STENT WITH TETHER INTERFACE

A radially-expandable stent (20) is shaped so as to define one or more tether interfaces (50), a lower-securement portion (56), and a higher-securement portion (64). The lower-securement portion (56) extends (a) along at least a contiguous lower-securement axial segment (58) of the stent (20) and (b) circumferentially around a contiguous lower-securement circumferential portion (60) of the stent (20), which lower-securement axial segment (58) and lower-securement circumferential portion (60) include the one or more tether interfaces (50). The higher-securement portion (64) extends (a) along at least a contiguous higher-securement axial segment (65) of the stent (20) and (b) circumferentially around between 215 and 330 degrees of a circumference (C), at all circumferential locations other than those of the lower-securement circumferential portion (60). The stent (20) is shaped so as to define a plurality of outward protrusions (70) at respective circumferential locations (72) around the higher-securement portion (64), and not around the lower-securement portion (56). One or more tethers (34) are coupled to the one or more tether interfaces (50), respectively, and to one or more tissue anchors (30), respectively.

[Continued on next page]
Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority from US Provisional Application 61/783,224, filed March 14, 2013, which is assigned to the assignee of the present application and is incorporated herein by reference.

FIELD OF THE APPLICATION

The present invention relates generally to stents, and specifically to stents for anchoring within body lumens.

BACKGROUND OF THE APPLICATION

Stents are used for various cardiovascular applications, such as to keep coronary vessels open, to act as grafts in abdominal aortic aneurisms ("AAAs"), to anchor vena cava filters, or to act as a frame for aortic valves. Stents are generally cylindrical, conical, or bottle shaped, and are designed to exert a radial force towards the vessel in which they are implanted. The resulting friction force provides securement of the stent to the vessel, thereby preventing migration of the stent after implantation. Techniques for increasing stent securement include providing hooks or barbs, shaping the stent into a truncated cone, and protruding the stent struts.

Functional tricuspid regurgitation (FTR) is governed by several pathophysiologic abnormalities such as tricuspid valve annular dilatation, annular shape, pulmonary hypertension, left or right ventricle dysfunction, right ventricle geometry, and leaflet tethering. Treatment options for FTR are primarily surgical. The current prevalence of moderate-to-severe tricuspid regurgitation is estimated to be 1.6 million in the United States. Of these, only 8,000 patients undergo tricuspid valve surgeries annually, most of them in conjunction with left heart valve surgeries.

SUMMARY OF THE APPLICATION

Some applications of the present invention provide an anchoring system, which comprises a radially-expandable stent, and typically one or more tissue anchors and one or more tethers that connect the stent to the one or more tissue anchors. The stent is configured to be implanted in a body lumen, such as a blood vessel. The stent typically
lacks rotational symmetry, because some of the struts of a circumferential portion of the stent protrude outwardly and thereby define a polygonal shape, while the struts of another contiguous circumferential portion of the stent do not protrude outwardly and thereby define a cylindrical shape.

The circumferential portion with the outward protrusions exhibits higher securement forces with the wall of the body lumen than does the circumferential portion without the outward protrusions, thus allowing relative axial movement of the non-protruding circumferential portion while maintaining the stent as a whole secured in the body lumen. Such selective securement may relieve stresses in the stent frame resulting from cyclic loads applied to the stent (e.g., cyclic cardiac loads) at the one or more tether circumferential locations, thereby enabling higher fatigue endurance in the stent.

