发明名称
选择性导电阻挡层形成

摘要
一种半导体器件包括具有将第一互连层(110)耦合至沟槽(302)的通孔(304)的管芯。该半导体器件还包括在沟槽的侧壁和毗邻表面上以及在通孔的侧壁上的阻挡层(306)，该半导体器件具有在第一互连层的表面上的掺杂导电层(308)。该掺杂导电层在通孔的侧壁之间延伸。该半导体器件进一步包括在通孔和沟槽两者中的在阻挡层上的导电材料(202)。该导电材料在布置在第一互连层的表面上的掺杂导电层上。
1. 一种半导体器件，包括：
 包括将第一互连层耦合至沟槽的通孔的管芯；
 在所述沟槽的侧壁和毗邻表面上以及在所述通孔的侧壁上的阻挡层；
 在所述第一互连层的表面上的掺杂导电层，所述掺杂导电层在所述通孔的所述侧壁之间延伸，以及
 在所述通孔和所述沟槽两者中的所述阻挡层上的导电材料，所述导电材料被提供在所述第一互连层的所述表面上的所述掺杂导电层上。
2. 如权利要求1所述的半导体器件，其特征在于，所述阻挡层包括氧化铁（Al₂O₃）。
3. 如权利要求1所述的半导体器件，其特征在于，所述导电材料包括铜和铝。
4. 如权利要求1所述的半导体器件，其特征在于，进一步包括在所述第一互连层的一些部分上的蚀刻停止层，所述蚀刻停止层包括含硅氮碳氧化物（SiCON）。
5. 如权利要求1所述的半导体器件，其特征在于，所述掺杂导电层包括铜铝合金。
6. 如权利要求1所述的半导体器件，其特征在于，所述第一互连层包括铜。
7. 如权利要求1所述的半导体器件，其特征在于，所述掺杂导电层还在所述导电材料和所述第一互连层的所述表面之间延伸。
8. 如权利要求1所述的半导体器件，其特征在于，所述半导体器件被纳入到音乐播放器、视频播放器、娱乐单元、导航设备、通信设备、个人数字助理（PDA）、位置固定的数据单元，以及计算机中的至少一者中。
9. 一种制造半导体器件的方法，包括：
 在所述沟槽的侧壁和毗邻表面上以及在管芯的通孔的侧壁上沉积导电氧化层，所述通孔将第一互连层和所述沟槽耦合；
 对所述导电氧化层施加热处理以在除了接触所述第一互连层的部分以外的部分上形成阻挡层；以及
 在所述通孔和所述沟槽两者中在所述阻挡层上沉积导电材料，所述导电材料在所述内所述第一互连层的表面上的所述掺杂导电层上。
10. 如权利要求9所述的方法，其特征在于，沉积导电氧化层是使用原子层沉积来执行的。
11. 如权利要求9所述的方法，其特征在于，沉积导电氧化层是使用化学气相沉积来执行的。
12. 如权利要求9所述的方法，其特征在于，施加热处理是通过现场热处理以低于约400摄氏度来执行的。
13. 如权利要求9所述的方法，其特征在于，沉积导电材料是使用原子层沉积来执行的。
14. 如权利要求9所述的方法，其特征在于，沉积导电材料包括：
 使用原子层沉积来沉积导电氧化层；以及
 施加等离子处理来将所述导电氧化层转化为所述导电氧化层。
15. 如权利要求9所述的方法，其特征在于，进一步包括将所述半导体器件纳入到音乐播放器、视频播放器、娱乐单元、导航设备、通信设备、个人数字助理（PDA）、位置固定的数据单元，以及计算机中的至少一者中。
16. 一种制造半导体器件的方法，包括：
在沟槽的侧壁和毗邻表面上以及在管芯的通孔的侧壁上沉积导电除氧层，所述通孔将第一互连层和所述沟槽覆盖；

