
USOO6229533B1

(12) United States Patent (10) Patent No.: US 6,229,533 B1
Farmer et al. (45) Date of Patent: *May 8, 2001

(54) GHOST OBJECT FOR A VIRTUAL WORLD OTHER PUBLICATIONS

(75) Inventors: Randy Farmer, Cupertino; John E. “Valentine's Day Wedding In A Virtual World”, Newsbytes,
Onusko, San Francisco, both of CA p. 1, Feb. 14, 1996.*
(US) (List continued on next page.)

(73) Assignee: Fujitsu Limited, Kawasaki (JP) Primary Examiner Raymond J. Bayerl
(*) Notice: This patent issued on a continued pros- ASSistant Examiner X. L. Bautista

ecution application filed under 37 CFR (74) Attorney, Agent, or Firm-Skjerven Morrill
1.53(d), and is subject to the twenty year MacPherson LLP; Edward C. Kwok
patent term provisions of 35 U.S.C. (57) ABSTRACT
154(a)(2).

A virtual world computer process includes portable virtual
Subject to any disclaimer, the term of this token objects that can be used by on-line users of the Virtual
patent is extended or adjusted under 35 World to facilitate exchange of goods and Services within the
U.S.C. 154(b) by 0 days. Virtual world. In particular, client-Server computer processes

are provided for the virtual world that allow on-line users to
(21) Appl. No.: 08/691,793 conduct activities within the Virtual world including getting,

putting, giving, and receiving portable virtual token objects
(22) Filed: Aug. 2, 1996 as well as other portable virtual objects. Each on-line user is

(Under 37 CFR 1.47) represented in the graphic user interface by a virtual avatar
object. Token objects are put into circulation by virtual ATM

(51) Int. Cl." .. G06F 3/00 objects. A virtual ATM object allows a user to obtain a
(52) U.S. Cl. 345/331; 345/330; 345/332; balance, deposit tokens, and withdraw tokens. A vendroid

345/335; 345/349 object is an object that Sells portable virtual items in
(58) Field of Search 345/326,330, eXchange for tokens deposited by avatars. Different Virtual

345/331, 332, 334, 335, 348, 349, 355, items have different values, and vendroids do not all have
976, 977 the same virtual items for sale. In the virtual world, a lurker

is represented in a locale by a ghost object. An icon is
(56) References Cited present, i.e., an eye-in-the-sky, in a locale, whenever a ghost

object, or ghost objects are present. Ghost objects have
U.S. PATENT DOCUMENTS anonymity, i.e. their names are not known to avatars of the

5,347,306 * 9/1994 Nitta 345/330 X locale, and have limited interaction choices. A ghost object
5,491,743 * 2/1996 Shiio et al. ... 345/322 X cannot talk or think to other avatars. A ghost object retains
5,544,320 8/1996 Konrad 395/200.33 the ability to transmit private “ESP” messages to other
5,606,652 * 2/1997 Silverbrook 345/435 avatars.
5,684,943 11/1997 Abraham et al. 345/473
5,717,869 2/1998 Moran et al. 345/339
5,717.879 * 2/1998 Moran et al. 345/339 19 Claims, 44 Drawing Sheets
5,736,982 * 4/1998 Suzuki et al. 345/330
5,880,731 * 3/1999 Liles et al. 345/349 Microfiche Appendix Included
5,886,697 * 3/1999 Naughton et al. 345/348 (14 Microfiche, 1285 Pages)

WorldsAway DX
File Edit Communicator Help

Entering Locale: Secret Room 1
'Welcomeback to the Dreamscape. You are returning as a ghost.
You are a ghost; the alternate state of your awatar. You can observe and use ESP.) y

yahooooo
Gesture >
Turn
Get from pocket d
Remove
Status >
Become a Ghost
Tell me about. RIs),

US 6,229,533 B1
Page 2

OTHER PUBLICATIONS

“Picture Perfect Shopping Solution For The Web”, BRP
Publications, pp. 1-3, Mar. 19, 1996.*
Harley Guttman Ungar, “Online service chat: it wont’t go
away”, Interactive Content, V2, N24, p8(3), Apr. 1996.*
Pioch, N., “A Short IRC Primer,” Nicolas.
Pioch(agrasp. insa-lyon.fr (Ed.1.1b, Feb. 28, 1993), 41
pageS.
Rose, H. “What is IRC2, Hrose(Okei.com, undated, 6
pageS.

Fukuda, K., et al., “Hypermedia Personal Computer Com
munication System: Fujitsu Habitat, Fujitsu Sci. Tech. J.,
26, 3, pp. 197-205 (Oct. 1990).
Morabito, M., “Enter the On-Line World of Lucasfilm,”
RUN, pp. 24–28 (Aug. 1986).
Club Caribe Guidebook, Club Caribe Technology by Lucas
film Ltd., 1989 Quantum Computer Services, Inc., 1989
Lucasfilm Ltd., 10 pages (1989).
Fujitsu Habitat V2.1, Fujitsu Limited, 6 pp. (1989–1992).
* cited by examiner

U.S. Patent May 8, 2001 Sheet 1 of 44 US 6,229,533 B1

WorldSAway Dx
File Edit Communicator Help

- 140

Entering Locale: V-Mart)
Welcome back to the Dreamscape. You are returning as a ghost. V7

- 151
150->

106
V

O - a

11 O 130
----- 105.

s

?t

US 6,229,533 B1 Sheet 2 of 44 May 8, 2001 U.S. Patent

HEST ENIT-NO

U.S. Patent May 8, 2001 Sheet 3 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

A

1-40

(Entering Locale: West Fountain
Welcome back to the Dreamscape. You are returning as a ghost. w

350->

-ea es

ress

FIG. 3A

U.S. Patent May 8, 2001 Sheet 4 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

4a

1- 140

Entering Locale: West Fountain)
Welcome back to the Dreamscape. You are returning as a ghost.) V7

350-> 380 - Q32

-1 -1

-ea - 6 as

to it Rijs)
FIG. 3B

U.S. Patent May 8, 2001 Sheet S of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

A.

1- 140

Entering Locale: V-Mart
Welcome back to the Dreamscape. You are returning as a ghost.) w

151 W . 11
g -- 120

150-> 100 : . A

\?
9 (CGC).

A. m

yahooooo
Gesture

105 Get from pocket)
Remove
Status)
Become a Ghost O

401 Tell me about ... s s

FIG. 4A

U.S. Patent May 8, 2001 Sheet 6 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

a

-140
Entering Locale: V-Mart)
Welcome back to the Dreamscape. You are returning as a ghost. W7

2/

150-> ... Normal F2
100 's 'slus F3

4 * Sad F4
O s-- (S9& Mad F5

aaS fSE i Wave F6
BOW F7
Shrug F8
Present F9
Jump F10 h ya O React F11

Turn)

401 Get from pocket) 402
Remove
Status)

FIG. 4B

U.S. Patent May 8, 2001 Sheet 7 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

A.

-140

(Entering Locale: V-Mart)
Welcome back to the Dreamscape. You are returning as a ghost.) w

2/

150-> /
100 A a
v W

O 2a || - C
403

yahooooo A^
Gesture Left

Right
Get from pocket Around
Remove
Status)
Become a Ghost T

401 - Tell me about.

FIG. 4C

U.S. Patent May 8, 2001 Sheet 8 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

a.

-140
Entering Locale: V-Mart
Welcome back to the Dreamscape. You are returning as a ghost.) V7

W
100 y

150-> O 401 2
s y A it Y

yahooooo (S9&9) C
Gesture) 404

O Turn) M
Tokens

Remove Black/Pale/Burgundy
Status }| Green/Tan/Gray
Become a Ghost Box
Tell me about ... Purple/Light Purple

- 2/7 Grey/Dark/Turquoise

FIG. 4D

U.S. Patent May 8, 2001 Sheet 9 of 44 US 6,229,533 B1

WorldsAway DX
File Edit Communicator Help

a.

-140
Entering Locale: V-Mart)
Welcome back to the Dreamscape. You are returning as a ghost. w

W/
100 401 Sz

150-> y : /
Siyahooooo A

Gesture d
Turn) D(- DC 405
Get from pocket)
Remove

Who's in here?
Become a Ghost Where is everyone?
Tell me about. Where am I?

How healthy am I?
What time is it?

2 / . Tokens in hand and pocket?
Turn ESP off
Disallow new followers

FIG. 4E

U.S. Patent May 8, 2001 Sheet 10 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

MN

1- 140

Entering Locale: West Fountain)
Welcome back to the Dreamscape. You are returning as a ghost.) w

Q

350->

Gesture
Turn

Get from pocket)
Remove
Status
Become a Ghost

Tell me about ...

FIG. 4F

U.S. Patent May 8, 2001 Sheet 11 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help
This is a container.) 4a
This is a container.) 1- 140
This is a container.)
This is a container.)
This is a container.)
This is a container.)
This is a container.) w

U.S. Patent May 8, 2001 Sheet 12 of 44 US 6,229,533 B1

WorldsAway OX
File Edit Communicator Help
This is a container. a.
This is a container. 1- 140
This is a container.
This is a container.)
This is a container.)
This is a container.)
This is a container.) w

450 1
s

Y-100

430

Walk to
Get Y-406
Open
Lock
Tell me about... sis

FIG. 4H

U.S. Patent May 8, 2001 Sheet 13 of 44 US 6,229,533 B1

WorldsAway DX
File Edit Communicator Help
This is a container. A
This is a container. 1- 140
This is a container.)
This is a container.)
This is a container.)
This is a container.)
This is a container.) V

FIG. 4

U.S. Patent May 8, 2001 Sheet 14 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help
This is a container.) a.
This is a container. 1- 140
This is a container.)
This is a container.)
This is a container.)
This is a container.)
This is a container.) W

450 1 -100
s

430

\ 408

Trunk
CO Head

Fiddle
Get Tokens
Open

407 --> Lock
Tell me about ...

FIG. 4

U.S. Patent May 8, 2001 Sheet 15 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help
This is a container.) A
This is a container.)
This is a container.)
This is a container.
This is a container.)
This is a container.)
This is a container. W7

FIG. 4K

U.S. Patent May 8, 2001 Sheet 17 of 44 US 6,229,533 B1

6 5 O

/ -----O STARTD
652 5

65

SET 3) MESSAGE (A)
: 654

- - - - - - - - - --- r SY

NO

53 YES
O SET

55 ?yES
TO

CONT.

56 YES
YES

65

MESSAGE it to

1

6

6

6

603

657
604

TO
605 CONT.

8 659

GET FRONNYES SET
AVATAR MESSAGE 60

NO SET
MESSAGE (A)

607 662 YES

END CHANGE

METHOD CONT. (A)

- - - - SEND REPLY 663
664

3GS 65

UPDATE
NEIGHBORS

6

FIG. 6

U.S. Patent May 8, 2001 Sheet 18 of 44 US 6,229,533 B1

Castle-aassaarall SASSassass-Sassass
-S-SAO -SS2) 4SS

SAS

FIG. 7A

U.S. Patent May 8, 2001 Sheet 19 of 44 US 6,229,533 B1

FIG. 7B
-N

/ —N
WorldsAway X

File Edit Communicator Help
A.

Entering Locale: West Fountain)
V7

350->

u?/AasNYW 100

O? 35 TokenS 11 70 O

110 Gesture) CN
Turn)

Put into) a 43 as
Status) Na

Become a Ghost

X

How many tokens?

FIG. 7C

Ok Cancel

722 721

U.S. Patent May 8, 2001 Sheet 20 of 44 US 6,229,533 B1

WorldsAway
File Edit Communicator Help

Entering Locale: West Fountain)

O
RSSS

S-2s. S-22 s ssass s 22-3 s E. an

Become a Ghost

FIG. 7D

U.S. Patent May 8, 2001 Sheet 21 of 44 US 6,229,533 B1

FIG. 8
850

804 --------- /
851

FAILURE
MESSAGE { NITIALIZE 853

852 VALIDNNO FAIL
REQUEST MESSAGE

ES
854 855

END 805 N FAIL
METHOD MESSAGE

kers - a win - 856

810 : YES

INITIALIZE I SETAMT
812

811 857
MAKE YES PUT IN HOLDING VECTOR

TOKENS POCKET
858 830 814

Ya - -

YES GET FROM
POCKET (A)

815

860
ANIMATION

XMIT 816
REQUEST TTTTTO SERVER - - - - -

NO 813

UPDATE
NEIGHBORS

- - - - - - - FROM SERVER- - - - - - - -

817 861. YSE SUCCESS HANDLE (A)
FAILURE

819 820 862
818

YES REDRAW
- TOKEN

NO 823 824 (B) 825 826
822

fEPLYYYES
A. - s SOUND : ANIMATION

821

U.S. Patent May 8, 2001 Sheet 22 of 44 US 6,229,533 B1

WorldsAway

(Entering Locale: South Fountain)
Entering Locale: West Fountain)

C Ns 51-Y 4N sy- U Na2S5. Šs 1 - AZ2OSS

Request balance
Withdraw tokens ...)
Tell me about ...

FIG. 9A

U.S. Patent May 8, 2001 Sheet 23 of 44 US 6,229,533 B1

WorldsAway

Entering Locale: West Fountain
Entering Locale: West Fountain

St.

Withdraw tokens ... }
Tell me about ...

FIG. 9B

U.S. Patent May 8, 2001 Sheet 24 of 44 US 6,229,533 B1

WorldsAway DX
File Edit Communicator Help

a.

Entering Locale: West Fountain) - 40

w

350->

- (31-320 -1 -1

- 100

33 a
Rile

FIG. 9C

U.S. Patent May 8, 2001 Sheet 25 of 44 US 6,229,533 B1

WorldsAway
File Edit Communicator Hel

Entering Locale: West Fountain
Entering Locale: West Fountain

-r SASSAs
ae) asza-SaaS Z-S 2-S-S-SC2-S C-S-S-S X Sz-45222s 2d2s 2.52s

FIG. 9D

U.S. Patent May 8, 2001 Sheet 26 of 44 US 6,229,533 B1

WorldsAway -X
File Edit Communicator Help

Entering Locale: West Fountain)
Entering Locale: South Fountain)
(Entering Locale: West Fountain)
Entering Locale: West Fountain V7

350->

-61-320 -1 -1

S/\s 100SR
seATM

Walk to

O Reduest balance

Tell me about ...

U.S. Patent May 8, 2001 Sheet 27 of 44 US 6,229,533 B1

WorldsAway
file Edit. 9ommunicatore

(You have 130 tokens in your account.

-4nsn-2N-SS - O 2. ES as a S3 s - 3S

Withdraw tokens ...)
Tell me about ...

e-Rastaar s da ga

Sassass SR st-sas -Sys as

FIG. 9F

U.S. Patent May 8, 2001 Sheet 28 of 44 US 6,229,533 B1

921

How many tokens?

(Entering Locale: West Fountain
(Entering Locale: West Fountain) l

FIG. 9H

U.S. Patent May 8, 2001 Sheet 29 of 44 US 6,229,533 B1

WorldsAway
File Edit Communicator Help

Entering Locale: v-Mart

Walk to
View next item
View previous item
Buy this item
Tell me about ...

FIG. O

U.S. Patent May 8, 2001 Sheet 30 of 44 US 6,229,533 B1

WorldsAway
File Edit Communicator Help

(Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.)

FIG. 11A

U.S. Patent May 8, 2001 Sheet 31 of 44 US 6,229,533 B1

WorldsAway
File Edit Communicator Help

Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.)

Become an Avatar
Status)
How many ghosts
Tell me about ...

FIG. 11B

U.S. Patent May 8, 2001 Sheet 32 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

A

1- 140

(Entering Locale: Secret Room 1)
Welcome back to the Dreamscape. You are returning as a ghost.) V7

D it to
E1150 H Y

1150 T-III Ž Hi|Ghost
Become an Avatar

1120 : 2 DIS) A Ž I tatuS
I W How many ghosts

(S99 Tel me about ...
t O

T

A 1162

FIG. 11C

U.S. Patent May 8, 2001 Sheet 33 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

4a

-140

1141
Entering Locale: Secret Room 1 /

Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) W7

I I II 1180 Sacy
1150 StatDE

Z/ s

1120 : a I

IEEE a A I
D. I A I

5. I g

I I

T-I-T-
D D

? 1162

to I- Fl

FIG. 11D

U.S. Patent May 8, 2001 Sheet 34 of 44 US 6,229,533 B1

| WorldsAway -DX
File Edit Communicator Help

a

1- 140

(Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) w

D. I I
D 1180

D I \-
I I

"I : Ž
A I

M M --

E. L. ? How many ghosts
t (SS LL Tell me about ...
L L

1101

To ress

FIG. 11E

U.S. Patent May 8, 2001 Sheet 35 of 44 US 6,229,533 B1

WorldsAway -DX
File Edit Communicator Help

4a

1- 140

(Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) V7

I
D I I

1150 Hull T
III Ž

I is fift 2
I E I a A L
I %

L - (Saa I
I-100 II

III I I It

FIG. 11 F

U.S. Patent May 8, 2001 Sheet 36 of 44 US 6,229,533 B1

WorldsAway DX
File Edit Communicator Help

a

Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) V7

D-I-T-
11505. HIHRSH

I - I - I : Ž

A I
TTTTT w I
I) (Saale-C

I 100 I
D" | | |

Gesture)
Turn)
Get from pocket) 1102
Remove
Status)
B Ghost r FA

FIG. 11G

U.S. Patent May 8, 2001 Sheet 37 of 44 US 6,229,533 B1

WorldsAway
File Edit Communicator Help

Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) w

- TTId
--- 150 TT I ITT T. (180 a 3 Ya

I O NII A TT1Become an Avatar
Who's in here?
Where is everyone?
Where am I?

Tokens in hand and pocket?
Turn ESP off

FIG. 11H

U.S. Patent May 8, 2001 Sheet 38 of 44 US 6,229,533 B1

WorldsAway ox
File Edit Communicator Help

a.

(Entering Locale: Secret Room 1)
Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) w

I I DIT III 1180 Zag
1150 D \- ?

It t 2/ t
120 : 7 Hex

I T T- A w I
2 ... I

(S9.

D I TI

Acolyte Book
A Telme about. 1104

1161

H. sys)

FIG. 11

U.S. Patent May 8, 2001 Sheet 39 0f 44 US 6,229,533 B1

WorldsAway DX
File Edit Communicator Help

Entering Locale: Secret Room1)
Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.) V7

-

1150. H 180 Sacy
-- W/

-I : H I
H A || | | | | a' I

I H\f ETTE
t (S9.

I I III

d

f Secret ROOm 1
1161 1105 - Become an Avatar Here

TO: Tell me about ...

FIG. 11

U.S. Patent May 8, 2001 Sheet 40 of 44 US 6,229,533 B1

WorldsAway -ox
File Edit Communicator Help

A.

Entering Locale: Secret Room 1
Welcome back to the Dreamscape. You are returning as a ghost.)
You are a ghost; the alternate state of your avatar. You can observe and use ESP.)

Entering Locale: Temple Dungeon V7

% -

1250 e C-2-0
- Ž MM Z E

2. DCI

FIG. 11 K

U.S. Patent May 8, 2001 Sheet 41 of 44 US 6,229,533 B1

WorldsAway ox
File Edit Communicator Help

140 a.
(Entering Locale: V-Mart) 11 1201
Welcome back to the Dreamscape. You are returning as a ghost. /
The current population is 1. The highest populated area: V-Mart.
Entering Locale: V-Mart

Hello, this is a talk message, see the pointer
called a 'quip showing who is "talking." V7

1202
W/

2 A 1-100
a
w O

t

| RIs),
FIG. 12A

U.S. Patent May 8, 2001 Sheet 42 of 44 US 6,229,533 B1

WorldSAway
File Edit Communicator Help

(Entering Locale: V-Mart
Welcome back to the Dreamscape. You are returning as a ghost.
(The current population is 1. The highest populated area: V-Mart.

Entering Locale: V-Mart

Now I am think my message. Notice the quip is "bubbles" and the text
is offset in parentheses. Useful to suggest asides, or muttering.)

FIG. 12B

US 6,229,533 B1 Sheet 43 of 44 May 8, 2001 U.S. Patent

US 6,229,533 B1 U.S. Patent

US 6,229,533 B1
1

GHOST OBJECT FOR A VIRTUAL WORLD

APPENDIX A

Appendix A, which is a part of the present disclosure and
is incorporated herein by reference in its entirety, is a listing
of computer programs and related data for the client and
Server processes of this invention.
A portion of the disclosure of this patent document

contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to communications
between perSons using computers and more particularly to
communications and interactions among perSons within a
Virtual community implemented on a computer network.

2. Description of Related Art
One of the more interesting things that people do is form

communities, e.g., form collections of people with common
interests and activities. The creation of computer mediated
communication has created the potential for people to come
together in new ways. Where before, humans met face to
face in a common physical Space, they now can congregate
in cyberSpace-the conceptual place created by on-line
communication. Until recently, on-line communities were
limited to relatively sparse, text only communications. Com
mon activities were limited to discussion, or simple games
that could handled by what in effect was an extension of the
postal Service.

Previous on-line Services have been creation points for
communities. In Some cases, communities have developed
despite the inherent difficulties of the medium. Other, more
interesting activities that contribute to community building,
were severely limited or difficult to conduct.

To enhance the community building process, more
diverse activities must be enabled. One thing that has
brought humans together in communities from the earliest
times has been the market, a place to exchange goods and
Services, and also an excuse to get together for other
activities. It may be argued that without an economic
component, any community will be Severely limited in its
potential growth and complexity. Commerce is also enjoy
able and contributes to perceived quality of life.
How can an on-line Service provide a medium of

eXchange for a virtual community that is acceptable to all
users of the Service'? How can an on-line Service provide a
medium of exchange that is easy to use So as to promote
transactions between individuals in a spontaneous manner,
but secure from counterfeiting or fraud? Further, how can a
Virtual community Support transactions between individuals
that are not subject to scrutiny or review by third parties?

While credit cards have been used to conduct business
on-line, credit cards are not appropriate for Simple com
merce between individuals. Few private individuals have
bank accounts Set up to accept credit card deposits. Further,
when you do not know exactly who you are dealing with,
you would hesitate to give your credit card number for a
purchase.

