( e . g . , 9 bytes ) if the gadget 
length is over a threshold ( e . g . , 10 bytes ) . If the gadget 
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length is below the threshold , the gadget length may be set 
to a minimum value ( e . g . , 1 byte ) , so that all gadgets shorter 
than the threshold are treated similarly . Those adjustments 
avoid treating individual short processor instructions as 
dramatically more suspicious than individual longer instruc 
tions , which may be important for processor instruction sets 
with variable instruction length . The cost value may be 
computed by dividing a maximum gadget length ( e . g . , 280 
bytes ) by the adjusted gadget length . Thus , the cost value 
increases rapidly as the gadget length shortens . The cost 
value may be computed by evaluating Equations 1 and 2 , 
shown below . 

( 1 ) AdjustedGadgetLength = 
( GadgetLength - c if GadgetLength > Threshold 

MinGadgetLength else 

( 2 ) MaxGadgetLength 
cost value = * * AdjustedGadgetLength 

[ 0041 ] In block 324 , the computing device 100 subtracts 
the cost value associated with the suspected exploit from a 
cost budget . The cost budget may be associated with the 
current process / thread 202 . Thus , the cost budget may 
become depleted as the computing device 100 detects sev 
eral suspected exploits . In block 326 , the computing device 
100 determines whether the cost budget has been exceeded 
( e . g . , the current cost budget value is zero or below zero ) . If 
not , the method 300 branches ahead to block 330 , shown in 
FIG . 3B and described below . If the cost budget has been 
exceeded , the method 300 advances to block 328 , in which 
the computing device 100 handles the suspected exploit . The 
computing device 100 may perform any appropriate security 
operation to handle the suspected exploit . For example , the 
computing device 100 may terminate the current process / 
thread 202 . Additionally or alternatively , the computing 
device 100 may report the suspected exploit , for example by 
notifying a user , logging the suspected exploit , or otherwise 
indicating that a suspected exploit has occurred . After han 
dling the suspected exploit , the method 300 is completed . 
[ 0042 ] Referring back to block 326 , if the cost budget has 
not been exceeded , the method 300 branches ahead to block 
330 shown in FIG . 3B . Referring now to FIG . 3B , in block 
330 the computing device 100 identifies any non - suspicious 
instructions or combinations of instructions in the RTIT 
trace data . The non - suspicious instructions may be embod 
ied as any instructions or combinations of instructions that 
are not likely to be executed by a control flow exploit . In 
some embodiments , in block 332 the computing device 100 
identifies taken / not - taken packets in the trace data . Taken / 
not - taken packets may correspond to direct branch instruc 
tions or correctly predicted return instructions and are typi 
cally not executed by ROP exploits or other control flow 
exploits . 
[ 0043 ] In block 334 , the computing device 100 determines 
whether non - suspicious instructions have been detected . If 
not , the method 300 loops back to block 304 to continue 
monitoring for process preemption while tracing execution 
of the process / thread 202 . If non - suspicious instructions 
have been detected , the method 300 advances to block 336 , 
in which the computing device 100 resets the cost budget for 
the current process / thread 202 . After resetting the cost 

budget , the method 300 loops back to block 304 to continue 
monitoring for process preemption while tracing execution 
of the process / thread 202 . 
[ 0044 ] Referring now to FIG . 4 , in use , the computing 
device 100 may execute a method 400 for return - oriented 
programming ( ROP ) exploit detection . The method 400 may 
be executed periodically to detect potential ROP exploits . 
For example , as described above in connection with block 
312 of FIG . 3A , the method 400 may be invoked to evaluate 
each target instruction pointer ( TIP ) packet included in the 
real - time instruction tracing ( RTIT ) trace data . The method 
400 begins in block 402 , in which the computing device 100 
identifies a flow update ( FUP ) packet followed by a target 
instruction pointer ( TIP ) packet in the trace data . FUP 
packets may be generated in response to operations such as 
interrupts , enabling transactional memory , or other opera 
tions unrelated to control flow exploits . Thus , the computing 
device 100 may filter out or otherwise disregard the com 
bination of a FUP packet followed by a TIP packet . In block 
404 , the computing device 100 determines whether a FUP 
packet immediately followed by a TIP packet has been 
identified . If so , the method 400 branches to block 424 , in 
which the computing device 100 determines that the ana 
lyzed TIP packet is not related to a suspected exploit . After 
executing block 424 , the method 400 is completed . The 
method 400 may be executed repeatedly to analyze addi 
tional TIP packets in the trace data . Referring back to block 
404 , if a FUP packet followed by a TIP packet is not 
identified , the method 400 advances to block 406 . 
[ 0045 ] In block 406 , the computing device 100 identifies 
successive TIP packets included in the RTIT trace data . ROP 
exploits involve execution of return instructions that are not 
consistent with ordinary call / return semantics . Thus , a ROP 
exploit will generate at least one TIP packet ( assuming the 
RTIT support 122 implements conservative return compres 
sion ) . Additionally , typical ROP exploits involve a chain of 
return instructions that generate several TIP packets in quick 
succession . Of course , non - return instructions may also 
generate TIP packets , but preliminary experiments using 
sample ROP exploits have indicated that testing for succes 
sive TIP packets produces acceptable results even in the 
presence of TIP packets generated by non - return instruc 
tions . In block 408 , the computing device 100 determines 
whether at least two TIP packets occurred in succession . If 
not , the method 400 branches to block 424 to determine that 
the analyzed TIP packet is not related to a suspected exploit , 
as described above . If at least two TIP packets occurred in 
succession , the method 400 advances to block 410 . 
[ 0046 ] In block 410 , the computing device 100 determines 
a distance in memory between two memory addresses 
associated with the two successive TIP packets . The com 
puting device 100 may determine the distance between the 
target instruction pointer associated with the TIP packets or 
the distance between the addresses of the return instructions 
that generated the TIP packets . Typical ROP gadgets are 
scattered widely in memory , and thus both the return instruc 
tion at the end of each gadget and the target instruction 
pointer of the return instruction ( i . e . , the entry point to the 
ROP gadget ) are scattered widely in memory . In block 412 , 
the computing device 100 determines whether the distance 
between the addresses is greater than a threshold distance . 
For example , the threshold distance may be 4096 bytes , the 
size of a memory page , or any other appropriate size . If the 
distance is not greater than the threshold , the method 400 
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branches to block 424 to determine that the analyzed TIP 
packet is not related to a suspected exploit , as described 
above . If the distance is greater than the threshold , the 
method 400 advances to block 414 . 
[ 0047 ] In block 414 , the computing device 100 finds a 
return instruction in memory following the target address of 
the TIP packet . ROP gadgets end with a return instruction . 
Thus , finding a return instruction in memory within a short 
distance following the target address may indicate that the 
TIP packet is associated with an ROP gadget . The comput 
ing device 100 may search linearly through memory for an 
opcode of a return instruction . Of course , searching for an 
opcode is an imprecise test , for example because the return 
opcode may not be reachable from the target address or the 
return opcode may not be associated with a return instruc 
tion ( e . g . , the opcode may be an immediate value or part of 
a longer instruction ) . However , preliminary tests using 
sample ROP exploits have indicated that searching for the 
opcode produces acceptable results . Because ROP gadgets 
are typically short , the computing device 100 may limit its 
search for the return opcode . In some embodiments , in block 
416 , the computing device 100 may search for the return 
instruction within a threshold distance in memory , for 
example 280 bytes . In some embodiments , in block 418 , the 
computing device 100 may reconstruct instruction flow 
starting at the target address of the TIP packet and search for 
a return instruction within a threshold number of instruc 
tions . 
10048 ] In block 420 , the computing device 100 determines 
whether a return instruction was found . If not , the method 
400 branches to block 424 to determine that the analyzed 
TIP packet is not related to a suspected exploit , as described 
above . If a return instruction was found , the method 400 
branches to block 422 . In block 422 , the computing device 
100 determines that the analyzed TIP packet is related to a 
suspected ROP exploit . After execution of the block 422 , the 
method 400 is completed . As described above in connection 
with FIG . 3A , the computing device 100 may proceed to 
determine a cost value associated with the suspected exploit 
and may generate an appropriate security response . 
[ 0049 ] Referring now to FIG . 5 , in use , the computing 
device 100 may execute a method 500 for control flow 
tracing . The method 500 may be executed during execution 
of the process / thread 202 to enable shadow stack tracking 
and analysis . For example , the method 500 may be executed 
by the process / thread 202 during its assigned timeslice , as 
described above in connection with block 304 of FIG . 3A . 
The method 500 may be embodied as one or more instruc 
tions inserted into the process / thread 202 , for example 
during program compilation . The method 500 begins in 
block 502 , in which the computing device 100 determines 
whether a call instruction is being executed by the process / 
thread 202 . If not , the method 500 branches ahead to block 
512 , described below . If a call instruction is being executed , 
the method 500 advances to block 504 . 
[ 0050 ] In block 504 , the computing device 100 outputs a 
code ( e . g . , a magic number ) to the trace data indicating that 
a call instruction is about to occur . The computing device 
100 may execute a specialized processor instruction such as 
PTWRITE to output the code to the trace data . In block 506 , 
the computing device 100 outputs the current stack pointer 
to the trace data . Similarly , the computing device 100 may 
execute a specialized processor instruction such as 
PTWRITE to output the stack pointer . Outputting the stack 