For some applications, when unconstrained in a radially-expanded state, the stent is generally tubular and shaped so as to define:

- one or more tether interfaces at one or more tether circumferential locations, respectively, each of which tether interfaces extends circumferentially contiguously around less than 30 degrees of a circumference of the stent;

- a lower-securement portion that extends (a) along at least a contiguous lower-securement axial segment of the stent and (b) circumferentially around a contiguous lower-securement circumferential portion of the stent, which lower-securement axial segment and lower-securement circumferential portion include the one or more tether interfaces;

- a higher-securement portion that extends (a) along at least a contiguous higher-securement axial segment and (b) circumferentially around a higher-securement circumferential portion of the stent at all circumferential locations other than those of lower-securement circumferential portion. The higher-securement circumferential portion typically extends around between 215 and 330 degrees of the circumference of the stent (e.g., at least 270 degrees of the circumference); and

- a plurality of outward protrusions at respective outward circumferential locations around the higher-securement portion, and not around the lower-securement portion.
The outward protrusions of the higher-securement portion cause the higher-securement portion to apply greater securement forces against the body lumen wall than applied by the lower-securement portion, which lacks outward protrusions. Such selective securement allows relative axial reciprocating movement of struts of the lower-securement portion, while maintaining the stent as a whole secured in the body lumen. As described above, such selective securement may thus relieve stresses in the stent frame resulting from cyclic loads applied to the stent (e.g., cyclic cardiac loads) at the one or more tether circumferential locations, thereby enabling higher fatigue endurance in the stent, and reducing the risk of stent migration.

For some applications, the outward protrusions are rotationally-asymmetically distributed around the circumference of the stent, when the stent is unconstrained in the radially-expanded state. Alternatively or additionally, for some applications, the outward protrusions are periodically distributed around the higher-securement circumferential portion, when the stent is unconstrained in the radially-expanded state. Typically, the outward protrusions are blunt, when the stent is unconstrained in the radially-expanded state. Thus, the securement is achieved using the stent struts themselves, without the need for additional features such as barbs or hooks which increase the crimp size of the stent without adding to radial stiffness. Additionally, because the outward protrusions are blunt, the implant may be less likely to cause body lumen dissection than if sharp anchoring elements were provided.

For some applications, struts of the stent are shaped so as to define a plurality of columnar struts and a plurality of circumferential stent meanders, coupled to the columnar struts at respective axial locations. Typically, each of the circumferential stent meanders is disposed around the entire circumference of the stent. A set of one or more of the circumferential stent meanders are shaped so as to define the outward protrusions at the respective outward circumferential locations around the higher-securement portion, when the stent is unconstrained in the radially-expanded state.

For some applications, when the stent is unconstrained in the radially-expanded state, at least one of the circumferential stent meanders is shaped so as to define (a) around the higher-securement portion, the outward protrusions (the circumferential stent meander may thus define a polygon if projected onto a plane perpendicular to a longitudinal axis of the stent), and (b) around the lower-securement portion, an arc of a
circle if the circumferential stent meander is projected onto the plane perpendicular to the longitudinal axis of the stent. For some applications, exactly one, exactly two, exactly three, exactly four, or five or more of the circumferential stent meanders are thus shaped. In contrast, the other circumferential stent meanders do not define the outward protrusions, and thus define respective circles if projected onto the plane perpendicular to the longitudinal axis of the stent. The stent may be shaped to define other polygon-circular shape patterns (e.g., every x circumferential stent meanders may define outward protrusions, such as every second meander, or every third meander). For some applications, the lower-securement portion is generally shaped as a circumferential portion of a circular cylinder.

For some applications, the stent is shaped so as to define one or more (e.g., exactly one) tension-distributing elements, which (a) extend along at least a tether-distribution axial segment of the stent at the one or more tether circumferential locations, respectively, (b) define the one or more tether interfaces, respectively, and (c) are configured to distribute tension applied by the one or more tethers, respectively, along the tether-distribution axial segment.