Also, actual cash transactions may not be appropriate
when the goods being purchased have no reality outside of

15

25

35

40

45

50

55

60

65

2
the common virtual world. With the growth of on-line
communities acroSS national boundaries, how do individuals
even agree on the medium of eXchange? To the best knowl
edge of the inventors there is not medium of exchange
available in an on-line Virtual world to promote the inter
esting activities that Surround trade, and add to the potential
complexity and interest of community activities. A Solution
to the many complexities associated with a medium of
eXchange has yet to found for on-line virtual worlds.

SUMMARY OF THE INVENTION

According to the principles of this invention, a graphic
user interface is utilized to represent instances of various
classes, that are virtual objects, which in turn provide users
of the graphic user interface with a new dimension in
communication. In the Virtual world of this invention, an
avatar object is a virtual container that includes a plurality of
other containers, e.g., avatar hands and a pocket. Herein, a
Virtual container object, as its name Suggests, can hold one
or more other virtual objects.
The avatar object is not only a container, but also includes

other characteristics that allow the avatar object to express
moods and perform gestures. The avatar object is repre
Sented in the graphic user interface as a computer based
animation that has a body and a removable head. The avatar
object can move, e.g., walk, through the various locales in
the virtual world with or without a head.
One avatar can talk to the other avatars in the same locale.

In this case, the on-line user represented by the avatar enters
a message, and the message in displayed in a balloon that is
visible to each of the other avatars in the locale. Thus, any
other avatar in the locale can read the message.
Alternatively, for a private communication, the on-line user,
represented by the avatar, can use ESP to communicate
privately with another avatar in the same locale, or in any
other locale in the virtual world.

Portable virtual objects that can be stored in either the
hands or the pocket of the avatar include Spare heads for the
avatar, a token object that represents one or more tokens, and
other portable virtual objects that are available within the
virtual world. These portable virtual objects include portable
Virtual container objects that in turn can Store other portable
Virtual objects.

Herein, all of the objects and avatars are virtual which
means that they exist only in terms of the computer pro
ceSSes used to generate the Virtual World. Thus, even though
the word Virtual is not always used in describing an object
or avatar, it is understood that the object or avatar is always
virtual.
An avatar is controlled through use of data input devices,

e.g., a keyboard and mouse, for an on-line user's computer
in combination with information and actions presented on
the computer display Screen. The on-line user's computer
executeS client processes associated with the on-line user
that in turn Send and receive messages from other client
processes on that on-line user's computer as well as from
Server processes executing on a Server computer of a Service
provider over a network Such as the Internet.

In this embodiment, the various actions that an on-line
user can take through her avatar, are presented in the graphic
user interface via pop-up menus. When the on-line user
Selects an object displayed in the graphic user interface
using one or more of the computer's data input devices, a
pop-menu for the Selected object is displayed.

Each Virtual object is aware of its Surroundings and
changes its behavior to Suit the Situation. For example,

US 6,229,533 B1
3

Selecting a floor object of a locale presents a pop-up menu
with choices such as Walk to here; Go this way; and Go that
way, if the avatar is not holding a portable virtual object in
his hand. However, if the avatar is holding a portable virtual
object in his hand, there is an additional menu choice of Put
here. This is because the floor object checks to see if the
avatar is holding a portable virtual object that can placed,
e.g., put or dropped, at the Selected point on the floor object.

Token objects in the graphic user interface are a medium
of exchange within the virtual world of this invention. The
value of a token object is determined by the denomination of
the token object. While each token object is shown as a
Single object, each token object can represent one or more
tokens based on the denomination.

Token objects can be exchanged freely while in the virtual
world, but token objects are not tied to any real world
currency. To prevent counterfeiting, all token object creation
is controlled by a one of the Server processes executing on
the Server computer maintained by the Service provider.
On-line users cannot freely create new tokens.
A token object can be carried, deposited in a virtual ATM

object, deposited in Virtual vending machine, used to pur
chase portable virtual objects from machines or shops, or
given to other avatars. A token can also be dropped, taken,
or Stored in a container. When tokens are paid, the client
proceSS performs an internal operation called "split' where
the value of the token in the hand of the avatar, or in the
pocket of the avatar is divided between what to pay and what
goes back into his hand, or pocket. The Split operation
typically leaves a token of the denomination required for the
transaction in the hand of the avatar.

In one embodiment of the Split operation, the avatar
places the token in his pocket. A client process and Server
proceSS communicate and determine whether there are Suf
ficient tokens in the pocket to complete the transaction. If
there are Sufficient tokens, the avatar withdraws his hand
from his pocket holding a token of the required denomina
tion. In this case, the Server process notifies a client proceSS
in each of the other on-line users that are in the same locale,
and that client process plays an animation that shows the
Split being made. If there are insufficient tokens, a message
is displayed informing the avatar and the avatar's hand is
removed from his pocket.

Exchange of token objects or any other portable virtual
objects can be mediated by one of the Server processes, and
so theft or fraud are difficult. However, approval for trans
actions between avatars is not controlled by the Server
processes, or by the Service provider. On-line users are free
to transact eXchanges of either tokens or other portable
Virtual objects through their respective avatars without need
ing the approval or intervention of the Service provider.

Token objects can be exchanged for other portable virtual
objects using virtual vending machine objects. Virtual vend
ing machine objects are another unique feature of the
graphic user interface of this invention. Each of these virtual
vending machines displayS portable virtual objects for Sale.
When an avatar chooses a purchase from a virtual vending

machine by Selecting an entry in a pop-up menu of the
graphical user interface using the data input devices, the
Virtual vending machine, in one embodiment, takes a token
object directly from the avatar's hand and places the pur
chase directly into the avatar's hand. Virtual vending
machine objects perform any required token Splits, if the
denomination of the token object in the avatar's hand is
more than the purchase price, and puts a token object for the
outstanding balance into avatar's pocket when delivering the

15

25

35

40

45

50

55

60

65

4
purchased object. The token is put in the avatar's pocket,
because at any instant only one virtual portable object can be
in the avatar's hands.
At all times, the avatar has direct control over the portable

virtual object in his hand, or on his head. Thus, theft by
grabbing from the hand of avatar or head is not possible.
Token objects are placed in circulation by virtual ATM

objects, that is an instance of an ATM class. A token object
is an instance of a token class. A virtual ATM object, another
novel feature of the graphic user interface of this invention,
allows a user to obtain a balance, deposit tokens, and
withdraw tokens.
When an avatar interacts with a virtual ATM object, the

bank balance of the avatar is updated. When the avatar
requests a withdrawal, the ATM object gives the avatar a
token object valued at the withdrawal amount selected by
the avatar.

Prior to a deposit, or at any time the avatar has a token in
his hand, the token object can be split into two token objects
whose total value equal the value of the original token
object, as described above. All token object creation or Splits
are mediated by a Server process on the Server computer to
prevent creation of fake token objects.
Token objects can be exchanged with other on-line users

for goods or Services, given as gifts, or left lying around, like
dropped cash. Unlike cash, token objects cannot be taken by
another avatar without the consent of the avatar holding the
token object. However, any avatar is free to get a token
object lying on the ground.

In general, one avatar cannot take a portable virtual object
from a hand of another avatar. However, if one avatar can
convince another avatar to place the portable object on the
ground, for example, the avatar can get the object from the
ground without the consent of the other avatar. Thus, like the
real world, thievery and/or cons are possible in the Virtual
world of this invention, with the exception that a virtual
object cannot be take from the hand of an avatar.
The avatars, virtual token objects, virtual ATMs, and

Virtual vending machines, as indicated above are imple
mented using object-orientated concepts, in this embodi
ment. Thus, each object is an instance of a class and typically
is Stored in a structure within a memory of the on-line user's
computer for access by client processes, and within a
memory of the Server computer for access by Server pro
cesses. Each instance of the class is represented by its own
Structure in the computer memory that contains data for the
virtual object in the virtual world.

The token structures, ATM structures, vendroid structures,
and the avatar Structure with a pocket and a hand container
create unique features in the virtual world that make the
Virtual world a more realistic and enjoyable place for on-line
users to communicate. The ability to trade, purchase, get,
and put the portable virtual objects Stored in these Structures
allows an economic component, i.e., a new dimension of
communication to exist in the Virtual world that was not
previously available.
AS indicated above an avatar can walk, communicate with

another avatar via talk, think, and ESP processes, and can
also pick up, put down and use certain objects, use
machines, and change its appearance. The avatar also has
different moods and gestures. The mood of the avatar is
Selectable by the user at any time. The avatar Starts in the
World in the neutral mood, e.g., a happy mood. The mood
changes are modal-the Selected mood remains on the
avatar's face until the mood is changed by the user. In this
embodiment, the plurality of moods includes neutral, mad,
Sad, and glad.

US 6,229,533 B1
S

AS explained above, each locale in the virtual world can
accommodate a predefined number of avatars. However, in
addition to the avatars in a locale, a locale can Support
essentially an unlimited number of lurkers. Lurkers, while
they do not actively contribute to the discussion in real time,
do change the dynamic of on-line communities by causing
the Simplest eXchanges between individuals to exist in a
public space. While participants can choose to take any
discussion to a private venue, Such as in e-mail or off-line,
the relative invisibility of lurking can cause it to be forgot
ten.

One opportunity that the graphical user interface of this
invention provides is to visually represent lurkers to provide
a reminder that participants other than the active ones are
“listening in'. In the virtual world of this invention, a lurker
is represented in a locale by a ghost object. An icon is
present, i.e., an eye-in-the-sky, in a locale, whenever a ghost
object, or ghost objects are present.

Ghost objects have anonymity, i.e. their names are not
known to avatars of the locale, and have limited interaction
choices. A ghost object cannot talk or think to other avatars.
A ghost object retains the ability to transmit private “ESP”
messages to other avatars.
A ghost object also enables other important capabilities.

To promote personal, one-on-one type relationships which
encourage a Sense of community, most locales have limits to
the number of avatars that can be physically present at one
time. This also prevents over-crowding of the Visual inter
face. In addition, limiting the number of active avatars in a
locale assures that the performance of the client computers
is not slowed down by having to receive notice messages to
update the Status of more than a reasonable number of active
avatars. Thus, the ghost object permits any number of
on-line users in a locale without degrading either the Visual
interface, or the computer performance.

While this limitation is important to the social dynamic,
and necessary to prevent a mob Scene from overloading the
Visual interface, it would be frustrating to completely pre
vent new users from entering a full locale, i.e., a locale that
contained the maximum number allowed of physical avatar
objects. An avatar entering a full locale automatically
becomes a ghost in the locale, and may then choose to
remain and observe the activity occurring. When the number
of materialized avatars drops below the limit, a ghost may
choose to join in as a materialized, physical avatar in the
locale, or to remain as a ghost and continue to lurk.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graphic user interface of one locale in the
virtual world that includes a vendroid object of this
invention, and an avatar holding a token object of this
invention.

FIG. 2 is a diagram of the apparatus used by the on-line
users to execute the client processes that generate the
memory Structures and graphic user interfaces of this
invention, and to Select options presented in the graphic user
interface, as well as the network over which the client
processes Send and receive messages from a server computer
executing the Server processes of this invention.

FIG. 3A is a graphic user interface of another locale in the
virtual world that includes an ATM object of this invention,
and an avatar of this invention.

FIG. 3B show the graphic user interface of FIG. 3A when
the avatar has dematerialized into a ghost icon.

FIG. 4A illustrates a pop-up menu in the graphic user
interface when the on-line user points at the avatar.

15

25

35

40

45

50

55

60

65

6
FIG. 4B illustrates a right pull menu in the graphic user

interface when the on-line user points at menu item Gesture
in the pop-up menu of FIG. 4A.

FIG. 4C illustrates a right pull menu in the graphic user
interface when the on-line user points at menu item Turn in
the pop-up menu of FIG. 4A.

FIG. 4-D illustrates a right pull menu in the graphic user
interface when the on-line user points at menu item Get from
Pocket in the pop-up menu of FIG. 4A.

FIG. 4E illustrates a right pull menu in the graphic user
interface when the on-line user points at menu item Status in
the pop-up menu of FIG. 4A.

FIG. 4F illustrates a right pull menu in the graphic user
interface when the on-line user points at menu item Become
a Ghost in the pop-up menu of FIG. 4A.

FIG. 4G illustrates an avatar, in yet another locale, that is
not adjacent to a container object.

FIG. 4H illustrates a pop-up menu that is generated when
the avatar is not adjacent to a container object and the
container object is pointed at by the on-line user.

FIG. 4I illustrates the position of the avatar after the
on-line user Selects menu item Walk to in the pop-up menu
of 4H after the animation used to move the avatar is
completed.

FIG. 4J illustrates a pop-up menu that is generated when
the avatar is adjacent to an open container object and the
open container object is pointed at by the on-line user.

FIG. 4Killustrates the graphic user interface after the user
selects tokens in the menu of FIG. 4J and the operations to
get the tokens from the container have been completed.

FIG. 5 consists of a process flow diagram for one embodi
ment of a client mood change command method of this
invention and a process flow diagram for one embodiment of
a Server mood change perform method of this invention.

FIG. 6 consists of a process flow diagram for one embodi
ment of a client pocket get command method of this inven
tion and a process flow diagram for one embodiment of a
Server get object command method of this invention.

FIG. 7A is the graphic user interface of FIG. 3A with the
avatar holding a token object of this invention.

FIG. 7B is illustrates a pop-up menu that is generated in
the graphic user interface of FIG. 7A when the token object
is pointed at.

FIG. 7C is a dialogue box that is displayed when the user
selects menu item Split in the pop-up menu of FIG. 7B.
FIG.7D illustrates a menu that is generated in the graphic

user interface of FIG. 7A after the token split operations are
completed and the token object is pointed at.

FIG. 8 are client and server process flow diagrams for one
embodiment of the token Split operation of this invention.

FIG. 9A is an illustration of a pop-up menu in the graphic
user interface of FIG. 3A that is generated when the avatar
is not adjacent to the ATM and the on-line user points at the
ATM object.
FIG.9B illustrates the on-line user pointing at menu item

Request Balance in the pop-up menu of FIG. 9A.
FIG. 9C illustrates the position of the avatar after the

Selection of the menu item in FIG. 9B and the avatar has
walked to and faced the ATM object.

FIG. 9D illustrates the position of the avatar and the
message provided when the request balance operations are
completed.
FIG.9E illustrates the on-line user pointing at menu item

Withdraw Tokens in the pop-up menu of FIG. 9A and the
resulting right-pull pop-up menu that is generated.

US 6,229,533 B1
7

FIG. 9F illustrates the graphic user interface after avatar
has withdrawn tokens and So is holding a token, and the
on-line user points at menu item Deposit in the pop-up menu
of FIG. 9A.

FIG. 9G illustrates the dialogue box that appears in the
graphic user interface after Selection of menu item Deposit
in the pop-up menu of FIG. 9A.

FIG. 9H illustrates the graphic user interface after avatar
has turned deposited the token and then returned to the
original position, and the message showing the number of
tokens deposited.

FIG. 10 illustrates a pop-up menu that is generated in the
graphic user interface of FIG. 1, when the on-line user points
at the vendroid object.

FIG. 11A is an illustration of one locale in the graphic user
interface when the avatar enters as a ghost.

FIG. 11B is an illustration of a pop-up menu that is
generated in the graphic user interface of FIG. 11A when the
avatar of the on-line user is a ghost.

FIG. 11C illustrates pointing at menu item Tell me about
in the pop-up menu of FIG. 11B.

FIG. 11D illustrates the graphic user interface and the
message generated by Selection of menu item Tell me about
in the pop-up menu of FIG. 11B.

FIG. 11E illustrates pointing at menu item Become an
Avatar in the pop-up menu of FIG. 11B.

FIG. 11F illustrates the graphic user interface following
Selection of menu item Become an Avatar in the pop-up
menu of FIG. 11B after the operations are completed.

FIG. 11G illustrates the pop-up menu that is generated in
the graphic user interface when the avatar is pointed at.

FIG. 11H illustrates the right pull menu that is generated
in the graphic user interface when the on-line user is
pointing at menu item Status in the pop-up menu of FIG.
11B and is a ghost.

FIG. 11I illustrates a pop-up menu that is generated in the
graphic user interface when the on-line user is pointing at
loose object in the locale and the avatar of the on-line user
is a ghost.

FIG. 11J illustrates a pop-up menu that is generated in the
graphic user interface when the on-line user is pointing at a
feature in the locale and the avatar of the on-line user is a
ghost.

FIG. 11K illustrates that a ghost can go to another locale
by using the menu item Go this way in the pop-up menu of
FIG 11 I.

FIGS. 12A to 12D illustrate the different types of com
munication in the graphical user interface of this invention.
FIG. 12A illustrates an avatar talking. FIG.12B illustrates an
avatar thinking. FIGS. 12C and 12D illustrate an avatar
using ESP (extrasensory perception).

DETAILED DESCRIPTION

The on-line community of this invention, i.e., a virtual
World computer process, herein after referred to as “the
virtual world', includes portable virtual token objects that
can be used by on-line users of the world to facilitate
eXchange of goods and Services within the Virtual World. In
particular, client-server computer processes are provided for
the virtual world that allow on-line users to conduct activi
ties within the virtual world including getting, putting,
giving, and receiving portable virtual token objects as well
as other portable virtual objects. These operations facilitate
development of commerce that is enjoyable and contributes

15

25

35

40

45

50

55

60

65

8
to perceived quality of life within the virtual world relative
to the prior art virtual worlds that limited the on-line users
to discussion or playing simple games.

In this embodiment, each on-line user is represented in the
graphic user interface of this invention by an avatar object,
such as avatar 100 (FIG. 1). FIG. 1 is representation of a
screen display for locale V-Mart 150 of the virtual world of
this invention. For clarity, only a single avatar object 100 is
illustrated in FIG. 1. However, each locale in the virtual
World can accommodate a maximum predefined number of
avatars that are physically present in the locale.

Herein, while only a single avatar object 100 is illustrated
in the Figures for convenience, interactions between two or
more avatar objects within a locale are also described. The
addition of one or more avatars to a Figure is not required
to understand the principles of this invention and the opera
tion of the graphic user interface.
One avatar can talk to the other avatars in the same locale

in the graphic user interface. In this case, the on-line user
represented by avatar 100 enters a message, and the message
in displayed in region 140 in a balloon that is visible to each
of the other avatars in the locale. Thus, any other avatar in
the is locale can read the message. Alternatively, for a
private communication, the on-line user, represented by
avatar 100, can use ESP to communicate privately with
another avatar in the same locale, or in any other locale in
the Virtual World and in this instance, only the graphic user
interface for the other avatar displays the message.

Avatar object 100, usually called avatar 100, is a
computer-based animation and is an instance of an avatar
class. Avatar 100 of this invention includes a pocket 105 to
store portable virtual objects owned by avatar 100. The
portable virtual objects that can be stored in pocket 105
include spare heads for avatar 100, a token object 110 that
represents one or more tokens, and other portable virtual
objects that are available within the virtual world. These
portable virtual objects include container objects that in turn
can Store other portable virtual objects.

Herein, all of the objects and avatars are virtual which
means that they exist only in terms of the computer pro
ceSSes used to generate the Virtual World. Thus, even though
the word Virtual is not always used in describing an object
or an avatar, it is understood that the object or avatar is
virtual.

Avatar 100 is controlled through use of data input devices,
e.g., keyboard 201-1 and mouse 202-1, for an on-line user's
computer 200-1 in combination with information and
actions presented in display screen 250-1 of display device
210-1. Computer 200-1 executes client processes 220-1
asSociated with the on-line user that in turn Send and receive
messages from other client processes on computer 200-1 as
well as from Server processes 250 executing on a Server
computer 260 of a service provider 270 over a network 280.
The client Side components of a virtual object are Stored

as resources. Each resource can be updated by a download
from server computer 260, when service provider 270
changes or adds resources for a virtual object. Resources are
organized and maintained by a resource manager on client
computer 200-i, that acts as a database for the client. The
resource manager is not an essential feature of this invention
and is not needed to understand the virtual objects described
more completely herein that are a novel features of the
graphic user interface. Also, as those of Skill in the art will
appreciate, there is an engine on client computer 200-i that
coordinates the interactions between the various methods
described herein, and the Signals required by, and received
from the hardware of client computer 200-i.

US 6,229,533 B1
9

AS explained more completely below, typically, an on-line
user 225-1 moves a cursor(not shown) on display Screen
250-1 using mouse 202-1. Alternatively, arrow keys, or
Some combination of keys on keyboard 201-1 could be used.
In either case, the data input device generates a signal
representing a X-y coordinate position. A process executing
on computer 220-1 captures the X-y coordinate position
Signal and translates the Signal to a position on display
screen 250-1 where the cursor is displayed, or alternatively
a menu item is highlighted. Through manipulation of the
data input device, the user points at avatar 100 or another
object in locale 150 such as vending machine object 120,
door object 151, or perhaps floor object 152 by placing the
cursor on the object.

Typically, a user Selects an object by placing a cursor on
the virtual object, and then depressing a key on mouse
202-2, or alternatively, depressing a key or combination of
keys on keyboard 201-2. Typically, when a virtual object is
Selected, information associated with that Virtual object is
displayed on display Screen 250-1. In most cases, the
information is a menu of options or actions associated with
the object. The use of a mouse, a keyboard, or other data
input device to point at an object, to Select an object, to make
menu Selections, or to enter data is well-known to those of
skill in the art and so is not described further.

As illustrated in FIG. 2, a plurality of n on-line users
communicate with server computer 260 over network 280.
Server computer 260 maintains an object data base that
Stores values that determine the State and location of a
particular virtual object instance.

The particular configuration of network 280 and the
physical transfer of messages of over network 280 are not an
essential feature of this invention. In view of this invention,
the various processes and object classes can be implemented
in a wide variety of client-Server configurations over a
variety of different network configurations. For an IBM PC
compatible computer with an Intel 80486 microprocessor, an
Intel Pentium microprocessor, or an equivalent
microprocessor, the client Software of this invention typi
cally runs under one of the Microsoft Windows interfaces,
e.g., Windows 3.11 or Windows 95, in combination with the
DOS operating System. A typical Server computer is a Sun
MicroSystems of Mountain View, Calif., Sun SparcCenter
2000 or equivalent running with a Sun Microsystems Sun
Solaris 2.4 or later operating System, that is Sometimes
called the Sun OS 5.4 operating system.

The virtual world is made up of a collection of objects that
are instances of programming code, images, Sounds or other
data that are packaged and presented to on-line users 225-1
to 225-n as a single virtual world. On-line user 225-1, where
i represents any one of 1,2,..., n, n, through her avatar can
pick up, carry, and manipulate the portable virtual objects in
the virtual world. Virtual objects are persistent, i.e., the
objects stay in the Virtual World between on-line Sessions,
and have consistent behavior.

