
US 20190050566A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0050566 A1

LeMay et al . (43) Pub . Date : Feb . 14 , 2019

(52) (52) U . S . C . (54) TECHNOLOGIES FOR CONTROL FLOW
EXPLOIT MITIGATION USING PROCESSOR
TRACE

U . S . CI .
CPC G06F 21 / 56 (2013 . 01 ; (2013 . 01) (2013 . 01) ; G06F 21 / 44 (2013 . 01)

(71) Applicant : Intel Corporation , Santa Clara , CA
(US) (57) ABSTRACT

(72) Inventors : Michael LeMay , Hillsboro , OR (US) ;
Ravi L . Sahita , Beaverton , OR (US) ;
Beeman C . Strong , Portland , OR (US) ;
Thilo Schmitt , Biberach / Riss (DE) ;
Yuriy Bulygin , Beaverton , OR (US) ;
Markus T . Metzger , Ulm (DE)

(21) Appl . No . : 15 / 966 , 358
(22) Filed : Apr . 30 , 2018

Technologies for control flow exploit mitigation include a
computing device having a processor with real - time instruc
tion tracing support . During execution of a process , the
processor generates trace data indicative of control flow of
the process . The computing device analyzes the trace data to
identify suspected control flow exploits . The computing
device may use heuristic algorithms to identify return
oriented programming exploits . The computing device may
maintain a shadow stack based on the trace data . The
computing device may identify indirect branches to unau
thorized addresses based on the trace data to identify jump
oriented programming exploits . The computing device may
check the trace data whenever the process is preempted . The
processor may detect mispredicted return instructions in real
time and invoke a software handler in the process space of
the process to verify and maintain the shadow stack . Other
embodiments are described and claimed .

Related U . S . Application Data
Continuation of application No . 14 / 670 , 988 , filed on
Mar . 27 , 2015 , now Pat . No . 10 , 007 , 784 .

(63)

Publication Classification
(51) Int . Ci .

G06F 21 / 56 (2006 . 01)
GO6F 21 / 52 (2006 . 01)
G06F 21 / 44 (2006 . 01)

100

COMPUTING DEVICE
120

PROCESSOR
RTIT

SUPPORT
122

126 I / O
SUBSYSTEM MEMORY

128
DATA STORAGE

132 PERIPHERAL
DEVICES | 130 COMM .

CIRCUITRY

Patent Application Publication Feb . 14 , 2019 Sheet 1 of 8 US 2019 / 0050566 A1

- 100
COMPUTING DEVICE

120
PROCESSOR

RTIT
SUPPORT

120 I / O
SUBSYSTEM MEMORY

128 DATA STORAGE
PERIPHERAL
DEVICES COMM .

CIRCUITRY
7130

FIG . 1
100

200
COMPUTING DEVICE

202
PROCESS / THREAD

204
PROCESSOR TRACE MODULE

206

TRACE DATA AREA
208

EXPLOIT DETECTOR MODULE
C 210

MISPREDICTED RET HANDLER
212

HANDLER KEY

214

SHADOW STACK AREA
216

SECURITY RESPONSE MODULE

FIG . 2

Patent Application Publication Feb . 14 , 2019 Sheet 2 of 8 US 2019 / 0050566 A1

302 INITIALIZE PROCESSOR REAL - TIME INSTRUCTION
TRACING (RTIT)

INJECT DATA FOR SHADOW STACK TRACKING _ 304
INTO RTIT TRACE DATA

306
MONITOR FOR PROCESS PREEMPTION

NO
308

PREEMPTION ?

YES
310

ANALYZE RTIT TRACE DATA FOR PREVIOUS
TIMESLICE TO IDENTIFY SUSPECTED EXPLOIT

I DENTIFY SUSPECTED ROP EXPLOIT
-

CONSTRUCT SHADOW STACK AND IDENTIFY : 314
SUSPECTED EXPLOIT

- - .

IDENTIFY SUSPECTED JOP EXPLOIT EXPLOIT - 1316
318

SUSPECT EXPLOIT ? NO

YES
DETERMINE COST OF SUSPECTED EXPLOIT
- ASSIGN HIGHER COST TO SHORTER

GADGET LENGTH
322

324
SUBTRACT COST FROM BUDGET FOR PROCESS

326
OVER BUDGET ?

NO

YES
328

HANDLE SUSPECTED EXPLOIT

FIG . 3A

Patent Application Publication Feb . 14 , 2019 Sheet 3 of 8 US 2019 / 0050566 A1

300

330
IDENTIFY NON - SUSPICIOUS INSTRUCTION (S) IN

RTIT TRACE
-

D TAKEN / NOT - TAKEN PACKET IN TRACE
- - - - -

| 332

v 334
NO

NON - SUSPICIOUS ?

YES

RESET BUDGET FOR PROCESS 7 _ 336

FIG . 3B

Patent Application Publication Feb . 14 , 2019 Sheet 4 of 8 US 2019 / 0050566 A1

400

402 IDENTIFY FLOW UPDATE (FUP) PACKET
FOLLOWED BY TARGET INSTRUCTION POINTER

(TIP) PACKET

C404
YES FUP + TIP PAIR ?

NO

IDENTIFY SUCCESSIVE TIP PACKETS IN RTIT
TRACE DATA

(408
SUCCESSIVE TIPS ?

NO

YES

DETERMINE DISTANCE BETWEEN SUCCESSIVE
RETURN INSTRUCTIONS

412
NO DISTANCE >

THRESHOLD ?
ES

P
FIND RETURN INSTRUCTION FOLLOWING TIP

TARGET ADDRESS
FIND WITHIN THRESHOLD DISTANCE - 416

IN - MEMORY

RECONSTRUCT INSTRUCTION FLOW AND FIND : 418
WITHIN THRESHOLD INSTRUCTIONS

L - - - - - - - - - - - - - - - - -

-

420
YES NO

RET FOUND ?

424 SUSPECTED EXPLOIT 4 NO SUSPECTED EXPLOIT

FIG . 4

Patent Application Publication Feb . 14 , 2019 Sheet 5 of 8 US 2019 / 0050566 A1

500

- 502
NO < CALL INSTRUCTION ?

YES
504

OUTPUT CODE INDICATING CALL INSTRUCTION

506
OUTPUT CURRENT STACK POINTER

508
DIRECT CALL ? _ NO

YES
OUTPUT NEXT LINEAR INSTRUCTION POINTER

(512
NO RET INSTRUCTION ?

YES
514

OUTPUT CODE INDICATING RET INSTRUCTION

OUTPUT CURRENT STACK POINTER

FIG . 5

Patent Application Publication Feb . 14 , 2019 Sheet 6 of 8 US 2019 / 0050566 A1

600

602
MONITOR FOR INSTRUCTIONS RELEVANT TO

EXPLOIT DETECTION
MONITOR CALLS , RETURNS , AND

INDIRECT JUMPS - - - - - - -

606
NO

TRACE ?

YES

608 OUTPUT TIP PACKET WITH NEXT LINEAR IP FOR
EACH CALL INSTRUCTION

OUTPUT CURRENT STACK POINTER IF VALUE 1610
CHANGES TO DIFFERENT PAGE

NO
C612

MISPREDICTED RET ?

YES
614

INVOKE MISPREDICTED RET HANDLER , Pen
IN - PROCESS

PROVIDE ADDRESS OF END OF TRACE DATA : 616
TO PROCESS

_

1
- - - - - - -

FIG . 6

700

702

MISPREDICTED RET HANDLER INVOKED

Patent Application Publication

704

IDENTIFY END OF TRACE DATA IN MEMORY

UPDATE SHADOW STACK BASED ON TRACE DATA

706

SEARCH TRACE DATA FOR ENCODED MARKER OUTPUT BY PREVIOUS INVOCATION OF HANDLER

CHECK FOR SUSPECTED EXPLOITS USING SHADOW STACK

708

RECOMPUTE MESSAGE AUTHENTICATION CODE

CODE

VALUE BASED ON CURRENT SHADOW STACK

YES

V 724 SUSPICIOUS ? NO

ENCODE RE - COMPUTED MAC VALUE USING HANDLER KEY RECOVER HANDLER KEY FROM EXECUTE - ONLY MEMORY

726

COMPUTE MAC VALUE BASED ON UPDATED SHADOW STACK

Feb . 14 , 2019 Sheet 7 of 8

ENCODE MAC VALUE USING HANDLER KEY

COMPARE ENCODED MAC VALUE OF MARKER TO 714
ENCODED RE - COMPUTED MAC VALUE

730

OUTPUT ENCODED MAC VALUE TO TRACE DATA

(716

732

YES

EXECUTE PTWRITE INSTRUCTION

1

MATCH ?

- -

734

NO

ENCODE INFORMATION USING PATTERN OF 1 |
INDIRECT JUMPS

718

HANDLE SUSPECTED EXPLOIT

736

RESUME PROCESS

US 2019 / 0050566 A1

FIG . 7

Patent Application Publication Feb . 14 , 2019 Sheet 8 of 8 US 2019 / 0050566 A1

800

126

MEMORY

INSTRUCTION BUNDLE O

SELECT BRANCH BASED ON NEXT 9
BITS OF VALUE TO BE ENCODED 8 B

806 JUMP TO CORRESPONDING
INSTRUCTION BUNDLE

4 kiB PAGE OF
XO MEMORY 8027

INSTRUCTION BUNDLE 1 8 B

802
INSTRUCTION BUNDLE 511 8 B

FIG . 8

US 2019 / 0050566 A1 Feb . 14 , 2019

TECHNOLOGIES FOR CONTROL FLOW
EXPLOIT MITIGATION USING PROCESSOR

TRACE

CROSS - REFERENCE TO RELATED U . S .
PATENT APPLICATION

JOP exploits using indirect branch target security are further
described in U . S . patent application Ser . No . 14 / 570 , 507 ,
filed on Dec . 15 , 2014 , and entitled Technologies for Indirect
Branch Target Security .
[0006] Address space layout randomization (ASLR) is a
security technique implemented by certain operating sys
tems (e . g . , WindowsTM , LinuxTM , and OS X®) . ASLR may
mitigate ROP and JOP exploits . However , separate memory
disclosure attacks may be used by malware to bypass ASLR .

[0001] This application is a continuation application of
U . S . application Ser . No . 14 / 670 , 988 , entitled “ TECH
NOLOGIES FOR CONTROL FLOW EXPLOIT MITIGA
TION USING PROCESSOR TRACE , ” which was filed on
Mar . 27 , 2015 .