There is therefore provided, in accordance with an application of the present invention, apparatus including:

- a radially-expandable stent, which, when unconstrained in a radially-expanded state, is generally tubular and shaped so as to define:
 - one or more tether interfaces at one or more tether circumferential locations, respectively, each of which tether interfaces extends circumferentially contiguously around less than 30 degrees of a circumference of the stent,
 - a lower-securement portion that extends (a) along at least a contiguous lower-securement axial segment of the stent and (b) circumferentially around a contiguous lower-securement circumferential portion of the stent, which lower-securement axial segment and lower-securement circumferential portion include the one or more tether interfaces,
 - a higher-securement portion that extends (a) along at least a contiguous higher-securement axial segment of the stent and (b) circumferentially around between 215 and 330 degrees of the circumference, at all circumferential locations other than those of the lower-securement circumferential portion, and
a plurality of outward protrusions at respective circumferential locations around the higher-securement portion, and not around the lower-securement portion;

one or more tissue anchors; and

one or more tethers having respective first longitudinal portions that are coupled to the one or more tether interfaces, respectively, and respective second longitudinal portions, different from the respective first longitudinal portions, which are coupled to the one or more tissue anchors, respectively.

For some applications, the stent is shaped so as to define one or more tension-distributing elements, which (a) extend along at least a tension-distribution axial segment of the stent at the one or more tether circumferential locations, respectively, (b) define the one or more tether interfaces, respectively, and (c) are configured to distribute tension applied by the one or more tethers, respectively, along the tension-distribution axial segment of the stent. For some applications, the tension-distribution axial segment axially coincides with the lower-securement axial segment. For some applications, the one or more tension-distributing elements and the stent are fabricated from a single unit. For some applications, each of the one or more tension-distributing elements has a circumferential arc of between 1 and 15 degrees, when the stent is unconstrained in the radially-expanded state. For some applications, an axial length of each of the tension-distributing elements equals at least 15% of an axial length of the stent. For some applications, the axial length of the stent is between 20 and 120 mm, and the axial length of each of the tension-distributing elements is between 10 and 120 mm, when the stent is unconstrained in the radially-expanded state.

For some applications, the lower-securement axial segment of the stent extends along at least 30%, such as at least 100%, of an axial length of the stent, when the stent is unconstrained in the radially-expanded state.

For some applications, an interior of the stent defines a right circular cylindrical shape having a radius, and the outward protrusions extend radially outward from the cylindrical shape by a distance equal to between 5% and 25% of the radius, when the stent is unconstrained in the radially-expanded state.
For some applications, the one or more tether interfaces are shaped so as to define one or more openings, respectively, through which the one or more tethers are respectively coupled.

For some applications, each of the one or more tethers includes an element selected from the group consisting of: one or more metal struts, one or more metal wires, one or more flexible biocompatible textiles, and one or more flexible bands. For some applications, each of the one or more tethers has a length of between 20 and 120 mm.

For some applications, at least one of the one or more tissue anchors includes a helical tissue anchor.

For some applications, the stent is a first stent, and at least one of the one or more tissue anchors includes a second generally tubular stent.

For any of the applications described above, the one more tether interfaces may include exactly one tether interface at exactly one tether circumferential location, and the one or more tethers may include exactly one tether having a first longitudinal portion that is coupled to the tether interface. For some applications, the tether circumferential location is circumferentially centered in the lower-securement circumferential portion. For some applications, the higher-securement portion extends circumferentially around at least 270 degrees of the circumference of the stent, when the stent is unconstrained in the radially-expanded state. For some applications, the exactly one tether interface is shaped so as to define one or more openings through which the exactly one tether is coupled.