Each virtual object is aware of its Surroundings and
changes its behavior to Suit the Situation. For example,
selecting floor object 130 of V-Mart locale 150 presents a
pop-up menu with choices Such as Walk to here, Go this
way; and Go that way, if avatar 100 is not holding a portable
virtual object in his hand. However, if avatar 100 is holding
a portable virtual object in his hand, there is an additional
menu choice of Put here. This is because floor object 130
checks to see if avatar 100 is holding a portable virtual
object that can placed, i.e., put, at the Selected point on floor
object 130.

15

25

35

40

45

50

55

60

65

10
Token objects, e.g., token object 110, are a medium of

eXchange within the Virtual World of this invention, as
explained more completely below. The value of token object
110 is determined by the denomination of token object 110.
While each token object is shown as a Single object, each
token object can represent one or more tokens based on the
denomination.
Token objects can be exchanged freely while in the virtual

world, but token objects are not tied to any real world
currency. To prevent counterfeiting, all token object creation
is controlled by one of server processes 250 (FIG. 2)
executing on Server computer 260 maintained by Service
provider 270. On-line users 225-1 to 225-n cannot freely
create new tokens.

Token object 110, sometimes referred to as token 110 or
tokens 110, can be carried, deposited in virtual ATM object
320 (FIG. 3A), deposited in virtual vending machine 120
(FIG. 1), used to purchase portable virtual objects from
machines or shops, or given to other avatars. Token 110 can
also be dropped, taken, or Stored in a container. When tokens
are paid, the client proceSS performs an internal operation
called “split' where the value of token 110 in the hand of
avatar 100, or in pocket 105 of avatar is divided between
what to pay and what goes back into his hand, or pocket 105.
The Split operation typically leaves a token of the denomi
nation required for the transaction in the hand of avatar 100.

Exchange of token objects or any other portable virtual
objects can be mediated by one of server processes 250, and
so theft or fraud are difficult. However, approval for trans
actions between avatars is not controlled by Server processes
250 or by service provider 270. On-line users 225-1 to 225-n
are free to transact exchanges of either tokens or other
portable virtual objects through their respective avatars
without needing the approval or intervention of Service
provider 270.

Token object 110 can be exchanged for other portable
Virtual objects using virtual vending machine objects. Each
of these virtual vending machines display portable virtual
objects for Sale. For example, gift Virtual vending machine
object 120 is an instance of a vendroid class of this inven
tion. Gift virtual vending machine object 120 distributes a
Virtual gift object, e.g., virtual gift object 121, in exchange
for deposit of a token object of a Specified denomination.
As explained more completely below, when avatar 100

chooses a purchase from Virtual gift vending machine 120
using the data input devices, Virtual gift vending machine
120 takes a token object 105 directly from the avatar's hand
and places the purchase directly into the avatar's hand.
Virtual vending machine objects perform any required token
splits, if the denomination of token object 110 in the avatar's
hand is more than the purchase price, and put a taken object
for the outstanding balance into avatar's pocket 105 when
delivering the purchased object. At all times, avatar 100 has
direct control over the portable virtual object in his hand,
and so theft by grabbing from the hand of avatar 100 is not
possible.
One of server processes 250 maintains a bank balance for

avatar 100, and for all other avatars in the virtual world. The
back balance for avatar 100 is stored only on server com
puter 260 and is only available to avatar 100.
Token objects are removed from the bank and put into

circulation by virtual ATM object 320, that is an instance of
an ATM class. A token object is an instance of a token class.
Virtual ATM object 320 allows a user to obtain a balance,
deposit tokens, and withdraw tokens, as explained more
completely below. When avatar 100 interacts with virtual

US 6,229,533 B1
11

ATM object 320, the bank balance of avatar 100 is updated.
When avatar 100 requests a withdrawal, ATM object 320
gives avatar 100 a token object valued at the withdrawal
amount selected by avatar 100.

Prior to a deposit, or at any time avatar 100 has a token
in his hand, token object 110 can be split into two token
objects whose total value equal the value of the original
token object. In the embodiment described more completely
below, to split a token, avatar 100 places the token in pocket
105, and subsequently retrieves a token of the desired
denomination from pocket 105. All token object creation or
Splits are mediated by a Server proceSS on computer 260 to
prevent creation of fake token objects.

Token objects can be exchanged with other on-line users
for goods or Services, given as gifts, or left lying around, like
dropped cash. Unlike cash, token objects cannot be taken by
another avatar without the is consent of the avatar holding
the token object. However, any avatar is free to get a token
object lying on the ground.

In general, one avatar object cannot take a portable virtual
object from a hand of another avatar object. However, if one
avatar object can convince another avatar object to place the
portable object on floor 130 (FIG. 1), for example, the avatar
can get the object from the floor without the consent of the
other avatar. Thus, like the real world, thievery and/or cons
are possible in the virtual world of this invention, with the
exception that a virtual object cannot be take from the hand
of an avatar.

In this embodiment, avatar 100 accrueStokens according
to on-line connect time of on-line user 225-1, i.e. the on-line
user 225-1 is paid to be in the virtual world. This use of
connect time to generate base income promotes community
building by giving on-line user 225-1 an incentive to be in
the virtual world. While in the virtual world, interaction with
the other avatars helps to create community. By providing
token objects, the richneSS and complexity of interaction is
enhanced.
When on-line user 225-1 enters the virtual world of this

invention, the time of initial connection is recorded in the
instance of the user's avatar data on Server computer 260. AS
indicated above, the bank balance of avatar 100 is queried by
using an ATM object 320 in a virtual world west fountain
locale 350 (FIG.3A). In response to the query by avatar 100,
an ATM balance client process in client processes 220-1
Sends an ATM balance request message to a Server proceSS
in server processes 250.

In response to the request message, the Server proceSS
calculates the number of tokens to add to the bank balance
of avatar 100 by Subtracting the time of initial connection
from the current time and giving one token per defined unit,
e.g., five minutes, of the connect time. The new bank balance
is Stored on the Server, and the initial connect time infor
mation is changed to the balance request time So that only
new connect time is included in future transactions.

The Server process Sends the updated balance in a reply
message to the client process, that in turn displays the bank
balance to avatar 100. The server process also sends a notice
message to any other on-line user that has an avatar in the
Same locale as avatar 100. The notice message launches a
client notify process on the computer of the other on-line
users that shows avatar 100 using ATM object 320.
However, these client processes do not receive the bank
balance of avatar 100.

The bank balance is also updated at the time the on-line
user disconnects from server computer 260 to add tokens
accumulated during the preceding connect Session. When

15

25

35

40

45

50

55

60

65

12
the user returns to the World, this updated bank balance is
available for query.
The avatars, virtual token objects, virtual ATMs, and

Virtual vending machines, as indicated above are imple
mented using object-orientated concepts, in this embodi
ment. Thus, each object is an instance of a class and typically
is stored in a memory of the on-line user's computer 200-i
for access by client processes, and in a Server computer 250
for access by Server processes. The Specific embodiment of
these objects that is described more completely below is
illustrative only and is not intended to limit the invention to
classes that include the particular attributes and methods
described below.

In the Virtual word computer process of this invention, an
avatar 100 is an animated two-dimensional graphical char
acter that represents an on-line user. Avatar 100 can walk,
communicate with another avatar via talk, think, and ESP
processes, pick up, put down and use certain objects, use
machines, and change its appearance. Avatar 100 also has
different moods and gestures.
The interactions between avatars includes the ability to

conduct economic transactions. In this embodiment, avatar
100 communicates via a communication bubble on Screen
display 150. However, as audio communications improve
over networkS Such as the Internet, Some level of audio
communications could be added.

Avatar 100 can also change or enhance its appearance by
using a body changer machine to transform the body of
avatar 100 to another one of the available body types. At any
given instant, avatar 100 can have only a single body. In
contrast, avatar 100 can possess any number of heads, but
only one head at a time can be mounted on the body, i.e.,
worn. Avatar 100 must purchase the heads from a virtual
head vending machine object, or obtain the head from
another avatar. In this embodiment, an avatar Starts in the
Virtual world with a female gender and a neutral mood.
However, on-line user 225-1 selects a gender of avatar 100
and one of three body Styles, average, athletic, and chubby,
for that gender. The body Style can be changed at any time
by using the body changer machine.

The mood of the avatar is selectable by the user at any
time. The avatar Starts in the World in the neutral mood, e.g.,
a happy mood. The mood changes are modal-the Selected
mood remains on the avatar's face until the mood is changed
by the user. In this embodiment,...the plurality of moods
includes neutral, mad, Sad, and glad.

In general, the computer processes used to implement this
invention are independent from the pictures retrieved by the
computer processes for the animations associated with the
various gestures and actions of avatar, and associated with
other objects in the virtual world. This permits changing the
Visual characteristics displayed in the graphic user interface
without making changes to the computer methods described
herein.
AS explained above, each locale in the virtual world can

accommodate a predefined number of avatars. However, in
addition to the avatars in a locale, a locale can Support
essentially an unlimited number of lurkers.
One aspect of text-based on-line community

environments, Such as newsgroups or chatrooms, is the
potential for Some participants to listen to the discussion,
without contributing. This phenomena is So prevalent, it has
been given its own term "lurking'. Lurkers, while they do
not actively contribute to the discussion in real time, do
change the dynamic of on-line communities by causing the
Simplest exchanges between individuals to exist in a public

US 6,229,533 B1
13

Space. While participants can choose to take any discussion
to a private venue, Such as in e-mail or off-line, the relative
invisibility of lurking can cause it to be forgotten. One
opportunity that the graphical user interface of this invention
provides is to visually represent lurkers to provide a
reminder that participants other than the active ones are
“listening in'. In the virtual world of this invention, a lurker
is represented in a locale by a ghost object. An icon is
present, i.e., an eye-in-the-sky 380 (FIG. 3B), in a locale,
Such as locale 350, whenever a ghost object, or ghost objects
are present.

Ghost objects have anonymity, i.e. their names are not
known to avatars of the locale, and have limited interaction
choices. A ghost object cannot talk or think to other avatars.
A ghost object retains the ability to transmit private “ESP”
messages to other avatars.

Ghost object 380 also enables other important capabili
ties. To promote personal, one on one type relationships
which encourage a Sense of community, most locales have
limits to the number of avatars that can be physically present
at one time. This also prevents over-crowding of the Visual
interface. While this limitation is important to the social
dynamic, and necessary to prevent a mob Scene from over
loading the Visual interface, it would be frustrating to
completely prevent new users from entering a full locale,
i.e., a locale that contained the maximum number allowed of
physical avatar objects. An avatar entering a full locale
automatically becomes a ghost in the locale, and may then
choose to remain and observe the activity occurring. When
the number of materialized avatars drops below the limit, a
ghost may choose to join in as a materialized, physical
avatar in the locale, or to remain as a ghost and continue to
lurk.

Another aspect of interpersonal relationships in the virtual
World community is that one participant may become
uncomfortable with the attention another perSon is giving
them. Harassing behavior should not force the target of the
harassment to abandon or flee the locale for relief. By
allowing an avatar to become a ghost, the on-line user may
continue to participate, albeit in a limited way, while using
ESP to request aid in dealing with the harassment. A ghost
may also move from locale to locale while maintaining
anonymity, So as to “lose the harasser. The characteristics
of ghost object 380 are described more completely below.

In this embodiment, when on-line user 225-1 points at
avatar 100 (FIG. 4A) using mouse 202-1, and then depresses
the left mouse button, a Signal is generated by mouse 202-1
that is interpreted by a client proceSS executing in computer
200-1 that builds menu. 401. In this embodiment, menu. 401
lists seven options that are available to on-line user 225-1.
The options are given in Table 1.

TABLE 1.

Menu When Pointing at Avatar with Hands Empty

<Avatar Name>

Gesture >

Turn >
Get From Pocket >
Remove
Status >
Become a Ghost
Tell Me About . . .

Thus, in the embodiment of FIG. 4A, the name of avatar
100 is yahooooo. Menu items Gesture, Turn, Get From

15

25

35

40

45

50

55

60

65

14
Pocket, and Status each include a right pointing marker,
which mean that if on-line user 225-1 points at the menu
item, a menu is generated to the right of menu. 401, that is
called a pull right menu.

In menu. 401, menu item Get From Pocket is displayed
only when avatar 100 has one or more objects in pocket 105
and nothing in his hand. If avatar 100 has an object in his
hand, menu item Get From Pocket is replaced with menu
item Put InCnot shown). Menu item Put in also has a right
pointing marker. Upon pointing at Selection of menu item
Put In, a right-pull menu is generated that lists pocket 105
and any containers stored in pocket 105 in which avatar 100
can place the object in his hand. Menu item Remove is
displayed only when avatar 100 is wearing a head.
When on-line user 225-1 moves the mouse to point at

menu item Gesture with the mouse button depressed, a
second menu. 402 is displayed, as illustrated in FIG. 4B, that
was generated by the client menu process. If the on-line user
225-1 releases the mouse button while the cursor is pointing
at menu item Gesture, no action is taken and the pop-up
menu is dismissed. Conversely if on-line user 225-1 points
at one of the items in menu. 402 and releases the mouse
button, the Selected gesture is implemented, as described
more completely below.

Menu. 402 includes ten options as listed in Table 2.

TABLE 2

Gesture Pull-Right Menu

Normal
Happy
Sad
Mad
Wave
Bow
Shrug
Present
Jump
React

Notice that each menu item in menu. 402 also includes an
icon that graphically represents the gesture for that icon. In
this embodiment, on-line user 225-1 Selects a particular
gesture by either Selecting the corresponding menu item, or
by pressing the function key of keyboard 201-1 that is listed
at the right of the menu item. Thus, gestures are actions that
are initiated by the user via a function key or the gesture
pull-right menu. The purpose of gestures is to allow avatar
100 to express feelings and emotions in a graphical manner
that is visible to other avatars in the locale.

Thus, in this embodiment, to change the mood of avatar
100, on-line user 225-1, points at avatar 100 and manipu
lates mouse 202-1 so that menus 401 and 402 are displayed.
On-line user 225-1 selects a menu item, or alternatively
points at avatar 100 and presses one of function keys F3 to
F5.
Computer 220-1 interprets the Signal generated by the

menu Selection, and provides a signal to the client menu
process that generated menu. 402 to indicate the menu item
Selected. In response to the Signal, the client menu process
launches a client mood change method 500 (FIG. 5A) with
the Selected mood as an argument. A similar operation is
performed when the function key is pressed.

In client mood change method 500 (FIG. 5A), set mood
process 501 initializes mood to the mood specified as the
argument in the command. Set mood process 501 transfers
processing to transmit request process 502.

US 6,229,533 B1
15

Transmit request process 502 Sends an avatar change
mood request message to Server computer 260 for avatar
100, and requests a Standard reply message. The avatar
change mood request message includes mood as an argu
ment. Process 502 transferS processing to reply message
check 503 that in turn waits for a reply message from server
computer 260.

In response to the avatar change mood request message
from method 500, that is executing as a client process on
computer 200-1, server computer 260 launches avatar
change mood perform method 550 (FIG. 5B) as a server
process. In initialize reply message operation 551, a SucceSS
field in the reply message is set to failure. Operation 551
transfers to ghost check 552.

If avatar 100 is currently a ghost, as explained more
completely below, ghost check 552 transfers to send reply
proceSS 563 because ghosts cannot change moods, and
otherwise to object is actor check 553. If the object pointed
at is not avatar 100, i.e., the avatar representing the on-line
user, check 553 transfer processing transfer to Send reply
process 563 and otherwise to avatar frozen check 554.
Check 553 assures that only on-line user 225-1 can change
the mode of avatar 100.

In this embodiment, the instance of avatar 100 on server
computer 260 includes a permission flags field (perm flags
in Table 33). One embodiment of the permission flags is
defined in Table 3.

TABLE 3

Avatar Permission Flags

Flag
AVATAR PERM FIDDLE
AVATAR PERM PROMOTE
AVATAR PERM MUTE

Permission when flag is set.
Use fiddle wand.
Promote? demote other avatars.
Forbidden to speak, think, or
ESP.
Forbidden to move, gesture,
exit, etc.

AVATAR PERM FREEZE

Avatar frozen check 554 determines the state of avatar
permission flag AVATAR PERM FREEZE in the permis
sion flags field for the instance of avatar 100 on server
computer 260. If avatar permission flag AVATAR PERM
FREEZE is set, check 554 transfers to freeze period over
check 555, and otherwise to valid mood check 560.

Freeze period over check 555 determines whether the
current date and time is greater than the entry in field
freeze until date (See Table 33.) in the instance of avatar
100 on server computer 260. If the current date and time is
less than, or equal to the entry in field freeze until date,
check 555 transferS processing to generate frozen reply
message process 556, and otherwise to unfreeze avatar
process 557.

If avatar 100 is still frozen, generate frozen reply message
proceSS 556 fills a character message buffer with a message
indicating how much longer avatar 100 will remain frozen.
Process 556 then sets the success field in the reply message
to FAILURE MESSAGE to indicate that the reply message
includes a failure message, and Sets the failure message field
in the rely message to the character message buffer. ProceSS
556 transfers processing to send reply process 563.

If the current time is after the time specified for avatar 100
to remain frozen, unfreeze operation 557 generates a notice
message that avatar 100 is unfrozen, sets field freeze
until date to Zero, and clearS avatar permission flag
AVATAR PERM FREEZE. Unfreeze operation 557 sends
a message to Server 260, to on-line user computer 220-1 and

15

25

35

40

45

50

55

60

65

16
to each other on-line computer that includes an instance of
avatar 100, i.e., is displaying avatar 100, so that the instance
of avatar 100 is updated on each of the computers to indicate
that avatar 100 is no longer frozen. Unfreeze operation
transfers processing to valid mood check 560.

Herein, checks 554 and 555, and operations 556 and 557
are a specific embodiment of a gesture prohibited check 558.
In general, a check equivalent to gesture prohibited check
558 is performed by a server method of avatar object 100 for
each gesture controlled by avatar permission flag AVATAR
PERM FREEZE prior to the server method determining
whether the avatar gesture perform command is valid.

Valid mood check 560 determines whether the mood sent
to method 550 is any one of the plurality of moods HAPPY,
GLAD, SAD, and MAD. If the mood is one of the allowed
moods, check 560 transferS to generate Success message
operation 562 and otherwise to generate failure message
operation 561.

Generate Success message operation 562 Sets the Success
field in the reply message to SUCCESS. Operation 562 also
sets an actor activity to the mood sent to method 550, and
transferS to Send reply message proceSS 563. Generate
failure message operation 561 Sets the Success field in the
reply message to FAILURE and transfers to send reply
message proceSS 563.

Send reply message 563 transmits the reply message to
client mood change method 500 and transfers processing to
Success check 564. Success check 564 determines whether
the success field in the reply message was set to SUCCESS.
If the Success field was set to SUCCESS, check 563 transfers
to update neighbors operations 565 and otherwise to done
operation 566.

Update neighbors operations 565 first declares a avatar
change mood notice message as a notice message and then
initiates generation of the notice message. The mood field of
the notice message is Set to mood and the message is sent to
each on-line user that has an avatar in the same locale as
avatar 100 with the identification number of the avatar for
which the notice message applies. Operation 565 transfers to
done operation 556.

In response to the notice message from Server computer
260, each notified on-line computer 200-i that is displaying
avatar 100 launches an avatar change mood notify method.
This method first changes the animation of the Specified
avatar to the appropriate mood in a buffer and then uses the
data in the buffer to redraw avatar 100 on the display screen
of on-line computer 200-1. Thus, this method includes a
change mood proceSS and a redraw process.
When reply check 503 (FIG. 5A) in method 500 receives

the reply message from server method 550, reply check 503
determines whether the Success field in the reply message is
set to SUCCESS. If the Success field is set to SUCCESS,
processing transferS from check 503 to change mood opera
tion 504 and otherwise to failure message check 507.

Change mood operation 504 changes the animation of the
Specified avatar, e.g., avatar 100 to the appropriate mood in
a buffer memory for display 250-1, and transfers processing
to redraw operation 505. Redraw operation 505 redraws the
screen display so that the mood of avatar 100 in this example
is changed. Operation 505 transfers to end method operation
506 which cleans up and closes method 500.
When processing transfers to failure message check 507,

check 507 determines whether the success field of the reply
message is set to FAILURE MESSAGE. If check 507 is
true, processing transferS to error handle frozen message
operation 508 and otherwise to handle error operation 509.

US 6,229,533 B1
17

Operation 508 writes the message in the reply message and
then terminates method 500 in an error mode. Similarly
handle error operation 509 terminates method 500 in an
error mode.

One embodiment of methods that allow an on-line user to
change the mood of an avatar is presented in Appendix A,
and is incorporated herein by reference. Table 4 identifies the
methods in Appendix A that are class specific methods used
by class avatar.

TABLE 4

Avatar Class Specific Methods for Changing Avatar Mood

Process
Location Name

client method avatarBuildMenus command
client method avatarChangeMood command
client method avatarChangeMood notify
Sewer method avatarChangeMood perform

If on-line user 225-1 selects a gesture from menu. 403
instead of a particular mood, a command is generated that
launches an avatar gesture command method as a client
process on on-line user computer 200-1. This method is
similar to method 500 except the requested gesture replaces
the requested mood in method 500. The avatar gesture
command method Sends a avatargesture request message to
server computer 260 with the gesture and the direction the
avatar is facing as parameters.

In response to the avatargesture request message, server
computer 260 launches an avatar gesture perform method.
This server process is substantially similar to method 550
with a gesture replacing the mood. Avatar gesture perform
method first performs the same frozen check process as in
method 550, and if the avatar is not frozen, checks whether
the requested gesture is a valid gesture. If the gesture is
valid, a reply message is sent to the client process, and the
neighbor on-line users are Subsequently Senta avatargesture
notice message that in turn launches an avatargesture notify
method on each neighbor on-line computer 200-i displaying
the avatar. The avatargesture notify method plays an appro
priate gesture animation and redraws the Screen display.
When the client computer receives the reply message, if

the reply message indicates SUCCESS, avatargesture com
mand method plays an animation for the gesture and then
redraws the Screen to present animation. One embodiment of
methods used to implement gestures is presented in Appen
dix A, and is incorporated herein by reference. Table 5
identifies the methods in Appendix A that are class specific
methods used by class avatar.