BACKGROUND
[0002] Return - oriented programming (ROP) exploits are
an increasingly common form of malicious software (mal
ware) that may circumvent certain defenses that mark loca
tions of memory as non - executable . An ROP exploit works
by stringing together a large number of existing segments of
executable code that each end with a “ return ” instruction
(known as gadgets) . Each ROP gadget is typically short , and
typically does not correspond to an existing procedure or
even an existing instruction boundary in the executable
code . The attacker constructs a malicious stack including a
series of return addresses pointing to the desired sequence of
gadgets . The ROP exploit is performed by causing the
processor of the computer to execute software using the
malicious stack instead of the legitimate system stack . For
example , the malicious stack may be introduced by smash
ing the stack , using a buffer overflow exploit , pivoting to a
new stack , or otherwise corrupting the system stack . Jump
oriented programming (JOP) exploits are similar , but target
gadgets that end with an indirect jump instruction rather than
a return instruction .
[0003] Certain ROP exploits may be prevented by main
taining a “ shadow stack ” in parallel with the ordinary system
stack (also called the “ legacy stack ”) . The shadow stack
maintains a copy of the legacy stack in memory inaccessible
to ordinary software , and may be used to determine if the
legacy stack has been tampered with by malware . The
shadow stack may be implemented using binary instrumen
tation , which introduces a significant performance slow
down for some usages . Technologies for protecting from
ROP exploits using a shadow stack are further described in
U . S . patent application Ser . No . 14 / 498 , 075 , filed on Sep .
26 , 2014 , and entitled Hardware Shadow Stack Support for
Legacy Guests .
[0004] Other measures are available to help prevent ROP
exploits . For example , " canary ” values may be inserted near
return addresses in the stack , and may be monitored for
changes . As another example , " control transfer terminating
instructions ” may be inserted into binaries to specifically
identify legitimate return targets . However such measures
may require recompiling or otherwise modifying guest soft
ware . Additionally , certain processor architectures may pro
vide a call stack that is inaccessible to certain software . For
example , certain microcontrollers may maintain a call stack
that is inaccessible to software . As another example , certain
processor architectures may maintain call stack information
in a separate memory region from other stack values such as
automatic variables .
[0005] Certain JOP exploits may be prevented by tagging
or otherwise identifying authorized target locations for indi -
rect branch instructions . Technologies for protecting from

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The concepts described herein are illustrated by
way of example and not by way of limitation in the accom
panying figures . For simplicity and clarity of illustration ,
elements illustrated in the figures are not necessarily drawn
to scale . Where considered appropriate , reference labels
have been repeated among the figures to indicate corre
sponding or analogous elements .
10008] . FIG . 1 is a simplified block diagram of at least one
embodiment of a computing device for control flow exploit
mitigation ;
[0009] FIG . 2 is a simplified block diagram of at least one
embodiment of an environment of the computing device of
FIG . 1 ;
[0010 FIGS . 3A and 3B are a simplified flow diagram of
at least one embodiment of a method for control flow exploit
mitigation that may be executed by the computing device of
FIGS . 1 and 2 ;
[0011] FIG . 4 is a simplified flow diagram of at least one
embodiment of a method for heuristic control flow exploit
detection that may be executed by the computing device of
FIGS . 1 and 2 ;
[0012] . FIG . 5 is a simplified flow diagram of at least one
embodiment of a method for processor instruction tracing
that may be executed by the computing device of FIGS . 1
and 2 ;
[0013] . FIG . 6 is a simplified flow diagram of at least one
embodiment of a method for processor instruction tracing
and exploit detection that may be executed by the computing
device of FIGS . 1 and 2 ;
[00141 . FIG . 7 is a simplified flow diagram of at least one
embodiment of a method for control flow exploit detection
that may be executed by the computing device of FIGS . 1
and 2 ; and
[0015] FIG . 8 is a schematic diagram illustrating a
memory page that may be executed by the method of FIG .

DETAILED DESCRIPTION OF THE DRAWINGS
10016] While the concepts of the present disclosure are
susceptible to various modifications and alternative forms ,
specific embodiments thereof have been shown by way of
example in the drawings and will be described herein in
detail . It should be understood , however , that there is no
intent to limit the concepts of the present disclosure to the
particular forms disclosed , but on the contrary , the intention
is to cover all modifications , equivalents , and alternatives
consistent with the present disclosure and the appended
claims .
[0017] References in the specification to “ one embodi
ment , " " an embodiment , " " an illustrative embodiment , " etc . ,
indicate that the embodiment described may include a
particular feature , structure , or characteristic , but every

US 2019 / 0050566 A1 Feb . 14 , 2019

embodiment may or may not necessarily include that par
ticular feature , structure , or characteristic . Moreover , such
phrases are not necessarily referring to the same embodi
ment . Further , when a particular feature , structure , or char -
acteristic is described in connection with an embodiment , it
is submitted that it is within the knowledge of one skilled in
the art to effect such feature , structure , or characteristic in
connection with other embodiments whether or not explic
itly described . Additionally , it should be appreciated that
items included in a list in the form of at least one A , B , and
C ” can mean (A) ; (B) ; (C) ; (A and B) ; (A and C) ; (B and C) ;
or (A , B , and C) . Similarly , items listed in the form of “ at
least one of A , B , or C ” can mean (A) ; (B) ; (C) ; (A and B) ;
(A and C) ; (B and C) ; or (A , B , and C) .
[0018] The disclosed embodiments may be implemented ,
in some cases , in hardware , firmware , software , or any
combination thereof . The disclosed embodiments may also
be implemented as instructions carried by or stored on a
transitory or non - transitory machine - readable (e . g . , com
puter - readable) storage medium , which may be read and
executed by one or more processors . A machine - readable
storage medium may be embodied as any storage device ,
mechanism , or other physical structure for storing or trans
mitting information in a form readable by a machine (e . g . ,
a volatile or non - volatile memory , a media disc , or other
media device) .
[0019] In the drawings , some structural or method features
may be shown in specific arrangements and / or orderings .
However , it should be appreciated that such specific arrange
ments and / or orderings may not be required . Rather , in some
embodiments , such features may be arranged in a different
manner and / or order than shown in the illustrative figures .
Additionally , the inclusion of a structural or method feature
in a particular figure is not meant to imply that such feature
is required in all embodiments and , in some embodiments ,
may not be included or may be combined with other
features .
[0020] Referring now to FIG . 1 , an illustrative computing
device 100 for control flow exploit detection and mitigation
includes a processor 120 having hardware real - time instruc
tion tracing (RTIT) support . In use , as described below , the
computing device 100 executes software with RTIT support
enabled and the processor 120 automatically outputs trace
data indicative of the control flow of the software . An exploit
detector periodically analyzes the trace data to identify
potential control flow exploits . For example , the exploit
detector may apply one or more heuristic checks to the trace
data to identify suspicious behavior , or may maintain a
shadow stack based on the trace data that may be used to
identify suspicious behavior . In some embodiments , the
processor 120 may support real - time control flow exploit
detection . The processor 120 may automatically output trace
data indicative of the control flow of executing software and ,
in response to detecting mispredicted return instructions ,
invoke a mispredicted return handler . The mispredicted
return handler may maintain a shadow stack based on the
trace data that may be used to identify suspicious behavior .
Thus , the computing device 100 may provide for efficient
monitoring for control flow exploits (including both return
oriented programming and jump - oriented programming
exploits) without modifying client software . The RTIT
based monitoring of the computing device 100 may be used
to enable shadow stack monitoring and may be resistant to
memory disclosure attacks .

[0021] The computing device 100 may be embodied as
any type of device capable of real - time instruction tracing
and otherwise performing the functions described herein .
For example , the computing device 100 may be embodied
as , without limitation , a computer , a desktop computer , a
workstation , a server computer , a laptop computer , a note
book computer , a tablet computer , a smartphone , a mobile
computing device , a wearable computing device , a distrib
uted computing system , a multiprocessor system , a con
sumer electronic device , a smart appliance , and / or any other
computing device capable of real - time instruction tracing .
As shown in FIG . 1 , the illustrative computing device 100
includes the processor 120 , an I / O subsystem 124 , a memory
126 , and a data storage device 128 . Of course , the computing
device 100 may include other or additional components ,
such as those commonly found in a computer (e . g . , various
input / output devices) , in other embodiments . Additionally ,
in some embodiments , one or more of the illustrative com
ponents may be incorporated in , or otherwise form a portion
of , another component . For example , the memory 126 , or
portions thereof , may be incorporated in the processor 120
in some embodiments .
[0022] The processor 120 may be embodied as any type of
processor capable of performing the functions described
herein . For example , the processor 120 may be embodied as
a single or multi - core processor (s) , digital signal processor ,
microcontroller , or other processor or processing / controlling
circuit . The processor 120 includes real - time instruction
tracing (RTIT) support 122 . The RTIT support 122 may be
embodied as any hardware , microcode , firmware , or other
components of the processor 120 capable of generating trace
data that may be used to reconstruct the control flow
executed by the processor 120 . The RTIT support 122 may
log data packets relating to whether conditional branches are
taken or not taken , target addresses of indirect branch
instructions , target addresses of mispredicted return instruc
tions , and other data related to control flow . The trace data ,
in combination with the in - memory image of the executed
application , may be used to reconstruct the control flow
executed by the processor 120 . For example , the RTIT
support 122 may log the return addresses associated with
call instructions as they are executed . When a return instruc
tion is executed , the RTIT support 122 may determine
whether the target address of the return instruction matches
the logged return address of the corresponding call instruc
tion . If those addresses do not match that is , if the return
instruction is mispredicted — the RTIT support 122 may
output a data packet including the target address of the return
instruction . In some embodiments , the RTIT support 122
may compress the trace data for some or all predicted returns
by outputting only a bit indicating that a return instruction
was taken . A processing device implementing minimizing
bandwidth to track return targets by an instruction tracing
system is described in Strong et al . , U . S . Patent Application
Publication No . 2014 / 0337604 , filed on May 9 , 2013 . The
RTIT support 122 may be embodied as , for example , Intel®
Processor Trace (PT) technology .
[0023] Similarly , the memory 126 may be embodied as
any type of volatile or non - volatile memory or data storage
capable of performing the functions described herein . In
operation , the memory 126 may store various data and
software used during operation of the computing device 100
such as operating systems , applications , programs , libraries ,
and drivers . The memory 126 is communicatively coupled to

US 2019 / 0050566 A1 Feb . 14 , 2019

ble

the processor 120 via the I / O subsystem 124 , which may be
embodied as circuitry and / or components to facilitate input /
output operations with the processor 120 , the memory 126 ,
and other components of the computing device 100 . For
example , the I / O subsystem 124 may be embodied as , or
otherwise include , memory controller hubs , input / output
control hubs , firmware devices , communication links (i . e . ,
point - to - point links , bus links , wires , cables , light guides ,
printed circuit board traces , etc .) and / or other components
and subsystems to facilitate the input / output operations . In
some embodiments , the I / O subsystem 124 may form a
portion of a system - on - a - chip (SOC) and be incorporated ,
along with the processor 120 , the memory 126 , and other
components of the computing device 100 , on a single
integrated circuit chip .
[0024] The data storage device 128 may be embodied as
any type of device or devices configured for short - term or
long - term storage of data such as , for example , memory
devices and circuits , memory cards , hard disk drives , solid
state drives , or other data storage devices .
[0025] In some embodiments , the computing device 100
may also include communication circuitry 130 and one or
more peripheral devices 132 . The communication circuitry
130 of the computing device 100 may be embodied as any
communication circuit , device , or collection thereof , capable
of enabling communications between the computing device
100 and other remote devices over a computing network .
The communication circuitry 130 may be configured to use
any one or more communication technology (e . g . , wired or
wireless communications , Ethernet , Bluetooth® , Wi - Fi® ,
WiMAX , Infiniband , etc .) and associated protocols (e . g . ,
TCP , UDP , iWARP , RDMA , etc .) to effect such communi
cation . The peripheral devices 132 may include any number
of additional input / output devices , interface devices , and / or
other peripheral devices . For example , in some embodi
ments , the peripheral devices 132 may include a display ,
touch screen , graphics circuitry , keyboard , mouse , speaker
system , and / or other input / output devices , interface devices ,
and / or peripheral devices .
[0026] Referring now to FIG . 2 , in the illustrative embodi
ment , the computing device 100 establishes an environment
200 during operation . The illustrative embodiment 200
includes a process / thread 202 , a processor trace module 204 ,
an exploit detector module 208 , and a security response
module 216 . The various modules of the environment 200
may be embodied as hardware , firmware , software , or a
combination thereof . For example , the various modules ,
logic , and other components of the environment 200 may
form a portion of , or otherwise be established by , the
processor 120 or other hardware components of the com
puting device 100 . As such , in some embodiments , any one
or more of the modules of the environment 200 may be
embodied as a circuit or collection of electrical devices (e . g . ,
a processor trace circuit , an exploit detector circuit , etc .) .
[0027] The process / thread 202 may be embodied as any
operating system process , thread , lightweight process , or
other program executed by the computing device 100 . The
process / thread 202 executes a stream of instructions that
may include control flow instruction such as call instruc
tions , return instructions , and indirect branch instructions .
The process / thread 202 may maintain a stack in the memory
126 used to store return addresses , stack base pointers ,
function parameters , and other data . In some embodiments ,
each thread of a process may maintain its own stack . The