pointer value may allow the computing device 100 to 
distinguish between multiple stacks in use by the process / 
thread 202 , for example , when a process includes multiple 
threads . 
[ 0051 ] In block 508 , the computing device 100 determines 
whether the call instruction is a direct call . A direct call 
includes the destination address or destination offset as an 
operand value of the instruction . An indirect call determines 
the destination address based on the contents of a register or 
memory location . If the call instruction is not a direct call 
( i . e . , it is an indirect call ) , the method 500 branches ahead to 
block 512 , described below . If the call instruction is a direct 
call , the method 500 advances to block 510 . In block 510 , 
the computing device 100 outputs the next linear instruction 
pointer value to the trace data . The next linear instruction 
pointer value corresponds to the return address pushed on 
the stack by the direct call instruction . The computing device 
100 may execute a specialized processor instruction such as 
PTWRITE to output the return address . Note that the RTIT 
support 122 of the processor 120 automatically creates a 
target instruction pointer ( TIP ) packet with the next linear 
instruction pointer for indirect call instructions and thus that 
data need not be output as part of the method 500 . 
[ 0052 ] In block 512 , the computing device 100 determines 
whether a return instruction is being executed by the pro 
cess / thread 202 . If not , the method 500 loops back to block 
502 to continue monitoring instructions executed by the 
process / thread 202 . If a return instruction is being executed , 
the method 500 advances to block 514 . 
[ 0053 ] In block 514 , the computing device 100 outputs a 
code ( e . g . , a magic number ) to the trace data indicating that 
a return instruction is about to occur . The computing device 
100 may execute a specialized processor instruction such as 
PTWRITE to output the code to the trace data . In block 516 , 
the computing device 100 outputs the current stack pointer 
to the trace data . Similarly , the computing device 100 may 
execute a specialized processor instruction such as 
PTWRITE to output the stack pointer . As described above , 
outputting the stack pointer value may allow the computing 
device 100 to distinguish between multiple stacks in use by 
the process / thread 202 , for example , when a process 
includes multiple threads . Note that there is no need to 
output the return address to the trace data as part of the 
method 500 , because the RTIT support 122 of the processor 
120 will automatically output a TIP packet with the return 
address for mispredicted return instructions , and the return 
address may be determined from the shadow stack for 
correctly predicted return instructions . After outputting the 
stack pointer , the method 500 loops back to block 502 to 
continue monitoring instructions executed by the process / 
thread 202 . 
[ 0054 ] Referring now to FIG . 6 , in use , the computing 
device 100 may execute a method 600 for processor instruc 
tion tracing and exploit detection . The method 600 may be 
executed by hardware resources of the computing device 
100 , such as the RTIT support 122 of the processor 120 . 
Thus , the method 600 may be executed transparently to the 
process / thread 202 executed by the computing device 100 . 
The method 600 begins in block 602 , in which the comput 
ing device 100 monitors for executed instructions relevant to 
control flow exploit detection . In some embodiments , in 
block 604 the computing device 100 may monitor for call 
instructions , return instructions , and indirect jump instruc 
tions . Additionally or alternatively , the computing device 
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100 may monitor for any instruction that may be used 
similarly to an indirect jump instruction , such as certain 
combinations of transactional memory instructions . In block 
606 , the computing device 100 determines whether to trace 
the executed instruction ; that is , the computing device 100 
determines whether an instruction relevant to control flow 
exploit detection has been detected . If not , the method 600 
branches ahead to block 612 , described below . If the com 
puting device 100 determines to trace the current instruction , 
the method 600 advances to block 608 . 
[ 0055 ] In block 608 , the computing device 100 outputs a 
target instruction pointer ( TIP ) packet including the next 
linear instruction pointer for each call instruction . The trace 
data output by the computing device 100 is read - only to the 
process / thread 202 , which may prevent malicious software 
from modifying the trace data . The trace data may be 
protected , for example , using page tables of the processor 
120 . The computing device 100 may output the TIP packet 
to the trace data area 206 used for debugging - oriented RTIT , 
or may output the TIP packet to a specialized data area used 
for control flow exploit detection . In block 610 , the com 
puting device 100 outputs the current stack pointer value to 
the trace data if its value has changed to a different memory 
page from the last traced call instruction or return instruc 
tion . Outputting the stack pointer value following large 
changes may help detect stack pivots or other attacks 
involving changing the active stack . Of course , the comput 
ing device 100 may also output other trace information such 
as taken / not taken packets for conditional branches or 
returns , TIP packets for indirect jumps , metadata such as 
synchronization packets , and other information . 
[ 0056 ] In block 612 , the computing device 100 determines 
whether a mispredicted return instruction has been executed . 
As described above , when a call instruction is executed , a 
return address ( the next linear instruction pointer value ) is 
pushed onto the system stack . When a return instruction is 
executed , a return address is popped off the stack and the 
processor 120 jumps to that return address . For a computing 
device 100 performing conservative call / return consistency 
checks as described in Strong et al . , U . S . Patent Application 
Publication No . 2014 / 0337604 , a return instruction may be 
mispredicted when the return address popped off the stack 
does not match the return address pushed onto the stack by 
the call instruction at the corresponding depth in the stack . 
Mispredicted return instructions may result from ROP 
exploits or may result from non - malicious software behav 
ior . The RTIT support 122 of the processor 120 may use any 
technique for identifying mispredicted return instructions , 
for example using a dedicated hardware buffer to maintain 
a stack of return addresses associated with call instructions . 
If a mispredicted return instruction was not executed , the 
method 600 loops back to block 602 to continue monitoring 
for instructions relevant for control flow exploit detection . If 
a mispredicted return instruction was executed , the method 
600 advances to block 614 . Additionally , although illustrated 
as determining whether a mispredicted return instruction has 
been executed , it should be understood that in some embodi 
ments the computing device 100 may monitor for other 
suspicious activities , for example using one or more ROP 
heuristics as described in Fischer et al . , U . S . Patent Appli 
cation Pub . No . 2014 / 0123281 and Fischer et al . , U . S . Patent 
Application Pub . No . 2014 / 0123286 . 
[ 0057 ] In block 614 , the computing device 100 invokes 
the mispredicted return handler 210 in the process space of 