For any of the applications described above, the outward protrusions may be rotationally-asymmetrically distributed around the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the outward protrusions may be periodically distributed around the higher-securement circumferential portion, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the outward protrusions may be blunt, when the stent is unconstrained in the radially-expanded state. Alternatively, for any of the applications described above, the outward protrusions may be shaped so as to define respective barbs, when the stent is unconstrained in the radially-expanded state.
For any of the applications described above, the lower-securement portion may have a circumferential arc that equals at least 200% of an average of circumferential distances between circumferential midpoints of circumferentially-adjacent ones of the outward protrusions around the higher-securement portion, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the stent may include a plurality of columnar struts and a plurality of circumferential stent meanders coupled to the columnar struts at respective axial locations, and one or more of the circumferential stent meanders may be shaped so as to define the outward protrusions at the respective circumferential locations around the higher-securement portion, when the stent is unconstrained in the radially-expanded state. For some applications, when the stent is unconstrained in the radially-expanded state, at least one of the circumferential stent meanders is shaped so as to define (a) around the higher-securement portion, the outward protrusions, and (b) around the lower-securement portion, an arc of a circle if the circumferential stent meander is projected onto a plane perpendicular to a longitudinal axis of the stent. For some applications, at least one of the circumferential stent meanders is shaped so as to define the outward protrusions around the higher-securement portion circumferentially between one or more circumferentially-adjacent pairs of the columnar struts, when the stent is unconstrained in the radially-expanded state. For some applications, at least one of the circumferential stent meanders is shaped so as to define a plurality of apices, at least some of which are shaped so as to define the outward protrusions, when the stent is unconstrained in the radially-expanded state. For some applications, respective radii of the columnar struts are measured between respective inner surfaces of the columnar struts and a central longitudinal axis of the stent, and an average of respective distances between the central longitudinal axis and respective most-outward surfaces of the protrusions equals between 105% and 125% of an average of the radii, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the higher-securement portion may extend circumferentially around at least 270 degrees of the circumference of the stent, such as at least 300 degrees, when the stent is unconstrained in the radially-expanded state.
For any of the applications described above, the higher-securement portion may extend circumferentially around no more than 300 degrees of the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

There is further provided, in accordance with an application of the present invention, apparatus including:

a radially-expandable stent, which, when unconstrained in a radially-expanded state, is generally tubular and shaped so as to define:

a plurality of tether interfaces at a plurality of tether circumferential locations, respectively, each of which tether interfaces extends circumferentially contiguously around less than 30 degrees of a circumference of the stent,

a plurality of lower-securement portions that extend (a) along at least respective contiguous lower-securement axial segments of the stent and (b) circumferentially around respective contiguous lower-securement circumferential portions of the stent, wherein (i) each of the lower-securement axial segments includes one or more of the tether interfaces, (ii) each of the lower-securement circumferential portions includes one or more of the tether interfaces, and (iii) the lower-securement circumferential portions have respective circumferential arcs, each of which is between 30 and 90 degrees,

a plurality of higher-securement portions that extend (a) along at least respective contiguous higher-securement axial segments of the stent and (b) circumferentially around respective higher-securement circumferential portions of the stent, collectively at all circumferential locations other than those of the lower-securement circumferential portions, wherein the lower- and the higher-securement portions alternate around the stent, and

a plurality of outward protrusions at respective circumferential locations around the higher-securement portions, and not around the lower-securement portions, such that each of the higher-securement portions includes one or more of the outward protrusions;

a plurality of tissue anchors; and

a plurality of tethers having respective first longitudinal portions that are coupled to the plurality of tether interfaces, respectively, and respective second longitudinal portions, different from the respective first longitudinal portions, that are coupled the plurality of tissue anchors, respectively.
For some applications, the circumferential arcs of the lower-securement circumferential portions are equal to one another.

For some applications, the higher-securement circumferential portions have respective circumferential arcs that are equal to one another.

For some applications, the circumferential arcs of the lower-securement circumferential portions are equal to one another, and the higher-securement circumferential portions have respective circumferential arcs that are equal to one another.

For some applications, the stent is shaped so as to define a plurality of tension-distributing elements, which (a) extend along at least respective tension-distribution axial segments of the stent at the tether circumferential locations, respectively, (b) define the tether interfaces, respectively, and (c) are configured to distribute tension applied by the tethers, respectively, along the tension-distribution axial segments of the stent, respectively. For some applications, the tension-distribution axial segments axially coincide with the lower-securement axial segments, respectively. For some applications, the tension-distributing elements and the stent are fabricated from a single unit. For some applications, each of the tension-distributing elements has a circumferential arc of between 1 and 15 degrees, when the stent is unconstrained in the radially-expanded state.