process / thread 202 may execute in user mode or otherwise
execute with limited privileges .
[0028] The processor trace module 204 is configured to
generate trace data indicative of control flow of the process /
thread 202 executed by the computing device 100 . The
processor trace module 204 may include , invoke , or other
wise use the RTIT support 122 of the processor 120 to
generate part or all of the trace data . The trace data may be
stored in a trace data area 206 in the memory 126 . The trace
data area 206 may be marked as write - only or otherwise
protected from unauthorized access or modification . In some
embodiments , the trace data area 206 may be inaccessible to
unprivileged software . Additionally , in some embodiments ,
the processor trace module 204 may be configured to detect
a mispredicted return instruction as it is executed and invoke
a mispredicted return handler 210 , described below , in
response to detecting the mispredicted return instruction .
[0029] The exploit detector module 208 is configured to
analyze the trace data to identify a suspected control flow
exploit and determine a cost value associated with the
suspected control flow exploit . The exploit detector module
208 may be configured to analyze the trace data using a
heuristic algorithm to identify suspected return - oriented
programming exploits , or to analyze the trace data for
illegitimate branch targets to identify suspected jump - ori
ented programming exploits .
[0030] The exploit detector module 208 may be config
ured to update a shadow stack associated with the process
thread 202 based on the trace data and analyze the shadow
stack using a heuristic algorithm to identify suspected
return - oriented programming exploits . The shadow stack
may be stored in a shadow stack area 214 in the memory
126 , which may be marked as inaccessible or otherwise
protected from unauthorized access or modification by
unprivileged software . In some embodiments , the exploit
detector module 208 may be further configured to determine
whether the current shadow stack is valid (e . g . , the current
shadow stack has not been tampered with) in response to
invocation of the mispredicted return handler 210 . The
mispredicted return handler 210 may be embodied as any
function , interrupt service routine , or other procedure that
may be executed in the context of the process / thread 202 in
response to detection of a mispredicted return instruction .
The mispredicted return handler 210 may encode data in the
trace data area 206 using a handler key 212 . The handler key
212 may be protected from memory disclosure attacks . For
example , the handler key 212 may be stored as an immediate
value in a memory page marked execute - only using
extended page tables (EPT) support of the processor 120 .
[0031] The security response module 216 is configured to
handle the suspected control flow exploit based on the cost
value . The security response module 216 may be configured
to , for example , notify the user of the suspected exploit ,
terminate the process / thread 202 , or perform any other
appropriate security response . The security response module
216 may be configured to handle the suspected control flow
exploit if a total cost budget has been exceeded . The exploit
detector module 208 may be further configured to identify a
non - suspicious instruction or instruction pattern based on
the trace data and then reset the total cost budget . In some
embodiments , the security response module 216 may be
configured to handle the suspected control flow exploit in
response to the mispredicted return handler 210 determining
that the current shadow stack is not valid .

US 2019 / 0050566 A1 Feb . 14 , 2019

[0032] Referring now to FIGS . 3A and 3B , in use , the
computing device 100 may execute a method 300 for control
flow exploit mitigation . The method 300 begins in block
302 , in which the computing device 100 initializes real - time
instruction tracing using the RTIT support 122 of the pro
cessor 120 . The computing device 100 may , for example ,
execute one or more specialized processor instructions ,
write to one or more control registers , or otherwise com
mand the processor 120 to enable the RTIT support 122 .
After enabling the RTIT support 122 , the processor 120
generates trace data based on the executed instruction flow .
As described above , the trace data may be stored by the
processor 120 in the trace data area 206 . In some embodi
ments , in block 304 , the computing device 100 may inject
additional data into the trace data stream to allow shadow
stack monitoring . For example , the computing device 100
may inject additional data packets for direct call instruc
tions , return instructions , or other data . The computing
device 100 may inject the data , for example , using a spe
cialized processor instruction such as PTWRITE . The pro
cess / thread 202 may be modified to include those special
ized processor instructions to output the additional data
packets . One illustrative embodiment of a method for out
putting additional data packets is described further below in
connection with FIG . 5 .
[0033] In block 306 , the computing device 100 monitors
for preemption of the process / thread 202 . For example , the
computing device 100 may monitor for the expiration of a
timeslice assigned to the process / thread 202 . The computing
device 100 may use a hypervisor to monitor for changes to
active memory page translation tables , for example moni
toring for MOV instructions targeting the CR3 register . By
monitoring for preemption of the process / thread 202 , the
computing device 100 may regularly perform exploit detec
tion while the process / thread 202 is executing . Additionally
or alternatively , the computing device 100 may perform
exploit detection at other times . For example , in some
embodiments the computing device 100 may monitor for
other , similar events that recur regularly during execution of
the process / thread 202 . As another example , in some
embodiments the computing device 100 may monitor for
one or more events that indicate that the state of the
process / thread 202 should be inspected to detect exploits ,
such as mispredicted return instructions or one or more ROP
heuristics as described in Fischer et al . , U . S . Patent Appli
cation Pub . No . 2014 / 0123281 and Fischer et al . , U . S . Patent
Application Pub . No . 2014 / 0123286 .
[0034] In block 308 , the computing device 100 determines
whether process preemption has occurred . If not , the method
300 loops back to block 304 to continue monitoring for
process preemption while the processor 120 continues to
generate trace data . If process preemption has occurred the
method 300 advances to block 310 .
[0035] In block 310 , the computing device 100 analyzes
the RTIT trace data generated by the processor 120 during
the previous timeslice to identify potential control - flow
exploits . In some embodiments , in block 312 the computing
device 100 may identify suspected return - oriented program
ming (ROP) exploits . The computing device 100 may , for
example , examine the trace data for suspicious activity using
one or more heuristic checks . The computing device 100
may not fully reconstruct the control flow of the process /
thread 202 , which may improve performance . For example ,
the computing device 100 may apply one or more heuristic

checks to every target instruction pointer (TIP) packet
included in the trace data . One illustrative embodiment of a
method for identifying suspected ROP exploits is described
below in connection with FIG . 4 .
10036] . In some embodiments , in block 314 , the computing
device 100 may construct and / or maintain a shadow stack in
the shadow stack area 214 based on the trace data and
identify suspected ROP exploits by comparing the active
system stack to the shadow stack . The computing device 100
may , for example , examine the system stack for suspicious
activity using one or more heuristic checks as described in
U . S . patent application Ser . No . 14 / 498 , 075 , filed on Sep .
26 , 2014 , and entitled Hardware Shadow Stack Support for
Legacy Guests . Additionally or alternatively , in some
embodiments the computing device 100 may maintain the
shadow stack by monitoring for certain control flow instruc
tions using the hardware RTIT support 122 of the processor
120 as further described below in connection with FIGS .
6 - 8 .
[0037] In some embodiments , in block 316 , the computing
device 100 may identify suspected jump - oriented program
ming (JOP) exploits . The computing device 100 may inspect
the destination of target instruction pointer (TIP) packets
stored in the trace data . TIP packets may be generated , for
example , in response to invocation of indirect call instruc
tions or in response to execution of mispredicted return
instructions (that is , return instructions that do not corre
spond to an observed call instruction) or some or all pre
dicted return instructions . The computing device 100 may
compare the target address of each TIP packet to a database
of allowable branch destinations . Each allowable branch
destination may correspond , for example , to the beginning
of a function . Thus , the computing device 100 may detect
indirect branches to disallowed branch targets . The proces
sor 120 may not generate TIP packets for direct branch
instructions ; however , direct branch instructions are implic
itly authorized by the compiler that emitted them , meaning
that any unintended direct branches could only be reached
indirectly after execution of an indirect branch instruction
with a disallowed target address .
[0038] In block 318 , the computing device 100 determines
whether a suspected exploit has been found . If not , the
method 300 branches ahead to block 330 , shown in FIG . 3B
and described below . If a suspected exploit has been found ,
the method 300 advances to block 320 .
[0039] In block 320 , the computing device 100 determines
a cost value associated with the suspected exploit . The cost
value associated with the suspected exploit indicates the
likelihood that the suspected exploit is an actual exploit . In
some embodiments , in block 322 , the computing device 100
may assign a higher cost value to suspected exploits with a
shorter gadget length . The gadget length identifies the dis
tance between the entry point into the ROP gadget and the
return instruction at the end of the gadget . Typical ROP
gadgets are short ; thus , short gadget length indicates the
possibility of malicious behavior and accordingly has a
higher cost value .
[0040] The computing device 100 may estimate the ROP
gadget length by searching in memory for a return instruc
tion opcode starting at the target address of a TIP packet . The
computing device 100 may search within a short distance in
memory , for example , 280 bytes . The gadget length may be
reduced by a constant modifier (e . g . , 9 bytes) if the gadget
length is over a threshold (e . g . , 10 bytes) . If the gadget

US 2019 / 0050566 A1 Feb . 14 , 2019

length is below the threshold , the gadget length may be set
to a minimum value (e . g . , 1 byte) , so that all gadgets shorter
than the threshold are treated similarly . Those adjustments
avoid treating individual short processor instructions as
dramatically more suspicious than individual longer instruc
tions , which may be important for processor instruction sets
with variable instruction length . The cost value may be
computed by dividing a maximum gadget length (e . g . , 280
bytes) by the adjusted gadget length . Thus , the cost value
increases rapidly as the gadget length shortens . The cost
value may be computed by evaluating Equations 1 and 2 ,
shown below .

(1) AdjustedGadgetLength =
(GadgetLength - c if GadgetLength > Threshold

MinGadgetLength else

(2) MaxGadgetLength
cost value = * * AdjustedGadgetLength

[0041] In block 324 , the computing device 100 subtracts
the cost value associated with the suspected exploit from a
cost budget . The cost budget may be associated with the
current process / thread 202 . Thus , the cost budget may
become depleted as the computing device 100 detects sev
eral suspected exploits . In block 326 , the computing device
100 determines whether the cost budget has been exceeded
(e . g . , the current cost budget value is zero or below zero) . If
not , the method 300 branches ahead to block 330 , shown in
FIG . 3B and described below . If the cost budget has been
exceeded , the method 300 advances to block 328 , in which
the computing device 100 handles the suspected exploit . The
computing device 100 may perform any appropriate security
operation to handle the suspected exploit . For example , the
computing device 100 may terminate the current process /
thread 202 . Additionally or alternatively , the computing
device 100 may report the suspected exploit , for example by
notifying a user , logging the suspected exploit , or otherwise
indicating that a suspected exploit has occurred . After han
dling the suspected exploit , the method 300 is completed .
[0042] Referring back to block 326 , if the cost budget has
not been exceeded , the method 300 branches ahead to block
330 shown in FIG . 3B . Referring now to FIG . 3B , in block
330 the computing device 100 identifies any non - suspicious
instructions or combinations of instructions in the RTIT
trace data . The non - suspicious instructions may be embod
ied as any instructions or combinations of instructions that
are not likely to be executed by a control flow exploit . In
some embodiments , in block 332 the computing device 100
identifies taken / not - taken packets in the trace data . Taken /
not - taken packets may correspond to direct branch instruc
tions or correctly predicted return instructions and are typi
cally not executed by ROP exploits or other control flow
exploits .
[0043] In block 334 , the computing device 100 determines
whether non - suspicious instructions have been detected . If
not , the method 300 loops back to block 304 to continue
monitoring for process preemption while tracing execution
of the process / thread 202 . If non - suspicious instructions
have been detected , the method 300 advances to block 336 ,
in which the computing device 100 resets the cost budget for
the current process / thread 202 . After resetting the cost

