

(No Model.)

I. F. PECK.
LACING HOOK.

No. 449,449.

Patented Mar. 31, 1891.

Fig. 1.

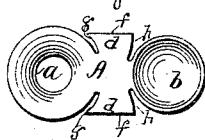


Fig. 4.

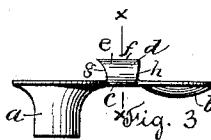


Fig. 5.

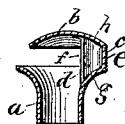
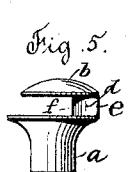



Fig. 6.

Witnesses

Chas. F. Schmelz.
E. G. Ward

Inventor

Ira F. Peck

By his Attorney

S. Scholfield

UNITED STATES PATENT OFFICE.

IRA F. PECK, OF PROVIDENCE, RHODE ISLAND.

LACING-HOOK.

SPECIFICATION forming part of Letters Patent No. 449,449, dated March 31, 1891.

Application filed April 14, 1890. Serial No. 347,863. (No model.)

To all whom it may concern:

Be it known that I, IRA F. PECK, a citizen of the United States, residing at Providence, in the State of Rhode Island, have invented 5 a new and useful Improvement in Lacing-Hooks, of which the following is a specification.

My invention consists in the improved construction of the post which connects the head 10 of the hook to the attaching-base, as herein-after fully set forth.

Figure 1 represents a plan view of the struck-up sheet-metal blank from which the improved lacing-hook is formed. Fig. 2 represents an edge view of the same. Fig. 3 represents an edge view, as in Fig. 2, with the wings of the blank turned in position to form the post. Fig. 4 represents a section taken in the line $\alpha\alpha$ of Fig. 3. Fig. 5 represents a 20 side view of the finished hook. Fig. 6 represents an axial section of the same.

In the accompanying drawings, A represents the struck-up blank from which the lacing-hook is to be made, the said blank being provided with the attaching-eyelet a , the 25 concavo-convex head portion b , and the connecting-bar c , provided with the opposite outwardly-spreading wings d , the said wings in the completed hook being folded inwardly 30 toward each other to form the hollow post e of the hook, as shown in Figs. 3 and 4. These wings are longer at their outer edges f than where they are joined to the connecting-bar of the post e , and the edges g and h adjacent 35 to the eyelet and the head respectively diverge from each other and are preferably curved so that they bear against the inner surfaces of the eyelet and head when the stud

or hook is complete and the head is bent over the eyelet, as shown in Fig. 6. In this manner the wings will act as a brace for supporting the head, and will make a much stronger stud than if the wings were of the same width and had no support when bent into the post and it also prevents the possibility of the lac- 40 ing-cord being drawn in between the wings and the eyelet or the head, which would wear the cord and tend to bend the hook or break off the head.

In the manufacture of the lacing-hooks the 50 spreading wings d may be first folded inwardly toward each other to form the hollow post e . The said post and head portion b are then turned to the position shown in Figs. 5 and 6 to complete the formation of the hook. 55 The extreme outer ends f of the spreading wings may be turned inwardly toward the hollow of the post, as shown in Fig. 4, to prevent abrasion of the lacing-cord by the abutting raw edges of the wings, and the lacing- 60 hook so constructed with a hollow-formed post from sheet metal can be very rapidly and economically manufactured.

I claim as my invention—

A lacing-hook made from a single piece of 65 metal, comprising an attaching-eyelet, a concave head and a hollow post formed of inwardly-turned divergent wings, the extended edges of which project into the eyelet and head, respectively, and bear against the inner 70 surfaces of the eyelet and the head, substantially as described.

IRA F. PECK.

Witnesses:

JOHN S. LYNCH,
S. SCHOLFIELD.