the process / thread 202 . The computing device 100 may use 
any technique for invoking the mispredicted return handler 
210 , such as raising an interrupt or trap , executing a call 
back , or jumping to a particular address associated with the 
mispredicted return handler 210 . The mispredicted return 
handler 210 is invoked in the process space of the process 
thread 202 and thus may execute with user - level privileges . 
Additionally or alternatively , in some embodiments the 
mispredicted return handler 210 may be invoked in the 
process space of an operating system and / or hypervisor . In 
some embodiments , in block 616 the computing device 100 
may provide an address pointing to the end of the trace data 
to the process / thread 202 . The address may be provided , for 
example , in a processor 120 register or as a stack parameter . 
Providing the location of the trace data directly to the 
process / thread 202 may allow the process / thread 202 to 
access the trace data without a potentially expensive call to 
an operating system and / or hypervisor . After invoking the 
mispredicted return handler 210 , the method 600 loops back 
to block 602 to monitor for additional instructions relevant 
to control flow exploit detection . 
[ 0058 ] Referring now to FIG . 7 , in use , the computing 
device 100 may execute a method 700 for shadow stack 
management and control flow exploit detection . The method 
700 may be executed as a part of the mispredicted return 
handler 210 in the process space of the process / thread 202 . 
Additionally or alternatively , as described above , the method 
700 may be executed as part of a suspected control flow 
exploit handler in response to detection of other suspicious 
activities , for example using one or more ROP heuristics as 
described in Fischer et al . , U . S . Patent Application Pub . No . 
2014 / 0123281 and Fischer et al . , U . S . Patent Application 
Pub . No . 2014 / 0123286 . The method 700 begins in block 
702 , in which the computing device 100 invokes the mis 
predicted return handler 210 . As described above in con 
nection with block 614 of FIG . 6 , hardware resources of the 
computing device 100 , such as the RTIT support 122 of the 
processor 120 , may invoke the mispredicted return handler 
210 in response to detecting execution of a mispredicted 
return instruction . In block 704 , the computing device 100 
identifies the end of trace data in the memory 126 . The 
computing device 100 may identify the end of the trace data 
using a pointer value provided by hardware resources during 
invocation of the mispredicted return handler 210 , for 
example in a processor 120 register or in a stack parameter . 
[ 0059 ] In block 706 , the computing device 100 searches 
backwards in the trace data for an encoded marker that was 
output during the previous invocation of the mispredicted 
return handler 210 . Of course , during the first invocation of 
the mispredicted return handler 210 , the computing device 
100 may search backwards for a default marker or otherwise 
search for the beginning of the trace data . The encoded 
marker includes a keyed message authentication code 
( MAC ) based on a snapshot of a shadow stack at the time of 
the previous invocation of the mispredicted return handler 
210 . 
[ 0060 ] In block 708 , the computing device 100 re - com 
putes a MAC value based on the current contents of the 
shadow stack . The computing device 100 may use any 
technique or algorithm to compute the MAC value , for 
example calculating a hash value based on the contents of 
the shadow stack . 
[ 0061 ] In block 710 , the computing device 100 encodes 
the re - computed MAC using the handler key 212 . The 
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handler key 212 may be stored in protected memory 126 that 
is not readable by the process / thread 202 , and thus may not 
be vulnerable to memory disclosure attacks . In some 
embodiments , in block 712 , the computing device 100 
recovers the handler key 212 from execute - only memory . 
For example , the handler key 212 may be stored as an 
immediate value in execute - only memory , which may be 
protected using extended page tables ( EPT ) support of the 
processor 120 . 
[ 0062 ] In block 714 , the computing device 100 compares 
the encoded MAC value from the marker determined in 
block 706 to the encoded recomputed MAC value deter 
mined in block 710 . If the encoded MAC values match , then 
the shadow stack has not changed since the last invocation 
of the mispredicted return handler 210 . Conversely , if the 
encoded MAC values do not match , then the shadow stack 
has been tampered with or otherwise modified since the last 
invocation of the mispredicted return handler 210 . 
[ 0063 ] In block 716 , the computing device 100 determines 
whether the encoded MAC values match . If not , the method 
700 branches to block 718 , in which the computing device 
100 handles a suspected ROP exploit . The computing device 
100 may , for example , examine the system stack for suspi 
cious activity using one or more heuristic checks as 
described in U . S . patent application Ser . No . 14 / 498 , 075 , 
filed on Sep . 26 , 2014 , and entitled Hardware Shadow Stack 
Support for Legacy Guests . After handling the suspected 
exploit , the method 700 is completed and ordinary execution 
of the process / thread 202 may resume . Although illustrated 
as comparing encoded MAC values , it should be understood 
that in some embodiments the computing device 100 may 
compare decoded MAC values , for example by decoding an 
encoded MAC value recovered from the trace data as 
described above in block 706 . 
[ 0064 ] Referring back to block 716 , if the encoded MAC 
values match the method 700 advances to block 720 , in 
which the computing device 100 updates the shadow stack 
based on the trace data . The computing device 100 may push 
return addresses corresponding to recorded call instructions 
onto the shadow stack , pop return addresses corresponding 
to predicted return instructions , push or pop stack base 
pointers , or otherwise perform any operation required to 
update the shadow stack to match the traced control flow of 
the process / thread 202 . 
[ 0065 ] In block 722 , the computing device 100 checks for 
suspected ROP exploits using the shadow stack . The com 
puting device 100 may , for example , examine the system 
stack for suspicious activity using one or more heuristic 
checks as described in U . S . patent application Ser . No . 
14 / 498 , 075 , filed on Sep . 26 , 2014 , and entitled Hardware 
Shadow Stack Support for Legacy Guests . In block 724 , the 
computing device 100 determines whether suspicious activ 
ity has been identified . If so , the method 700 branches to 
block 718 to handle a suspected ROP exploit , as described 
above . If the computing device 100 does not identify sus 
picious activity , the method 700 advances to block 726 . 
100661 In block 726 , the computing device 100 computes 
a MAC value based on the updated shadow stack . As 
described above in relation to block 712 , the computing 
device 100 may use any technique or algorithm to compute 
the MAC value , for example calculating a hash value based 
on the contents of the shadow stack . In block 728 , the 
computing device 100 encodes the MAC value using the 
handler key 212 . As described above , the handler key 212 is 

not readable by the process / thread 202 , and thus the com 
puting device 100 may recover the handler key 212 from 
execute - only memory . 
0067 ] In block 730 , the computing device 100 outputs the 
encoded MAC value to the trace data . In some embodi 
ments , in block 732 the computing device 100 may output 
the encoded MAC value using a specialized processor 
instruction such as PTWRITE . In some embodiments , in 
block 734 , the computing device 100 may output the 
encoded MAC by executing a pattern of indirect jumps to 
output trace data that may be used to determine the encoded 
MAC . The RTIT support 122 of the processor 120 may 
automatically output a target instruction pointer ( TIP ) packet 
to the trace data for each indirect jump . Thus , the computing 
device 100 may encode the encoded MAC value into a series 
of TIP packets by executing a carefully constructed series of 
indirect jumps . As an illustrative example , and referring now 
to FIG . 8 , the schematic diagram 800 illustrates a single 4 
kiB ( 4096 - byte ) page of the memory 126 that has been set 
to be executable - only , for example using extended page 
tables ( EPT ) . The memory 126 includes several instruction 
bundles 802 . Each instruction bundle 802 includes instruc 
tions 804 to select an indirect branch target based on the next 
9 bits of the value to be encoded . Each instruction bundle 
802 further includes instructions 806 to jump to the instruc 
tion bundle 802 corresponding to that indirect branch target . 
Each instruction bundle 802 occupies 8 bytes of memory ; 
thus , a single 4 kiB page of the memory 126 includes 512 
instruction bundles 802 . During execution , the RTIT support 
122 outputs a TIP packet that identifies the instruction 
bundle 802 that is the target of each indirect jump . Because 
there are 512 ( i . e . , 29 ) possible instruction bundles 802 , each 
TIP packet may encode up to 9 bits of the original encoded 
MAC . Of course , FIG . 8 is merely illustrative , and in other 
embodiments different sizes and / or numbers of instruction 
bundles or memory pages may be used . Additionally , or 
alternatively , in some embodiments the RTIT support 122 
may record the target address of direct jump instructions , 
and in those embodiments the instruction bundles may 
include direct jumps . 
[ 0068 ] Referring back to FIG . 7 , after outputting the 
encoded MAC value , in block 736 the computing device 100 
resumes execution of the process / thread 202 . The computing 
device 100 may return from a callback instruction , interrupt 
vector , or otherwise resume processing of the process / thread 
202 . As described above , the method 700 may be executed 
repeatedly in response to future invocations of the mispre 
dicted return handler 210 . 