budget , the method 300 loops back to block 304 to continue
monitoring for process preemption while tracing execution
of the process / thread 202 .
[0044] Referring now to FIG . 4 , in use , the computing
device 100 may execute a method 400 for return - oriented
programming (ROP) exploit detection . The method 400 may
be executed periodically to detect potential ROP exploits .
For example , as described above in connection with block
312 of FIG . 3A , the method 400 may be invoked to evaluate
each target instruction pointer (TIP) packet included in the
real - time instruction tracing (RTIT) trace data . The method
400 begins in block 402 , in which the computing device 100
identifies a flow update (FUP) packet followed by a target
instruction pointer (TIP) packet in the trace data . FUP
packets may be generated in response to operations such as
interrupts , enabling transactional memory , or other opera
tions unrelated to control flow exploits . Thus , the computing
device 100 may filter out or otherwise disregard the com
bination of a FUP packet followed by a TIP packet . In block
404 , the computing device 100 determines whether a FUP
packet immediately followed by a TIP packet has been
identified . If so , the method 400 branches to block 424 , in
which the computing device 100 determines that the ana
lyzed TIP packet is not related to a suspected exploit . After
executing block 424 , the method 400 is completed . The
method 400 may be executed repeatedly to analyze addi
tional TIP packets in the trace data . Referring back to block
404 , if a FUP packet followed by a TIP packet is not
identified , the method 400 advances to block 406 .
[0045] In block 406 , the computing device 100 identifies
successive TIP packets included in the RTIT trace data . ROP
exploits involve execution of return instructions that are not
consistent with ordinary call / return semantics . Thus , a ROP
exploit will generate at least one TIP packet (assuming the
RTIT support 122 implements conservative return compres
sion) . Additionally , typical ROP exploits involve a chain of
return instructions that generate several TIP packets in quick
succession . Of course , non - return instructions may also
generate TIP packets , but preliminary experiments using
sample ROP exploits have indicated that testing for succes
sive TIP packets produces acceptable results even in the
presence of TIP packets generated by non - return instruc
tions . In block 408 , the computing device 100 determines
whether at least two TIP packets occurred in succession . If
not , the method 400 branches to block 424 to determine that
the analyzed TIP packet is not related to a suspected exploit ,
as described above . If at least two TIP packets occurred in
succession , the method 400 advances to block 410 .
[0046] In block 410 , the computing device 100 determines
a distance in memory between two memory addresses
associated with the two successive TIP packets . The com
puting device 100 may determine the distance between the
target instruction pointer associated with the TIP packets or
the distance between the addresses of the return instructions
that generated the TIP packets . Typical ROP gadgets are
scattered widely in memory , and thus both the return instruc
tion at the end of each gadget and the target instruction
pointer of the return instruction (i . e . , the entry point to the
ROP gadget) are scattered widely in memory . In block 412 ,
the computing device 100 determines whether the distance
between the addresses is greater than a threshold distance .
For example , the threshold distance may be 4096 bytes , the
size of a memory page , or any other appropriate size . If the
distance is not greater than the threshold , the method 400

US 2019 / 0050566 A1 Feb . 14 , 2019

branches to block 424 to determine that the analyzed TIP
packet is not related to a suspected exploit , as described
above . If the distance is greater than the threshold , the
method 400 advances to block 414 .
[0047] In block 414 , the computing device 100 finds a
return instruction in memory following the target address of
the TIP packet . ROP gadgets end with a return instruction .
Thus , finding a return instruction in memory within a short
distance following the target address may indicate that the
TIP packet is associated with an ROP gadget . The comput
ing device 100 may search linearly through memory for an
opcode of a return instruction . Of course , searching for an
opcode is an imprecise test , for example because the return
opcode may not be reachable from the target address or the
return opcode may not be associated with a return instruc
tion (e . g . , the opcode may be an immediate value or part of
a longer instruction) . However , preliminary tests using
sample ROP exploits have indicated that searching for the
opcode produces acceptable results . Because ROP gadgets
are typically short , the computing device 100 may limit its
search for the return opcode . In some embodiments , in block
416 , the computing device 100 may search for the return
instruction within a threshold distance in memory , for
example 280 bytes . In some embodiments , in block 418 , the
computing device 100 may reconstruct instruction flow
starting at the target address of the TIP packet and search for
a return instruction within a threshold number of instruc
tions .
10048] In block 420 , the computing device 100 determines
whether a return instruction was found . If not , the method
400 branches to block 424 to determine that the analyzed
TIP packet is not related to a suspected exploit , as described
above . If a return instruction was found , the method 400
branches to block 422 . In block 422 , the computing device
100 determines that the analyzed TIP packet is related to a
suspected ROP exploit . After execution of the block 422 , the
method 400 is completed . As described above in connection
with FIG . 3A , the computing device 100 may proceed to
determine a cost value associated with the suspected exploit
and may generate an appropriate security response .
[0049] Referring now to FIG . 5 , in use , the computing
device 100 may execute a method 500 for control flow
tracing . The method 500 may be executed during execution
of the process / thread 202 to enable shadow stack tracking
and analysis . For example , the method 500 may be executed
by the process / thread 202 during its assigned timeslice , as
described above in connection with block 304 of FIG . 3A .
The method 500 may be embodied as one or more instruc
tions inserted into the process / thread 202 , for example
during program compilation . The method 500 begins in
block 502 , in which the computing device 100 determines
whether a call instruction is being executed by the process /
thread 202 . If not , the method 500 branches ahead to block
512 , described below . If a call instruction is being executed ,
the method 500 advances to block 504 .
[0050] In block 504 , the computing device 100 outputs a
code (e . g . , a magic number) to the trace data indicating that
a call instruction is about to occur . The computing device
100 may execute a specialized processor instruction such as
PTWRITE to output the code to the trace data . In block 506 ,
the computing device 100 outputs the current stack pointer
to the trace data . Similarly , the computing device 100 may
execute a specialized processor instruction such as
PTWRITE to output the stack pointer . Outputting the stack

pointer value may allow the computing device 100 to
distinguish between multiple stacks in use by the process /
thread 202 , for example , when a process includes multiple
threads .
[0051] In block 508 , the computing device 100 determines
whether the call instruction is a direct call . A direct call
includes the destination address or destination offset as an
operand value of the instruction . An indirect call determines
the destination address based on the contents of a register or
memory location . If the call instruction is not a direct call
(i . e . , it is an indirect call) , the method 500 branches ahead to
block 512 , described below . If the call instruction is a direct
call , the method 500 advances to block 510 . In block 510 ,
the computing device 100 outputs the next linear instruction
pointer value to the trace data . The next linear instruction
pointer value corresponds to the return address pushed on
the stack by the direct call instruction . The computing device
100 may execute a specialized processor instruction such as
PTWRITE to output the return address . Note that the RTIT
support 122 of the processor 120 automatically creates a
target instruction pointer (TIP) packet with the next linear
instruction pointer for indirect call instructions and thus that
data need not be output as part of the method 500 .
[0052] In block 512 , the computing device 100 determines
whether a return instruction is being executed by the pro
cess / thread 202 . If not , the method 500 loops back to block
502 to continue monitoring instructions executed by the
process / thread 202 . If a return instruction is being executed ,
the method 500 advances to block 514 .
[0053] In block 514 , the computing device 100 outputs a
code (e . g . , a magic number) to the trace data indicating that
a return instruction is about to occur . The computing device
100 may execute a specialized processor instruction such as
PTWRITE to output the code to the trace data . In block 516 ,
the computing device 100 outputs the current stack pointer
to the trace data . Similarly , the computing device 100 may
execute a specialized processor instruction such as
PTWRITE to output the stack pointer . As described above ,
outputting the stack pointer value may allow the computing
device 100 to distinguish between multiple stacks in use by
the process / thread 202 , for example , when a process
includes multiple threads . Note that there is no need to
output the return address to the trace data as part of the
method 500 , because the RTIT support 122 of the processor
120 will automatically output a TIP packet with the return
address for mispredicted return instructions , and the return
address may be determined from the shadow stack for
correctly predicted return instructions . After outputting the
stack pointer , the method 500 loops back to block 502 to
continue monitoring instructions executed by the process /
thread 202 .
[0054] Referring now to FIG . 6 , in use , the computing
device 100 may execute a method 600 for processor instruc
tion tracing and exploit detection . The method 600 may be
executed by hardware resources of the computing device
100 , such as the RTIT support 122 of the processor 120 .
Thus , the method 600 may be executed transparently to the
process / thread 202 executed by the computing device 100 .
The method 600 begins in block 602 , in which the comput
ing device 100 monitors for executed instructions relevant to
control flow exploit detection . In some embodiments , in
block 604 the computing device 100 may monitor for call
instructions , return instructions , and indirect jump instruc
tions . Additionally or alternatively , the computing device

US 2019 / 0050566 A1 Feb . 14 , 2019

100 may monitor for any instruction that may be used
similarly to an indirect jump instruction , such as certain
combinations of transactional memory instructions . In block
606 , the computing device 100 determines whether to trace
the executed instruction ; that is , the computing device 100
determines whether an instruction relevant to control flow
exploit detection has been detected . If not , the method 600
branches ahead to block 612 , described below . If the com
puting device 100 determines to trace the current instruction ,
the method 600 advances to block 608 .
[0055] In block 608 , the computing device 100 outputs a
target instruction pointer (TIP) packet including the next
linear instruction pointer for each call instruction . The trace
data output by the computing device 100 is read - only to the
process / thread 202 , which may prevent malicious software
from modifying the trace data . The trace data may be
protected , for example , using page tables of the processor
120 . The computing device 100 may output the TIP packet
to the trace data area 206 used for debugging - oriented RTIT ,
or may output the TIP packet to a specialized data area used
for control flow exploit detection . In block 610 , the com
puting device 100 outputs the current stack pointer value to
the trace data if its value has changed to a different memory
page from the last traced call instruction or return instruc
tion . Outputting the stack pointer value following large
changes may help detect stack pivots or other attacks
involving changing the active stack . Of course , the comput
ing device 100 may also output other trace information such
as taken / not taken packets for conditional branches or
returns , TIP packets for indirect jumps , metadata such as
synchronization packets , and other information .
[0056] In block 612 , the computing device 100 determines
whether a mispredicted return instruction has been executed .
As described above , when a call instruction is executed , a
return address (the next linear instruction pointer value) is
pushed onto the system stack . When a return instruction is
executed , a return address is popped off the stack and the
processor 120 jumps to that return address . For a computing
device 100 performing conservative call / return consistency
checks as described in Strong et al . , U . S . Patent Application
Publication No . 2014 / 0337604 , a return instruction may be
mispredicted when the return address popped off the stack
does not match the return address pushed onto the stack by
the call instruction at the corresponding depth in the stack .
Mispredicted return instructions may result from ROP
exploits or may result from non - malicious software behav
ior . The RTIT support 122 of the processor 120 may use any
technique for identifying mispredicted return instructions ,
for example using a dedicated hardware buffer to maintain
a stack of return addresses associated with call instructions .
If a mispredicted return instruction was not executed , the
method 600 loops back to block 602 to continue monitoring
for instructions relevant for control flow exploit detection . If
a mispredicted return instruction was executed , the method
600 advances to block 614 . Additionally , although illustrated
as determining whether a mispredicted return instruction has
been executed , it should be understood that in some embodi
ments the computing device 100 may monitor for other
suspicious activities , for example using one or more ROP
heuristics as described in Fischer et al . , U . S . Patent Appli
cation Pub . No . 2014 / 0123281 and Fischer et al . , U . S . Patent
Application Pub . No . 2014 / 0123286 .
[0057] In block 614 , the computing device 100 invokes
the mispredicted return handler 210 in the process space of