TABLE 5

Avatar Class Specific Methods for Gestures by an Avatar

Process
Location Name

client method avatarBuildMenus command
client method avatarGesture command
client method avatarGesture notify
Sewer method avatarGesture perform

The choreography for one embodiment of the various geS
tures is defined in Table 6.

15

25

35

40

45

50

55

60

65

18

TABLE 6

Gesture Choreography Specification

Gesture Actions

Wave begin wave
waving
end wave

Bow bow
bow return

Shrug shrug
shrug return
extend-arm Out, hand
closed
extend-arm Out, hand
closed return
extend-arm Out, hand flat
extend-arm hand flat
return
jump up
stomp external leg
stomp internal leg

Present (Arm Out)

Jump
React (Stomp)

To change the direction avatar 100 is facing, on-line user
225-1 points at menu item Turn and a third pop-up menu
403, as illustrated in FIG. 4C, is generated. Menu. 402
includes three options as listed in Table 7.

TABLE 7

Turn Pull Right Menu

Left
Right
Around

The action of avatar 100, when one of these actions is
Selected, is to turn the direction Selected. Turning around
means a 180° turn in this embodiment. The sequence of
interaction between client and Server processes is similar to
that described above for a mood change with the action
modified to a turn. One embodiment of methods used to
implement turns is presented in Appendix A, and is incor
porated herein by reference. Table 8 identifies the methods
in Appendix A that are class Specific methods used by class
aVatar.

TABLE 8

Avatar Class Specific Methods for Turns by an Avatar

Process
Location Name

client method avatarBuildMenus command
client method avatarFacing command
client method avatarFacing notify
Sewer method avatarFacing perform

To retrieve a virtual object from pocket 105 of avatar 100
when there is nothing in the hands of avatar 100, on-line user
225-1 selects menu item Get from pocket. When on-line user
225-1 Selects menu item Get from pocket by pointing at
menu item Get from pocket a fourth pop-up menu. 404, as
illustrated in FIG. 4-D, is generated. Menu. 404 lists the
virtual objects stored in pocket 105.

Pocket 105 includes a plurality of slots to hold virtual
objects. In the embodiment of class avatar in Appendix A,
avatar 100 has a total of ten storage locations. The first
storage location is in the hands of avatar 100 and the
remainder are in pocket 105. The first storage location in
pocket 105 is reserved for an avatar head. The second

US 6,229,533 B1
19

Storage location is reserved for a virtual pad document
object, and the third Storage location is reserved for tokens.
The remaining Storage locations are for virtual objects
owned by avatar 100. A number identification, sometimes
referred to as noid, for the virtual object is stored in the
Storage location, i.e., the slot in pocket 105.

At this time, as shown in FIG. 4D, avatar 100 has six
virtual objects in pocket 105. The virtual objects are a token
object, a box object, and four Spray paint can objects for
which the colors are listed. An avatar can change its skin
color, the color of the clothes on its upper torSo, and the
color of the clothes on its lower torSo using a spray paint can
object. If the box object in pocket 105 contained other
virtual objects, avatar 100 could store more than the six
Virtual objects in his pocket.
When on-line user 225-1 releases the mouse button while

pointing at one of the entries in menu. 404, computer 220-1
interprets the Signal generated by the menu Selection, and
provides a Signal to the client menu process that generated
menu. 404 to indicate the menu item Selected. In response to
the Signal, the client menu process issues a Standard get
command message with the Selected object, the avatar, and
any object in the avatar's hand as arguments. A similar
operation is performed when the function key is pressed.

In response to the Standard get message, an avatar pocket
get from command method 600 is launched on computer
200-1 as a client process. In avatar pocket get from method
600 (FIG. 6A), initializing operation 601 sets the actor to the
avatar and transferS to transmit request operation 602.

Transmit request operation 602 Sends an avatar get object
request message to server computer 260 for avatar 100, and
requests a Standard reply message. The avatar get object
request message includes the Virtual object Selected as an
argument, and the action required to get the virtual object,
i.e., FROM POCKET. Process 602 transfers processing to
reply message check 603 that in turn waits for a reply
message from Server computer 260.

In response to the avatar get object request message from
method 600, that is executing as a client process on com
puter 200-1, server computer 260 launches avatar get object
perform method 650 as a server process. In this
embodiment, get object perform method 650 (FIG. 6B) is
executed for a variety of Virtual objects, i.e., each time an
avatar gets a virtual object. Consequently, method 650
considers actions other than just those associated with
getting an object from pocket 105.

In general, server method 650 is called when a virtual
object is being pointed at, and a get action is specified for the
avatar representing the on-line user. Possible get actions
include not only a get from pocket, but also a get from
shoulders, a get from ground, a get from a shelf and a get
from a table. For a get action to be Successful, the Virtual
object being pointed at cannot be held by another avatar, and
the actor avatar, i.e., the avatar issuing the get action, cannot
have a virtual object in his hands.

Thus, valid get check 651 determines whether the
requested virtual object is a valid object; the requested
virtual object is immobile; the hands of avatar 100 are full,
and avatar 100 is a ghost. If any one of these checks is true,
check 651 transfers to set message operation 652 and
otherwise to open container check 653. Set message opera
tion 652 Sets the Success field of the reply message to
FAILURE and transfers to send reply operation 663. Notice
that a ghost cannot get an object.

In open container check 653, a check is first made to
determine whether the class of the requested object is
container. If this check is false, processing transferS to

15

25

35

40

45

50

55

60

65

20
container operation 655, and otherwise a Second check is
made to determine whether the container is open. If check
for an open container is false, processing transferS to con
tainer operation 655 and otherwise to Set message operation
654. Set message operation 654 sets the success field of the
reply message to FAILURE and transfers to send reply
operation 663. Here, an important aspect is to assure that a
container is closed before that container is moved to another
container, Such as the avatar's hands.

In container operation 655, a pointer to the object holding
the object to get is obtained and processing transferS to head
check 656. Check 656 determines whether the holding
object is a head, and if So transferS to container operation
657 and otherwise to get from avatar check 658. In container
operation 656, it is determined whether the head is attached
to avatar 100, and processing transferS to get from avatar
check 657.

If the object to get is on the head of avatar 100 or on a
loose head, avatar 100 can get the object. However, if the
object is on the head of another avatar, avatar 100 cannot get
the object. In get from avatar check 658, if the virtual object
to get is in possession of another avatar, processing transfers
to Set message operation 659, and otherwise to adjacent
check 660. Set message operation 659 sets the success field
of the reply message to FAILURE OBJECT NOT
ACCESSIBLE, and transfers to send reply operation 663.

If the container for the requested object is not another
avatar and the avatar is not adjacent to the requested object,
check 660 transfers to set message operation 661 and
otherwise to change container operation 662. Set message
operation 661 sets the Success field of the reply message to
FAILURE NOT ADJACENT, and transfers to send reply
operation 662.

Throughout this disclosure, adjacent is a true or false
description of the distance relationship between two objects.
Typically, when an object is pointed to and an avatar is not
adjacent to the object and the position of the object is within
the boundaries allowed for movement within the locale, the
avatar is given the option of walking to the object.

In change container operation 662, the requested object is
placed in the hands of the avatar for the instance of the avatar
on Server computer 260, and if the placement is Successful,
the success field of the reply message is set to SUCCESS.
Operation 662 transfers to send reply operation 663.
Send reply message 663 transmits the reply message to

client pocket get command method 600 and transfers pro
cessing to Success check 663. Success check 663 determines
whether the Success field in the reply message was Set to
SUCCESS. If the success field was set to SUCCESS, check
663 transfers to update neighbors operations 664 and oth
erwise to done operation 665.

Update neighborS operations 664 first declares a avatar
get object notice as a notice message and then initiates
generation of the notice message. The object and the action
to be taken with the object are placed in the notice message
and the message is Sent to each on-line user 225-i that has
an avatar in the same locale as avatar 100 with the identi
fication number for which the notice message applies.
Operation 664 transfers to done operation 665.

In response to the notice message from Server computer
260, each notified on-line computer 200-i that is displaying
avatar 100 launches an avatar get object notify method. This
method plays a Sound representing the action directed and
places the Specified object in the hands of the Specified
aVatar.

When reply check 603 in method 600 (FIG. 6A) receives
the reply message from server method 650, reply check 603

US 6,229,533 B1
21

determines whether the Success field in the reply message is
set to SUCCESS. If the Success field is set to SUCCESS,
processing transferS from check 603 to play Sound operation
605 and otherwise to handle error operations 604.

Play sound operation 605 plays a get from pocket Sound
and transferS to change container operation 606. Change
container operation 606 places the Specified object in the
hands of avatar 100 and transfers to end method operation
607 which cleans up and closes method 600.
When processing transfers to handle error operation 604,

method 600 is terminated and the on-line user is provided an
appropriate message.
One embodiment of methods used to get an object from

pocket 105 is presented in Appendix A, and is incorporated
herein by reference. Table 9 identifies the methods in Appen
dix A that are class specific methods used by class avatar.

TABLE 9

Avatar Class Specific Methods for a Get from Pocket

Process
Location Name

client method avatarBuildMenus command
client method avatarPocketGet command
client method avatarGetObject notify
Sewer method avatarGetObject perform

Avatar-Remove

When menu item remove in menu. 401 (FIG. 4A) is
Selected, a command is generated in computer 200-1 that
launches an avatar remove command method as a client
process on computer 200-1. Table 10 is pseudo code for the
operations performed in this method.

TABLE 10
Pseudo Code for Avatar Remove Command

Save facing orientation of avatar.
If facing orientation of avatar is FRONTSIDE, change

facing orientation to RIGHTSIDE.
Play animation for avatar moving arms to head.
Send avatar get object request message with requested

object as head and requested action as REMOVE-HEAD.
Play animation for avatar returning arms from head.
Restore original facing orientation of avatar,
Wait for reply message from server.
If reply is Success, place head in avatar hands and play

head remove Sound.
Else handle Failure.
End method

The operations of the Server in response to the avatar get
object request message were described above with respect to
FIG. 6B, and are incorporated herein by reference.
One embodiment of methods used to remove a head from

the body of avatar 100 is presented in Appendix A, and is
incorporated herein by reference. Table 11 identifies the
methods in Appendix A that are class specific methods used
by class avatar.

TABLE 11

Avatar Class Specific Methods To Remove Head

Process
Location Name

client method avatarBuildMenus command
client method avatarRemove command

15

25

35

40

45

50

55

60

65

22

TABLE 11-continued

Avatar Class Specific Methods To Remove Head

Process
Location Name

client method avatarGetObject notify
Sewer method avatarGetObject perform

Avatar-Status
When on-line user 225-1 points at menu item Status in

menu. 401 (FIG. 4A), a status pull-right menu. 405 (See FIG.
4E) is generated on display screen 250-1. One embodiment
of the menu items in the Status pull-right menu is presented
in Table 12. Also, included in Table 12 is the response to
each menu item that is written in dialogue area 140 (FIG. 1)
when that menu item is Selected.

TABLE 12

Status Pull-Right Menu

Who's in here Presents the names of the other
avatars in the locale.
Gives a state of the avatars
general health.
Gives the time relative to Pacific
Time.
Reports the amount of tokens in
avatar's pocket.
Allows the avatar to not receive
ESP messages from others.
If avatar is allowing other avatars
to follow. Note: Disallow
following generates a server
message to any other avatars
following the avatar that the
avatar has chosen the
“disallow command. The
message "The avatar you are
following has decided to stop
leading you.' is presented
If avatar is not allowing other
avatars to follow.

How healthy am I ?

What time is it?

Tokens in pocket?

Turn ESP off&or ONs

Disallow Following

Allow Following

One embodiment of methods used to handle status
inquires for avatar 100 is presented in Appendix A, and is
incorporated herein by reference. Table 13 identifies the
methods in Appendix A that are general methods used by
class avatar for Status operations.

TABLE 13

Avatar Class General Methods For Status

Process
Location Name

method buildStatus Menu procedure;
method playerStatus command;
method playerStatus perform;

Avatar-Become a Ghost
When on-line user 225-1 selects menu item Become a

Ghost in menu. 401 (FIG. 4F), the mouse signal is converted
to a signal that results in a avatar to ghost command method
being launched on computer 200-i as a client process with
avatar 100 as the target. Notice that the menu associated with
avatar 100 is the same in locale 150 and in locale 350. Table
14 is pseudo code for one embodiment of the avatar to ghost
command method.

TABLE 1.4
Pseudo Code for Avatar to Ghost Command Method

Set target to argument passed in message command.

US 6,229,533 B1
23

Set seat to container number ID for target.
If avatar is seated, have avatar Stand. (Optional)
Send an avatar to ghost request message to Server with

target as an argument.
Wait for reply message from server.
If success field of reply message is not SUCCESS, Handle

failure.
End Method
In response to the avatar to ghost request message, an

avatar to ghost perform method is launched on Server
computer 260 as a server process. Table 15 is pseudo code
for one embodiment of the avatar to ghost perform method.

TABLE 1.5
Pseudo Code for Avatar to Ghost Perform Method

Generate an instance of ghost class.
Save number id for target.
Initialize reply message by Setting Success field of reply

message to FAILURE, and failure message field to a nullity.
If target cannot become a ghost, or is already a ghost, go

to Send reply message.
If actor is ghosting himself,

If actor is frozen (See avatar frozen check 554 (FIG. 5B))
If freeze period is over, (See Check 555 (FIG. 5B))

Unfreeze avatar (See operation 557 (FIG. 5B));
Else

Frozen reply message;
Go to Send reply message.

Else,
If actor ghosting the avatar is not at least an Acolyte, go

to Send reply message.
Change avatar to ghost.
If error code for change is no error,

Stop everybody from following ghost;
If this is first ghost in locale,

Set Show ghost field of reply message to true;
Set coordinates field of reply message to location in

Screen display of ghost.
Else,

Set Show ghost field of reply message to false.
Set success field of reply message to SUCCESS.

Else,
Set Success field of reply message to failure.
Set failure message field of reply message to error code.

Send reply message.
If success field of reply message is SUCCESS,

Declare an avatar to ghost notice message
Initiate the notice message
Set target field of notice message to old number ID.

If this is first ghost in locale,
Set Show ghost field of notice message to true;
Set coordinates field of notice message to loca

tion in Screen display of ghost.
Else,

Set Show ghost field of notice message to false.
Send notice message to all users displaying target.

Notice that the notice message is Sent not only to
neighbors, but also to the on-line user that caused the avatar
to ghost perform method to be launched on Server computer
260. Also, the virtual world includes acolyte and oracles that
have special powers to control features of the World.
However, acolytes and oracles are not an essential aspect of
this invention and So are not considered further.

In response to the notice message from Server computer
260, an avatar to ghost notify method is launched as a client
proceSS on computers 200-i to which the notice message is

15

25

35

40

45

50

55

60

65

24
sent. Table 16 is pseudo code for one embodiment of the
avatar to ghost notify method.

TABLE 16
Pseudo Code for Avatar to Ghost Notify Method

Set actor to on-line user.
Set target to target field in notice message.
Play dematerialize sound.
Destroy instance of avatar being ghosted, and Visual

display of avatar.
If target is actor, assign global characteristics for actor to

ghost
If Show ghost field of notice message is Set to true, draw

ghost object in Screen display at coordinate given in notice
message. (See FIG. 3B)
End method
Thus, when on-line user 225-1 becomes a ghost, avatar

100 (FIG. 4F) is removed from the graphic user interface,
and a ghost icon 380 (FIG. 3B), e.g., an eye-in-the-sky,
replaces avatar 100. If ghost icon 380 was already present in
locale 350 when avatar 100 becomes a ghost, the count of
the number of ghosts in locale 350 is increased, and avatar
100 is removed from the graphic user interface.
One embodiment of methods used to change avatar 100 to

a ghost is presented in Appendix A, and is incorporated
herein by reference. Table 17 identifies the methods in
Appendix A that are class Specific methods used by class
aVatar.

TABLE 1.7

Avatar Class Specific Methods For Avatar to Ghost

Process
Location Name

client method avatarToGhost command
client method avatarToGhost notify
Sewer method avatarToGhost perform

Avatar-Tell Me About
When the user selects menu item Tell me about in menu

401 (FIG. 4A), an informational menu about avatar 100 is
displayed. In general, a tell me about action is present on the
main pop-up menu for every object, but not on any Sub
CUS.

Menu. 401 (FIG. 4A) is generated when avatar 100 points
at himself and his hands are empty. However, if avatar 100
points at himself and has Something in his hand, Some of the
menu items in menu. 401 change as indicated above.
Specifically, menu item Get from pocket becomes Put in.
Menu item Remove is not presented because there is no
room in the avatar's hands for the head. If a head is in the
avatar's hands and the avatar is not wearing a head, a menu
item Wear is presented.
Avatar-Put in
When menu item Put in pocket is selected, in one

embodiment, a Standard put in pocket command method is
launched as a client process on computer 200-1 for the
portable object in the hands of avatar 100. In another
embodiment, methods Specific to the object being placed in
the avatar's pocket could be used. These methods would
likely be similar to those described below, except the meth
ods would be streamlined and include checks for the Specific
object being place in the pocket.

In the standard method, the object in the hand of the avatar
is first checked to determine whether the object is an open
container. If the object is an open container, the method is
terminated and a message is Supplied to on-line user 225-1
requesting that the object be closed.

US 6,229,533 B1
25

If the object in the avatar's hand is closed, a check of the
slots in pocket 105 is made to find an empty slot. If an empty
Slot is not found, the method is terminated and a message
“Your pocket is already full” is provided to on-line user
225-1. If a slot is available, a Standard put in pocket request
message is Sent to Server computer 260, and an animation is
Started.

In response to the Standard put in pocket request message,
Server computer 260 launches a put in pocket perform
method. In this method, illegal conditions Such as the avatar
is a ghost, the avatar is not holding the object, the object is
open, or a slot in the pocket is not available, are checked. If
any one of these conditions is true, a failure reply message
is Sent back to the client process. Next, a change container
operation moves the object in the avatar's hands into an
empty Slot. If this operation is Successful, a Success flag and
an empty slot number are returned in the reply message.
Otherwise, the reply message indicates an internal failure. If
the change container operation was Successful, a notice
message is Sent to each of the avatar's neighbors to have the
avatar place the object in his pocket.
When a reply message is received, the client proceSS

terminates the animation and checks whether the reply
message indicates Success. If Success is not indicated, the
method is terminated and an error message provided.
Conversely, if Success is indicated, a change container
operation moves the object in the hand of avatar 100 into
pocket 105 and a put in pocket Sound is played. This ends the
method.

Table 18 is pseudo code for one embodiment of the
Standard put in pocket command method.

TABLE 1.8
Pseudo Code for Put In Pocket Command Method

If object is open container, then present failure message
"Please close the container before placing in pocket,” and
terminate.

If object is not assigned a reserved slot in pocket, and
avatar pocket is full, then present failure message “Your
pocket is already full,' and terminate.

Start Put in Pocket animation
ISSue Standard put in pocket request message with no

argument to Server computer.
Wait for standard put in pocket reply from server com

puter.
Finish animation upon receipt of reply.
If reply is Success, move object from hand to pocket and

play put in put pocket Sound, else handle failure
End method
Table 19 is pseudo code for one embodiment of the

Standard put in pocket perform method.
TABLE 1.9

Pseudo Code for Standard Put in Pocket Perform Method
If avatar is a ghost or avatar is not holding the object or

the object is open, or a Slot in the pocket is not available,
Send failure reply message and terminate;
Moves the object in the avatar's hands into an empty slot.
If move operation is Successful, return a Success flag and

an empty slot number in the reply message,
else return a reply message indicating an internal failure

and terminate.
If move operation was Successful, Send a notice message

to each of the avatar's neighbors to have the avatar place the
object in his pocket.
One embodiment of methods used to put objects in pocket

105 of avatar 100 is presented in Appendix A, and is
incorporated herein by reference. Table 20 identifies the

15

25

35

40

45

50

55

60

65

26
methods in Appendix A that are general methods and a
Specific method used by class avatar for put in pocket
operations.

TABLE 2.0

Avatar Class General Methods For Put In Pocket

Process
Location Name

client method avatarBuildMenus command
(specific)

client method putInPocket command
(general)

client method putInPocket notify (general)
Sewer method putIn Pocket perform

(general)

Avatar-Wear
When menu item Wear is Selected, a command is gener

ated in computer 200-1 that launches an avatar wear com
mand method as a client proceSS. Table 21 is pseudo code for
the operations performed in this method.

TABLE 21
Pseudo Code for Avatar Wear Command

Save facing orientation of avatar
If facing orientation of avatar is FRONTSIDE then

change facing orientation to RIGHTSIDE
Play animation for avatar moving arms to head
Send avatar eXchange object request message with

eXchanged object as head and requested actions as wear
head

Play animation for avatar returning arms from head
Restore original facing orientation of avatar
Wait for reply message from server
If reply is Success, place head on avatar body and play

head wear Sound else handle Failure
End method
The operations of the Server in response to the avatar

eXchange object request message are to check the validity of
the request and that only a head is placed on the shoulders
of the avatar. If all of the conditions are Satisfied, a Success
ful reply message is sent, and neighbors of the avatar are
notified to update the Screen display to show the avatar
wearing the head.
One embodiment of methods used to wear a head on the

body of avatar 100 is presented in Appendix A, and is
incorporated herein by reference. Table 22 identifies the
methods in Appendix A that are class specific methods used
by class avatar.

TABLE 22

Avatar Class Specific Methods To Wear Head

Process
Location Name

client method avatarBuildMenus command
client method avatarWear command
client method avatarExchange notify
Sewer method avatarExchange perform

In one embodiment, when on-line user 225-1 points at a
object other than avatar 100 using mouse 202-1, e.g.,
container 430 in locale 450 (FIG. 4G) and then depresses the
left mouse button when the hands of avatar 100 are empty,
a signal is generated by mouse 202-1 that is interpreted by
a client proceSS executing in computer 200-1 that builds a

US 6,229,533 B1
27

pop-up menu. 406 (FIG. 4H) for the object pointed at. The
options are given in Table 23A.

TABLE 23A

Menu. When Pointing At a Container Object
Other than Avatar with Hands Empty

<Object Name>

Walk to
Get
Open
Lock
Tell Me About . . .