对所述导电除氧层施加热处理以在除了接触所述第一互连层的部分以外的其它部分上形成阻挡层，以及

在所述通孔和所述沟槽两者中在所述阻挡层上沉积导电材料，所述导电材料在放置在所述第一互连层表面上的掺杂导电层上。

17. 如权利要求16所述的方法，其特征在于，进一步包括以下步骤：将所述半导体器件

纳入到音乐播放器、视频播放器、娱乐单元、导航设备、通信设备、个人数字助理（PDA）、位置

固定的数字单元、以及计算机中的至少一个中。

18. 一种半导体器件，包括：

包括将第一互连层覆盖至沟槽的通孔的管芯；

在所述沟槽的侧壁和毗邻表面上以及在所述通孔的侧壁上的阻挡层；

在所述第一互连层的表面上的掺杂导电层，所述掺杂导电层在所述通孔的所述侧壁之间

延伸；以及

在所述通孔和所述沟槽两者中在所述导电层上的用于导电的装置，所述导电装置在布

置在所述第一互连层的所述表面上的所述掺杂导电层上。

19. 如权利要求18所述的半导体器件，其特征在于，所述阻挡层包括氧化铁（Al₂O₃）。

20. 如权利要求18所述的半导体器件，其特征在于，所述用于导电的装置包括铜和铝。

21. 如权利要求18所述的半导体器件，其特征在于，进一步包括在所述第一互连层的一

些部分上的蚀刻停止层，所述蚀刻停止层包括含硅碳的碳氧化物（SiCON）。

22. 如权利要求18所述的半导体器件，其特征在于，所述掺杂导电层包括铜铝合金。

23. 如权利要求18所述的半导体器件，其特征在于，所述第一互连层包括铜。

24. 如权利要求18所述的半导体器件，其特征在于，所述掺杂导电层还在所述通孔的所

述侧壁之间延伸。

25. 如权利要求18所述的半导体器件，其特征在于，所述半导体器件被纳入到音乐播

放器、视频播放器、娱乐单元、导航设备、通信设备、个人数字助理（PDA）、位置固定的数字单

元、以及计算机中的至少一个中。
选择性导电阻挡层形成

[0001] 相关申请的交叉引用
[0002] 本申请主张以Jeffrey Junhao Xu等人的名义于2014年02月28日提交的美国临时专利申请号61/946,520的权益，该临时专利申请的公开内容通过引用被整体明确纳入于此。

技术领域
[0003] 本公开一般涉及集成电路（IC）。更具体而言，本公开涉及选择性导电阻挡层形成。
[0004] 背景
[0005] 用于集成电路（IC）的半导体制造的工艺流程可包括前端程（FEOL）、中部程（MOL）和后端程（BEOL）工艺。FEOL工艺可包括晶片制备、隔离、阱形成、栅极图案化、间隔物、扩展和源极/漏极注入、硅化物形成，以及双应力内衬形成。MOL工艺可包括栅极触点形成。BEOL工艺可包括用于将在FEOL和MOL工艺期间创建的半导体器件互连的一系列晶片处理步骤。现代半导体芯片产品的成功制造和鉴定涉及所采用的材料和工艺之间的相互作用。具体地，在BEOL工艺中用于玻璃基无源（POG）器件的导电材料镀敷的形成是工艺流程中日益挑战的部分。
[0006] 当在通孔中在彼此之上制造导电材料层时，例如，电阻缩放仍然是个挑战。因为某些导电层的最小厚度规范可能是不导电，所以高通孔电阻可能由于某些导电阻挡层失效。
[0007] 概述
[0008] 一种半导体器件包括具有第一互连层、其上沟槽的通孔的管芯。该半导体器件还包括在沟槽的侧壁和相邻表面上以及在通孔的侧壁上的阻挡层。该半导体器件还包括在第一互连层的表面上的掺杂质电层。该掺杂质电层在通孔侧壁上延伸。该半导体器件进一步包括在通孔和沟槽两者的中在阻挡层上的导电材料。该导电材料在布置在第一互连层的表面上的掺杂质电层上。
[0009] 一种用于制造半导体器件的方法包括在沟槽的侧壁和相邻表面上以及在管芯的通孔的侧壁上沉积导电层。该通孔可耦合到第一互连层和沟槽。该方法还包括对导电层的表面加热处理以在除了触第一互连层的外部部分的表面区域上形成阻挡层。该方法进一步包括在通孔和沟槽中在阻挡层上沉积导电材料。该导电层在布置在互连层的被暴露的表面上的掺杂质电层上。
[0010] 一种半导体器件包括具有第一互连层、其上沟槽的通孔的管芯。该半导体器件还包括在沟槽的侧壁和相邻表面上、在通孔的侧壁上以及在第一互连层的被暴露的表面上的阻挡层。该半导体器件还包括在第一互连层的表面上的掺杂质电层。该掺杂质电层在通孔的侧壁之间延伸。该半导体器件进一步包括用于在通孔和沟槽中在所述阻挡层上的用于导电的装置。该导电装置在布置在第一互连层的表面上的掺杂质电层上。
[0011] 这已较宽泛地勾勒出本公开的特征和技术优势以便下面的详细描述可以被更好地理解。本公开的附加特征和优点将在下文描述。本领域技术人员应该领会，本公开可容易地被用作修改或设计用于实施与本公开相同的目的的其他结构的基础。本领域技术人员还
应认识到，这样的等效构造并不脱离所附权利要求中所阐述的本公开的教导。被认为是本公开的特性的新颖特征在其组织和操作方法两方面连同进一步的目的和优点在结合附图来考虑以下描述时将被更好地理解。然而，要清楚理解的是，提供每一幅附图仅用于解说和描述目的，且无意作为对本公开的限定的定义。