EXAMPLES 
[ 0069 ] Illustrative examples of the technologies disclosed 
herein are provided below . An embodiment of the technolo 
gies may include any one or more , and any combination of , 
the examples described below . 
[ 0070 ] Example 1 includes a computing device for exploit 
mitigation , the computing device comprising a processor 
comprising a processor trace module to generate trace data 
indicative of control flow of a process of the computing 
device ; an exploit detector module to ( i ) analyze the trace 
data to identify a suspected control flow exploit and ( ii ) 
determine a cost value in response to identification of the 
suspected control flow exploit , wherein the cost value is 
indicative of a likelihood that the suspected control flow 
exploit is an actual control flow exploit ; and a security 
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response module to handle the suspected control flow 
exploit based on the cost value . 
10071 ] Example 2 includes the subject matter of Example 
1 , and wherein to analyze the trace data to identify the 
suspected control flow exploit comprises to analyze the trace 
data using a heuristic algorithm to identify a suspected 
return - oriented programming exploit . 
[ 0072 ] Example 3 includes the subject matter of any of 
Examples 1 and 2 , and wherein to analyze the trace data 
using the heuristic algorithm to identify the suspected 
return - oriented programming exploit comprises to identify a 
first target instruction pointer packet in the trace data , 
wherein the first target instruction pointer packet is associ 
ated with a destination address ; find a return instruction in 
memory following the destination address of the first target 
instruction packet ; and identify the suspected return - ori 
ented programming exploit in response to finding the return 
instruction in memory . 
[ 0073 ] Example 4 includes the subject matter of any of 
Examples 1 - 3 , and wherein to find the return instruction in 
memory comprises to search memory for a return instruction 
opcode within a predefined threshold distance following the 
destination address of the first target instruction pointer 
packet . 
[ 0074 ] Example 5 includes the subject matter of any of 
Examples 1 - 4 , and wherein to find the return instruction in 
memory comprises to reconstruct an instruction flow starting 
at the destination address of the first target instruction 
pointer packet . 
[ 0075 ] Example 6 includes the subject matter of any of 
Examples 1 - 5 , and wherein to analyze the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises to identify 
a pair of successive target instruction pointer packets in the 
trace data , wherein the pair of successive target instruction 
pointer packets includes the first target instruction pointer 
packet ; wherein to identify the suspected return - oriented 
programming exploit further comprises to identify the sus 
pected return - oriented programming exploit in response to 
identification of the pair of successive target instruction 
pointer packets . 
[ 0076 ] Example 7 includes the subject matter of any of 
Examples 1 - 6 , and wherein to analyze the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises to deter 
mine an in - memory distance between return instructions 
associated with the pair of successive target instruction 
pointer packets ; and determine whether the in - memory 
distance has a predefined relationship with a threshold 
distance ; wherein to identify the suspected return - oriented 
programming exploit further comprises to identify the sus 
pected return - oriented programming exploit in response to a 
determination that the in - memory distance has the pre 
defined relationship with the threshold distance . 
[ 0077 ] Example 8 includes the subject matter of any of 
Examples 1 - 7 , and wherein to analyze the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises to deter 
mine an in - memory distance between destination addresses 
associated with the pair of successive target instruction 
pointer packets ; and determine whether the in - memory 
distance has a predefined relationship with a threshold 
distance ; wherein to identify the suspected return - oriented 
programming exploit further comprises to identify the sus 

pected return - oriented programming exploit in response to a 
determination that the in - memory distance has the pre 
defined relationship with the threshold distance . 
[ 0078 ] Example 9 includes the subject matter of any of 
Examples 1 - 8 , and wherein to analyze the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises to deter 
mine whether the first target instruction pointer packet is 
preceded by a flow update packet in the trace data ; wherein 
to identify the suspected return - oriented programming 
exploit further comprises to identify the suspected return 
oriented programming exploit in response to a determination 
that the first target instruction pointer packet is not preceded 
by a flow update packet in the trace data . 
[ 0079 ] Example 10 includes the subject matter of any of 
Examples 1 - 9 , and wherein to determine the cost value in 
response to identification of the suspected control flow 
exploit comprises to calculate the cost value as a function of 
a gadget length of the suspected control flow exploit . 
10080 ] Example 11 includes the subject matter of any of 
Examples 1 - 10 , and wherein to calculate the cost value 
comprises to assign a higher cost value to a shorter gadget 
length . 
[ 0081 ] Example 12 includes the subject matter of any of 
Examples 1 - 11 , and wherein to determine the cost value in 
response to identification of the suspected control flow 
exploit comprises to ( i ) subtract the cost value from a total 
cost budget and ( ii ) determine whether the total cost budget 
has been exceeded ; and to handle the suspected control flow 
exploit based on the cost value comprises to handle the 
suspected control flow exploit in response to a determination 
that the total cost budget has been exceeded . 
[ 0082 ] Example 13 includes the subject matter of any of 
Examples 1 - 12 , and wherein the exploit detector module is 
further to identify a non - suspicious instruction based on the 
trace data ; and reset the total cost budget in response to 
identification of the non - suspicious instruction . 
10083 ] Example 14 includes the subject matter of any of 
Examples 1 - 13 , and wherein to identify the non - suspicious 
construction comprises to identify a taken / not - taken packet 
in the trace data . 
10084 ] Example 15 includes the subject matter of any of 
Examples 1 - 14 , and wherein to analyze the trace data to 
identify the suspected control flow exploit comprises to 
update a shadow stack based on the trace data ; and analyze 
the shadow stack using a heuristic algorithm to identify a 
suspected return - oriented programming exploit . 
10085 ] Example 16 includes the subject matter of any of 
Examples 1 - 15 , and wherein to generate the trace data 
indicative of the control flow of the process of the computing 
device comprises to output a target instruction pointer 
packet including a next linear instruction pointer in response 
to execution of a direct call instruction . 
100861 . Example 17 includes the subject matter of any of 
Examples 1 - 16 , and wherein to generate the trace data 
indicative of the control flow of the process of the computing 
device further comprises to output a packet including a 
current stack pointer value in response to execution of a call 
instruction or a return instruction . 
[ 0087 ] Example 18 includes the subject matter of any of 
Examples 1 - 17 , and wherein to generate the trace data 
indicative of the control flow of the process of the computing 
device further comprises to determine whether a new stack 
page is being accessed ; and to output the packet including 
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the current stack pointer value further comprises to output 
the packet including the current stack pointer value in 
response to a determination that the new stack page is being 
accessed . 
[ 0088 ] Example 19 includes the subject matter of any of 
Examples 1 - 18 , and wherein to analyze the trace data to 
identify the suspected control flow exploit comprises to 
identify a first target instruction pointer packet in the trace 
data , wherein the first target instruction pointer packet is 
associated with a destination address , determine whether the 
destination address is a predefined legitimate branch target ; 
and identify a suspected jump - oriented programming exploit 
in response to a determination that the destination address is 
not a predefined legitimate branch target . 
[ 0089 ] Example 20 includes a computing device for real 
time exploit mitigation , the computing device comprising a 
processor comprising a processor trace module to generate 
trace data indicative of control flow of a process of the 
computing device ; detect a suspected control flow exploit 
using the trace data ; and invoke a suspected control flow 
exploit handler in response to detection of the suspected 
control flow exploit ; an exploit detector module to determine 
whether a current shadow stack is valid in response to 
invocation of the mispredicted return handler ; and a security 
response module to handle the suspected control flow 
exploit in response to a determination that the current 
shadow stack is not valid . 
[ 0090 ] Example 21 includes the subject matter of Example 
20 , and wherein to detect the suspected control flow exploit 
comprises to detect a mispredicted return instruction using 
the trace data ; and to invoke the suspected control flow 
exploit handler comprises to invoke a mispredicted return 
handler in response to detection of the mispredicted return 
instruction . 
[ 0091 ] Example 22 includes the subject matter of any of 
Examples 20 and 21 , and wherein to invoke the mispredicted 
return handler comprises to invoke the mispredicted return 
handler in a process space of the process of the computing 
device . 
[ 0092 ] Example 23 includes the subject matter of any of 
Examples 20 - 22 , and wherein to invoke the mispredicted 
return handler further comprises to provide a memory 
address associated with the trace data to the process . 
[ 0093 ] Example 24 includes the subject matter of any of 
Examples 20 - 23 , and wherein to detect the suspected control 
flow exploit comprises to analyze the trace data using a 
heuristic algorithm to identify a suspected return - oriented 
programming exploit . 
0094 ] Example 25 includes the subject matter of any of 
Examples 20 - 24 , and wherein the exploit detector module is 
further to update the current shadow stack based on the trace 
data in response to a determination that the current shadow 
stack is valid ; compute a message authentication code based 
on the current shadow stack in response to updating of the 
current shadow stack ; encode the message authentication 
code using a handler key , wherein the handler key is located 
in a protected memory region ; and output the encoded 
message authentication code to the trace data . 
[ 0095 ] Example 26 includes the subject matter of any of 
Examples 20 - 25 , and wherein to output the encoded mes 
sage authentication code comprises to execute a processor 
instruction to write the encoded message authentication code 
to the trace data . 