Here, the assumption is that the pointed at object is a loose
portable container object, such as object 430. The menu
items that are the same as those in menu. 401 perform as
described above. Menu item Get appears only if avatar 100
can get the object pointed at, e.g., the object is a portable
object that is not in the hands of another avatar. When menu
item Get is selected, if avatar 100 is not adjacent to the
object, avatar 100 walks to the object and places the object
in his hands. Thus, the methods used to implement Get result
in the avatar picking up the object.

In this example, on-line user 225-1 first Selects menu item
Walk to, and a client process on computer 200-1 moves
avatar 100 adjacent to container 430 and pop-up menu. 406
is killed, as shown in FIG. 4I.

When on-line user 225-1 points at container 430, while
adjacent to the container 430, and then depresses the left
mouse button when the hands of avatar 100 are empty, a
Signal is generated by mouse 202-1 that is interpreted by a
client process executing in computer 200-1 that builds a
pop-up menu with the options given in Table 23B.

TABLE 23B

Menu. When Pointing At a Container Object
Other than Avatar with Hands Empty

<Object Name>

Get
Open
Lock
Tell Me About . . .

Notice that in FIG. 4G, container 430 is closed. After avatar
100 walked to container 430, and on-line user 225-1 pointed
at container 430, the pop-up menu of Table 23B was
displayed on display screen 250-1. On-line user 225-1
Selected menu item Open, and the pop-up menu disappeared
and container 430 was opened as shown in FIG. 4.J.

When on-line user 225-1 points at open container 430,
while adjacent to the container 430, and then depresses the
left mouse button when the hands of avatar 100 are empty,
a signal is generated by mouse 202-1 that is interpreted by
a client proceSS executing in computer 200-1 that builds a
pop-up menu. 407 (FIG. 4J) for the object pointed at. The
options are given in Table 23C.

1O

15

25

35

40

45

50

55

60

65

28

TABLE 23C

Menu. When Pointing At an Open Container Object
other than Avatar with Hands Empty

<Object Name>

Get From >
Get
Close
Lock
Tell Me About . . .

Notice that pop-up menu. 407 is similar to pop-up menu
406, except menu item Walk to has been replaced by Get
from. Also menu item Open has been replaced by menu item
Close.
When on-line user 225-1 uses mouse 202-1 to select menu

item Get from, a right pull menu. 408 is displayed that lists
the objects contained in the container. Each container has a
predefined number of slots and each slot can be used to Store
one portable virtual object.

In this example, on-line user 225-1 Selects menu item
Tokens, in response to this Selection a client proceSS is
launched to get the tokens from container 430. One embodi
ment of methods used to get tokens from a container are
described more completely below. FIG. 4K illustrates the
user interface after the get token from container operations
are complete. Notice that avatar 100 is holding a token.
One embodiment of methods used for a get of an object,

e.g., container 430 itself, by avatar 100 is presented in
Appendix A, and is incorporated herein by reference. Table
24 identifies the methods in Appendix A that are class
Specific methods used by class avatar.

TABLE 24

Avatar Class Methods For Get

Process
Location Name

client method goToAndGet command
client method avatarGetObject notify
Sewer method avatarGetObject perform

When on-line user 225-1 points at an object other than
avatar 100 using mouse 202-1 and then depresses the left
mouse button when the hands of avatar 100 are full, a signal
is generated by mouse 202-1 that is interpreted by a client
process executing in computer 200-1 that builds a pop-up
menu for the object pointed at. The options are given in
Table 25.

TABLE 25

Menu. When Pointing At an Object
other than Avatar with Hands Full

<avatar name>

walk to here
put
touch >

Menu item Put appears only if avatar 100 can place the
object in his hands on, or in the object pointed at. The action
taken in response to Selection of menu item Put depends
upon the action Selected. In general, this action is available,
when there is an object in the avatar's hands, and the pointed
at object is a container that is not another avatar, and that has

US 6,229,533 B1
29

an open slot that can hold the object in the avatar's hands.
To perform the put operation for a container, in one
embodiment, the methods listed in Table 26 and presented in
Appendix A, which are incorporated herein by reference, are
used.

TABLE 26

Avatar Class Methods For Put When Selected Object
is a Container

Process
Location Name

client method putInContainer command
client method putInContainer notify
Seve method putInContainer perform

These methods are similar to those described above for put
in pocket and So are not considered in further detail.
An avatar can also put a portable object in a locale, e.g.,

on the floor. In this case, the object belongs to the locale,
rather than an avatar or a container and So is considered a
loose object. See for example FIG. 11A that includes several
loose objects including a book 1161 and a head 1162.

If the object is a floor, for example, the methods used are
listed in Table 27 and presented in Appendix A, and incor
porated herein by reference.

TABLE 27

Avatar Class Methods For Put When Selected Object
is not a Container

Process
Location Name

client method dropAtPosition command
client method avatarDropAt notify
Seve method avatarDropAt perform

In each case, if avatar 100 is not adjacent the pointed at
object, the methods implementing this action walk the avatar
to the object and then place the object in the avatar's hands
on, or in the pointed at object. Thus, the methods used to
implement Put result in the avatar putting down the object.

If the object pointed at is another avatar, the menu item
Put is replaced by menu item Give to. In this case, the object
in the first avatar's hand is placed in the Second avatar's
hand, if the Second avatar is not holding an object, and a
notice is Sent to the Second avatar of the transaction.
When menu item Give to is Selected, a message is

generated that launches an avatar give to command method
as a client process. The giving avatar and the object being
given are arguments in the call to the method. Table 28 is
pseudo code for one embodiment of the avatar give to
command.

TABLE 28
Pseudo Code for Avatar Give To Command Method

Set giver to avatar in call to method.
Set item to item in call to method.
(Walk giver adjacent to recipient.-optional)
If recipient is holding an object,

Handle failure “You cannot give an item to someone who is
holding Something.”
If item has a valid id,

Play animation for giver to give object.
Send avatar give to request message to Server.
Wait for reply message from server.
If Success field of reply message is Success,

15

25

35

40

45

50

55

60

65

30
If item is a token, play coin give Sound,
Redraw item in buffer
Move item from hand of giver to hand of recipient.
Redraw item in buffer,

Else,
Handle failure.
End Method,
In response to the avatar give to request message, an

avatar give to perform method is launched on Server com
puter 260 as a server process. Table 29 is pseudo code for
one embodiment of the avatar give to perform method.

TABLE 29
Pseudo Code for Avatar Give to Perform Method

Initialize reply message by Setting Success field to failure,
If giver is a ghost, go to Send reply message
If hands of giver are empty, or hands of recipient are full,

go to Send reply message
Set item to instance of class of object in hands of giver
If item is not a valid object, go to Send reply message
If item Successfully transferS from giver to recipient, Set

Success field of reply message to SucceSS
Send reply message
If Success field of reply message is Success.

Declare an avatar give to notice message
Initiate avatar give to notice message
Set giver field of notice message to giver
Set item field of notice message to number ID of item
Set givee field of notice message to number Id of recipient.
Send notice message to neighbors with number ID of giver

In response to the notice message from Server computer
260, an avatar give to notify method is launched as a client
process on computers 200-i to which the notice message is
sent. Table 30 is pseudo code for one embodiment of the
avatar give to notify method.

TABLE 30
Pseudo Code for Avatar Give to Notify Method

Set item to item field of notice message.
Redraw item.
Move item from giver to recipient
Redraw.
Set giver to giver field in notice message.
Set givee to givee field in notice message.
Read identification for on-line user.
If notice item is a token, play coin give Sound.
If identification for on-line user is Identification of givee,

write a message to givee "You've received item name from
giver name.”
End Method.
One embodiment of methods used to implement give to is

presented in Appendix A, and is incorporated herein by
reference. Table 31 identifies the methods in Appendix A
that are class Specific methods used by class avatar.

TABLE 31

Avatar Class Specific Methods For Give To

Process
Location Name

client method avatarGiveTo command
client method avatarGiveTo notify
Sewer method avatarGiveTo perform

Menu item Touch appears only if the object pointed at is
another avatar. When menu item Touch is pointed at, the pull
right menu in Table 32 is generated on display screen 250-1.

US 6,229,533 B1
31

TABLE 32

Touch Pull Right Menu

Poke
Shake Hands
Hug

In one embodiment, each of actions Poke, Shake Hands, and
Hug of avatar 100 are choreographed so that the on-line
users view realistic motions for the action.

For the embodiment described above, an avatar class is
defined and an instance of the avatar class generated for each
on-line user. A definition of the avatar class is given in Table
33. The various fields and methods defined in the avatar
class have names that correspond to the name of the data
represented by the field and the operations performed by the
method, respectively.

TABLE 33

A Definition for Class Avatar

fine LONG 0; /* step sizes */
fine MEDIUM 1:
fine SHORT 2:
fine DRIFT RATIO 15;

/* how big an X/Y difference before you don't drift */
: f turn directions f
define RIGHT DIR 1;
define LEFT DIR 2:
define AROUND DIR 3;
define AVATAR CAPACITY 10:
define AVATAR HANDS O;
required define AVATAR HEAD 1;
define AVATAR RESERVED START 2:
define AVATAR TOKENS 2:
define AVATAR PAD 3;
define AVATAR POCKET START 4;
required define AVATAR HAPPY O;
define AVATAR GLAD 1;
define AVATAR SAD 2:
define AVATAR MAD 3;
define WEAR HEAD 0;
define REMOVE HEAD 1:
define FROM POCKET 2:
f* Multi-Part Animations f
define GET FROM POCKET OxFOO1;
define GET FROM SHOULDERS OxFOO2:
define GET FROM GROUND OxFOO3:
define GET FROM TABLE OxF004;
define GET FROM SHIELF OxF005;
define OPERATE MACHINE OxFOO6;
define TURN NOB OxF007;
define SQUAT FIDDLE OxF009;
define FIDDLE STAND OxFOOA;
define WAVE COMPLETE OxFOOB:
define BOW COMPLETE OxFOOC;
define SHRUG COMPLETE OxFOOD;
define PAY OxFOOE;
define SHOW OxFOOF:
define FIDDLE WHOLE OxFO10;
define WEAR COMPLETE OxFO11;
/* Added for security checks */
define JUMP UP Ox0022:
define STOMP OxOOC4;
/* Define some permission flags */
define AVATAR PERM FIDDLE Ox0001;

use fiddle wand if
define AVATAR PERM PROMOTE 0x0002:

/* promote/demote other avatars */
define AVATAR PERM MUTE Ox0004:

/* Forbidden to speak, think, or ESP */
define AVATAR PERM FREEZE OxO008;

/* Forbidden to move, gesture, exit, etc. */
required class avatar {

info {

15

25

35

40

45

50

55

60

65

COO

Sewer:

client:

32

TABLE 33-continued

A Definition for Class Avatar

classNumber thisClass();
version this Version();
ale “Avatar:

capacity AVATAR CAPACITY:
reserved AVATAR RESERVED START:
pickFrom AVATAR POCKET START:
helpResourceID DEFAULT HELP:

instance {
include “instance.cla:
include “instcont.cla:
/* class specific data */

uint& activity;
uint& action;
uint& nameChanges;
uint& aFiller;
uint16 health;
uint16 ollowing:
uint32 perm flags;
uint16 home areaCode:

char system name MAX NAME SIZE:
char prev name1 MAX NAME *SIZE:
uint32 ast use date1;
char prev name2 MAX NAME SIZE
uint32 ast use date2;
char acct name MAX ACCT SIZE:
char password MAX PASSWD SIZE:
uint32 banished until date;
uint32 ast login date;
uint32 ogin region num;
uint32 create date;
uint32 eader woid;
uint32 bankAccountBalance;
uint32 curse type:
uint32 avatar time;
uint32 ghost time;
uint16 avatar state;
uint16 save style;
uint& save colorMapCOLOR TABLE SIZE
uint32 mail textid;
uint32 doc id;
uint32 index id;
uint32 doc bits;
uint32 home region num;
uint16 home region Zone;
uint32 mute until date;
uint32 freeze until date;

uint16 walkDestination 3
uint32 walkingFrameNumber;

f:
:::::: Resources used by class avatar.
*/
we

we

we

we

we

we

we

we

we

we

we

we

we

we

we

we

we

we

we

we

ballowfollow:
b disallowfollow:
b follow:
bgesture;
b ghost;
b giveTo;
b happy;
b help;
b mad;
b pocketget;
b pocketput;
b remove:
b stopfollow;
b touch;
b unfollow:
b walkTo:
b wear;
b sad;
b glad;
bjump;

we b wave;

ien
ien
ien

S e w e

ien
ien
ien

S e w e

ien
S w e

ien
ien

S e w e

ien
S w e

ien
ien

S e w e

ien
ien

y S

ien
S w e

ien
ien

S e w e

ien
S w e

ien
ien

S e w e

ien
ien

S e w e

ien
eve

eve

eve

ien
eve

ien
eve

eve

ien
ien

Sewer

le

le

le

le

le

e

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

le

33

TABLE 33-continued

A Definition for Class Avatar

sound getFromPocket1;
sound wearhead;
sound removeHead;
sound dematerialize;
sound putInPocket1;
sound bagClosing:
sound safeClose;
sound chestClose;
sound bagOpening;
sound safeOpen;
sound chestOpen;
image genericAvatar;
image female Avatar;
image male Avatar;
image oracle Avatar;
::::::

::::::

*/
OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

Standard methods used by class avatar.

method
method
method
method
method
method
method
method
method

goToObject command;
help command;
playerStatus command;
playerStatus perform;
setName command;
speak command;
speak notify;
speak perform;

buildStatus Menu procedure;

US 6,229,533 B1

15

25

Class specific methods used by class avatar.

avatar Animate procedure
avatarBodyChange command
avatarBodyChange notify
avatarBodyChange perform
avatarBuildMenus command
avatarChangeMood command
avatarChangeMood notify
avatarChangeMood perform
avatarCloseContainer notify
avatarCloseContainer perform
avatarDestroy notify
avatarDropAt notify
avatarDropAt perform
avatarExchange notify
avatarExchange perform
avatarFacing command
avatarFacing notify
avatarFacing perform
avatarFollow command
avatarFollow notify
avatarFollow perform
avatarForceExit perform
avatarFreeze notify
avatarFreeze perform
avatarGesture command
avatarGesture notify
avatarGesture perform
avatarGetObject notify
avatarGetObject perform
avatarGiveTo command
avatarGiveTo notify
avatarGiveTo perform
avatarGoToConnection command
avatarGoToConnection notify
avatarGoToConnection perform
avatarGoToPosition notify
avatarGoToPosition perform
avatarHelp perform
avatarJoin perform
avatarMute notify
avatarMute perform
avatarOpenContainer notify
avatarOpenContainer perform
avatarOwner perform
avatarPocketGet command
avatarRemove command
avatarSend perform

35

40

45

50

55

60

65

34

TABLE 33-continued

A Definition for Class Avatar

client method avatarSetPermissions notify
server method avatarSetPermissions perform
client method avatarToGhost command
client method avatarToGhost notify
Sewer method avatarToGhost perform
client method avatarTouch command
client method avatarTouch notify
server method avatarTouch perform
client method avatar Jnfollow command
client method avatarUnfollow notify
server method avatarUnfollow perform
client method avatarWear command

Table 33 demonstrates the general class organization of all
the classes of this invention. According to the principles of
this invention, a class includes a class descriptor, a class
instance Structure, and a collection of resources. The class
descriptor contains various pieces of information about the
class as a whole. The class instance Structure describes the
instance variables of objects of the class. The collection of
resources contains the class's methods, images, Sounds, and
So forth. In this embodiment, class avatar is a Subclass of a
base class and a Subclass of a container class that are
described more completely below. Appendix A includes a
specific embodiment for each of the methods in Table 33.

In Table 33, the following definitions are used:

include used to incorporate the contents of
other files

define used to declare symbolic names for
expression values

message used to declare messages
method used to declare methods
definfo used to declare the class

descriptor struct
resourcetype used to declare resource types
CSOCC used to declare resources
class used to declare classes

The primitive data types are:

sint8 sint16 sint32
uint& uint16 uint32
char string bool objref

where SintXX and uintXX represent signed and unsigned
integers (respectively) of the indicated precision, char rep
resents a single character, String represents a NUL
terminated character String, bool represents a boolean flag
type (represented by a byte that may take only the values 0
or 1), and objref represents a run-time pointer to another
object.

For methods, server and client identify the site where the
method is executed. The methods are Stored in an executable
format in the memory of the site indicated. The marker
common indicates fields visible to everyone. The marker
server indicates fields visible only on the server. The marker
client indicates fields visible only on the client. By default,
if no marker keyword is given initially, fields are common.

Tokens

As described above, a token object 110, sometimes simply
referred to as token 110 is a medium of exchange in the

US 6,229,533 B1
35

Virtual world. Thus, a token object is an example of a
medium of eXchange object that is an instance of a medium
of eXchange class. In this embodiment, there is only one
Style of token that is a golden colored round coin with a
profile of a face. Token object 110 can have a value one or
greater. There is no token value of Zero.
When on-line user 225-1 points at token object 110 (FIG.

7A) in the hand of avatar 100 using mouse 202-1 and then
depresses the left mouse button, a signal is generated by
mouse 202-1 that is interpreted by a client process executing
in computer 200-1 that builds pop-up menu 701 (FIG. 7B).
The options are given in Table 34.

TABLE 34

Menu. When Pointing At Token Object
in Hand of Avatar

<Token Values Tokens

Split . . .
Gesture
Thru
Put into
Status
Become a ghost
Tell Me About . . .

The menu items that are the same as those in menu. 401
perform as described above. The two new menu items Split
and Put into are described below. Notice that menu item
Split is followed by an ellipsis. The ellipsis signals to on-line
user 225-1 that a dialogue is associated with the menu item.

Thus, when on-line user 225-1 selects menu item Split, a
Signal is generated that launches a token Split prompt
command method as a client process on computer 200-1.
The token Split prompt command method generates dialogue
box 721 (FIG. 7C). The number one is put in dialogue box
721 by the method. The user can enter the number of the 35
tokens to retain in the hand of avatar 100 in dialogue box
721.
When on-line user points at OK button 722 and operates

the button of mouse 202-1, a signal is generated that
launches a token split OK command method 800. Clear
dialogue operation 801 removes dialogue box 721 from
display Screen 250 and transferS processing to amount Valid
check 802.

Amount valid check 802 determines whether: (i) the
amount entered is a number; (ii) the amount entered is less
than one; (iii) the amount is greater than the denomination
of held token 110; and the denomination of held token 110
is less than or equal to Zero. If any one of these conditions
is true, check transfer processing to failure message opera
tions 804 and otherwise to token split command operation
805.

Failure message operation 804 prints a message on dis
play Screen of "Sorry, you can’t split your tokens like that.
Please try again.”, and transfers to end method 805. Token
Split command operation 803 issues a token split command
message with the entered amount as an argument and also
transfers to end method 805. End method 805 terminates
method 800.

In response to the token Split command message, a token
split command method 830 is launched as a client process on
computer 200-1. In initialize operation 810, an amount is set
to the amount Specified in the token Split command message,
and hand tokens is set to the number identification for the
object, e.g., token 110 in the hand of avatar 100. Initialize
operation 810 transferS processing to holding tokens check
811.

15

25

35

40

45

50

55

60

65

36
If avatar 100 is holding a token, processing transferS to

request put tokens in pocket proceSS 812, and otherwise to
amount check 813. Process 812 issues a standard put in
pocket command message request to place token 110 in the
hand of avatar 100 into pocket 105. This request launches a
tokens put in pocket command method that is a client
process on computer 200-1. Table 35 is pseudo code for the
tokens put in pocket command method.

TABLE 35

Pseudo Code for Tokens Put in Pocket Command
Method

Play animation of avatar putting hand in pocket.
ISSue put in pocket request message to Server computer

and wait for tokens put in pocket reply message.
Wait for reply message from server.
If reply message indicates Success

if pocket tokens exist
destroy instance of pocket tokens, and
update tokens to new denomination returned in reply

meSSage,
put tokens in pocket;
play metal jingle Sound;
play animation of avatar removing hand from pocket

and end method;
else

play animation of avatar removing hand from pocket;
handle failure and end method.

In response to the put in pocket request message from
tokens put in pocket command method, Server computer 260
launches a tokens put in pocket perform method. Table 36 is
pseudo code for the put in pocket perform method.

TABLE 36

Pseudo Code for Tokens Put in Pocket Perform
Method

If avatar is a ghost, or avatar is not holding the object,
Send failure reply message and terminate,

If tokens in pocket,
Update in pocket by adding tokens in hand to tokens in

pocket,
Set pocket tokens field in reply message to number

identification of Server pocket tokens,
Else

Set pocket tokens field in reply message to invalid
number identification

Set denomination field to denomination of tokens in
pocket on Server.

Move tokens into pocket and if is unsuccessful return
an internal failure reply message and terminate
server method.

Set Success field of reply message to Success and Sent
reply message.

If Success field of reply message is Success, Send a
notice message to each of the avatar's neighbors to
have the avatar place the object in his pocket.

Thus, when processing transferS to amount check 813, all
of the tokens are in pocket 105 and represented by a token
equal to the denomination of all the tokens Stored there.
Amount check 813 determines whether amount, i.e., the
denomination of the token requested by avatar 100, is equal
to the denomination of the tokens in pocket 105. If the two

US 6,229,533 B1
37

denominations are equal, amount check 813 transferS to get
from pocket command message process 814 and otherwise
to animation process 815.

Get from pocket command message process 814 issues a
Standard get from pocket command message for the pocket
tokens. In response to the Standard get from pocket com
mand message, a tokens get from pocket command method
is launched as a client process on computer 200-1. Table 37
is pseudo code for one embodiment of the tokens get from
pocket command method.

TABLE 37

Pseudo Code for Tokens Get From Pocket Command Method

Play animation of avatar placing hand in pocket
Send standard get from pocket request message for

tokens in pocket to server computer
Play animation of avatar removing hand from pocket
Wait for reply message from server
If reply message is success,

Move token from pocket to avatar hands
Play metal jingle sound
End Method

else
handle failure
end method

In response to the Standard get from pocket reqest
message, a Standard get from pocket perform method is
launched by server computer 260 as a server process. This
server process was described above with respect to FIG. 6B
and that description is incorporated herein by reference.
However, in this embodiment, update neighbors process 664
calls a tokens get from pocket notify method as a client
proceSS on the neighboring computers that display avatar
100. This method changes the container for the tokens from
pocket 105 to the hand of avatar 100 and plays the animation
and metal jingle Sound.
When get from pocket command message proceSS 814

completes, the token split is complete because all of the
tokens are in the hand of avatar 100. However, if the tokens
in pocket 105 of avatar 100 are greater than the split amount,
processing transferred to play animation 815 that in turnputs
the hand of avatar 100 in pocket 100 on display screen 250
and transferS to transmit message operation 816.