附图简述

图1A至1C示出由典型的导电端子层形成工艺制造的器件的截面图。

图2示出由根据本公开的一个方面用选择性导电端子层形成工艺制造的器件的截面图。

图3A-3D示出由根据本公开的一个方面的的选择性导电端子层形成工艺制造的器件的截面图。

图4是解说根据本公开的各方面的选择性导电端子层形成工艺的工艺流程图。

图5是示出其中可有利地采用本公开的配置的示例性无线通信系统的框图。

图6是解说根据一种配置的用于半导体组件的电路、布局、以及逻辑设计的设计工作站的框图。

详细描述

以下结合附图阐述的详细描述旨在作为各种配置的描述，而无意表示可实践本文中所描述的概念的仅有的配置。本详细描述包括具体细节以便提供对各种概念的透彻理解。然而，对于本领域技术人员将显而易见的是，没有这些具体细节也可实践这些概念。在一些实例中，以框图形式示出众所周知的结构和组件以便避免淡化此类概念。如本文所述的，术语“和/或”的使用旨在代表“可兼性或”，而术语“或”的使用旨在代表“排他性或”。

导电端子层可在通孔内，或在包含形成在双层晶片或管芯内的通孔的更大沟槽内形成。典型的导电端子层可以是基于铜(Cu)的氮化铝(TaN)。这些导电层阻挡的厚度可以是二(2)至三(3)纳米。导电端子层可能面临诸如电阻缩小之类的问题。具体地，由于为形成有效的扩散阻挡而指定的最小厚度值，这些导电端子层在高通孔电阻下可能变得无效。

保形原子层沉积(ALD)制造的TaN阻挡是合乎期望的，但是此类导电端子层的最小厚度应至少为2纳米以提供有效的铜扩散阻挡。该最小厚度可防止导电材料(诸如，铜)扩散穿过导电端子层以及与其他材料混合。因为2纳米的TaN阻挡层是不导电的，所以使用该TaN阻挡会导致通孔开路，由此导致电路故障。

根据本公开的一方面，化学气相沉积(CVD)或ALD沉积的铝(A1)选择性地在双层晶片的侧壁上形成氧化铝(A12O3)铜阻挡。然而，氧化铝不被形成在该通孔的底部。即，氧化铝作为导电端子层形成在通孔的侧壁上，同时避免氧化铝作为导电端子层形成在该通孔的底表面上。低于400℃的现场热处理可被应用于铝层以形成氧化铝。在该安排中，具有选择性地形成的导电端子层(例如，氧化铝铜)的通孔电阻可显著地低于典型的导电端子层。例如，导电端子层可以是铜阻挡，通常由TaN的保形原子层沉积形成。