the process / thread 202 . The computing device 100 may use
any technique for invoking the mispredicted return handler
210 , such as raising an interrupt or trap , executing a call
back , or jumping to a particular address associated with the
mispredicted return handler 210 . The mispredicted return
handler 210 is invoked in the process space of the process
thread 202 and thus may execute with user - level privileges .
Additionally or alternatively , in some embodiments the
mispredicted return handler 210 may be invoked in the
process space of an operating system and / or hypervisor . In
some embodiments , in block 616 the computing device 100
may provide an address pointing to the end of the trace data
to the process / thread 202 . The address may be provided , for
example , in a processor 120 register or as a stack parameter .
Providing the location of the trace data directly to the
process / thread 202 may allow the process / thread 202 to
access the trace data without a potentially expensive call to
an operating system and / or hypervisor . After invoking the
mispredicted return handler 210 , the method 600 loops back
to block 602 to monitor for additional instructions relevant
to control flow exploit detection .
[0058] Referring now to FIG . 7 , in use , the computing
device 100 may execute a method 700 for shadow stack
management and control flow exploit detection . The method
700 may be executed as a part of the mispredicted return
handler 210 in the process space of the process / thread 202 .
Additionally or alternatively , as described above , the method
700 may be executed as part of a suspected control flow
exploit handler in response to detection of other suspicious
activities , for example using one or more ROP heuristics as
described in Fischer et al . , U . S . Patent Application Pub . No .
2014 / 0123281 and Fischer et al . , U . S . Patent Application
Pub . No . 2014 / 0123286 . The method 700 begins in block
702 , in which the computing device 100 invokes the mis
predicted return handler 210 . As described above in con
nection with block 614 of FIG . 6 , hardware resources of the
computing device 100 , such as the RTIT support 122 of the
processor 120 , may invoke the mispredicted return handler
210 in response to detecting execution of a mispredicted
return instruction . In block 704 , the computing device 100
identifies the end of trace data in the memory 126 . The
computing device 100 may identify the end of the trace data
using a pointer value provided by hardware resources during
invocation of the mispredicted return handler 210 , for
example in a processor 120 register or in a stack parameter .
[0059] In block 706 , the computing device 100 searches
backwards in the trace data for an encoded marker that was
output during the previous invocation of the mispredicted
return handler 210 . Of course , during the first invocation of
the mispredicted return handler 210 , the computing device
100 may search backwards for a default marker or otherwise
search for the beginning of the trace data . The encoded
marker includes a keyed message authentication code
(MAC) based on a snapshot of a shadow stack at the time of
the previous invocation of the mispredicted return handler
210 .
[0060] In block 708 , the computing device 100 re - com
putes a MAC value based on the current contents of the
shadow stack . The computing device 100 may use any
technique or algorithm to compute the MAC value , for
example calculating a hash value based on the contents of
the shadow stack .
[0061] In block 710 , the computing device 100 encodes
the re - computed MAC using the handler key 212 . The

US 2019 / 0050566 A1 Feb . 14 , 2019

handler key 212 may be stored in protected memory 126 that
is not readable by the process / thread 202 , and thus may not
be vulnerable to memory disclosure attacks . In some
embodiments , in block 712 , the computing device 100
recovers the handler key 212 from execute - only memory .
For example , the handler key 212 may be stored as an
immediate value in execute - only memory , which may be
protected using extended page tables (EPT) support of the
processor 120 .
[0062] In block 714 , the computing device 100 compares
the encoded MAC value from the marker determined in
block 706 to the encoded recomputed MAC value deter
mined in block 710 . If the encoded MAC values match , then
the shadow stack has not changed since the last invocation
of the mispredicted return handler 210 . Conversely , if the
encoded MAC values do not match , then the shadow stack
has been tampered with or otherwise modified since the last
invocation of the mispredicted return handler 210 .
[0063] In block 716 , the computing device 100 determines
whether the encoded MAC values match . If not , the method
700 branches to block 718 , in which the computing device
100 handles a suspected ROP exploit . The computing device
100 may , for example , examine the system stack for suspi
cious activity using one or more heuristic checks as
described in U . S . patent application Ser . No . 14 / 498 , 075 ,
filed on Sep . 26 , 2014 , and entitled Hardware Shadow Stack
Support for Legacy Guests . After handling the suspected
exploit , the method 700 is completed and ordinary execution
of the process / thread 202 may resume . Although illustrated
as comparing encoded MAC values , it should be understood
that in some embodiments the computing device 100 may
compare decoded MAC values , for example by decoding an
encoded MAC value recovered from the trace data as
described above in block 706 .
[0064] Referring back to block 716 , if the encoded MAC
values match the method 700 advances to block 720 , in
which the computing device 100 updates the shadow stack
based on the trace data . The computing device 100 may push
return addresses corresponding to recorded call instructions
onto the shadow stack , pop return addresses corresponding
to predicted return instructions , push or pop stack base
pointers , or otherwise perform any operation required to
update the shadow stack to match the traced control flow of
the process / thread 202 .
[0065] In block 722 , the computing device 100 checks for
suspected ROP exploits using the shadow stack . The com
puting device 100 may , for example , examine the system
stack for suspicious activity using one or more heuristic
checks as described in U . S . patent application Ser . No .
14 / 498 , 075 , filed on Sep . 26 , 2014 , and entitled Hardware
Shadow Stack Support for Legacy Guests . In block 724 , the
computing device 100 determines whether suspicious activ
ity has been identified . If so , the method 700 branches to
block 718 to handle a suspected ROP exploit , as described
above . If the computing device 100 does not identify sus
picious activity , the method 700 advances to block 726 .
100661 In block 726 , the computing device 100 computes
a MAC value based on the updated shadow stack . As
described above in relation to block 712 , the computing
device 100 may use any technique or algorithm to compute
the MAC value , for example calculating a hash value based
on the contents of the shadow stack . In block 728 , the
computing device 100 encodes the MAC value using the
handler key 212 . As described above , the handler key 212 is

not readable by the process / thread 202 , and thus the com
puting device 100 may recover the handler key 212 from
execute - only memory .
0067] In block 730 , the computing device 100 outputs the
encoded MAC value to the trace data . In some embodi
ments , in block 732 the computing device 100 may output
the encoded MAC value using a specialized processor
instruction such as PTWRITE . In some embodiments , in
block 734 , the computing device 100 may output the
encoded MAC by executing a pattern of indirect jumps to
output trace data that may be used to determine the encoded
MAC . The RTIT support 122 of the processor 120 may
automatically output a target instruction pointer (TIP) packet
to the trace data for each indirect jump . Thus , the computing
device 100 may encode the encoded MAC value into a series
of TIP packets by executing a carefully constructed series of
indirect jumps . As an illustrative example , and referring now
to FIG . 8 , the schematic diagram 800 illustrates a single 4
kiB (4096 - byte) page of the memory 126 that has been set
to be executable - only , for example using extended page
tables (EPT) . The memory 126 includes several instruction
bundles 802 . Each instruction bundle 802 includes instruc
tions 804 to select an indirect branch target based on the next
9 bits of the value to be encoded . Each instruction bundle
802 further includes instructions 806 to jump to the instruc
tion bundle 802 corresponding to that indirect branch target .
Each instruction bundle 802 occupies 8 bytes of memory ;
thus , a single 4 kiB page of the memory 126 includes 512
instruction bundles 802 . During execution , the RTIT support
122 outputs a TIP packet that identifies the instruction
bundle 802 that is the target of each indirect jump . Because
there are 512 (i . e . , 29) possible instruction bundles 802 , each
TIP packet may encode up to 9 bits of the original encoded
MAC . Of course , FIG . 8 is merely illustrative , and in other
embodiments different sizes and / or numbers of instruction
bundles or memory pages may be used . Additionally , or
alternatively , in some embodiments the RTIT support 122
may record the target address of direct jump instructions ,
and in those embodiments the instruction bundles may
include direct jumps .
[0068] Referring back to FIG . 7 , after outputting the
encoded MAC value , in block 736 the computing device 100
resumes execution of the process / thread 202 . The computing
device 100 may return from a callback instruction , interrupt
vector , or otherwise resume processing of the process / thread
202 . As described above , the method 700 may be executed
repeatedly in response to future invocations of the mispre
dicted return handler 210 .

EXAMPLES
[0069] Illustrative examples of the technologies disclosed
herein are provided below . An embodiment of the technolo
gies may include any one or more , and any combination of ,
the examples described below .
[0070] Example 1 includes a computing device for exploit
mitigation , the computing device comprising a processor
comprising a processor trace module to generate trace data
indicative of control flow of a process of the computing
device ; an exploit detector module to (i) analyze the trace
data to identify a suspected control flow exploit and (ii)
determine a cost value in response to identification of the
suspected control flow exploit , wherein the cost value is
indicative of a likelihood that the suspected control flow
exploit is an actual control flow exploit ; and a security

US 2019 / 0050566 A1 Feb . 14 , 2019

response module to handle the suspected control flow
exploit based on the cost value .
10071] Example 2 includes the subject matter of Example
1 , and wherein to analyze the trace data to identify the
suspected control flow exploit comprises to analyze the trace
data using a heuristic algorithm to identify a suspected
return - oriented programming exploit .
[0072] Example 3 includes the subject matter of any of
Examples 1 and 2 , and wherein to analyze the trace data
using the heuristic algorithm to identify the suspected
return - oriented programming exploit comprises to identify a
first target instruction pointer packet in the trace data ,
wherein the first target instruction pointer packet is associ
ated with a destination address ; find a return instruction in
memory following the destination address of the first target
instruction packet ; and identify the suspected return - ori
ented programming exploit in response to finding the return
instruction in memory .
[0073] Example 4 includes the subject matter of any of
Examples 1 - 3 , and wherein to find the return instruction in
memory comprises to search memory for a return instruction
opcode within a predefined threshold distance following the
destination address of the first target instruction pointer
packet .
[0074] Example 5 includes the subject matter of any of
Examples 1 - 4 , and wherein to find the return instruction in
memory comprises to reconstruct an instruction flow starting
at the destination address of the first target instruction
pointer packet .
[0075] Example 6 includes the subject matter of any of
Examples 1 - 5 , and wherein to analyze the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises to identify
a pair of successive target instruction pointer packets in the
trace data , wherein the pair of successive target instruction
pointer packets includes the first target instruction pointer
packet ; wherein to identify the suspected return - oriented
programming exploit further comprises to identify the sus
pected return - oriented programming exploit in response to
identification of the pair of successive target instruction
pointer packets .
[0076] Example 7 includes the subject matter of any of
Examples 1 - 6 , and wherein to analyze the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises to deter
mine an in - memory distance between return instructions
associated with the pair of successive target instruction
pointer packets ; and determine whether the in - memory
distance has a predefined relationship with a threshold
distance ; wherein to identify the suspected return - oriented
programming exploit further comprises to identify the sus
pected return - oriented programming exploit in response to a
determination that the in - memory distance has the pre
defined relationship with the threshold distance .
[0077] Example 8 includes the subject matter of any of
Examples 1 - 7 , and wherein to analyze the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises to deter
mine an in - memory distance between destination addresses
associated with the pair of successive target instruction
pointer packets ; and determine whether the in - memory
distance has a predefined relationship with a threshold
distance ; wherein to identify the suspected return - oriented
programming exploit further comprises to identify the sus