In transmit message operation 816, a token split request
message for the pocket tokens is sent to Server computer 260
with amount as an argument. In response to the token Split
request message, a token split perform method 850 is
launched on Server computer 260 as a Server process.

In initialize process 851 of method 850, the success field
of the reply message is set to SUCCESS; a contents vector
Size is Set to Zero; and a contents vector is initialized to a
nullity. Upon completion, process 851 transfers to valid
request check 852.

Valid request check 852 checks whether: avatar 100 is a
ghost; the hands of avatar 100 are full; the requested amount
is greater than the denomination of the pocket tokens., and
the requested amount is Zero. If any one of these checks is
true, check 852 transferS processing to Set failure message
operation 853, and otherwise to create token check 854.

Failure message operation 853 sets the success field of the
reply message to failure and transferS to Send reply operation
858.

In create token check 854, a new instance of class token,
i.e., a new hand token object, is created for the hand of avatar
100. If this operation is successful, check 854 transfers to set
amount proceSS 856, and otherwise to Set failure message
operation 855. Failure message operation 855 sets the Suc

15

25

35

40

45

50

55

60

65

38
cess field of the reply message to FAILURE INTERNAL,
and transfer processing to Send reply operation 858.

In set amount process 856, the denomination of the new
hand token is Set to the requested amount and processing
transfers to make vector operation 857. Operation 857
makes a contents vector of the new hand token and assigns
the contents vector to the contents vector field of the reply
message. Operations 857 transferS to Send reply operation
858.
Send reply operation 858 sends the reply message to

token split command method 830, and transferS processing
to success check 859. If the success field of the reply
message is set to SUCCESS, check 859 transfers to update
neighbors operations 860, and otherwise to done 862,

Update neighbors process 860 first declares a token split
notice as a notice message and then initiates generation of
the notice message. The denomination of the pocket tokens,
the number identification of avatar 100, the contents vector
Size and the contents vector are placed in the notice message
and the message is Sent to each on-line user that has an
avatar in the same locale as avatar 100.

Each on-line user computer 200-i, that receives the notice,
uses the information in the notice to update the Screen
display for avatar 100 and updates the instance of avatar
100. Operation 860 transfers to void vector 861 that in turns
Voids the contents vector and transferS to done operation
862.
When method 830 receives the reply message from

method 850, reply check 817 transfers to holding token
check 819 if the Success field of the play message is
SUCCESS, and otherwise to handle failure operations 818.

If the hand token has a valid number identification, check
819 transfers to redraw operation 820, that in turn redraws
the token in the hand of avatar 100, and conversely to update
pocket amount operation 821. Redraw operation 821, upon
completion, also transferS to update pocket amount opera
tion 821.

Update pocket amount operation 821 Sets the present
amount of the pocket token object to the original amount of
the pocket token minus the amount of the new hand token.
Pocket amount operation 821 transfers to hand token in
reply check 822.
Hand token in reply check 822 first unpacks the contents

vector in the reply message to obtain the new hand token
object. If the new hand token object has a valid identification
number, check 822 transfers to redraw operations 823 and
otherwise to animation process 825.
Redraw operation 823 redraws the new hand token object

and transferS to Sound proceSS 824 that in turn plays a metal
jingle Sound. Sound process 824 transferS to play animation
process 825 that removes the hand of avatar 100 from pocket
105 with the new hand token. Animation process 825
transfers to end method process 826. FIG. 7D illustrates the
graphic user interface after the Split operations are complete
and on-line user again points at token object 110 to obtain
pop-up menu 702.
When processing transfers to handle failure process 818,

an error message is written on display Screen and an ani
mation removing the avatar hand from the pocket without a
token is played.

Thus, selection of menu item Split resulted in the use of
Several client and Server processes. One embodiment of
methods used for a token Split is presented in Appendix A,
and is incorporated herein by reference. Table 38 identifies
the methods in Appendix A that are used in class token for
the Split.

US 6,229,533 B1
39

TABLE 38

Methods Used For a Token Split

Process
Location Name

client method tokensBuildMenus command
client method tokensGetFromPocket command
client method tokensGetFromPocket notify
Sewer method getFromPocket perform
client method tokensPutInPocket command
client method tokensPutInPocket notify
Sewer method tokensPutInPocket perform
client method tokensSplitOK command
client method tokensSplitPrompt command
client method tokensSplit command
client method tokensSplit notify
Sewer method tokensSplit perform

Token-Put in Pocket
Returning to menu 701, if menu item Put in is selected, a

right pull menu is presented that lists pocket 105, and any
containers in pocket 15 in which token 110 in the hand
avatar 100 can be placed. In one embodiment, the client and
server processes utilized, when pocket 105 is selected as the
Storage location for token 110, are the same as those
described above for put in pocket process 812. Thus, the
description of that proceSS is incorporated herein by refer
CCC.

Token-Put in Container within Pocket
If a container is Selected, a Signal is issued that launches

a tokens put in container command method as a client
process. Pseudo code for one embodiment of tokens put in
container command method is presented in Table 39.

TABLE 39

Pseudo Code for Tokens Put In Container
Command Method

If avatar is not adjacent to container, walk adjacent to
container, and play animation showing walk.

If container is full, terminate method as failure and give
user message "There is no room for tokens in this
container.”

Play animation of avatar putting hand in container
Send Standard put in container request message to Server

for tokens in hand.

Wait for reply message from server.
If success field of reply message is SUCCESS

Set container tokens to container token field in reply
meSSage.

Destroy container tokens
Set denomination of tokens to denomination field in

reply message.
Put tokens in container at slot in slot field in reply

meSSage.
Play metal jingle Sound.
Play animation of avatar removing avatar hand from

container.

Else,
Play animation of avatar removing avatar hand from

container.
Handle error.

End method.
In response to the Standard put in container request

message for tokens in hand in Table 39, a tokens put in

15

25

35

40

45

50

55

60

65

40
container perform method is launched as a Server process on
server computer 260. One embodiment of pseudo code for
the tokens put in container perform method is presented in
Table 40.

TABLE 40

Pseudo Code for Token Put in Container Perform
Method

If avatar is a ghost, or object is an invalid container, or the
object is not an instance of class container, or avatar is
not holding the tokens, Send failure reply message and
terminate;

If the container is in the pocket of avatar,
If container is closed,

If container is locked, Send failure reply message,
container not open and terminate process.

If open of container is Successful, Set must close
container.

Else,
Send failure reply message, container not open and

terminate process.
Else,

If container is closed, Send failure reply message,
container not open, and terminate process.

If container is full, Send failure reply message, container
full, and terminate process

If container holds tokens,
Set Slot equal to slot in container holding token.
Add denomination of tokens in container to denomi

nation of token in hand and Store in denomination of
token.

Set container token field in reply message to id of
container tokens.

Destroy container tokens.
Else,

Set container token field in reply message to invalidid.
Set slot to empty.

Set denomination field in reply message to token denomi
nation.

Set slot field in reply message to value of Slot.
If must close container, close container.
Set success field in reply message to SUCCESS.
Send reply message.
If success field in reply message equals SUCCESS,

Declare tokens put in container notice as a notice
meSSage.

Initiate notice message.
Set actor field in notice message to number id of avatar.
Set container tokenS field in notice message to con

tainer tokens field in reply message.
Set denomination field in notice message to denomi

nation field in reply message.
Set container field in notice message to number id of

container.
Set Slot field in notice message to value of Slot.
Send notice message to neighbors with token number

id.
When the neighbors receive the notice message with the

token number id, each neighbor launches a tokens put in
container notify method as a client process. One embodi
ment of pseudo code for the tokens put in container notify
method is presented in Table 41.

TABLE 41

Pseudo Code for Token Put in Container Notify
Method

Set actor to actor field in notice message.

US 6,229,533 B1
41

Set container tokens to container tokens field in notice
meSSage.

Set container to container field in notice message.
Play animation of avatar placing hand in container.
Destroy instance of container tokens.
Set denomination of token in avatar hand to value in

denomination field of notice message.
Put tokens in container.
Play metal jingle Sound.
Play animation of avatar removing hand from container.
End method.
One embodiment of methods used for a putting a token in

a container is presented in Appendix A, and is incorporated
herein by reference. Table 42 identifies the methods in
Appendix A that are used in putting a token in a container.

TABLE 42

Avatar Class Specific Methods For Putting
a Token Obiect in A Container

Process
Location Name

client method tokensPutInContainer command
client method tokensPutInContainer notify
Sewer method tokensPutInContainer perform

The previous embodiment was specifically for a token
object that had a denomination. General methods for putting
a general portable virtual object in a virtual container are
similar to those described for a token object. However, other
Virtual objects do not have a denomination and So these
operations are unnecessary. Also, if a container contains an
instance of one type of virtual object, the Virtual object in the
container is not destroyed when another virtual object of the
Same type is placed in the container. Rather, a specific Slot
is required in the container for each virtual object, other than
a token object, independent of the particular type of the
virtual object.

For example, if a container contains a first Set of flowers,
a Second Set of flowers cannot be put in that container unless
the container has an empty slot. If an empty slot is available,
the container holds two sets of flowers.
When a container is pointed to that includes a token, a

pop-up menu Such as that presented in Table 43 is displayed
on display screen 250-1.

TABLE 43

Pop-up Menu. When Container is Pointed at and
Avatar’s Hands are Empty

Token token value
Get
When on-line user 225-1 selects menu item Get using

mouse 202-1, a Signal is Supplied to the process that built the
menu, in a manner Similar to that previously described, and
that proceSS generates a Standard get from container com
mand message. In response to the Standard get from con
tainer command message, a tokens get from container com
mand method is launched on computer 200-1 as a client
proceSS.

Table 44 is pseudo code for one embodiment of tokens get
from container command method.

TABLE 44

Pseudo Code for Tokens Get From Container
Command Method

Initialize actor, tokens and container.
If not adjacent to container, walk adjacent to container.

15

25

35

40

45

50

55

60

65

42
Play animation of avatar putting hand in container.
Send Standard get from container request message to

Server for tokens.

Wait for reply message from server.
If success field of reply message is SUCCESS,

Transfer tokens from container to hand of avatar;
Play metal jingle Sound; and
Play animation of removing avatar hand from con

tainer.

Else,
Play animation of removing avatar hand from con

tainer; and
Handle error.

End method.
In response to the Standard get from container request

message for tokens in Table 43, a Standard get from con
tainer perform method is launched as a Server proceSS on
server computer 260. One embodiment of pseudo code for
Standard get from container perform method is presented in
Table 45.

TABLE 45

Pseudo Code for Get From Container Perform
Method

Initialize Success field of reply message to Success.
Set item to token

If item is not in container,
Set Success field of reply message to failure; and
Go to Send reply.

Define container as object holding item.
Check for illegal conditions, e.g., If avatar is a ghost, or

item is immobile, or if hands of avatar are full, or
container is not a container, Set Success field of reply
message to failure and go to Send reply message.

If container is an avatar,
Set SucceSS field of reply message to failure object not

accessible; and
Go to Send reply message.

If avatar is not adjacent to container,
Set Success field of reply message to failure not adja

cent; and
Go to Send reply message.

If container is closed,
Set Success field of reply message to failure container

not open; and
Go to Send reply message.

Move item from container to avatar's hands.

If move is not Successful,
Set Success field of reply message to internal failure;

and
Go to Send reply message.

Send reply message
If success field in reply message equals SUCCESS;

Declare Standard get from container notice as a notice
meSSage,

Initiate notice message;
Set actor field in notice message to number id of avatar;

and
Send notice message to neighbors with item number id.

When the neighbors receive the notice message with the
item number id, each neighbor launches a tokens get from
container notify method as a client process. One embodi

US 6,229,533 B1
43

ment of pseudo code for the tokens get from container notify
method is presented in Table 46.

TABLE 46

Pseudo Code for Token Get From Container Notify
Method

Play animation of avatar placing hand in container.
Move token from container to avatar's hand.

Play metal jingle Sound.
Play animation of avatar removing hand from container.
End method.
One embodiment of methods used for a getting a token

from a container is presented in Appendix A, and is incor
porated herein by reference. Table 47 identifies the methods
in Appendix A that are used in getting a token in a container.

TABLE 47

Avatar Class Specific Methods For Getting
a Token Obiect from A Container

Process
Location Name

client method tokensGetFromContainer command
client method tokensGetFromContainer notify
Sewer method GetFromContainer perform

The previous embodiment was specifically for a token
object that had a denomination. General methods for getting
a general portable virtual object from a virtual container are
Similar to those described for a token object.

For the embodiment described above, a token class is
defined and an instance of the token class is generated for
each token object in the virtual world. In one embodiment,
an instance of a token is maintained in memory of the
on-line user's computer 200-i and in the memory of server
computer 260. A definition of the token class is given in
Table 48. The various fields and methods defined in the
token class have names that correspond to the name of the
data represented by the field or the operation performed by
the method.
An instance of the token class is an example of a medium

of exchange object that is an instance of a medium of
eXchange class. In View of this disclosure, those of Skill in
the art can define medium of eXchange classes that are other
than the token class given in Table 48.

TABLE 48

A Definition for Class Tokens

class tokens {
info {

classNumber thisClass();
version this Version();
ale “Tokens';

capacity O;
avatarSlot AVATAR TOKENS:
helpResourceID TOKENS HELP:

instance {
include “instance.cla,

f class specific instance data/
COO

uint32 denom:

1O

15

25

35

40

45

50

55

60

65

44

TABLE 48-continued

A Definition for Class Tokens

::::::

*/
verb walkTo:
verb get;
verb split;
sound metalJingle;
f:
::::::

*/
method goToObject command;
method goToAndGet command;
method destroy notify;
method getFromPocket perform;
method getFromContainer perform;
method help command;

Resources used by class tokens.

Standard methods used by class tokens.

method help perform;
method cancelButton command;

f:
:::::: Methods for class tokens only.
*/
clien method tokensBuildMenus command
clien method tokensOietFromContainer command
clien method tokensGetFromContainer notify
clien method tokensOietFromPocket command
clien method tokensGetFromPocket notify
clien method tokensPutInContainer command
clien method tokensPutInContainer notify
Sewer method tokensPutInContainer perform
clien method tokensPutInPocket command
clien method tokensPutInPocket notify
server method tokensPutIn Pocket perform
clien method tokensSetDenom notify
clien method tokensSetName command
clien method tokensSplitOK command
clien method tokensSplitPrompt command
clien method tokensSplit command
clien method tokensSplit notify
server method tokensSplit perform

ATM

As explained above, ATM 320 (FIGS. 3A and 9A), an
instance of class ATM, dispenses tokens to avatars in a
plurality of denominations. In one embodiment, the denomi
nations available to avatar 100 are 10, 50, 100, 500, and the
entire bank balance of avatar 100. In this embodiment, ATM
320 checks in both the hand and pocket 105 of avatar 100 for
tokens when avatar 100 approaches and uses ATM 320. In
another embodiment, ATM 320 checks only for money in the
hand of avatar 100. In this embodiment, the help object for
ATM 320 instructs avatar 100 “You must have money in
your hand to make a deposit in ATM.”

In this embodiment, when on-line user 225-1 points at
ATM 320, and then depresses the left mouse button, a signal
is generated by mouse 202-1 that is interpreted by a client
process executing in computer 200-1 that builds menu 901
(FIG. 9A) when avatar 100 is not holding a token. The
options in menu 901 are given in Table 49.

TABLE 49

Menu. When Pointing at ATM object 320
Without Holding an Obiect

<ATM name>

WalkTo
Withdraw
Request Balance
Tell me about . . .

US 6,229,533 B1
45

ATM-Request Balance
To determine his bank balance, on-line user 225-1 selects

menu item Request balance by pointing at the menu item
with mouse 202-1 and releasing the mouse button. (See FIG.
9B.) This generates a signal that is interpreted by a process
executing on computer 200-1 and the client process that
generated menu 901 is notified of the selection.
Consequently, the client process that generated menu 901
generates an ATM balance command message.

In response to the ATM balance command message, an
ATM balance command method is launched as a client
process on computer 200-1. Table 50 is pseudo code for one
embodiment of the ATM balance command method.

TABLE 50

Pseudo code for ATM Balance Command Method

Block actions.

Walk avatar adjacent to ATM (FIG. 9B to FIG. 9C).
Change avatar to facing ATM (See FIG. 9C) avatar.
Play animation of avatar operating ATM.
Play push button Sound.
Play avatar fiddle animation.
Play button Sound Sequence.
Play ATM thunk sound.
Play computer on Sound.
Send ATM balance request message to Server.
Wait for reply message from server.
End animation.

If Success field of reply meSSage indicateS SucceSS,
Set balance to value in balance field of reply message;
If balance is 1,

Display “You have one token in your account”.
Else,

Display “You have (balance) tokens in your
account”. (See FIG. 9D)

Change avatar to facing frontside. (See FIG. 9D)
Else
Change avatar to facing frontside. (See FIG. 9D)
Handle failure.

Unblock actions.
In response to the ATM balance request message, an ATM

balance request perform method is launched on Server
computer 260. One embodiment of ATM balance request
perform method is presented in Table 51.

TABLE 51

Pseudo Code for ATM Balance Request Perform
Method

Initialize Success field of reply message to failure and
balance field of reply message to Zero.

If avatar is a ghost, Send reply message and terminate.
If avatar is not adjacent to ATM, set success field of reply

message to not adjacent failure, Send reply message and
terminate.

Update balance for avatar-calculate time Since last bal
anced for avatar and add appropriate amount to bank
balance.

Set Success field of reply message to Success.
Set balance field of reply message to updated balance.
Send reply message with SucceSS Status and balance.

15

25

35

40

45

50

55

60

65

46
If Success Send neighbors message notice of avatar oper

ating ATM.
In response to the ATM balance notice message, an ATM

balance notify method is launched, as a client process, on
each on-line computer that displays avatar 100. Table 52 is
pseudo code of one embodiment of the ATM balance notify
method.
At the time this client process is executed, the walk to

process, which is the first operation in Table 50, has sent a
message to the Server which in turn notified the neighbors.
The neighbors, in response to the notice from the Server
concerning the walk to operation, have moved the avatar to
in front of the ATM. Consequently, the ATM balance notify
method starts with the avatar adjacent to the ATM.

TABLE 52

Pseudo Code for ATM Balance Request Notify
Method

Change avatar to facing ATM avatar
Play animation of avatar operating ATM
Play push button Sound
Play avatar fiddle animation
Play button Sound Sequence
Play ATM thunk sound
Play computer on Sound
End animation
End method.
One embodiment of methods used for the ATM balance

request is presented in Appendix A, and is incorporated
herein by reference. Table 53 identifies the methods in
Appendix A that are used in ATM balance request.

TABLE 53

Avatar Class Specific Methods For
ATM Balance

Process
Location Name

client method atm3alance command
client method atmBalance notify
Sewer method atmBalance perform

ATM-Withdraw
To withdraw tokens from ATM 320, on-line user 225-1

selects menu item Withdraw in menu 901 by pointing at the
menu item with mouse 202-1 which generates a signal that
is interpreted by a proceSS executing on computer 200-1 and
a right pull menu 902 is displayed. On-line user 225-1 then
Selects the desired denomination of the token object from
menu 902.
When on-line user 225-1 Selects a denomination, a Signal

is generated that is interpreted by a process executing on
computer 200-1 and the client process that generated menu
902 is notified of the selection. In response to the
notification, an ATM withdraw command message is gen
erated with the Selected amount as an argument.

In response to the ATM withdraw command message, an
ATM withdraw command method is launched as a client
process on computer 200-1. Table 54 is pseudo code for one
embodiment of the ATM withdraw command method.

TABLE 54

Pseudo Code for ATM Withdraw Command
Method

Block actions.
Walk avatar adjacent to ATM.

US 6,229,533 B1
47

Change avatar to facing ATM (See FIG. 9B).
Play animation of avatar operating ATM.
Play button Sound Sequence.
Send ATM withdraw request message to server with

requested amount as an argument.
Wait for reply message from server.
End animation.
If Success field of reply message indicates Success.

Play ATM thunk sound.
Play ATM pay sound.
Set amount to amount field in reply message.
If avatar holding a token.

Set denomination of held token to amount of token
plus requested amount.

Else,
Unpack new instance of token class returned by

Server in contents vector of reply message.
If amount withdrawn is 1,

Display dialogue “You withdrew one token'.
Else

Display dialogue “You withdrew (balance) tokens”.
Set balance to balance field in reply message.
If balance is Zero,

Display “You have no tokens in your account.”
Else if balance is one

Display “You have one token in your account”.
Else

Display dialogue “Your have (balance) tokens in
your account.”

Change avatar to facing frontside (This redraws the
avatar holding a token in hand as illustrated in FIG.
9F)

Else if Success field of reply message is bad denomination
Play ATM error sound
Set balance to balance field in reply message
If balance is one

Display “Insufficient funds. Current balance is one
token.”

Else
Display “Insufficient funds. Current balance is

(balance) tokens.”
Change avatar to facing frontside
Else
Change avatar to facing frontside
Handle failure

Unblock actions
In response to the ATM withdraw request message, an

ATM withdraw perform method is launched on server
computer 260 as a server process. One embodiment of ATM
withdraw perform method is presented in Table 55.

TABLE 55

Pseudo Code for ATM Withdraw Perform Method

Initialize Success field, amount field, balance, cvsize, and
contents vector of reply message to failure, Zero, Zero,
Zero, and null, respectively.
If avatar is a ghost, Send reply message and terminate.
If avatar is not adjacent to ATM, sent success field of

reply message to not adjacent failure, Send reply
message and terminate.

Update balance for avatar-calculate time Since last
balanced for avatar and add appropriate amount to
bank balance.

Set balance field of reply message to updated balance.

5

1O

15

25

35

40

45

50

55

60

65

48
If amount is entire balance, Set amount to bank balance,
If entire balance is Zero, or amount is greater than bank

balance(check for overdraft).
Set Success field of reply message to bad denomination.
Go to Send reply message.