[ 0096 ] Example 27 includes the subject matter of any of 
Examples 20 - 26 , and wherein to output the encoded mes 
sage authentication code comprises to execute one or more 
branch instructions based on the encoded message authen 
tication code to output coded data to the trace data . 
[ 0097 ] Example 28 includes the subject matter of any of 
Examples 20 - 27 , and wherein to determine whether the 
current shadow stack is valid comprises to extract an 
encoded message authentication code from the trace data ; 
compute a second message authentication code based on the 
current shadow stack ; encode the second message authen 
tication code to generate an encoded second message 
authentication code using a handler key , wherein the handler 
key is located in a protected memory region ; and compare 
the encoded message authentication code to the encoded 
second message authentication code . 
[ 0098 ] Example 29 includes the subject matter of any of 
Examples 20 - 28 , and wherein to encode the second message 
authentication code comprises to recover the handler key 
from an immediate value stored in execute - only memory . 
[ 0099 ] Example 30 includes the subject matter of any of 
Examples 20 - 29 , and wherein to extract the encoded mes 
sage authentication code from the trace data comprises to 
identify a memory address associated with the trace data , 
wherein the memory address is supplied by the processor 
trace module of the processor ; and search in the trace data 
from the memory address associated with the trace data for 
the encoded message authentication code . 
( 0100 ] Example 31 includes the subject matter of any of 
Examples 20 - 30 , and wherein the exploit detector module is 
further to resume the process of the computing device in 
response to a determination that the current shadow stack is 
valid . 
0101 ] Example 32 includes the subject matter of any of 
Examples 20 - 31 , and wherein to generate the trace data 
indicative of the control flow of the process of the computing 
device comprises to output a target instruction pointer 
packet including a next linear instruction pointer in response 
to execution of a direct call instruction . 
[ 0102 ] Example 33 includes the subject matter of any of 
Examples 20 - 32 , and wherein to generate the trace data 
indicative of the control flow of the process of the computing 
device further comprises to determine whether a current 
stack pointer value is located in a different memory page 
from a previous stack pointer value ; and output a packet 
including the current stack pointer value in response to 
execution of a call instruction or a return instruction and a 
determination that the current stack pointer value is located 
in a different memory page from the previous stack pointer 
value . 
[ 0103 ] Example 34 includes a method for exploit mitiga 
tion , the method comprising generating , by a processor trace 
module of a processor of a computing device , trace data 
indicative of control flow of a process of the computing 
device ; analyzing , by the computing device , the trace data to 
identify a suspected control flow exploit ; determining , by 
the computing device , a cost value in response to identifying 
the suspected control flow exploit , wherein the cost value is 
indicative of a likelihood that the suspected control flow 
exploit is an actual control flow exploit ; and handling , by the 
computing device , the suspected control flow exploit based 
on the cost value . 
[ 0104 ] Example 35 includes the subject matter of Example 
34 , and wherein analyzing the trace data to identify the 
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suspected control flow exploit comprises analyzing the trace 
data using a heuristic algorithm to identify a suspected 
return - oriented programming exploit . 
[ 0105 ] Example 36 includes the subject matter of any of 
Examples 34 and 35 , and wherein analyzing the trace data 
using the heuristic algorithm to identify the suspected 
return - oriented programming exploit comprises identifying 
a first target instruction pointer packet in the trace data , 
wherein the first target instruction pointer packet is associ 
ated with a destination address ; finding a return instruction 
in memory following the destination address of the first 
target instruction packet ; and identifying the suspected 
return - oriented programming exploit in response to finding 
the return instruction in memory . 
[ 0106 ] Example 37 includes the subject matter of any of 
Examples 34 - 36 , and wherein finding the return instruction 
in memory comprises searching memory for a return instruc 
tion opcode within a predefined threshold distance following 
the destination address of the first target instruction pointer 
packet . 
[ 0107 ] Example 38 includes the subject matter of any of 
Examples 34 - 37 , and wherein finding the return instruction 
in memory comprises reconstructing an instruction flow 
starting at the destination address of the first target instruc 
tion pointer packet . 
[ 0108 ] Example 39 includes the subject matter of any of 
Examples 34 - 38 , and wherein analyzing the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises identifying 
a pair of successive target instruction pointer packets in the 
trace data , wherein the pair of successive target instruction 
pointer packets includes the first target instruction pointer 
packet ; wherein identifying the suspected return - oriented 
programming exploit further comprises identifying the sus 
pected return - oriented programming exploit in response to 
identifying the pair of successive target instruction pointer 
packets . 
[ 0109 ] Example 40 includes the subject matter of any of 
Examples 34 - 39 , and wherein analyzing the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises determin 
ing an in - memory distance between return instructions asso 
ciated with the pair of successive target instruction pointer 
packets ; and determining whether the in - memory distance 
has a predefined relationship with a threshold distance ; 
wherein identifying the suspected return - oriented program 
ming exploit further comprises identifying the suspected 
return - oriented programming exploit in response to deter 
mining that the in - memory distance has the predefined 
relationship with the threshold distance . 
[ 0110 ] Example 41 includes the subject matter of any of 
Examples 34 - 40 , and wherein analyzing the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises determin 
ing an in - memory distance between destination addresses 
associated with the pair of successive target instruction 
pointer packets ; and determining whether the in - memory 
distance has a predefined relationship with a threshold 
distance ; wherein identifying the suspected return - oriented 
programming exploit further comprises identifying the sus 
pected return - oriented programming exploit in response to 
determining that the in - memory distance has the predefined 
relationship with the threshold distance . 