For some applications, the lower-securement axial segment of the stent extends along at least 30%, such as at least 100%, of an axial length of the stent, when the stent is unconstrained in the radially-expanded state.

For some applications, the lower-securement axial segment of the stent extends along at least 30%, such as at least 100%, of an axial length of the stent, when the stent is unconstrained in the radially-expanded state.

For some applications, an interior of the stent defines a right circular cylindrical shape having a radius, and the outward protrusions extend radially outward from the cylindrical shape by a distance equal to between 5% and 25% of the radius, when the stent is unconstrained in the radially-expanded state.

For some applications, the tether interfaces are shaped so as to define respective one or more openings through which the tethers are respectively coupled.
For some applications, each of the tethers includes an element selected from the group consisting of: one or more metal struts, one or more metal wires, one or more flexible biocompatible textiles, and one or more flexible bands. For some applications, each of the tethers has a length of between 20 and 120 mm.

For some applications, at least one of the tissue anchors includes a helical tissue anchor.

For some applications, the stent is a first stent, and at least one of the tissue anchors includes a second generally tubular stent.

For any of the applications described above, the stent, when unconstrained in the radially-expanded state, may be shaped so as to define a same number of the tether interfaces and the lower-securement portions. For some applications, the tether circumferential locations are circumferentially centered in the lower-securement portions, respectively.

For any of the applications described above, the outward protrusions may be rotationally-asymmetrically distributed around the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the outward protrusions may be periodically distributed around each of the higher-securement circumferential portions, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the outward protrusions may be blunt, when the stent is unconstrained in the radially-expanded state. Alternatively, for any of the applications described above, the outward protrusions may be shaped so as to define respective barbs, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, each of the circumferential arcs of the lower-securement circumferential portions may equal at least 200% of an average of circumferential distances between circumferential midpoints of circumferentially-adjacent ones of the outward protrusions around the higher-securement portions, when the stent is unconstrained in the radially-expanded state.

For any of the applications described above, the stent may include a plurality of columnar struts and a plurality of circumferential stent meanders coupled to the columnar struts at respective axial locations, and one or more of the circumferential stent meanders
may be shaped so as to define the outward protrusions at the respective circumferential locations around the higher-securement portions, when the stent is unconstrained in the radially-expanded state. For some applications, when the stent is unconstrained in the radially-expanded state, at least one of the circumferential stent meanders is shaped so as to define (a) around the higher-securement portions, the outward protrusions, and (b) around the lower-securement portions, respective arcs of a circle if the circumferential stent meander is projected onto a plane perpendicular to a longitudinal axis of the stent.

For some applications, at least one of the circumferential stent meanders is shaped so as to define the outward protrusions around the higher-securement portions circumferentially between one or more circumferentially-adjacent pairs of the columnar struts, when the stent is unconstrained in the radially-expanded state. For some applications, at least one of the circumferential stent meanders is shaped so as to define a plurality of apices, at least some of which are shaped so as to define the outward protrusions, when the stent is unconstrained in the radially-expanded state. For some applications, respective radii of the columnar struts are measured between respective inner surfaces of the columnar struts and a central longitudinal axis of the stent, and an average of respective distances between the central longitudinal axis and respective most-outward surfaces of the protrusions equals between 105% and 125% of an average of the radii, when the stent is unconstrained in the radially-expanded state.

The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic illustration of an anchoring system, in accordance with an application of the present invention;

Figs. 2A-D are schematic views of a stent of the anchoring system of Fig. 1, in accordance with an application of the present invention;

Figs. 3A-B are schematic illustrations of another configuration of the anchoring system of Fig. 1, in accordance with an application of the present invention;

Figs. 4A-B are schematic illustrations of another radially-expandable stent, in accordance with an application of the present invention;

Figs. 5A-D are schematic illustrations of an exemplary deployment of the
anchoring system of Fig. 1 for repairing a tricuspid valve, in accordance with some applications of the present invention;

Figs. 6A-B are schematic illustrations of yet another radially-expandable stent, in accordance with an application of the present invention; and

Figs. 7A-B are schematic illustrations of a barbed configuration of the anchoring system of Fig. 1, in accordance with an application of the present invention.