If avatar is holding an object,
Set tokens to instance of object in avatar hands.
If tokens is not instance of class tokens, Send reply

message and terminate.
Set bank account balance to bank account balance

minus amount.
Increase value of token in hand by amount.
Set Success field of reply message to Success.
Set amount field of reply message to amount.
Set balance field in reply message to bank account

balance.
Go to Send reply message.

Else,
Create new token instance of class token.
Set denomination of new token to amount.
Activate new token object.
Set bank account balance to bank account balance

minus amount.
Set Success field of reply message to Success.
Set amount field of reply message to amount.
Set balance field in reply message to bank account

balance.
Pack new token in contents vector,

Send reply message.
If Success field of reply message is Success declare and

initiate notice message
Set actor field of notice message to number id of avatar

requesting withdrawal.
Set amount of notice message to value in amount field

of reply message.
Set contents vector of notice message to contents vector

of reply message.
Set contents vector Size field of notice message to value

in contents vector Size field of reply message.
Send notice message to neighbors.
Void and free contents vector.
Update withdrawals from ATM.

End method.
In response to the ATM withdraw notice message, an

ATM withdraw notify method is launched on each on-line
computer that displays avatar 100 as a client process. Table
56 is pseudo code of one embodiment of the ATM withdraw
notify method.
At the time this client process is executed, the walk to

process, which is the first operation in Table 54, has sent a
message to the Server which in turn notified the neighbors of
the movement of avatar 100 to ATM 320. The neighbors, in
response to the notice from the Server concerning the walk
to operation, have moved avatar 100 to in front of ATM 320.
Consequently, the ATM balance notify method starts with
avatar 100 adjacent to ATM 320.

TABLE 56

Pseudo Code for ATM Withdraw Notify Method

Set avatar to avatar identified in notice message.
Change avatar to facing ATM (See FIG. 9B) avatar.
Play animation of avatar operating ATM.
Play avatar fiddle animation.
Play button Sound Sequence.

US 6,229,533 B1
49

End animation.

Play ATM thunk sound.
Play ATM pay sound.
If avatar is holding an object,

Increase value of token in hand by value of amount
field in notice message.

Else,
Unpack contents vector in notice message.

Change avatar to facing frontside.
End method.
One embodiment of methods used for the ATM with

drawal is presented in Appendix A, and is incorporated
herein by reference. Table 57 identifies the methods in
Appendix A that are used in the ATM withdrawal.

TABLE 57

Avatar Class Specific Methods For
ATM Withdrawal

Process
Location Name

client method atmWithdraw command
client method atmWithdraw notify
Seve method atmWithdraw perform

ATM-Deposit
In this embodiment, when on-line user 225-1 points at

ATM 320, and then depresses the left mouse button, a signal
is generated by mouse 202-1 that is interpreted by a client
process executing in computer 200-1 that builds menu 903
when avatar 100 is holding a token.

The options in menu 903 (FIG.9F) are given in Table 58.

TABLE 58

Menu. When Pointing at ATM object 320
With an Obiect in Hand

<ATM name>

WalkTo
Deposit
Request Balance
Tell me about . . .

To deposit tokens in ATM 320, on-line user 225-1 selects
menu item Deposit by pointing at the menu item with mouse
202-1 and releasing the mouse button. This generates a
Signal that is interpreted by a proceSS executing on computer
200-1 and a signal is generated that notifies the client
process that built menu 903 of the selection. In response to
the notification, an ATM deposit command message is
generated with the number identification of avatar 100 as an
argument.

In response to the ATM deposit command message, an
ATM deposit command method is launched on computer
200-1 as a client process. Table 59 is pseudo code for one
embodiment of the ATM deposit command method.

TABLE 59

Pseudo Code for ATM Deposit Command Method
Block actions.
Set actor to avatar 100.

Set tokens to contents of object in avatar's hand.
Move avatar adjacent to ATM, if necessary.

SO
Change avatar to face machine.
Unblock actions.
Generate display dialogue box with dialogue “How many

tokens do you wish to deposit?” (See FIG. 9G).
5 End method.

After on-line user 225-1 enters a value in dialogue box
921, and selects deposit button 922, the selection of the
deposit button generates a Signal that in turn results in the
launching of an ATM deposit OK command method on

10 computer 200-1 as a client process. Table 60 is pseudo code
for one embodiment of ATM deposit OK command method.

TABLE 60

Pseudo Code for ATM Deposit OK Command
15 Method

Get deposit amount and kill dialogue box.
Block actions.
If deposit amount is not a number, or deposit amount is

less than one,
Change avatar orientation to frontside.
Unblock actions.
Handle failure-failure message "Sorry, that is not a
good number. Please try again.”

Set tokens to contents of avatar's hands.
If denomination of tokens is less than deposit amount,

Change avatar orientation to frontside.
Handle failure-failure message “Your are not holding
enough tokens!'

Play animation of avatar operating machine.
Play push button Sound.
Play avatar fiddle animation.
Play button Sequence Sound.
Play ATM thunk sound.
Play ATM deposit sound.

25

35
Send ATM deposit request message to Server with deposit

amount as argument.
End animation.
Wait for reply message from server.

40 If Success field of reply message is Success,
Adjust tokens denomination by Subtracting deposit

amount.

If tokens denomination is Zero, Send Standard destroy
message for tokens.

45 Set amount deposited to value of amount field in reply
meSSage.

If amount deposited is 1, display dialogue “One token
deposited”, (See FIG. 9H)

Else
50 Display dialogue “(Amount deposited) tokens

deposited.)
Change avatar orientation to frontside.

Else,
Change avatar orientation to frontside.
Unblock actions.
Handle error.

Unblock actions.
In response to the ATM deposit request message, an ATM

deposit perform method is launched on server computer 260
60 as a server process. One embodiment of ATM deposit

perform method is presented in Table 61.
TABLE 61

Pseudo Code for ATM Deposit Perform Command
Method

Initialize Success field, and amount field of reply message
to failure, and Zero, respectively.

55

65

US 6,229,533 B1
S1

If avatar is a ghost, go to Send reply message.
If avatar is not adjacent to ATM, set success field of reply

message to not adjacent failure, and go to Send reply
meSSage.

If avatar is holding an object,
Set tokens to instance of object in avatar hands.
If tokenS is not instance of class tokens, go to Send reply

meSSage.
If deposit amount is greater than denomination of

tokens, go to Send reply message.
Adjust tokens denomination by Subtracting deposit

amount.

If tokens denomination is Zero, destroy tokens object.
Update bank balance by deposit amount.
Update bank balance for avatar-calculate time Since

last balanced for avatar and add appropriate amount
to bank balance.

Set balance field of reply message to updated balance.
Set Success field of reply message to Success.
Set amount field of reply message to deposit amount.

Send reply message.
If Success field of reply message is Success declare and

initiate notice message,
Set actor field of notice message to number id of avatar

requesting withdrawal.
Set amount of notice message to value in amount field

of reply message.
Send notice message to neighbors.
update deposits to ATM.

End method.
In response to the ATM deposit notice message, an ATM

deposit notify method is launched on each on-line computer
that displays avatar 100 as a client process. Table 62 is
pseudo code of one embodiment of the ATM deposit notify
method.
At the time this client process is executed, the walk to

process, which is the first operation in Table 59, has sent a
message to the Server which in turn notified the neighbors of
the movement of avatar 100 to ATM 320. The neighbors, in
response to the notice from the Server concerning the walk
to operation, have moved avatar 100 to in front of ATM 320.
Consequently, the ATM deposit notify method starts with
avatar 100 adjacent to ATM 320.

TABLE 62

Pseudo Code for ATM Deposit Notify Method
Set avatar to avatar identified in notice message.
Set tokens to contents of avatar's hands.
Change avatar orientation to backside.
Decrease value of token in hand by value of amount field

in notice message.
If denomination of tokens is Zero, Send Standard destroy

notice for tokens.
Play animation of avatar operating ATM.
Play avatar fiddle animation.
Play button Sound Sequence.
Play ATM thunk sound.
Play ATM deposit sound.
End animation.
Change avatar orientation to frontside.
End method.
One embodiment of methods used for an ATM deposit is

presented in Appendix A, and is incorporated herein by
reference. Table 63 identifies the methods in

15

25

35

40

45

50

55

60

65

52
Appendix A that are used for an ATM deposit.

TABLE 63

Avatar Class Specific Methods For
an ATM Deposit

Process
Location Name

client method atmDepositOK command
client method atmDeposit command
client method atmDeposit notify
Sewer method atmDeposit perform

For the embodiment described above, an ATM class is
defined and an instance of the ATM class is generated for
each locale in the virtual world for which an ATM is desired.
A definition of the ATM class is given in Table 64. The
various fields and methods defined in the ATM class have
names that correspond to the name of the data represented by
the field and the operation performed by the method, respec
tively.

TABLE 64

A Definition for Class ATM

class atm {
info {

classNumber thisClass ();
version this Version ();
ale “ATM;

capacity
helpResourceIDATM HELP:

instance {
include “instance.cla:

f class specific instance data /
Sewer:

uint32
uint32

deposits;
withdrawals:

f sounds if
sound withdraw 1:
sound withdraw2:
sound atmPay;
sound depositl;
sound deposit2;
sound depositCoin:
sound balance1;
sound balance2;
sound balanceCoin:

/* images */
image atm machine;

/* class methods: First those that respond to standard
commands if
f shared methods if

method goToObject command;
method goToAndGet command;
method putIn Pocket command;
method putIn Pocket perform;
method putIn Pocket notify;
method putInContainer command;
method putInContainer perform;
method putInContainer notify;
method getFromPocket command;
method getFromPocket perform;
method getFromPocket notify;
method getFromContainer command;
method getFromContainer perform;
method getFromContainer notify;
method destroy notify;
method setName command;
method help command;
method help perform;
method cancelButton command;

custom methods for standard commands if

US 6,229,533 B1
S3

TABLE 64-continued

A Definition for Class ATM

verb walkTo:
verb help;
verb balance:
verb withdraw:
verb deposit;

/* class specific methods */
client method atmlEalance command
client method atmBalance notify
Seve method atmBalance perform
client method atm3uildMenus command
client method atmDepositOK command
client method atmDeposit command
client method atmDeposit notify
server method atmDeposit perform
client method atmWithdraw command
client method atmWithdraw notify
server method atmWithdraw perform

Vendriods
AS explained above, vendriods are instance of a class

Vendroid and are virtual vending machine objects, Such as
virtual vending machine object 120 (FIG. 1). A vendroid
object is an object that Sells portable virtual items in
eXchange for tokens deposited by avatars. Different Virtual
items have different values, and vendroids do not all have
the same virtual items for sale. Portable virtual items can be
resold to pawn machines at a price Set below the original
price by the oracles, typically eighty percent of the original
price. Vendroid items are Stocked by the oracles and in this
embodiment, the vendroids are maintained at full capacity.
The vendroid item last displayed in the window of the
vendroid remains after avatar 100 has stopped interacting
with vendroid. In one embodiment, there is a limit of 32
bytes for menu titles and menu items for a vendroid 120.

Currently, there are two styles of vendroids in the virtual
world. A generic flat vendroid with a big flat window/screen
that has a 3D frame such as vending machine 120, and a free
Standing machine with a bubble on top.

In this embodiment, when on-line user 225-1 points at
vending machine 120, and then depresses the left mouse
button, a signal is generated by mouse 202-1 that is inter
preted by a client proceSS executing in computer 200-1 that
builds menu 1001. The options in menu 1001 are given in
Table 65.

TABLE 65

Menu. When Pointing at
Vending Machine Object 120

optional name Vending Machine
((item # of total)/(cost)T)
Walk to
View next item
View previous item
Buy this item
Tell me about . . .
The first line of menu 1001 is an identification of the

particular vending machine, the number of the item dis
played in the total number of items in Vending machine 121
and the cost of the displayed item in tokens. In Table 65, this
information is presented as two lines for convenience only.
Menu items Walk To and Tell me about function in the

Same manner as the described above for other menus and So
are not considered further.

15

25

35

40

45

50

55

60

65

S4
Menu items View Next Item and View Previous Item are

used by avatar 100 to view the items available from vending
machine 120. When menu item View Next Item is sequen
tially selected by on-line user 225-1, vending machine 120
cycles through the items in machine 120 and eventually
cycles back around and the items begin appearing a Second
time. Menu item View Previous Item works in a similar way.
Vendroid-View Next Item
To view the next item in vending machine 120, on-line

user 225-1 selects menu item View Next Item by pointing at
the menu item with mouse 202-1 and releasing the mouse
button. This generates a Signal that is interpreted by a
process executing on computer 200-1 and the client proceSS
that generated menu 1001 is notified of the selection.
Consequently, the client process that generated menu 1001
generates a vendroid view next command message with
forward Set to true as an argument.

In response to the Vendroid view next command message,
a vendroid view next command method is launched on
computer 200-1 as a client process. Table 66 is pseudo code
for one embodiment of the vendroid view next command
method.

TABLE 66

Pseudo code for Vendroid View Next Command
Method

Block Actions.

Initialize actor to avatar accessing machine, and Vendroid
to object pointed at.

Walk actor adjacent to vendroid.
Change orientation of actor right Side facing.
If actor is holding an object,

Change orientation of actor to front Side facing,
Unblock actions.
Handle Failure with message “Sorry, but you can not

hold anything while using this machine.”
Play push button Sound.
Play animation of actor operating machine.
Send Vendroid view next request message to Server with

forward Set to true as an argument.
Stop animation.
Wait for reply message from server.
If Success field of reply message is Success,

Redraw vendroid.
Set current item to contents of Vendroid display slot.
Set next slot to next slot field of reply message.
Set next item field to contents of next slot in vendroid.
Play rotate vendroid sound.
Put display item back in its slot.
Match mood of next item with mood of actor (Each

portable object has a mood State in this
embodiment.)

Put the next item in the display slot.
Save the display items slot.
Set the new price.
Show the new price on Screen display with an infor

mation balloon.
Redraw vendroid.

Else
Play error buzz sound.
Unblock Actions.
Handle Failure.

Unblock Actions.
End Method.

US 6,229,533 B1
SS

In response to the Vendroid view next request message, a
vendroid view next perform method is launched on server
computer 260. One embodiment of vendroid view next
perform method is presented in Table 67.

TABLE 67

Pseudo Code for Vendroid View Next Perform
Method

Check for illegal requests, e.g., if actor is a ghost, or hands
of avatar are full, Set Success field of reply message to
failure and go to Send reply message.

If actor is not adjacent to Vendroid, Set Success field of
reply message to not adjacent failure, and go to Send
reply message.

Set current slot to current slot of vendroid.
If current slot is display slot, or current Slot is greater than

machine capacity,
Set Success field of reply message to failure out of

order; and
Go to Send reply message.

If forward is true,
Find next slot of vendroid in forward direction.
If next Slot greater than Vendroid capacity, Sent next slot

to Start slot.
If contents of next slot is not defined, break.

Else,
Find next slot of vendroid in reverse direction.
If next slot less that start slot, next slot is vendroid

capacity minus one.
If contents of next slot is not defined, break.

If next Slot is current slot and contents of current slot is not
defined,
Set Success field of reply message to failure out of

order; and
Go to Send reply message.

Next item is contents of next slot
Put next item in display slot
If put of next item is not Successful,

Set Success field of reply message to internal failure;
and

Go to Send reply message.
Set orientation of next item to orientation of actor.
Set current slot of vendroid to next slot.
Set Success field of reply message to Success.
Set next slot field of reply message to next slot.
Send reply message.
If Success field of reply message is Success,

Declare vendroid view next notice message as notice
meSSage.

Initiate notice message.
Change facing of actor to right Side.
Set actor field of notice message to actor number id.
Set next Slot field of notice message to next slot.
Send neighbors notice message with Vendroid number

id.
In response to the vendroid view next notice message, a

vendroid view next notify method is launched on each
on-line computer that displays avatar 100 as a client process.
Table 68 is pseudo code of one embodiment of the vendroid
view next notify method.

TABLE 68

Pseudo Code for Vendroid View Next Notify
Method

Initialize actor, Vendroid, next slot, and next item using
notice message, and instance data of Vendroid

15

25

35

40

45

50

55

60

65

S6
Change actor orientation to rightside
Play vendroid push button Sound
Play animation of avatar operating Vendroid
Stop animation
Play rotate vendroid sound.
Redraw vendroid.

Put current display item back into is slot.
Set the mood of next item to mood of actor

Put the next item in the display slot.
Save display item's slot
Set the new price.
Show the new price on Screen display with an information

balloon.
Redraw vendroid
End method.
One embodiment of methods used for viewing the next

item in a vendroid is presented in Appendix A, and is
incorporated herein by reference. Table 69 identifies the
methods in Appendix A that are used in Viewing the next
item.

TABLE 69

Vendroid Class Specific Methods For
View Next Item

Process
Location Name

client method vendroidBuildMenus command
client method vendroidViewNext command
client method vendroidViewNext notify
Sewer method vendroidViewNext perform

Vendroid-View Previous Item
When menu item View Previous Item is selected, a

Vendroid view next command message is Sent with forward
set to False. Thus, the methods described above of menu
item View Next Item are used with the different state of
argument forward. Therefore, the above description is not
repeated.
Vendroid-Buy This Item
To buy the displayed item in vending machine 120,

on-line user 225-1 selects menu item Buy This Item by
pointing at the menu item with mouse 202-1 and releasing
the mouse button. This generates a Signal that is interpreted
by a proceSS executing on computer 200-1 and the client
process that generated menu 1001 is notified of the selection.
Consequently, the client process that generated menu 1001
generates a vendroid purchase command message with
argument cost Set to the price of the item.

In response to the Vendroid purchase command message,
a vendroid purchase command method is launched on com
puter 200-1 as a client process. Table 70 is pseudo code for
one embodiment of the Vendroid purchase command
method.

TABLE 70

Pseudo Code for Vendroid Purchase Command
Method

Block Actions.

Initialize actor to avatar accessing machine, Vendroid to
object pointed at, and cost to command cost.

Walk actor adjacent to vendroid.

US 6,229,533 B1
57

Change orientation of actor right Side facing.
If actor is holding an object,
Change orientation of actor to front Side facing,
Unblock actions.
Handle Failure with message “Sorry, but you can not 5

hold anything while using this machine.”
If cost is greater than Zero,

Call getTokenSFromPocket with cost and actor as argu
ment. (See Table 37.)

If getTokensEromPocket is a failure,
Change orientation of actor to frontSide.
Handle failure and give message indicating tokens

needed to buy item.

1O

Play animation of actor operating machine. 15
If cost is greater than Zero,

Play vendroid coin deposit Sound.
Else,

Play vendroid push button Sound
Send Vendroid purchase request message to Server. 2O
Wait for reply message from server.
If Success field of reply message is Success,

If cost is greater than Zero,
Destroy tokens in actor's hands.

Stop animation.
Animation of actor reaching for object.
Play vendroid ATM pay sound.
Unpack contents vector to get item.
Animation of return arms.
Change actor orientation to front Side,

Else,
Play error buzz sound.
Unblock Actions.
Handle Failure.

Unblock Actions.
End Method.
In response to the vendroid purchase request message, a

25

35

Vendroid purchase perform method is launched on Server
computer 260. One embodiment of vendroid purchase per
form method is presented in Table 71.

40

TABLE 71

Pseudo Code for Vendroid Purchase Perform
Method

Initialize Success field, cVSize, and contents vector of

45

reply message to failure, Zero, and null, respectively.
Change orientation of actor to front Side.
Check for illegal requests, e.g., if actor is a ghost, or

contents of Vendroid display Slot is not defined, Set
Success field of reply message to failure and go to Send
reply message.

If actor is not adjacent to Vendroid, Set Success field of
reply message to not adjacent failure, and go to Send
reply message.

Set current item to contents of Vendroid display slot.
Set current slot to current slot of vendroid.

Set cost to current item Sales price.
If cost is greater than Zero,

If hands of actor are empty
Set Success field of reply message to failure.
Go to Send reply message.

Set tokens to contents of actor's hands.
If tokens is not class tokens, or denomination of tokens

is not equal to cost,

50

55

60

65

58
Set Success field of reply message to failure.
Go to Send reply message.

Clone the item.

If cloned item is a null,
Set SucceSS field of reply message to internal failure.
Go to Send reply message.

If tokens in hand,
Set hand token number id to token number id destroy

tokens.

Else,
Set hand token number id to invalid number.

Initialize common flags for cloned item.
Check if cloned item is a container, and if it is an open

container, close it.
Reset mood of the cloned item.
Activate cloned item
Put cloned item in hands of actor.

Put cloned vector in contents vector of reply message.
Update States of Vendroid, e.g., update number of pur

chases for current slot, update total number of
purchases, update Sales of current slot, update total
Sales.

Send reply message.
If Success field of reply message is Success,

Declare vendroid purchase notice message as notice
meSSage.

Initiate notice message.
Set hand tokenS field of notice message to hand tokens

number id.
Set content vector Size of notice message to content

vector size.
Set contents vector of notice message to contents vector

of reply message.
Send neighbors notice message with Vendroid number

id.
Free contents vector of reply message.

In response to the vendroid purchase notice message, a
Vendroid purchase notify method is launched on each
on-line computer that displays avatar 100 as a client process.
Table 72 is pseudo code of one embodiment of the vendroid
purchase notify method.

TABLE 72

Pseudo Code for Vendroid Purchase Notify Method

Initialize actor, Vendroid, and hand tokens using notice
meSSage.

Change actor orientation to rightside.
Play animation of avatar operating Vendroid.
If hand tokens number id is valid,

Play vendroid deposit coin Sound.
Destroy hand tokens.

Else
Play vendroid push button Sound.
Stop animation.
Play animation of actor reaching for object.
Play vendroid ATM pay sound.
Unpack contents vector to get item.
Animation of return arms.
Change actor orientation to front Side
End method.

One embodiment of methods used for purchasing an item
in a vendroid is presented in Appendix A, and is incorpo

US 6,229,533 B1
59

rated herein by reference. Table 73 identifies the methods in
Appendix A that are used in purchasing an item in a
vendroid.

TABLE 73

Vendroid Class Specific Methods For
Buy Item

Process
Location Name

client method vendroidBuildMenus command
client method vendroid Purchase command
client method vendroid Purchase notify
Sewer method vendroid Purchase perform

For the embodiment described above, a vendroid class is
defined and an instance of the Vendroid class is generated for
each locale in the virtual world for which a vendroid is
desired. A definition of the vendroid class is given in Table
74. The various fields and methods defined in the vendroid
class have names that correspond to the name of the data
represented by the field and the operation performed by the
method, respectively.