[ 0111 ] Example 42 includes the subject matter of any of 
Examples 34 - 41 , and wherein analyzing the trace data using 
the heuristic algorithm to identify the suspected return 
oriented programming exploit further comprises determin 
ing whether the first target instruction pointer packet is 
preceded by a flow update packet in the trace data ; wherein 
identifying the suspected return - oriented programming 
exploit further comprises identifying the suspected return 
oriented programming exploit in response to determining 
that the first target instruction pointer packet is not preceded 
by a flow update packet in the trace data . 
[ 0112 ] Example 43 includes the subject matter of any of 
Examples 34 - 42 , and wherein determining the cost value in 
response to identifying the suspected control flow exploit 
comprises calculating the cost value as a function of a gadget 
length of the suspected control flow exploit . 
[ 0113 ] Example 44 includes the subject matter of any of 
Examples 34 - 43 , and wherein calculating the cost value 
comprises assigning a higher cost value to a shorter gadget 
length . 
[ 0114 ] Example 45 includes the subject matter of any of 
Examples 34 - 44 , and wherein determining the cost value in 
response to identifying the suspected control flow exploit 
comprises ( i ) subtracting the cost value from a total cost 
budget and ( ii ) determining whether the total cost budget has 
been exceeded ; and handling the suspected control flow 
exploit based on the cost value comprises handling the 
suspected control flow exploit in response to determining 
that the total cost budget has been exceeded . 
[ 0115 ] Example 46 includes the subject matter of any of 
Examples 34 - 45 , and further including identifying , by the 
computing device , a non - suspicious instruction based on the 
trace data ; and resetting , by the computing device , the total 
cost budget in response to identifying the non - suspicious 
instruction . 
10116 ] . Example 47 includes the subject matter of any of 
Examples 34 - 46 , and wherein identifying the non - suspicious 
construction comprises identifying a taken / not - taken packet 
in the trace data . 
[ 0117 ] Example 48 includes the subject matter of any of 
Examples 34 - 47 , and wherein analyzing the trace data to 
identify the suspected control flow exploit comprises updat 
ing a shadow stack based on the trace data ; and analyzing the 
shadow stack using a heuristic algorithm to identify a 
suspected return - oriented programming exploit . 
[ 0118 ] Example 49 includes the subject matter of any of 
Examples 34 - 48 , and wherein generating the trace data 
indicative of the control flow of the process of the computing 
device comprises outputting a target instruction pointer 
packet including a next linear instruction pointer in response 
to executing a direct call instruction . 
[ 0119 ] Example 50 includes the subject matter of any of 
Examples 34 - 49 , and wherein generating the trace data 
indicative of the control flow of the process of the computing 
device further comprises outputting a packet including a 
current stack pointer value in response to executing a call 
instruction or a return instruction . 
[ 0120 ] Example 51 includes the subject matter of any of 
Examples 34 - 50 , and wherein generating the trace data 
indicative of the control flow of the process of the computing 
device further comprises determining whether a new stack 
page is being accessed ; and outputting the packet including 
the current stack pointer value further comprises outputting 
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the packet including the current stack pointer value in 
response to determining that the new stack page is being 
accessed . 
[ 0121 ] Example 52 includes the subject matter of any of 
Examples 34 - 51 , and wherein analyzing the trace data to 
identify the suspected control flow exploit comprises iden 
tifying a first target instruction pointer packet in the trace 
data , wherein the first target instruction pointer packet is 
associated with a destination address ; determining whether 
the destination address is a predefined legitimate branch 
target ; and identifying a suspected jump - oriented program 
ming exploit in response to determining that the destination 
address is not a predefined legitimate branch target . 
[ 0122 ] Example 53 includes a method for real - time exploit 
mitigation , the method comprising generating , by a proces 
sor trace module of a processor of a computing device , trace 
data indicative of control flow of a process of the computing 
device ; detecting , by the processor trace module , a suspected 
control flow exploit using the trace data ; invoking , by the 
processor trace module , a suspected control flow exploit 
handler in response to detecting the suspected control flow 
exploit ; determining , by the computing device , whether a 
current shadow stack is valid in response to invoking the 
mispredicted return handler ; and handling , by the computing 
device , the suspected control flow exploit in response to 
determining that the current shadow stack is not valid . 
[ 0123 ] Example 54 includes the subject matter of Example 
53 , and wherein detecting the suspected control flow exploit 
comprises detecting a mispredicted return instruction using 
the trace data ; and invoking the suspected control flow 
exploit handler comprises invoking a mispredicted return 
handler in response to detecting the mispredicted return 
instruction . 
101241 Example 55 includes the subject matter of any of 
Examples 53 and 54 , and wherein invoking the mispredicted 
return handler comprises invoking the mispredicted return 
handler in a process space of the process of the computing 
device . 
[ 0125 ] Example 56 includes the subject matter of any of 
Examples 53 - 55 , and wherein invoking the mispredicted 
return handler further comprises providing a memory 
address associated with the trace data to the process . 
[ 0126 ] Example 57 includes the subject matter of any of 
Examples 53 - 56 , and wherein detecting the suspected con 
trol flow exploit comprises analyzing the trace data using a 
heuristic algorithm to identify a suspected return - oriented 
programming exploit . 
[ 0127 ] Example 58 includes the subject matter of any of 
Examples 53 - 57 , and further including updating , by the 
computing device , the current shadow stack based on the 
trace data in response to determining that the current shadow 
stack is valid ; computing , by the computing device , a 
message authentication code based on the current shadow 
stack in response to updating the current shadow stack ; 
encoding , by the computing device , the message authenti 
cation code using a handler key , wherein the handler key is 
located in a protected memory region ; and outputting , by the 
computing device , the encoded message authentication code 
to the trace data . 
[ 0128 ] Example 59 includes the subject matter of any of 
Examples 53 - 58 , and wherein outputting the encoded mes 
sage authentication code comprises executing a processor 
instruction to write the encoded message authentication code 
to the trace data . 

( 0129 ] Example 60 includes the subject matter of any of 
Examples 53 - 59 , and wherein outputting the encoded mes 
sage authentication code comprises executing one or more 
branch instructions based on the encoded message authen 
tication code to output coded data to the trace data . 
[ 0130 ] Example 61 includes the subject matter of any of 
Examples 53 - 60 , and wherein determining whether the 
current shadow stack is valid comprises extracting , by the 
computing device , an encoded message authentication code 
from the trace data ; computing , by the computing device , a 
second message authentication code based on the current 
shadow stack ; encoding , by the computing device , the 
second message authentication code to generate an encoded 
second message authentication code using a handler key , 
wherein the handler key is located in a protected memory 
region ; and comparing , by the computing device , the 
encoded message authentication code to the encoded second 
message authentication code . 
[ 0131 ] Example 62 includes the subject matter of any of 
Examples 53 - 61 , and wherein encoding the second message 
authentication code comprises recovering the handler key 
from an immediate value stored in execute - only memory . 
[ 0132 ] Example 63 includes the subject matter of any of 
Examples 53 - 62 , and wherein extracting the encoded mes 
sage authentication code from the trace data comprises 
identifying a memory address associated with the trace data , 
wherein the memory address is supplied by the processor 
trace module of the processor ; and searching in the trace data 
from the memory address associated with the trace data for 
the encoded message authentication code . 
[ 0133 ] Example 64 includes the subject matter of any of 
Examples 53 - 63 , and further including resuming , by the 
computing device , the process of the computing device in 
response to determining that the current shadow stack is 
valid . 
[ 0134 ] Example 65 includes the subject matter of any of 
Examples 53 - 64 , and wherein generating the trace data 
indicative of the control flow of the process of the computing 
device comprises outputting a target instruction pointer 
packet including a next linear instruction pointer in response 
to executing a direct call instruction . 
[ 0135 ] Example 66 includes the subject matter of any of 
Examples 53 - 65 , and wherein generating the trace data 
indicative of the control flow of the process of the computing 
device further comprises determining whether a current 
stack pointer value is located in a different memory page 
from a previous stack pointer value ; and outputting a packet 
including the current stack pointer value in response to 
executing a call instruction or a return instruction and 
determining that the current stack pointer value is located in 
a different memory page from the previous stack pointer 
value . 
[ 0136 ] Example 67 includes a computing device compris 
ing a processor ; and a memory having stored therein a 
plurality of instructions that when executed by the processor 
cause the computing device to perform the method of any of 
Examples 34 - 66 . 

[ 0137 ] Example 68 includes one or more machine read 
able storage media comprising a plurality of instructions 
stored thereon that in response to being executed result in a 
computing device performing the method of any of 
Examples 34 - 66 . 
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[ 0138 ] Example 69 includes a computing device compris - 
ing means for performing the method of any of Examples 
34 - 66 . 
[ 0139 ] Example 70 includes a computing device for 
exploit mitigation , the computing device comprising means 
for generating , by a processor trace module of a processor of 
a computing device , trace data indicative of control flow of 
a process of the computing device ; means for analyzing the 
trace data to identify a suspected control flow exploit ; means 
for determining a cost value in response to identifying the 
suspected control flow exploit , wherein the cost value is 
indicative of a likelihood that the suspected control flow 
exploit is an actual control flow exploit ; and means for 
handling the suspected control flow exploit based on the cost 
value . 
[ 0140 ] Example 71 includes the subject matter of Example 
70 , and wherein the means for analyzing the trace data to 
identify the suspected control flow exploit comprises means 
for analyzing the trace data using a heuristic algorithm to 
identify a suspected return - oriented programming exploit . 
[ 0141 ] Example 72 includes the subject matter of any of 
Examples 70 and 71 , and wherein the means for analyzing 
the trace data using the heuristic algorithm to identify the 
suspected return - oriented programming exploit comprises 
means for identifying a first target instruction pointer packet 
in the trace data , wherein the first target instruction pointer 
packet is associated with a destination address ; means for 
finding a return instruction in memory following the desti 
nation address of the first target instruction packet ; and 
means for identifying the suspected return - oriented pro 
gramming exploit in response to finding the return instruc 
tion in memory . 
[ 0142 ] Example 73 includes the subject matter of any of 
Examples 70 - 72 , and wherein the means for finding the 
return instruction in memory comprises means for searching 
memory for a return instruction opcode within a predefined 
threshold distance following the destination address of the 
first target instruction pointer packet . 
10143 ] Example 74 includes the subject matter of any of 
Examples 70 - 73 , and wherein the means for finding the 
return instruction in memory comprises means for recon 
structing an instruction flow starting at the destination 
address of the first target instruction pointer packet . 
[ 0144 ] Example 75 includes the subject matter of any of 
Examples 70 - 74 , and wherein the means for analyzing the 
trace data using the heuristic algorithm to identify the 
suspected return - oriented programming exploit further com 
prises means for identifying a pair of successive target 
instruction pointer packets in the trace data , wherein the pair 
of successive target instruction pointer packets includes the 
first target instruction pointer packet ; wherein the means for 
identifying the suspected return - oriented programming 
exploit further comprises means for identifying the sus 
pected return - oriented programming exploit in response to 
identifying the pair of successive target instruction pointer 
packets . 
[ 0145 ] Example 76 includes the subject matter of any of 
Examples 70 - 75 , and wherein the means for analyzing the 
trace data using the heuristic algorithm to identify the 
suspected return - oriented programming exploit further com - 
prises means for determining an in - memory distance 
between return instructions associated with the pair of 
successive target instruction pointer packets ; and means for 
determining whether the in - memory distance has a pre 