图1A至1C示出了由常规的导电层阻挡形成工艺制造的器件的截面图。

如图1中所示，器件100包括第一氧化层102、中间层104、盖层106、第二氧化层108和第一互连层110。器件100可以是双层晶片或管芯的一部分。第一氧化层102和第二氧化层108可以由低k材料，诸如掺杂碳或氮的二氧化硅(Si02)。在一种配置中，第一氧化层102
和第二氧化层108可以是不同的材料，且一层可以不是低k材料。低k材料具有低介电常数且可被用作绝缘层。中间层104可以是掺杂碳或氢化硅(SiN)。盖层106可以是未掺杂的氧化硅。在一种配置中，中间层104和盖层106形成包含硅氮的碳氧化物(SICON)的蚀刻停止层。第一互连层110可以是导电材料(诸如铜(Cu))。第一氧化层102、中间层104、盖层106和第二氧化层108也可都包含氧。

[0027] 如图1B中所示，在器件120上沉积阻挡层112。阻挡层112可以是基于氮化钽(TaN)的铜。然而，阻挡层112具有2纳米的最小厚度以形成有效的扩散阻挡。阻挡层112可防止铜或互连层(例如，如图1C中所示，第一互连层110或第二互连层114)的材料扩散到第二氧化层108、盖层106和/或中间层104。铜层或互连层材料的扩散可导致器件故障。

[0028] 在图1C中，器件130包括沉积在阻挡层112上的第二互连层114。阻挡层112可具有足够的厚度(例如，至少2纳米)以便作为扩散阻挡来防止第二互连层114扩散到第二氧化层108、盖层106和/或中间层104中。然而，当阻挡层112接触第一互连层110时，可能引起高通孔电阻。高通孔电路可最终致使阻挡层112失效，且随后不能执行它的阻挡功能。

[0029] 图2示出由根据本公开的一个方面的一个方向选择性导电阻挡层形成工艺制造的器件200的截面图。图1A—1C中所示的组件之外，器件200包括沟槽302、通孔304、经处理的阻挡层306、导电层202和掺杂导电层308。如图2所示，经处理的阻挡层306仅被形成在沟槽302和通孔304的侧壁上。相反，图1B—1C中所示的阻挡层112在通孔的底表面上。防止在任何通孔的底表面上形成阻挡层显著地降低了通孔电阻。此外，经处理的阻挡层306仍在导电层202与第二氧化层108、盖层106和中间层104之间形成有效的扩散阻挡。

[0030] 经处理的阻挡层306可以是氧化铝(Al2O3)，其充当非常有效的扩散阻挡材料。导电层202可以是铜。掺杂导电层308可以是铜铝合金，且被置在于导电层202和第一互连层110之间。掺杂导电层308可在通孔304的侧壁之间水平地延伸。如图3C—3D中所示，掺杂导电层308可在导电层202的底表面和第一互连层110的被暴露的顶表面之间垂直地延伸。

[0031] 图3A—3D示出由根据本公开的一个方面的一个方向选择性导电层阻挡形成工艺制造的器件的截面图。

[0032] 图3A示出自图1A的组件。然而，器件300进一步包括沟槽302以及沟槽302内的通孔304。器件300也可以是双嵌瓷片或管芯结构，或者双嵌瓷片或管芯结构的一部分。

[0033] 在图3B中，器件310被示为具有沉积在沟槽302和通孔304的表面上的阻挡层112。阻挡层112可以是铝(AI)。阻挡层112可以被形的方式通过化学气相沉积(CVD)或分子层沉积(ALD)来沉积。阻挡层112可按纯铝沉积，或首先按氧化铝(Al2O3)沉积且随后通过氢(H2)等离子处理进行处理以将氧化铝转化为纯铝。这种氢等离子处理的副产品是水(H2O)，水在处理后也可以简单地从器件310移除。阻挡层112接触通孔304的底表面，还接触第一互连层110。