pected return - oriented programming exploit in response to a
determination that the in - memory distance has the pre
defined relationship with the threshold distance .
[0078] Example 9 includes the subject matter of any of
Examples 1 - 8 , and wherein to analyze the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises to deter
mine whether the first target instruction pointer packet is
preceded by a flow update packet in the trace data ; wherein
to identify the suspected return - oriented programming
exploit further comprises to identify the suspected return
oriented programming exploit in response to a determination
that the first target instruction pointer packet is not preceded
by a flow update packet in the trace data .
[0079] Example 10 includes the subject matter of any of
Examples 1 - 9 , and wherein to determine the cost value in
response to identification of the suspected control flow
exploit comprises to calculate the cost value as a function of
a gadget length of the suspected control flow exploit .
10080] Example 11 includes the subject matter of any of
Examples 1 - 10 , and wherein to calculate the cost value
comprises to assign a higher cost value to a shorter gadget
length .
[0081] Example 12 includes the subject matter of any of
Examples 1 - 11 , and wherein to determine the cost value in
response to identification of the suspected control flow
exploit comprises to (i) subtract the cost value from a total
cost budget and (ii) determine whether the total cost budget
has been exceeded ; and to handle the suspected control flow
exploit based on the cost value comprises to handle the
suspected control flow exploit in response to a determination
that the total cost budget has been exceeded .
[0082] Example 13 includes the subject matter of any of
Examples 1 - 12 , and wherein the exploit detector module is
further to identify a non - suspicious instruction based on the
trace data ; and reset the total cost budget in response to
identification of the non - suspicious instruction .
10083] Example 14 includes the subject matter of any of
Examples 1 - 13 , and wherein to identify the non - suspicious
construction comprises to identify a taken / not - taken packet
in the trace data .
10084] Example 15 includes the subject matter of any of
Examples 1 - 14 , and wherein to analyze the trace data to
identify the suspected control flow exploit comprises to
update a shadow stack based on the trace data ; and analyze
the shadow stack using a heuristic algorithm to identify a
suspected return - oriented programming exploit .
10085] Example 16 includes the subject matter of any of
Examples 1 - 15 , and wherein to generate the trace data
indicative of the control flow of the process of the computing
device comprises to output a target instruction pointer
packet including a next linear instruction pointer in response
to execution of a direct call instruction .
100861 . Example 17 includes the subject matter of any of
Examples 1 - 16 , and wherein to generate the trace data
indicative of the control flow of the process of the computing
device further comprises to output a packet including a
current stack pointer value in response to execution of a call
instruction or a return instruction .
[0087] Example 18 includes the subject matter of any of
Examples 1 - 17 , and wherein to generate the trace data
indicative of the control flow of the process of the computing
device further comprises to determine whether a new stack
page is being accessed ; and to output the packet including

US 2019 / 0050566 A1 Feb . 14 , 2019

the current stack pointer value further comprises to output
the packet including the current stack pointer value in
response to a determination that the new stack page is being
accessed .
[0088] Example 19 includes the subject matter of any of
Examples 1 - 18 , and wherein to analyze the trace data to
identify the suspected control flow exploit comprises to
identify a first target instruction pointer packet in the trace
data , wherein the first target instruction pointer packet is
associated with a destination address , determine whether the
destination address is a predefined legitimate branch target ;
and identify a suspected jump - oriented programming exploit
in response to a determination that the destination address is
not a predefined legitimate branch target .
[0089] Example 20 includes a computing device for real
time exploit mitigation , the computing device comprising a
processor comprising a processor trace module to generate
trace data indicative of control flow of a process of the
computing device ; detect a suspected control flow exploit
using the trace data ; and invoke a suspected control flow
exploit handler in response to detection of the suspected
control flow exploit ; an exploit detector module to determine
whether a current shadow stack is valid in response to
invocation of the mispredicted return handler ; and a security
response module to handle the suspected control flow
exploit in response to a determination that the current
shadow stack is not valid .
[0090] Example 21 includes the subject matter of Example
20 , and wherein to detect the suspected control flow exploit
comprises to detect a mispredicted return instruction using
the trace data ; and to invoke the suspected control flow
exploit handler comprises to invoke a mispredicted return
handler in response to detection of the mispredicted return
instruction .
[0091] Example 22 includes the subject matter of any of
Examples 20 and 21 , and wherein to invoke the mispredicted
return handler comprises to invoke the mispredicted return
handler in a process space of the process of the computing
device .
[0092] Example 23 includes the subject matter of any of
Examples 20 - 22 , and wherein to invoke the mispredicted
return handler further comprises to provide a memory
address associated with the trace data to the process .
[0093] Example 24 includes the subject matter of any of
Examples 20 - 23 , and wherein to detect the suspected control
flow exploit comprises to analyze the trace data using a
heuristic algorithm to identify a suspected return - oriented
programming exploit .
0094] Example 25 includes the subject matter of any of
Examples 20 - 24 , and wherein the exploit detector module is
further to update the current shadow stack based on the trace
data in response to a determination that the current shadow
stack is valid ; compute a message authentication code based
on the current shadow stack in response to updating of the
current shadow stack ; encode the message authentication
code using a handler key , wherein the handler key is located
in a protected memory region ; and output the encoded
message authentication code to the trace data .
[0095] Example 26 includes the subject matter of any of
Examples 20 - 25 , and wherein to output the encoded mes
sage authentication code comprises to execute a processor
instruction to write the encoded message authentication code
to the trace data .

[0096] Example 27 includes the subject matter of any of
Examples 20 - 26 , and wherein to output the encoded mes
sage authentication code comprises to execute one or more
branch instructions based on the encoded message authen
tication code to output coded data to the trace data .
[0097] Example 28 includes the subject matter of any of
Examples 20 - 27 , and wherein to determine whether the
current shadow stack is valid comprises to extract an
encoded message authentication code from the trace data ;
compute a second message authentication code based on the
current shadow stack ; encode the second message authen
tication code to generate an encoded second message
authentication code using a handler key , wherein the handler
key is located in a protected memory region ; and compare
the encoded message authentication code to the encoded
second message authentication code .
[0098] Example 29 includes the subject matter of any of
Examples 20 - 28 , and wherein to encode the second message
authentication code comprises to recover the handler key
from an immediate value stored in execute - only memory .
[0099] Example 30 includes the subject matter of any of
Examples 20 - 29 , and wherein to extract the encoded mes
sage authentication code from the trace data comprises to
identify a memory address associated with the trace data ,
wherein the memory address is supplied by the processor
trace module of the processor ; and search in the trace data
from the memory address associated with the trace data for
the encoded message authentication code .
(0100] Example 31 includes the subject matter of any of
Examples 20 - 30 , and wherein the exploit detector module is
further to resume the process of the computing device in
response to a determination that the current shadow stack is
valid .
0101] Example 32 includes the subject matter of any of
Examples 20 - 31 , and wherein to generate the trace data
indicative of the control flow of the process of the computing
device comprises to output a target instruction pointer
packet including a next linear instruction pointer in response
to execution of a direct call instruction .
[0102] Example 33 includes the subject matter of any of
Examples 20 - 32 , and wherein to generate the trace data
indicative of the control flow of the process of the computing
device further comprises to determine whether a current
stack pointer value is located in a different memory page
from a previous stack pointer value ; and output a packet
including the current stack pointer value in response to
execution of a call instruction or a return instruction and a
determination that the current stack pointer value is located
in a different memory page from the previous stack pointer
value .
[0103] Example 34 includes a method for exploit mitiga
tion , the method comprising generating , by a processor trace
module of a processor of a computing device , trace data
indicative of control flow of a process of the computing
device ; analyzing , by the computing device , the trace data to
identify a suspected control flow exploit ; determining , by
the computing device , a cost value in response to identifying
the suspected control flow exploit , wherein the cost value is
indicative of a likelihood that the suspected control flow
exploit is an actual control flow exploit ; and handling , by the
computing device , the suspected control flow exploit based
on the cost value .
[0104] Example 35 includes the subject matter of Example
34 , and wherein analyzing the trace data to identify the

US 2019 / 0050566 A1 Feb . 14 , 2019

suspected control flow exploit comprises analyzing the trace
data using a heuristic algorithm to identify a suspected
return - oriented programming exploit .
[0105] Example 36 includes the subject matter of any of
Examples 34 and 35 , and wherein analyzing the trace data
using the heuristic algorithm to identify the suspected
return - oriented programming exploit comprises identifying
a first target instruction pointer packet in the trace data ,
wherein the first target instruction pointer packet is associ
ated with a destination address ; finding a return instruction
in memory following the destination address of the first
target instruction packet ; and identifying the suspected
return - oriented programming exploit in response to finding
the return instruction in memory .
[0106] Example 37 includes the subject matter of any of
Examples 34 - 36 , and wherein finding the return instruction
in memory comprises searching memory for a return instruc
tion opcode within a predefined threshold distance following
the destination address of the first target instruction pointer
packet .
[0107] Example 38 includes the subject matter of any of
Examples 34 - 37 , and wherein finding the return instruction
in memory comprises reconstructing an instruction flow
starting at the destination address of the first target instruc
tion pointer packet .
[0108] Example 39 includes the subject matter of any of
Examples 34 - 38 , and wherein analyzing the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises identifying
a pair of successive target instruction pointer packets in the
trace data , wherein the pair of successive target instruction
pointer packets includes the first target instruction pointer
packet ; wherein identifying the suspected return - oriented
programming exploit further comprises identifying the sus
pected return - oriented programming exploit in response to
identifying the pair of successive target instruction pointer
packets .
[0109] Example 40 includes the subject matter of any of
Examples 34 - 39 , and wherein analyzing the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises determin
ing an in - memory distance between return instructions asso
ciated with the pair of successive target instruction pointer
packets ; and determining whether the in - memory distance
has a predefined relationship with a threshold distance ;
wherein identifying the suspected return - oriented program
ming exploit further comprises identifying the suspected
return - oriented programming exploit in response to deter
mining that the in - memory distance has the predefined
relationship with the threshold distance .
[0110] Example 41 includes the subject matter of any of
Examples 34 - 40 , and wherein analyzing the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises determin
ing an in - memory distance between destination addresses
associated with the pair of successive target instruction
pointer packets ; and determining whether the in - memory
distance has a predefined relationship with a threshold
distance ; wherein identifying the suspected return - oriented
programming exploit further comprises identifying the sus
pected return - oriented programming exploit in response to
determining that the in - memory distance has the predefined
relationship with the threshold distance .

[0111] Example 42 includes the subject matter of any of
Examples 34 - 41 , and wherein analyzing the trace data using
the heuristic algorithm to identify the suspected return
oriented programming exploit further comprises determin
ing whether the first target instruction pointer packet is
preceded by a flow update packet in the trace data ; wherein
identifying the suspected return - oriented programming
exploit further comprises identifying the suspected return
oriented programming exploit in response to determining
that the first target instruction pointer packet is not preceded
by a flow update packet in the trace data .
[0112] Example 43 includes the subject matter of any of
Examples 34 - 42 , and wherein determining the cost value in
response to identifying the suspected control flow exploit
comprises calculating the cost value as a function of a gadget
length of the suspected control flow exploit .
[0113] Example 44 includes the subject matter of any of
Examples 34 - 43 , and wherein calculating the cost value
comprises assigning a higher cost value to a shorter gadget
length .
[0114] Example 45 includes the subject matter of any of
Examples 34 - 44 , and wherein determining the cost value in
response to identifying the suspected control flow exploit
comprises (i) subtracting the cost value from a total cost
budget and (ii) determining whether the total cost budget has
been exceeded ; and handling the suspected control flow
exploit based on the cost value comprises handling the
suspected control flow exploit in response to determining
that the total cost budget has been exceeded .
[0115] Example 46 includes the subject matter of any of
Examples 34 - 45 , and further including identifying , by the
computing device , a non - suspicious instruction based on the
trace data ; and resetting , by the computing device , the total
cost budget in response to identifying the non - suspicious
instruction .
10116] . Example 47 includes the subject matter of any of
Examples 34 - 46 , and wherein identifying the non - suspicious
construction comprises identifying a taken / not - taken packet
in the trace data .
[0117] Example 48 includes the subject matter of any of
Examples 34 - 47 , and wherein analyzing the trace data to
identify the suspected control flow exploit comprises updat
ing a shadow stack based on the trace data ; and analyzing the
shadow stack using a heuristic algorithm to identify a
suspected return - oriented programming exploit .
[0118] Example 49 includes the subject matter of any of
Examples 34 - 48 , and wherein generating the trace data
indicative of the control flow of the process of the computing
device comprises outputting a target instruction pointer
packet including a next linear instruction pointer in response
to executing a direct call instruction .
[0119] Example 50 includes the subject matter of any of
Examples 34 - 49 , and wherein generating the trace data
indicative of the control flow of the process of the computing
device further comprises outputting a packet including a
current stack pointer value in response to executing a call
instruction or a return instruction .
[0120] Example 51 includes the subject matter of any of
Examples 34 - 50 , and wherein generating the trace data
indicative of the control flow of the process of the computing
device further comprises determining whether a new stack
page is being accessed ; and outputting the packet including
the current stack pointer value further comprises outputting