defined relationship with a threshold distance ; wherein the 
means for identifying the suspected return - oriented pro 
gramming exploit further comprises means for identifying 
the suspected return - oriented programming exploit in 
response to determining that the in - memory distance has the 
predefined relationship with the threshold distance . 
[ 0146 ] Example 77 includes the subject matter of any of 
Examples 70 - 76 , and wherein the means for analyzing the 
trace data using the heuristic algorithm to identify the 
suspected return - oriented programming exploit further com 
prises means for determining an in - memory distance 
between destination addresses associated with the pair of 
successive target instruction pointer packets ; and means for 
determining whether the in - memory distance has a pre 
defined relationship with a threshold distance ; wherein the 
means for identifying the suspected return - oriented pro 
gramming exploit further comprises means for identifying 
the suspected return - oriented programming exploit in 
response to determining that the in - memory distance has the 
predefined relationship with the threshold distance . 
10147 ] Example 78 includes the subject matter of any of 
Examples 70 - 77 , and wherein the means for analyzing the 
trace data using the heuristic algorithm to identify the 
suspected return - oriented programming exploit further com 
prises means for determining whether the first target instruc 
tion pointer packet is preceded by a flow update packet in the 
trace data ; wherein the means for identifying the suspected 
return - oriented programming exploit further comprises 
means for identifying the suspected return - oriented pro 
gramming exploit in response to determining that the first 
target instruction pointer packet is not preceded by a flow 
update packet in the trace data . 
[ 0148 ] Example 79 includes the subject matter of any of 
Examples 70 - 78 , and , wherein the means for determining 
the cost value in response to identifying the suspected 
control flow exploit comprises means for calculating the cost 
value as a function of a gadget length of the suspected 
control flow exploit . 
101491 . Example 80 includes the subject matter of any of 
Examples 70 - 79 , and wherein the means for calculating the 
cost value comprises means for assigning a higher cost value 
to a shorter gadget length . 
[ 0150 ] Example 81 includes the subject matter of any of 
Examples 70 - 80 , and wherein the means for determining the 
cost value in response to identifying the suspected control 
flow exploit comprises ( i ) means for subtracting the cost 
value from a total cost budget and ( ii ) means for determining 
whether the total cost budget has been exceeded ; and the 
means for handling the suspected control flow exploit based 
on the cost value comprises means for handling the sus 
pected control flow exploit in response to determining that 
the total cost budget has been exceeded . 
[ 0151 ] Example 82 includes the subject matter of any of 
Examples 70 - 81 , and further including means for identifying 
a non - suspicious instruction based on the trace data ; and 
means for resetting the total cost budget in response to 
identifying the non - suspicious instruction . 
[ 0152 ] Example 83 includes the subject matter of any of 
Examples 70 - 82 , and wherein the means for identifying the 
non - suspicious construction comprises means for identify 
ing a taken / not - taken packet in the trace data . 
[ 0153 ] Example 84 includes the subject matter of any of 
Examples 70 - 83 , and wherein the means for analyzing the 
trace data to identify the suspected control flow exploit 
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comprises means for updating a shadow stack based on the 
trace data ; and means for analyzing the shadow stack using 
a heuristic algorithm to identify a suspected return - oriented 
programming exploit . 
[ 0154 ] Example 85 includes the subject matter of any of 
Examples 70 - 84 , and wherein the means for generating the 
trace data indicative of the control flow of the process of the 
computing device comprises means for outputting a target 
instruction pointer packet including a next linear instruction 
pointer in response to executing a direct call instruction . 
[ 0155 ] Example 86 includes the subject matter of any of 
Examples 70 - 85 , and wherein the means for generating the 
trace data indicative of the control flow of the process of the 
computing device further comprises means for outputting a 
packet including a current stack pointer value in response to 
executing a call instruction or a return instruction . 
[ 0156 ] Example 87 includes the subject matter of any of 
Examples 70 - 86 , and wherein the means for generating the 
trace data indicative of the control flow of the process of the 
computing device further comprises means for determining 
whether a new stack page is being accessed ; and the means 
for outputting the packet including the current stack pointer 
value further comprises means for outputting the packet 
including the current stack pointer value in response to 
determining that the new stack page is being accessed . 
[ 0157 ] Example 88 includes the subject matter of any of 
Examples 70 - 87 , and wherein the means for analyzing the 
trace data to identify the suspected control flow exploit 
comprises means for identifying a first target instruction 
pointer packet in the trace data , wherein the first target 
instruction pointer packet is associated with a destination 
address ; means for determining whether the destination 
address is a predefined legitimate branch target ; and means 
for identifying a suspected jump - oriented programming 
exploit in response to determining that the destination 
address is not a predefined legitimate branch target . 
[ 0158 ] Example 89 includes a computing device for real 
time exploit mitigation , the computing device comprising 
means for generating , by a processor trace module of a 
processor of a computing device , trace data indicative of 
control flow of a process of the computing device ; means for 
detecting , by the processor trace module , a suspected control 
flow exploit using the trace data ; means for invoking , by the 
processor trace module , a suspected control flow exploit 
handler in response to detecting the suspected control flow 
exploit ; means for determining whether a current shadow 
stack is valid in response to invoking the mispredicted return 
handler ; and means for handling the suspected control flow 
exploit in response to determining that the current shadow 
stack is not valid . 
[ 0159 ] Example 90 includes the subject matter of Example 
89 , and wherein the means for detecting the suspected 
control flow exploit comprises means for detecting a mis 
predicted return instruction using the trace data ; and the 
means for invoking the suspected control flow exploit han 
dler comprises means for invoking a mispredicted return 
handler in response to detecting the mispredicted return 
instruction . 
[ 0160 ] Example 91 includes the subject matter of any of 
Examples 89 and 90 , and wherein the means for invoking 
the mispredicted return handler comprises means for invok 
ing the mispredicted return handler in a process space of the 
process of the computing device . 

[ 0161 ] Example 92 includes the subject matter of any of 
Examples 89 - 91 , and wherein the means for invoking the 
mispredicted return handler further comprises means for 
providing a memory address associated with the trace data 
to the process . 
[ 0162 ] Example 93 includes the subject matter of any of 
Examples 89 - 92 , and wherein the means for detecting the 
suspected control flow exploit comprises means for analyz 
ing the trace data using a heuristic algorithm to identify a 
suspected return - oriented programming exploit . 
10163 ] Example 94 includes the subject matter of any of 
Examples 89 - 93 , and further including means for updating 
the current shadow stack based on the trace data in response 
to determining that the current shadow stack is valid ; means 
for computing a message authentication code based on the 
current shadow stack in response to updating the current 
shadow stack ; means for encoding the message authentica 
tion code using a handler key , wherein the handler key is 
located in a protected memory region ; and means for out 
putting the encoded message authentication code to the trace 
data . 
[ 0164 ] Example 95 includes the subject matter of any of 
Examples 89 - 94 , and wherein the means for outputting the 
encoded message authentication code comprises means for 
executing a processor instruction to write the encoded 
message authentication code to the trace data . 
101651 Example 96 includes the subject matter of any of 
Examples 89 - 95 , and wherein the means for outputting the 
encoded message authentication code comprises means for 
executing one or more branch instructions based on the 
encoded message authentication code to output coded data 
to the trace data . 
101661 . Example 97 includes the subject matter of any of 
Examples 89 - 96 , and wherein the means for determining 
whether the current shadow stack is valid comprises means 
for extracting an encoded message authentication code from 
the trace data ; means for computing a second message 
authentication code based on the current shadow stack ; 
means for encoding the second message authentication code 
to generate an encoded second message authentication code 
using a handler key , wherein the handler key is located in a 
protected memory region ; and means for comparing the 
encoded message authentication code to the encoded second 
message authentication code . 
[ 0167 ] Example 98 includes the subject matter of any of 
Examples 89 - 97 , and wherein the means for encoding the 
second message authentication code comprises means for 
recovering the handler key from an immediate value stored 
in execute - only memory . 
[ 0168 ] Example 99 includes the subject matter of any of 
Examples 89 - 98 , and wherein the means for extracting the 
encoded message authentication code from the trace data 
comprises means for identifying a memory address associ 
ated with the trace data , wherein the memory address is 
supplied by the processor trace module of the processor , and 
means for searching in the trace data from the memory 
address associated with the trace data for the encoded 
message authentication code . 
[ 0169 ] Example 100 includes the subject matter of any of 
Examples 89 - 99 , and further including means for resuming 
the process of the computing device in response to deter 
mining that the current shadow stack is valid . 
[ 0170 ] Example 101 includes the subject matter of any of 
Examples 89 - 100 , and wherein the means for generating the 
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trace data indicative of the control flow of the process of the 
computing device comprises means for outputting a target 
instruction pointer packet including a next linear instruction 
pointer in response to executing a direct call instruction . 
0171 ] Example 102 includes the subject matter of any of 
Examples 89 - 101 , and wherein the means for generating the 
trace data indicative of the control flow of the process of the 
computing device further comprises means for determining 
whether a current stack pointer value is located in a different 
memory page from a previous stack pointer value ; and 
means for outputting a packet including the current stack 
pointer value in response to executing a call instruction or a 
return instruction and determining that the current stack 
pointer value is located in a different memory page from the 
previous stack pointer value . 