[0034] 在图3C中，器件330经历热处理。热处理将大部分的阻挡层112转化为经处理的阻挡层306。热处理可以是现场热处理工艺，其在接近或者接近400摄氏度的温度进行。阻挡层112在沟槽302和通孔304的侧壁上被转换成经处理的阻挡层306，但接触第一互连层110的通孔304的底表面保持为阻挡层112。即，第一互连层110上或接触第一互连层110处不形成经处理的阻挡层306。经处理的阻挡层306可以是氧化铝(Al2O3)。
因为中间层104、盖层106和第二氧化层108包含碳，所以阻挡层112会从这些层中提取碳以成为诸如氧化铝之类的材料，构成经处理的阻挡层306。在通孔304的底表面上的阻挡层112不接触任何含氧层（例如，104、106、108），而且仅接触没有氧的第一互连层110。因此，当被暴露于热处理时，第一互连层110中没有氧可被提取来经历将阻挡层112转换为经处理的阻挡层306的化学反应。因此，阻挡层112的未经处理的部分保持在通孔304的底表面，接触第一互连层110。

在图3C中，在器件340上执行互连材料填充工艺。导电材料被沉积到器件340的沟槽302和通孔304中以形成导电层202。当图3C中的阻挡层112接触导电层202时也转换成分杂导电层308。阻挡层112（可以是铝）与导电层202（可以是铜）扩散以形成分杂导电层308。在此配置中，分杂导电层308是合金，诸如举例而言铜铝合金。分杂导电层308还可包含铜和铝两者、分杂铜的铝和/或分杂铝的铜。

 Intersectional layer 308亦可在第一互连层110的表面上被形成。分杂导电层308亦可在导电层202和第一互连层110的被暴露表面之间垂直地延伸。分杂导电层308亦可在通孔304的侧壁之间水平地延伸。分杂导电层308还可位于通孔开口304内的另一个通孔和第一互连层110的暴露表面之间。这样的通孔可在两侧受经处理的阻挡层306限制。这样的通孔还可作为在通孔304内附加的沉积材料的结果而被形成。

第一互连层110的表面可以是在图3A中初始地被暴露，但在图3B中接触阻挡层112以及在图3C中接触阻挡层112的未处理部分的第一互连层110的顶表面，导电层202也可以是被灌入器件340的沟槽302和通孔304中的导电材料。

图4是解说根据本公开的一方面的选择性导电阻挡层形成工艺400的工艺流程图。在框402中，在沟槽（例如，沟槽302）的侧壁和相邻表面上沉积导电除氧层（例如，阻挡层112）。导电除氧层也可被沉积在管芯的通孔（例如，通孔304）的侧壁上。如图3A所示，通孔将第一互连层（例如，第一互连层110）耦合到沟槽。

在框404中，对导电除氧层施加热处理以在除了接触第一互连层的部分以外的部分上形成阻挡层（例如，经处理的阻挡层306）。在框406中，在通孔和沟槽两者中沉积导电层（例如，导电层202）。导电层202在布置中互连层的表面上的分杂导电层（例如，分杂导电层308）上。在一个方面，分杂导电层在通孔的侧壁之间延伸，这可以是在水平方向或即x轴方向上的延伸。在另一方面，分杂导电层在通孔和第一互连层的表面之间延伸。这可以是在垂直方向或即y轴方向上的延伸。

在一种配置中，一种半导体器件包括具有通孔、沟槽和第一互连层的管芯。该器件还包括阻挡层以及第一互连层的表面上的分杂导电层。该器件还具有用于在通孔和沟槽两者中的阻挡层上导电的装置。在本公开的一个方面，导电装置可以是导电层202。在另一方面，上述装置可以是配成执行由上述装置所述的功能的任何材料或结构。在这一方面，分杂导电层在通孔的侧壁之间延伸，这可以是水平的延伸。在另一方面，分杂导电层在通孔和第一互连层的表面之间延伸。这可以是垂直的延伸。

在一个实现中，被用于各种导电材料层的导电材料可以是铜（Cu），或具有高导电率的其他导电材料。例如，第一互连层110、阻挡层112、第二互连层114、导电层202和分杂导电层308可包括铜（Cu）、银（Ag）、退火铜（Cu）、金（Au）、铝（Al）、钙（Ca）、镍（Ni）、镁（Mg）或铁（Fe）。前述导电材料层也可通过电镀、化学气相沉积（CVD）、物理气相沉积
说明书