US 2019 / 0050566 A1 Feb . 14 , 2019

the packet including the current stack pointer value in
response to determining that the new stack page is being
accessed .
[0121] Example 52 includes the subject matter of any of
Examples 34 - 51 , and wherein analyzing the trace data to
identify the suspected control flow exploit comprises iden
tifying a first target instruction pointer packet in the trace
data , wherein the first target instruction pointer packet is
associated with a destination address ; determining whether
the destination address is a predefined legitimate branch
target ; and identifying a suspected jump - oriented program
ming exploit in response to determining that the destination
address is not a predefined legitimate branch target .
[0122] Example 53 includes a method for real - time exploit
mitigation , the method comprising generating , by a proces
sor trace module of a processor of a computing device , trace
data indicative of control flow of a process of the computing
device ; detecting , by the processor trace module , a suspected
control flow exploit using the trace data ; invoking , by the
processor trace module , a suspected control flow exploit
handler in response to detecting the suspected control flow
exploit ; determining , by the computing device , whether a
current shadow stack is valid in response to invoking the
mispredicted return handler ; and handling , by the computing
device , the suspected control flow exploit in response to
determining that the current shadow stack is not valid .
[0123] Example 54 includes the subject matter of Example
53 , and wherein detecting the suspected control flow exploit
comprises detecting a mispredicted return instruction using
the trace data ; and invoking the suspected control flow
exploit handler comprises invoking a mispredicted return
handler in response to detecting the mispredicted return
instruction .
101241 Example 55 includes the subject matter of any of
Examples 53 and 54 , and wherein invoking the mispredicted
return handler comprises invoking the mispredicted return
handler in a process space of the process of the computing
device .
[0125] Example 56 includes the subject matter of any of
Examples 53 - 55 , and wherein invoking the mispredicted
return handler further comprises providing a memory
address associated with the trace data to the process .
[0126] Example 57 includes the subject matter of any of
Examples 53 - 56 , and wherein detecting the suspected con
trol flow exploit comprises analyzing the trace data using a
heuristic algorithm to identify a suspected return - oriented
programming exploit .
[0127] Example 58 includes the subject matter of any of
Examples 53 - 57 , and further including updating , by the
computing device , the current shadow stack based on the
trace data in response to determining that the current shadow
stack is valid ; computing , by the computing device , a
message authentication code based on the current shadow
stack in response to updating the current shadow stack ;
encoding , by the computing device , the message authenti
cation code using a handler key , wherein the handler key is
located in a protected memory region ; and outputting , by the
computing device , the encoded message authentication code
to the trace data .
[0128] Example 59 includes the subject matter of any of
Examples 53 - 58 , and wherein outputting the encoded mes
sage authentication code comprises executing a processor
instruction to write the encoded message authentication code
to the trace data .

(0129] Example 60 includes the subject matter of any of
Examples 53 - 59 , and wherein outputting the encoded mes
sage authentication code comprises executing one or more
branch instructions based on the encoded message authen
tication code to output coded data to the trace data .
[0130] Example 61 includes the subject matter of any of
Examples 53 - 60 , and wherein determining whether the
current shadow stack is valid comprises extracting , by the
computing device , an encoded message authentication code
from the trace data ; computing , by the computing device , a
second message authentication code based on the current
shadow stack ; encoding , by the computing device , the
second message authentication code to generate an encoded
second message authentication code using a handler key ,
wherein the handler key is located in a protected memory
region ; and comparing , by the computing device , the
encoded message authentication code to the encoded second
message authentication code .
[0131] Example 62 includes the subject matter of any of
Examples 53 - 61 , and wherein encoding the second message
authentication code comprises recovering the handler key
from an immediate value stored in execute - only memory .
[0132] Example 63 includes the subject matter of any of
Examples 53 - 62 , and wherein extracting the encoded mes
sage authentication code from the trace data comprises
identifying a memory address associated with the trace data ,
wherein the memory address is supplied by the processor
trace module of the processor ; and searching in the trace data
from the memory address associated with the trace data for
the encoded message authentication code .
[0133] Example 64 includes the subject matter of any of
Examples 53 - 63 , and further including resuming , by the
computing device , the process of the computing device in
response to determining that the current shadow stack is
valid .
[0134] Example 65 includes the subject matter of any of
Examples 53 - 64 , and wherein generating the trace data
indicative of the control flow of the process of the computing
device comprises outputting a target instruction pointer
packet including a next linear instruction pointer in response
to executing a direct call instruction .
[0135] Example 66 includes the subject matter of any of
Examples 53 - 65 , and wherein generating the trace data
indicative of the control flow of the process of the computing
device further comprises determining whether a current
stack pointer value is located in a different memory page
from a previous stack pointer value ; and outputting a packet
including the current stack pointer value in response to
executing a call instruction or a return instruction and
determining that the current stack pointer value is located in
a different memory page from the previous stack pointer
value .
[0136] Example 67 includes a computing device compris
ing a processor ; and a memory having stored therein a
plurality of instructions that when executed by the processor
cause the computing device to perform the method of any of
Examples 34 - 66 .

[0137] Example 68 includes one or more machine read
able storage media comprising a plurality of instructions
stored thereon that in response to being executed result in a
computing device performing the method of any of
Examples 34 - 66 .

US 2019 / 0050566 A1 Feb . 14 , 2019
13

V

[0138] Example 69 includes a computing device compris -
ing means for performing the method of any of Examples
34 - 66 .
[0139] Example 70 includes a computing device for
exploit mitigation , the computing device comprising means
for generating , by a processor trace module of a processor of
a computing device , trace data indicative of control flow of
a process of the computing device ; means for analyzing the
trace data to identify a suspected control flow exploit ; means
for determining a cost value in response to identifying the
suspected control flow exploit , wherein the cost value is
indicative of a likelihood that the suspected control flow
exploit is an actual control flow exploit ; and means for
handling the suspected control flow exploit based on the cost
value .
[0140] Example 71 includes the subject matter of Example
70 , and wherein the means for analyzing the trace data to
identify the suspected control flow exploit comprises means
for analyzing the trace data using a heuristic algorithm to
identify a suspected return - oriented programming exploit .
[0141] Example 72 includes the subject matter of any of
Examples 70 and 71 , and wherein the means for analyzing
the trace data using the heuristic algorithm to identify the
suspected return - oriented programming exploit comprises
means for identifying a first target instruction pointer packet
in the trace data , wherein the first target instruction pointer
packet is associated with a destination address ; means for
finding a return instruction in memory following the desti
nation address of the first target instruction packet ; and
means for identifying the suspected return - oriented pro
gramming exploit in response to finding the return instruc
tion in memory .
[0142] Example 73 includes the subject matter of any of
Examples 70 - 72 , and wherein the means for finding the
return instruction in memory comprises means for searching
memory for a return instruction opcode within a predefined
threshold distance following the destination address of the
first target instruction pointer packet .
10143] Example 74 includes the subject matter of any of
Examples 70 - 73 , and wherein the means for finding the
return instruction in memory comprises means for recon
structing an instruction flow starting at the destination
address of the first target instruction pointer packet .
[0144] Example 75 includes the subject matter of any of
Examples 70 - 74 , and wherein the means for analyzing the
trace data using the heuristic algorithm to identify the
suspected return - oriented programming exploit further com
prises means for identifying a pair of successive target
instruction pointer packets in the trace data , wherein the pair
of successive target instruction pointer packets includes the
first target instruction pointer packet ; wherein the means for
identifying the suspected return - oriented programming
exploit further comprises means for identifying the sus
pected return - oriented programming exploit in response to
identifying the pair of successive target instruction pointer
packets .
[0145] Example 76 includes the subject matter of any of
Examples 70 - 75 , and wherein the means for analyzing the
trace data using the heuristic algorithm to identify the
suspected return - oriented programming exploit further com -
prises means for determining an in - memory distance
between return instructions associated with the pair of
successive target instruction pointer packets ; and means for
determining whether the in - memory distance has a pre

defined relationship with a threshold distance ; wherein the
means for identifying the suspected return - oriented pro
gramming exploit further comprises means for identifying
the suspected return - oriented programming exploit in
response to determining that the in - memory distance has the
predefined relationship with the threshold distance .
[0146] Example 77 includes the subject matter of any of
Examples 70 - 76 , and wherein the means for analyzing the
trace data using the heuristic algorithm to identify the
suspected return - oriented programming exploit further com
prises means for determining an in - memory distance
between destination addresses associated with the pair of
successive target instruction pointer packets ; and means for
determining whether the in - memory distance has a pre
defined relationship with a threshold distance ; wherein the
means for identifying the suspected return - oriented pro
gramming exploit further comprises means for identifying
the suspected return - oriented programming exploit in
response to determining that the in - memory distance has the
predefined relationship with the threshold distance .
10147] Example 78 includes the subject matter of any of
Examples 70 - 77 , and wherein the means for analyzing the
trace data using the heuristic algorithm to identify the
suspected return - oriented programming exploit further com
prises means for determining whether the first target instruc
tion pointer packet is preceded by a flow update packet in the
trace data ; wherein the means for identifying the suspected
return - oriented programming exploit further comprises
means for identifying the suspected return - oriented pro
gramming exploit in response to determining that the first
target instruction pointer packet is not preceded by a flow
update packet in the trace data .
[0148] Example 79 includes the subject matter of any of
Examples 70 - 78 , and , wherein the means for determining
the cost value in response to identifying the suspected
control flow exploit comprises means for calculating the cost
value as a function of a gadget length of the suspected
control flow exploit .
101491 . Example 80 includes the subject matter of any of
Examples 70 - 79 , and wherein the means for calculating the
cost value comprises means for assigning a higher cost value
to a shorter gadget length .
[0150] Example 81 includes the subject matter of any of
Examples 70 - 80 , and wherein the means for determining the
cost value in response to identifying the suspected control
flow exploit comprises (i) means for subtracting the cost
value from a total cost budget and (ii) means for determining
whether the total cost budget has been exceeded ; and the
means for handling the suspected control flow exploit based
on the cost value comprises means for handling the sus
pected control flow exploit in response to determining that
the total cost budget has been exceeded .
[0151] Example 82 includes the subject matter of any of
Examples 70 - 81 , and further including means for identifying
a non - suspicious instruction based on the trace data ; and
means for resetting the total cost budget in response to
identifying the non - suspicious instruction .
[0152] Example 83 includes the subject matter of any of
Examples 70 - 82 , and wherein the means for identifying the
non - suspicious construction comprises means for identify
ing a taken / not - taken packet in the trace data .
[0153] Example 84 includes the subject matter of any of
Examples 70 - 83 , and wherein the means for analyzing the
trace data to identify the suspected control flow exploit