TABLE 74

A Definition for Class Vendroid

define UNLIMITED AVAILABILITY O;
fused to limit the number sold. f

define VENDROID CAPACITY 10:
f size of the vendroid. f

define VENDROID DISPLAY SLOT O;
/* slot for viewing item. */

define VENDROID CONTENTS START 1:
f start of slots to fill. f

class vendroid {
info {

classNumber thisClass();
version this Version();
ale “Vendroid':

capacity VENDROID CAPACITY:
reserved VENDROID DISPLAY SLOT:
pickFrom VENDROID CONTENTS START:
helpResourceID VENDING HELP:

instance {
include “instance.cla:
include “instcont.cla:

f class specific instance data f*
COO

uint16 currentSlot:
/* display items real slot */

Sewer:

uint32 purchases VENDROID CAPACITY:
uint32 sales VENDROID CAPACITY:
uint32 totalPurchases:
uint32 totalSales:
uint32 unused1;
uint16 available VENDROID CAPACITY:
uint& unused2;

client:
/* scratch space */
uint16 fullSlots;
uint16 price;

f:
:::::: Resources used by class vendroid.
*/
verb walkTo:
verb get;
verb viewNext:
verb viewPrevious;
verb purchase;
sound push button;
sound rotate Vendroid:

1O

15

25

35

40

45

50

55

60

65

60

TABLE 74-continued

A Definition for Class Vendroid

sound errorsuZZ;
sound depositCoin:
sound ATMPay;
f:
::::::

*/
method goToObject command;
method goToAndGet command;
method putInPocket command;
method putInPocket perform;
method putInPocket notify;
method putInContainer command;
method putInContainer perform;
method putInContainer notify;
method getFromPocket command;
method getFromPocket perform:
method getFromPocket notify;
method getFromContainer command;
method getFromContainer perform;
method getFromContainer notify;

method destroy notify;
method help command;
method help perform;

Standard methods used by class vendroid.

f:
:::::: Methods for class vendroid only.
*/
client
client
client
Sewer

client
client
client
Sewer

vendroidBuildMenus command
vendroidPurchase command
vendroid Purchase notify
vendroid Purchase perform
vendroidSetName command
vendroidViewNext command
vendroidViewNext notify
vendroidViewNext perform

method
method
method
method
method
method
method
method

GHOST
AS explained above, the graphic user interface of this

invention for the Virtual world includes a ghost that is an
optional non-material State for an avatar. Each avatar ini
tially enters the virtual world as a ghost object 1180, in one
embodiment, as illustrated in FIG. 11A. Notice that a
message is presented in dialogue area 140 of “Welcome back
to the Dreamscape. You are returning as a ghost'. The
abilities of a ghost are limited. Ghosts cannot talk or emit
thoughts. Ghosts can send ESP. Ghosts can move from room
to room using a door, and can follow an avatar.

If a locale is full, i.e., contains the predefined maximum
number of avatars for the locale, any avatar who enters the
locale while the locale is full automatically turns into a
ghost. On-line user 225-1 is presented a dialogue explaining
the action when this happens, e.g., “This area is full of
avatars. You are now becoming a ghost.”

Avatar 100 can choose to turn into a ghost at any time,
such as when avatar 100 wants to watch but not participate,
or when avatar 100 is being harassed.

Since a ghost is a dematerialized avatar, when avatar 100
dematerializes, the avatar body disappears in one Screen
write and a piece of Static graphic art, e.g., an eye in the Sky
icon appears in the upper right hand corner of the Screen
display as described above for FIGS. 4F and 3B. In one
embodiment, the avatar body fades away and the ghost icon
fades into View. There is a Sound effect for the disappearance
of the avatar and a separate one for the reappearance. The
sound effects begin in sync with the start of the visual
effects, and ends close to the end of the visual effects. Ghosts
do not have moods or gestures because of their limited
ability to communicate. Ghosts have no material presence in
the virtual world.
When on-line user 225-1 points at ghost icon 1180 (FIG.

11A) and depresses the mouse button, the pop-up menu

US 6,229,533 B1
61

generated by computer 200-1 depends on whether avatar
100 is a ghost. If avatar 100 is a ghost, as in FIG. 11A,
pop-up menu 1101 (FIG. 11B) is generated by a client
process executing on computer 200-1. Table 75 lists the
options presented in pop-up menu 1101.

TABLE 75

Menu. When at Ghost Icon and On-line User is a Ghost

<Avatar Name> Ghost

Become an Avatar
How Many Ghosts?
Status >
Tell Me About

If avatar 100 is not a ghost, the pop-up menu presented in
Table 76 is generated by a client proceSS executing on
computer 200-1.

TABLE 76

Menu. When a Ghost Icon and On-line User is not a Ghost

Ghosts
How Many Ghosts?
Tell Me About

When user 255-1 moves mouse 202-1 so that menu item
Tell Me About is highlighted (FIG. 11C) and releases the
mouse button, i.e., Selects the menu item, the Signal gener
ated by mouse 202-1 is interpreted by a process executing on
computer 200-1 and a Signal is Sent to the process that
generated menu 1101, that in turn Sends a message that
results in help information 1141 being displayed indialogue
area 140, as illustrated in FIG. 111D.
When user moves mouse 202-1 so that menu item

Become an Avatar is highlighted (FIG. 11E) and releases the
mouse button, i.e., Selects the menu item, the Signal gener
ated by mouse 202-1 is interpreted by a process executing on
computer 200-1 and a Signal is Sent to the process that
generated menu 1101, that in turn Sends a ghost to avatar
command message with a set of coordinates.

In response to the ghost to avatar command message, a
ghost to avatar command method is launched as a client
process on computer 200-1. Table 77 is one embodiment of
pseudo code for the ghost to avatar command method.

TABLE 77

Pseudo Code for Ghost to Avatar Command
Method

Send ghost to avatar request message to Server with Set of
coordinates and avatar id.

Wait for reply message from server.
If Success field of reply message is Success,

Play materialize sound.
If hide ghost field of reply message is true, Destroy

ghost icon.
Set avatar to number id field in reply message.
Unpack contents vector for avatar.
Display avatar.

Else,
Handle Failure.

End Method.
In response to the ghost to avatar request message, a ghost

to avatar perform method is launched on Server computer
260. One embodiment of ghost to avatar perform method is
presented in Table 78.

15

25

35

40

45

50

55

60

65

62
TABLE 78

Pseudo Code for Ghost to Avatar Perform Method

Initialize Success field, cvsize, and contents vector of
reply message to failure, Zero, and null, respectively.
Check for illegal requests, e.g., if actor is a not a ghost, Set

Success field of reply message to failure and go to Send
reply message.
If actor is frozen (See avatar frozen check 554 (FIG.

5B))
If freeze period is over, (See Check 555 (FIG. 5B))

Unfreeze avatar (See operation 557 (FIG. 5B));
Else

Frozen reply message;
Go to Send reply message.

Check if transition to avatar is permitted, e.g., is locale
filled, is locale private, is locale an auditorium.

If transition is permitted,
Change ghost to avatar.
Set error code to no error.

Else,
Set error message.
Set error code to indicate reason for error.

If error code is no error,
If number of ghosts in locale is Zero,

Set hide ghost field of reply message to true.
Else,

Set hide ghost field of reply message to false.
Set Success field of reply message to Success.
Set number id field of reply message to avatar

number id field.
Pack avatar in contents vector.

Else
Set Success field of reply message to failure message.
Set failure message buffer in reply message to error

meSSage.
Send reply message.
If Success field of reply message is Success,

Declare ghost to avatar notice message as notice mes
Sage.

Initiate notice message.
Set hide ghost field of notice message to hide ghost

field of reply message.
Set content vector Size of notice message to content

vector size.
Set number idfield of notice message to number idfield

of reply message.
Set contents vector Size field of notice message to size

of contents vector.
Set contents vector of notice message to contents vector

of reply message.
Send neighbors notice message with avatar number id.
Free contents vector of reply message.

In response to the ghost to avatar notice message, a ghost
to avatar notify method is launched as a client process on
each on-line computer that is displaying the locale in which
avatar 100 will materialize. Table 79 is pseudo code of one
embodiment of the ghost to avatar notify method.

TABLE 79

Pseudo Code for Ghost to Avatar Notify Method

Play materialize sound
If hide ghost field of notice message is true

Destroy ghost icon

US 6,229,533 B1
63

Unpack contents vector in notice message and display
aVatar

End method.
One embodiment of methods used for changing a ghost to

avatar is presented in Appendix A, and is incorporated herein
by reference. Table 80 identifies the methods in Appendix A
that are used in changing a ghost to an avatoa

TABLE 80

Ghost Class Specific Methods For
Ghost to Avatar

Process
Location Name

client method ghostBuildMenus command
client method ghostToAvatar command
client method ghostToAvatar notify
Sewer method ghostToAvatar perform

FIG. 11F illustrates locale 1150 after ghost icon 1180 has
been removed because there was only one ghost in the
locale, and avatar 100 has materialized as a result of the
operations performed as just described. FIG. 11G shows, as
discussed above with respect to FIG. 3B, that when avatar
100 is pointed at, a pop-up menu 1102 is displayed that
includes a menu item Become a Ghost. When this menu item
is selected, avatar 100 dematerializes, and ghost icon 1180
appears again and the locale appears as shown in FIG. 11A.
When user moves mouse 202-1 so that menu item How

Many Ghosts in menu 1101 (FIG. 11B) is highlighted (not
shown) and releases the mouse button, i.e., Selects the menu
item, the Signal generated by mouse 202-1 is interpreted by
a process executing on computer 200-1 and a signal is sent
to the process that generated menu 1101, that in turn sends
a ghost count command message.

In response to the ghost count command message, a ghost
count command method is launched as a client process on
computer 200-1. This method sends a ghost count request
message to the Server and waits for a reply message.

In response to the ghost count request message, Server
computer 260 launches a ghost count perform method. This
method sends a reply message that includes a message that
gives the number of ghosts in the locale.
When the client process on computer 200-1 receives the

replay message, the proceSS processes the message and
generates a System message balloon with the number of
ghosts that is displayed in dialogue area 140 of display
screen 250-1 (FIG. 2).
One embodiment of methods used for obtaining a ghost

count is presented in Appendix A, and is incorporated herein
by reference. Table 81 identifies the methods in Appendix A
that are used in obtaining a ghost count.

TABLE 81

Ghost Class Specific Methods For
Ghost Count

Process
Location Name

client method ghostBuildMenus command
client method ghostCount command
Sewer method ghostCount perform

When user moves mouse 202-1 so that menu item Status
is highlighted (FIG. 11H), a right pull menu 1103 is gener
ated. The items in this menu are equivalent to those for the
status menu of avatar 100 described above, and so the above
description for menu item 405 is incorporated herein by
reference.

5

15

25

35

40

45

50

55

60

65

64
As indicated above, the abilities of a ghost are limited. For

example, when book 1161 is pointed at by ghost 1180, i.e.,
when avatar 100 is a ghost, the only menu item in menu 1104
(FIG. 11I) is Tell me about. This is because ghost 1180 can
not walk to book 1161, and can not get book 1161. A similar
result is obtained when any other of the loose portable
objects are pointed at, or when vendroid 1120 is pointed at.
When avatar 100 is a ghost, and on-line user simply

selects a point in locale 1150, a pop-up menu 1105 (FIG.
11J) is presented in the graphic user interface. In this
example, the user Selects menu item Go this way and a
result, ghost 1180 moves to a new local 1250. Notice again
the limited number of options in menu 1105.

For the embodiment described above, a ghost class is
defined and an instance of the ghost class is generated for
each avatar in the virtual world that dematerializes and is

Stored in the Server database. A definition of the ghost class
is given in Table 82. The various fields and methods defined
in the ghost class have names that correspond to the name of
the data represented by the field and the operation performed
by the method, respectively.

TABLE 82

A Definition for Class Ghost

required class ghost {
info {

classNumber thisClass();
version this Version ();
ale “Ghost:

capacity NO CONTENTS:
helpResourceID GHOST HELP:

instance {
include “instance.cla:
/* class specific instance variables: */
COO

f* none */
Sewer:

f* none */
client:

f* none */

sound materialize;
sound ghostCountClicker;

/* class methods: First those that respond to standard
commands if
f shared me
f* can't get,

le

hods if
put, or go to ghosts . . . */
hod show notify;
hod hide notify;
hod destroy notify;
hod setName command;
hod setFlags notify;
hod help command;
hod buildStatus Menu procedure;
hod playerStatus command;
hod playerStatus perform;
hod buildStatus Menu procedure;

f custom methods for standard commands if
verb deghost;
verb ghostCount;

le

le

le

le

le

le

le

le

le

verb help;
client method ghostInitialize command
client method ghostInitialize command
client method ghostBuildMenus command
server method ghostHelp perform
client method ghostToAvatar command
server method ghostToAvatar perform
client method ghostToAvatar notify

US 6,229,533 B1
65

TABLE 82-continued

A Definition for Class Ghost

client method ghostCount command
server method ghostCount perform
client method ghostGoToConnection command
server method ghostGoToConnection perform

AS explained above, avatars can communicate with
speech, thoughts, and ESP. FIGS. 12A to 12D illustrate the
different types of communication in the graphical user
interface of this invention.

In FIG. 12A, to talk to another avatar, avatar 100 types in
“Hello this is a talk message, see the point (called a “quip)
showing who is talking.” This message is displayed in a
colored balloon 1201 in dialogue area 140 and is enclosed in
quotes. In the actual interface, there is not a line around the
balloon. The change in color. between the balloon and the
background is used to define the balloon. A quip 1202
extends from the balloon towards the avatar, e.g., avatar 100
that is talking. Since FIG. 12A is in black and white, the line
around the talk message is used to represent generally the
color boundary of the balloon. In one embodiment, each
avatar in a locale has a different color balloon.
When avatar 100 wants to generate a thought, a colored

balloon 1205 (FIG. 12B) is generated in dialogue region
140. Bubbles 1206 from the thought balloon 1205 to avatar
100 are used to indicate that avatar 100 is thinking. Again,
since FIG. 12B is in black and white, a rough boundary is
used to represent generally the color boundary of the bal
loon. Notice that the thought is enclosed in parenthesis
instead of quotes. Thus, both the nature of the quip, and the
delimiters for the message are used to indicate the type of
message in the graphic user interface.

FIG. 12C illustrates a message 1210 that is generated
when an ESP message is sent to a avatar that is not in the
virtual world. FIG. 12C also shows how an ESP message is
input. The name of the avatar to receive the ESP message is
entered in address box 1215, in this example, yahooooo2,
and the message is also entered in text entry box 1216.

Sending an ESP message results in a message being Sent
to the avatar named, and to the avatar Sending the message.
Both messages are illustrated in FIG. 12D. From message
1211 is the message received by the avatar to which the ESP
message is addressed. To message 1212 is the message
received by the avatar Sending the ESP message. Again, a
different delimiter and message presentation, i.e., no quips,
in the form of either a solid quip or bubbles, are used for ESP
meSSageS.

Thus, according to the principles of this invention, a
plurality of communications are possible, and the graphic
format of the message allows the avatars to determine the
Specific type of message and who is Sending the message.
Thus, the graphic user interface permits a range of interac
tions and communications.

The above class definitions include a base class and a
container class. All of the class definitions include the base
class, while the vendroid and avatar classes include both
classes. Table 83 are definitions for the various instance.cla
and instcont.cla files given within the include Statement in
the classes defined above, as well as the base and container
classes. These files define instance data for each object of the
class.

15

25

35

40

45

50

55

60

65

66

TABLE 83

A Definition for a Class or Classes from which Classes
Avatar, Tokens, ATM, Vendroid and Ghost Are SubClasses

::

* base.cla - the common object template
::

*/
required class base {

info {
classNumber thisClass();
version this Version();
ale is ".

capacity NO CONTENTS:
helpResourceID DEFAULT HELP:

instance {
include “instance.cla:

::

* base.cla - the generic container template
::

*/
f:
required class basecont {

info {
classNumber thisClass();
version this Version();
ale is ".

capacity MAX CAPACITY:
helpResourceID DEFAULT HELP:

instance {
include “instance.cla:
include “instcont.cla:

::

* instance.cla
instance variables shared by all classes

::

include “iv instance.cla:
::

iv instance.cla
instance variables shared by all classes

:

:::

*/
Sewer:

uint16 record state; f* ODB field *f
uint16 nrecs; f* ODB field *f
uint32 woid: f* World object id. */
objref container offset;
uint32 flags; /* Misc. flags */
uint32 helpResourceID;

client:
uint32 object info;

f* a pointer to a magic state structure */
uint32 callbacks:

f* a pointer to the callback queue header */
uint32 sync flags;

/* Flags used for synchronization and wait */
uint16 balloonColor;

f what color to draw balloons f
uint16 anotherLocal;

/* This field is available for expansion */
COO

uint16 classNumber;
/* Keep this first for easy lookup */

uint16 noid: f* Me! */
uint32 version;

f Class version number if
uint16 container noid;
uint16 style;
uint32 common flags;

f* IMMOBILE/PORTABLE etc. *f
sint16 positionNUM COORDINATES:
uint16 orientationNUM COORDINATES:

f a normalized vector that faces front if

US 6,229,533 B1
67

TABLE 83-continued

A Definition for a Class or Classes from which Classes
Avatar, Tokens, ATM, Vendroid and Ghost Are SubClasses

uint16
char

graphicState;
name OBJECT NAME MAX:

f should be unicode if
uint& colorMapCOLOR TABLE SIZE:

f custom colors if
uint16 salePrice:

f* What it last sold for *f
uint16 activeChore;

f* are we running a choreography? /
uint16 chore.Index;

f* and where are we in the choreography now? */
uint16 choreState:

/* And what state (mode) is the avatar in? /
uint16 choreFlags;

/* Some flags to keep this word aligned */
::

* instcont.clo
instance variables shared by all containers

::

include “iv instcont.cla:
::

iv instcont.cla
instance variables shared by all containers

::

COO

uint16 reducedCapacity;
Sewer:

objref contentsIMAX CAPACITY:
client:

uint16 contents MAX CAPACITY:

In the above table, the particular instance data inherited by
one of the classes given in the title is determined by
examining the include statements with the definition of that
class above. AS is known to those of skill in the art, when an
object of a particular class is generated on either the client
or Server computers, or both, a structure is created in
memory that includes each of the instance variables as
defined for that particular class.

Consequently, each instance of the class definitions given
herein defines a novel Structures in the computer memory
that contains data for the virtual object in the virtual world.
The token structures, ATM structures, vendroid structures,
and the avatar Structure with a pocket and a hand container
create unique features in the virtual world that make the
Virtual world a more realistic and enjoyable place for on-line
users to communicate. The ability to trade, purchase, get,
and put the portable virtual objects Stored in these structure
allows an economic component, i.e., a new dimension of
communication to exist in the Virtual world that was not
previously available.
One embodiment of a oracle, an acolyte, a fiddle wand,

and an amulet are described in commonly assigned, and
commonly filed U.S. patent application No. 08/691,.695,
now U.S. Pat. No. 5,802,296 issued on Sep. 1, 1998 entitled
“Supervisory Powers in Computer Interactions” of Jeffery
Douglas and Norman Morse and that application is incor
porated herein by reference in its entirety.
We claim:
1. A graphic user interface comprising:
a first Virtual avatar object further comprising:

an instance of an avatar class Stored in a computer
memory; and

a virtual ghost object further comprising:
an instance of a ghost class Stored in Said computer
memory;

wherein Said instance of Said ghost class is generated and
Stored in Said computer memory upon a Second virtual
avatar object dematerializing from a locale in Said
graphic user interface

15

25

35

40

45

50

55

60

65

68
wherein Said virtual ghost object Selectively communi

cates with Said first Virtual avatar object.
2. A graphic user interface as in claim 1 further compris

Ing:
an icon wherein Said icon represents Said virtual ghost

object.
3. A graphic user interface as in claim 2 wherein Said icon

also represents all virtual ghost objects in Said locale.
4. A graphic user interface as in claim 3 wherein Said icon

is an eye-in-the-Sky.
5. A graphic user interface as in claim 2 wherein Said icon

is an eye-in-the-Sky.
6. A graphic user interface as in claim 1 wherein Said

Virtual ghost object does not have moods.
7. A graphic user interface as in claim 1 wherein Said

Virtual ghost object can interact with a portable object is Said
locale only by obtaining information about Said portable
object.

8. A graphic user interface as in claim 1 wherein Said
Virtual ghost object has anonymity.

9. A method for limiting visual clutter in a graphic user
interface comprising,

limiting the number of Virtual avatar objects in a locale of
Said graphic user interface to a predefined number;

converting each virtual avatar object entering Said locale
to a virtual ghost object whenever Said number of
Virtual avatar objects in Said locale equals said pre
defined number; and

allowing Said Virtual ghost object Selectively communi
cates with at least one of Said virtual avatar objects.

10. A method as in claim 9 further comprising:
limiting activities of a virtual ghost object.
11. A method as in claim 9 further comprising:
providing anonymity for a virtual ghost object.
12. A graphic user interface comprising:
a locale in a virtual world;
a ghost icon displayed in Said locale representing all

on-line users in Said locale who are only watching
action in Said locale,

a first Virtual avatar including an avatar-to-host method
Stored in a computer memory, wherein Said avatar-to
ghost method, when invoked, replaces Said virtual
avatar by a virtual ghost capable of Selectively com
municating with a Second virtual avatar.

13. A graphic user interface as in claim 12 wherein Said
ghost icon is an eye-in-the-Sky.

14. A graphic user interfase as in claim 12 further com
prising:

a virtual ghost wherein Said virtual ghost is associated
with one of Said on-line users represented by Said ghost
icon.

15. A graphic user interface as in claim 14 wherein Said
Virtual ghost further comprises:

a ghost to avatar method Stored in a computer memory
wherein Said ghost to avatar method defines a virtual
avatar object.

16. A graphic user interface as in claim 14 wherein Said
Virtual ghost object cannot make gestures.

17. A graphic user interface as in claim 14 wherein Said
Virtual ghost object does not have moods.

18. A graphic user interface as in claim 14 wherein Said
Virtual ghost object can interact with a portable object in Said
locale only by obtaining information about Said portable
object.

19. A graphic user interface as in claim 14 wherein Said
Virtual ghost object has anonymity.

k k k k k