(PVD)，喷溅或蒸发来沉积。

[0043] 第一氧化层102、第二氧化层108、中间层104和盖层106可以是具有低k或低介电常数值的材料，包括氧化硅()及含氟掺杂、碳掺杂和多孔碳掺杂的形式。以及旋涂式有机聚合电介质(诸如聚酰亚胺、聚酯片材、苯并环丁烯(BCB)和聚四氟乙烯(PTFE))，基于旋涂硅的聚合物介质和含硅氢的碳氧化物(SiCON)。在一个方面，第一氧化层102和第二氧化层108可以是低k材料，诸如掺杂碳或氢的二氧化硅()。

[0044] 第一氧化层102和第二氧化层108也可以是不同的材料，且一层可以是除了低k材料之外的材料。低k材料具有低介电常数且可被用作绝缘层。在一个方面，中间层104可以是掺杂碳或氢的氮化硅()。在一个方面，盖层106可以是无掺杂的二氧化硅。在一种配置中，中间层104和盖层106形成包括含硅氢的碳氧化物(SiCON)的蚀刻停止层。前述的那些层也可通过旋涂式工艺，化学气相沉积(VCD)、物理气相沉积(PVD)、喷溅或蒸发来沉积。

[0045] 尽管在上述工艺步骤中未提及，但光致抗蚀剂、通过掩膜进行紫外线曝光、光致抗蚀剂显影和光刻可被使用。光致抗蚀剂层可通过旋涂、基于液滴的光致抗蚀剂沉积、喷涂、化学气相沉积(CVD)、物理气相沉积(PVD)、喷溅或蒸发来沉积。光致抗蚀剂层然后可被曝光，并且随后通过使用诸如氟化铁()、氯化铜()或碱性氨()之类的溶液的化学蚀刻工艺进行蚀刻以便洗去经曝光的光致抗蚀剂部分，或者通过使用等离子体的干蚀刻工艺来蚀刻。光致抗蚀剂层也可通过化学光致抗蚀剂剥离工艺或使用等离子体(诸如氢)的干光致抗蚀剂剥离工艺来剥离，其被称为灰化。

[0046] 尽管未在以上描述，但选择性地形成导电阻挡层的方法还可包括对在第一凹槽处耦合至第一栅极互连材料的第一沟槽互连材料图案化，以形成FinFET电容结构的第一板。以上描述的选择性导电阻挡层形成工艺可被用于形成大量不同器件，诸如电感器、电容器、电阻器、变压器、谐振器、滤波器、共用器、谐振器、基于微机电系统(MEMS)的结构，以及更多器件。

[0047] 图5是示出其中可有利地采用本公开的一方面的示例性无线通信系统500的框图。出于解说目的，图5示出三个远程单元520、530和550以及两个基站540。认识到，无线通信系统可具有远多于此的远程单元和基站。远程单元520、530和550包括1C器件525A、525C和525B，这些1C器件包括所公开的器件(例如，具有选择性地形成的阻挡层的器件)。将认识到，其他设备也可包括所公开的器件(例如，具有选择性地形成的阻挡层的器件)，诸如基站、交换设备、和网络装备。图5示出从基站540到远程单元520、530和550的前向链路信号580，以及从远程单元520、530和550到基站540的反向链路信号590。

[0048] 在图5中，远程单元520被示为移动电话，远程单元530被示为便携式计算机，而远程单元550被示为无线本地环路系统中的固定位置远程单元。例如，这些远程单元可以是移动电话、手持式个人通信系统(PCS)单元、便携式数据单元(诸如个人数据助理)、启用GPS的设备、导航设备、2机顶盒、音乐播放器、视频播放器、娱乐单元、固定位置数据单元(诸如仪表读数装置)、或者储存或取回数据或计算机指令的其他设备、或者其组合。尽管图5解说了根据本公开的各方面的远程单元，但本公开并不被限于所解说的这些示例性单元。本公开的各方面可以合适地在包括所公开的器件的许多设备中使用。