US 2019 / 0050566 A1 Feb . 14 , 2019
14

comprises means for updating a shadow stack based on the
trace data ; and means for analyzing the shadow stack using
a heuristic algorithm to identify a suspected return - oriented
programming exploit .
[0154] Example 85 includes the subject matter of any of
Examples 70 - 84 , and wherein the means for generating the
trace data indicative of the control flow of the process of the
computing device comprises means for outputting a target
instruction pointer packet including a next linear instruction
pointer in response to executing a direct call instruction .
[0155] Example 86 includes the subject matter of any of
Examples 70 - 85 , and wherein the means for generating the
trace data indicative of the control flow of the process of the
computing device further comprises means for outputting a
packet including a current stack pointer value in response to
executing a call instruction or a return instruction .
[0156] Example 87 includes the subject matter of any of
Examples 70 - 86 , and wherein the means for generating the
trace data indicative of the control flow of the process of the
computing device further comprises means for determining
whether a new stack page is being accessed ; and the means
for outputting the packet including the current stack pointer
value further comprises means for outputting the packet
including the current stack pointer value in response to
determining that the new stack page is being accessed .
[0157] Example 88 includes the subject matter of any of
Examples 70 - 87 , and wherein the means for analyzing the
trace data to identify the suspected control flow exploit
comprises means for identifying a first target instruction
pointer packet in the trace data , wherein the first target
instruction pointer packet is associated with a destination
address ; means for determining whether the destination
address is a predefined legitimate branch target ; and means
for identifying a suspected jump - oriented programming
exploit in response to determining that the destination
address is not a predefined legitimate branch target .
[0158] Example 89 includes a computing device for real
time exploit mitigation , the computing device comprising
means for generating , by a processor trace module of a
processor of a computing device , trace data indicative of
control flow of a process of the computing device ; means for
detecting , by the processor trace module , a suspected control
flow exploit using the trace data ; means for invoking , by the
processor trace module , a suspected control flow exploit
handler in response to detecting the suspected control flow
exploit ; means for determining whether a current shadow
stack is valid in response to invoking the mispredicted return
handler ; and means for handling the suspected control flow
exploit in response to determining that the current shadow
stack is not valid .
[0159] Example 90 includes the subject matter of Example
89 , and wherein the means for detecting the suspected
control flow exploit comprises means for detecting a mis
predicted return instruction using the trace data ; and the
means for invoking the suspected control flow exploit han
dler comprises means for invoking a mispredicted return
handler in response to detecting the mispredicted return
instruction .
[0160] Example 91 includes the subject matter of any of
Examples 89 and 90 , and wherein the means for invoking
the mispredicted return handler comprises means for invok
ing the mispredicted return handler in a process space of the
process of the computing device .

[0161] Example 92 includes the subject matter of any of
Examples 89 - 91 , and wherein the means for invoking the
mispredicted return handler further comprises means for
providing a memory address associated with the trace data
to the process .
[0162] Example 93 includes the subject matter of any of
Examples 89 - 92 , and wherein the means for detecting the
suspected control flow exploit comprises means for analyz
ing the trace data using a heuristic algorithm to identify a
suspected return - oriented programming exploit .
10163] Example 94 includes the subject matter of any of
Examples 89 - 93 , and further including means for updating
the current shadow stack based on the trace data in response
to determining that the current shadow stack is valid ; means
for computing a message authentication code based on the
current shadow stack in response to updating the current
shadow stack ; means for encoding the message authentica
tion code using a handler key , wherein the handler key is
located in a protected memory region ; and means for out
putting the encoded message authentication code to the trace
data .
[0164] Example 95 includes the subject matter of any of
Examples 89 - 94 , and wherein the means for outputting the
encoded message authentication code comprises means for
executing a processor instruction to write the encoded
message authentication code to the trace data .
101651 Example 96 includes the subject matter of any of
Examples 89 - 95 , and wherein the means for outputting the
encoded message authentication code comprises means for
executing one or more branch instructions based on the
encoded message authentication code to output coded data
to the trace data .
101661 . Example 97 includes the subject matter of any of
Examples 89 - 96 , and wherein the means for determining
whether the current shadow stack is valid comprises means
for extracting an encoded message authentication code from
the trace data ; means for computing a second message
authentication code based on the current shadow stack ;
means for encoding the second message authentication code
to generate an encoded second message authentication code
using a handler key , wherein the handler key is located in a
protected memory region ; and means for comparing the
encoded message authentication code to the encoded second
message authentication code .
[0167] Example 98 includes the subject matter of any of
Examples 89 - 97 , and wherein the means for encoding the
second message authentication code comprises means for
recovering the handler key from an immediate value stored
in execute - only memory .
[0168] Example 99 includes the subject matter of any of
Examples 89 - 98 , and wherein the means for extracting the
encoded message authentication code from the trace data
comprises means for identifying a memory address associ
ated with the trace data , wherein the memory address is
supplied by the processor trace module of the processor , and
means for searching in the trace data from the memory
address associated with the trace data for the encoded
message authentication code .
[0169] Example 100 includes the subject matter of any of
Examples 89 - 99 , and further including means for resuming
the process of the computing device in response to deter
mining that the current shadow stack is valid .
[0170] Example 101 includes the subject matter of any of
Examples 89 - 100 , and wherein the means for generating the

US 2019 / 0050566 A1 Feb . 14 , 2019
15

trace data indicative of the control flow of the process of the
computing device comprises means for outputting a target
instruction pointer packet including a next linear instruction
pointer in response to executing a direct call instruction .
0171] Example 102 includes the subject matter of any of
Examples 89 - 101 , and wherein the means for generating the
trace data indicative of the control flow of the process of the
computing device further comprises means for determining
whether a current stack pointer value is located in a different
memory page from a previous stack pointer value ; and
means for outputting a packet including the current stack
pointer value in response to executing a call instruction or a
return instruction and determining that the current stack
pointer value is located in a different memory page from the
previous stack pointer value .

1 . A computing device for exploit mitigation , the com
puting device comprising :

a processor comprising a processor trace module to gen
erate trace data indicative of control flow of a process
of the computing device ;

an exploit detector module to (i) update a shadow stack
based on the trace data , (ii) analyze the shadow stack
using a heuristic algorithm to identify a suspected
return - oriented programming exploit , and (iii) deter
mine a cost value in response to identification of the
suspected return - oriented programming exploit ,
wherein the cost value is indicative of a likelihood that
the suspected return - oriented programming exploit is
an actual return - oriented programming exploit ; and

a security response module to handle the suspected return
oriented programming exploit based on the cost value .

2 . The computing device of claim 1 , wherein to generate
the trace data indicative of the control flow of the process of
the computing device comprises to output a target instruc
tion pointer packet including a next linear instruction pointer
in response to execution of a direct call instruction .

3 . The computing device of claim 2 , wherein to generate
the trace data indicative of the control flow of the process of
the computing device further comprises to output a packet
including a current stack pointer value in response to execu
tion of a call instruction or a return instruction .

4 . The computing device of claim 3 , wherein :
to generate the trace data indicative of the control flow of

the process of the computing device further comprises
to determine whether a new stack page is being
accessed ; and

to output the packet including the current stack pointer
value further comprises to output the packet including
the current stack pointer value in response to a deter
mination that the new stack page is being accessed .

5 . The computing device of claim 1 , wherein :
the exploit detector module is further to detect preemption
of the process during execution of the process ; and

to update the shadow stack comprises to update the
shadow stack in response to the preemption of the
process .

6 . The computing device of claim 1 , wherein to analyze
the shadow stack using a heuristic algorithm to identify a
suspected return - oriented programming exploit comprises to
compare the shadow stack to a system stack of the comput
ing device .

7 . The computing device of claim 1 , wherein :
to determine the cost value in response to identification of

the suspected return - oriented programming exploit

comprises to (i) subtract the cost value from a total cost
budget and (ii) determine whether the total cost budget
has been exceeded ; and

to handle the suspected return - oriented programming
exploit based on the cost value comprises to handle the
suspected return - oriented programming exploit in
response to a determination that the total cost budget
has been exceeded .

8 . The computing device of claim 1 , wherein to determine
the cost value in response to identification of the suspected
return oriented programming exploit comprises to calculate
the cost value as a function of a gadget length of the
suspected return oriented programming exploit .

9 . The computing device of claim 8 , wherein to calculate
the cost value comprises to assign a higher cost value to a
shorter gadget length .

10 . One or more computer - readable storage media com
prising a plurality of instructions that in response to being
executed cause a computing device to :

generate , by a processor trace module of a processor of
the computing device , trace data indicative of control
flow of a process of the computing device ;

update a shadow stack based on the trace data ;
analyze the shadow stack using a heuristic algorithm to

identify a suspected return - oriented programming
exploit ;

determine a cost value in response to identification of the
suspected return - oriented programming exploit ,
wherein the cost value is indicative of a likelihood that
the suspected return - oriented programming exploit is
an actual return - oriented programming exploit ; and

handle the suspected return - oriented programming exploit
based on the cost value .

11 . The one or more computer - readable storage media of
claim 10 , wherein to generate the trace data indicative of the
control flow of the process of the computing device com
prises to output a target instruction pointer packet including
a next linear instruction pointer in response to execution of
a direct call instruction .

12 . The one or more computer - readable storage media of
claim 11 , wherein to generate the trace data indicative of the
control flow of the process of the computing device further
comprises to output a packet including a current stack
pointer value in response to execution of a call instruction or
a return instruction .

13 . The one or more computer - readable storage media of
claim 12 , wherein :

to generate the trace data indicative of the control flow of
the process of the computing device further comprises
to determine whether a new stack page is being
accessed ; and

to output the packet including the current stack pointer
value further comprises to output the packet including
the current stack pointer value in response to a deter
mination that the new stack page is being accessed .

14 . The one or more computer - readable storage media of
claim 10 , wherein to determine the cost value in response to
identification of the suspected return oriented programming
exploit comprises to calculate the cost value as a function of
a gadget length of the suspected return oriented program
ming exploit .

15 . A computing device for real - time exploit mitigation ,
the computing device comprising :

US 2019 / 0050566 A1 Feb . 14 , 2019

a processor comprising a processor trace module to (i)
generate trace data indicative of control flow of a
process of the computing device , (ii) detect a suspected
return - oriented programming exploit that is a mispre
dicted return instruction using the trace data , and (iii)
invoke a mispredicted return handler in response to
detection of the suspected return - oriented program
ming exploit ;

an exploit detector module to (i) determine whether a
current shadow stack is valid in response to invocation
of the mispredicted return handler , (ii) update the
current shadow stack based on the trace data in
response to a determination that the current shadow
stack is valid , (iii) compute a message authentication
code based on the current shadow stack in response to
updating of the current shadow stack , (iv) encode the
message authentication code using a handler key ,
wherein the handler key is located in a protected
memory region , and (v) output the encoded message
authentication code to the trace data ; and

a security response module to handle the suspected return
oriented programming exploit in response to a deter
mination that the current shadow stack is not valid .

16 . The computing device of claim 15 , wherein to output
the encoded message authentication code comprises to
execute a processor instruction to write the encoded message
authentication code to the trace data .

17 . The computing device of claim 15 , wherein to output
the encoded message authentication code comprises to

execute one or more branch instructions based on the
encoded message authentication code to output coded data
to the trace data .

18 . The computing device of claim 15 , wherein to deter
mine whether the current shadow stack is valid comprises to :

extract an encoded message authentication code from the
trace data ;

compute a second message authentication code based on
the current shadow stack ;

encode the second message authentication code to gen
erate an encoded second message authentication code
using a handler key , wherein the handler key is located
in a protected memory region ; and

compare the encoded message authentication code to the
encoded second message authentication code .

19 . The computing device of claim 18 , wherein to encode
the second message authentication code comprises to
recover the handler key from an immediate value stored in
execute - only memory .

20 . The computing device of claim 18 , wherein to extract
the encoded message authentication code from the trace data
comprises to :

identify a memory address associated with the trace data ,
wherein the memory address is supplied by the pro
cessor trace module of the processor ; and

search in the trace data from the memory address asso
ciated with the trace data for the encoded message
authentication code .