1 . A computing device for exploit mitigation , the com 
puting device comprising : 

a processor comprising a processor trace module to gen 
erate trace data indicative of control flow of a process 
of the computing device ; 

an exploit detector module to ( i ) update a shadow stack 
based on the trace data , ( ii ) analyze the shadow stack 
using a heuristic algorithm to identify a suspected 
return - oriented programming exploit , and ( iii ) deter 
mine a cost value in response to identification of the 
suspected return - oriented programming exploit , 
wherein the cost value is indicative of a likelihood that 
the suspected return - oriented programming exploit is 
an actual return - oriented programming exploit ; and 

a security response module to handle the suspected return 
oriented programming exploit based on the cost value . 

2 . The computing device of claim 1 , wherein to generate 
the trace data indicative of the control flow of the process of 
the computing device comprises to output a target instruc 
tion pointer packet including a next linear instruction pointer 
in response to execution of a direct call instruction . 

3 . The computing device of claim 2 , wherein to generate 
the trace data indicative of the control flow of the process of 
the computing device further comprises to output a packet 
including a current stack pointer value in response to execu 
tion of a call instruction or a return instruction . 

4 . The computing device of claim 3 , wherein : 
to generate the trace data indicative of the control flow of 

the process of the computing device further comprises 
to determine whether a new stack page is being 
accessed ; and 

to output the packet including the current stack pointer 
value further comprises to output the packet including 
the current stack pointer value in response to a deter 
mination that the new stack page is being accessed . 

5 . The computing device of claim 1 , wherein : 
the exploit detector module is further to detect preemption 
of the process during execution of the process ; and 

to update the shadow stack comprises to update the 
shadow stack in response to the preemption of the 
process . 

6 . The computing device of claim 1 , wherein to analyze 
the shadow stack using a heuristic algorithm to identify a 
suspected return - oriented programming exploit comprises to 
compare the shadow stack to a system stack of the comput 
ing device . 

7 . The computing device of claim 1 , wherein : 
to determine the cost value in response to identification of 

the suspected return - oriented programming exploit 

comprises to ( i ) subtract the cost value from a total cost 
budget and ( ii ) determine whether the total cost budget 
has been exceeded ; and 

to handle the suspected return - oriented programming 
exploit based on the cost value comprises to handle the 
suspected return - oriented programming exploit in 
response to a determination that the total cost budget 
has been exceeded . 

8 . The computing device of claim 1 , wherein to determine 
the cost value in response to identification of the suspected 
return oriented programming exploit comprises to calculate 
the cost value as a function of a gadget length of the 
suspected return oriented programming exploit . 

9 . The computing device of claim 8 , wherein to calculate 
the cost value comprises to assign a higher cost value to a 
shorter gadget length . 

10 . One or more computer - readable storage media com 
prising a plurality of instructions that in response to being 
executed cause a computing device to : 

generate , by a processor trace module of a processor of 
the computing device , trace data indicative of control 
flow of a process of the computing device ; 

update a shadow stack based on the trace data ; 
analyze the shadow stack using a heuristic algorithm to 

identify a suspected return - oriented programming 
exploit ; 

determine a cost value in response to identification of the 
suspected return - oriented programming exploit , 
wherein the cost value is indicative of a likelihood that 
the suspected return - oriented programming exploit is 
an actual return - oriented programming exploit ; and 

handle the suspected return - oriented programming exploit 
based on the cost value . 

11 . The one or more computer - readable storage media of 
claim 10 , wherein to generate the trace data indicative of the 
control flow of the process of the computing device com 
prises to output a target instruction pointer packet including 
a next linear instruction pointer in response to execution of 
a direct call instruction . 

12 . The one or more computer - readable storage media of 
claim 11 , wherein to generate the trace data indicative of the 
control flow of the process of the computing device further 
comprises to output a packet including a current stack 
pointer value in response to execution of a call instruction or 
a return instruction . 

13 . The one or more computer - readable storage media of 
claim 12 , wherein : 

to generate the trace data indicative of the control flow of 
the process of the computing device further comprises 
to determine whether a new stack page is being 
accessed ; and 

to output the packet including the current stack pointer 
value further comprises to output the packet including 
the current stack pointer value in response to a deter 
mination that the new stack page is being accessed . 

14 . The one or more computer - readable storage media of 
claim 10 , wherein to determine the cost value in response to 
identification of the suspected return oriented programming 
exploit comprises to calculate the cost value as a function of 
a gadget length of the suspected return oriented program 
ming exploit . 

15 . A computing device for real - time exploit mitigation , 
the computing device comprising : 
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a processor comprising a processor trace module to ( i ) 
generate trace data indicative of control flow of a 
process of the computing device , ( ii ) detect a suspected 
return - oriented programming exploit that is a mispre 
dicted return instruction using the trace data , and ( iii ) 
invoke a mispredicted return handler in response to 
detection of the suspected return - oriented program 
ming exploit ; 

an exploit detector module to ( i ) determine whether a 
current shadow stack is valid in response to invocation 
of the mispredicted return handler , ( ii ) update the 
current shadow stack based on the trace data in 
response to a determination that the current shadow 
stack is valid , ( iii ) compute a message authentication 
code based on the current shadow stack in response to 
updating of the current shadow stack , ( iv ) encode the 
message authentication code using a handler key , 
wherein the handler key is located in a protected 
memory region , and ( v ) output the encoded message 
authentication code to the trace data ; and 

a security response module to handle the suspected return 
oriented programming exploit in response to a deter 
mination that the current shadow stack is not valid . 

16 . The computing device of claim 15 , wherein to output 
the encoded message authentication code comprises to 
execute a processor instruction to write the encoded message 
authentication code to the trace data . 

17 . The computing device of claim 15 , wherein to output 
the encoded message authentication code comprises to 

execute one or more branch instructions based on the 
encoded message authentication code to output coded data 
to the trace data . 

18 . The computing device of claim 15 , wherein to deter 
mine whether the current shadow stack is valid comprises to : 

extract an encoded message authentication code from the 
trace data ; 

compute a second message authentication code based on 
the current shadow stack ; 

encode the second message authentication code to gen 
erate an encoded second message authentication code 
using a handler key , wherein the handler key is located 
in a protected memory region ; and 

compare the encoded message authentication code to the 
encoded second message authentication code . 

19 . The computing device of claim 18 , wherein to encode 
the second message authentication code comprises to 
recover the handler key from an immediate value stored in 
execute - only memory . 

20 . The computing device of claim 18 , wherein to extract 
the encoded message authentication code from the trace data 
comprises to : 

identify a memory address associated with the trace data , 
wherein the memory address is supplied by the pro 
cessor trace module of the processor ; and 

search in the trace data from the memory address asso 
ciated with the trace data for the encoded message 
authentication code . 