[0049] 图6是解说了用于半导体组件(诸如以上公开的包含选择性地形成的阻挡层的器件)的电路、布局以及逻辑设计的设计工作站600的框图。设计工作站600包括硬盘601，该硬
盘601包含操作系统软件、支持文件、以及设计软件（诸如Cadence或OrCAD）。设计工作站600还包括串行对电路610或诸如所公开的器件的半导体组件612(例如，具有选择性地形成的阻挡层的器件)的设计的显示器602。提供存储介质604以用于有形地存储电路设计610或半导体组件612。电路设计610或半导体组件612可以文件格式（诸如GDSII或GERBER)存储存储介质604上。存储介质604可以是CD-ROM、DVD、硬盘、闪存、或者其他合适的设备。此外，设计工作站600包括用于从存储介质604接受输入或者将输出写到存储介质604的驱动装置603。

【0050】存储介质604上记录的数据可指定逻辑电路配置、用于光刻掩模的图案数据，或者用于串写工具（诸如电子束光刻)的掩模图案数据。该数据可进一步包括与逻辑仿真相关联的逻辑验证数据，诸如时序图或网电路。在存储介质604上提供数据通过减少用于设计半导体晶片或管芯的工艺数目来促成电路设计610或半导体组件612的设计。

【0051】对于固件和/或软件实现，这些方法体系可以用执行本文所描述功能的模块（例如，链路、函数等等)来实现。有形地体现指令的机器可读介质可被用来实现本文所述的方法体系。例如，软件代码可被存储在存储器中并由处理器来执行。存储器可以在处理器单元内或在处理器单元外部实现。如本文所使用的术语“存储器”是指长期、短期、易失性、非易失性类型存储器、或其他存储器，而并不限于特定类型的存储器或存储器数目、或记忆存储在其上的介质的类型。

【0052】如果以固件和/或软件实现，则功能可作为一条或多条指令或代码存储在计算机可读介质上。示例包括编码有数据结构的计算机可读介质和编码有计算机程序的计算机可读介质。计算机可读介质包括物理计算机存储介质。存储介质可以是能被计算机存取的可读介质。作为示例，非限定，此类计算机可读介质可包括ROM、EPROM、CD-ROM或其他光盘存储、磁盘存储或其他磁存储设备，或能被用来存储指令或数据结构的设备，且能被计算机访问的任何其他介质；如本文中所使用的读盘(disk)和碟(disc)包括压缩碟（CD）、激光碟、光碟、数字多用碟(DVD)、软盘和蓝光碟，其中盘常磁性地再现数据，而碟用激光光学地再现数据。上述的组合应当也被包括在计算机可读介质的范围内。

【0053】除了存储在计算机可读介质上，指令和/或数据还可作为包括在通信装置中的传输介质上的信号来提供。例如，通信装置可包括具有指示指令和数据的信号的收发机。这些指令和数据被配置成使一个或多个处理器实现权利要求中所述的功能。

【0054】尽管已详细描述了本公开及其优势，但是应当理解，可在本文中作出各种改变、替代和改进而不脱离如由所附权利要求所定义的本公开的技术。例如，诸如“上方”和“下方”之类的关系术语是关于基板或电子器件使用的。当然，如果该基板或电子器件被颠倒，则上方变成下方，反之亦然。此外，如果是侧面取向的，则上方和下方可指代基板或电子器件的侧面。而且，本申请的范围并非旨在被限定于说明书和图中所描述的范围、机器、制造、物质组成、装置、方法和步骤的特定配置。如本领域的普通技术人员将容易从本公开领会到的，根据本公开，可以利用现有或今后开发的与本文所描述的相应配置执行基本相同的功能或实现基本相同结果的过程、机器、制造、物质组成、装置、方法或步骤。因此，所附权利要求旨在将这样的过程、机器、制造、物质组成、装置、方法或步骤包括在其范围内。
图2
在沟槽的侧壁和毗邻表面上以及在管芯的通孔的侧壁上沉积导电除氧层

对导电除氧层施加热处理以在除了接触第一互连层的部分以外的部分上形成阻挡层

在通孔和沟槽两者中沉积导电材料，该导电材料在布置在第一互连层的表面上的掺杂电层上沉积