DETAILED DESCRIPTION OF APPLICATIONS

Fig. 1 is a schematic illustration of an anchoring system 10, in accordance with an application of the present invention. Anchoring system 10 comprises a radially-expandable stent 20, and typically one or more tissue anchors 30 and one or more tethers 34 that connect the stent to the one or more tissue anchors. Stent 20 is configured to be implanted in a body lumen, such as a blood vessel. For some applications, anchoring system 10 is used for repairing an atrioventricular valve of a patient using tension, such as described hereinbelow with reference to Figs. 5A-D. For these applications, one or more tissue anchors 30 are implantable in a vicinity of the atrioventricular valve, and stent 20 is expanded in a portion of a blood vessel, e.g., a superior vena cava, an inferior vena cava, a coronary sinus, or a hepatic vein, e.g., the left hepatic vein, the right hepatic vein, or the middle hepatic vein.

Reference is still made to Fig. 1, and is additionally made to Figs. 2A-D, which are schematic views of stent 20, in accordance with an application of the present invention. Figs. 2A-B are side-views of stent 20. For sake of illustration, Fig. 2C shows stent 20 in a flattened state, in which stent 20, when unconstrained in a radially-expanded state, has been cut longitudinally and flattened. It is noted that because of the particular flattened view in Fig. 2C, outward protrusions 70, described below, are not visible; these protrusions are in fact present. Fig. 2D is an end-view of stent 20.

Stent 20 typically comprises a plurality of interconnected superelastic metallic struts 40. Stent 20 may be manufactured by expanding a laser-slotted metallic tube, by chemically etching a flat sheet, by shaping a single wire, by assembling individual wire elements, or by any other method of construction known in the art. Stent 20 typically comprises a metal, such as a shape-memory alloy, e.g., Nitinol.

Stent 20, when unconstrained in a radially-expanded state (i.e., no forces are
applied to the stent by a delivery tool, wall of a body vessel, or otherwise), such as shown in Figs. 1 and 2A-D, is generally tubular and shaped so as to define:

- one or more tether interfaces 50 at one or more tether circumferential locations 52, respectively, each of which tether interfaces 50 extends circumferentially contiguously around less than 30 degrees of a circumference C of stent 20 (labeled in Fig. 2C). In the configuration shown in Figs. 1 and 2A-D, stent 20 is shaped so as to define exactly one tether interface 50 at exactly one tether interface location 52, which extends circumferentially contiguously around less than 30 degrees of circumference C of stent 20;

- a lower-securement portion 56 that extends (a) along at least a contiguous lower-securement axial segment 58 of stent 20 (labeled in Figs. 2A and 2C) and (b) circumferentially around a contiguous lower-securement circumferential portion 60 of stent 20, which lower-securement axial segment 58 and lower-securement circumferential portion 60 include the one or more tether interfaces 50 (e.g., exactly one tether interface 50, as shown in Figs. 1 and 2A-D). Typically, lower-securement axial segment 58 extends along at least 30%, e.g., at least 70%, or 100% (as shown), of an axial length LI of stent 20;

- a higher-securement portion 64 that extends (a) along at least a contiguous higher-securement axial segment 65 and (b) circumferentially around a higher-securement circumferential portion 66 of stent 20 at all circumferential locations other than those of lower-securement circumferential portion 60. Higher-securement circumferential portion 66 typically extends around at least 215 degrees of circumference C (e.g., at least 270 degrees, or at least 300 degrees), no more than 330 degrees of circumference C (e.g., no more than 300 degrees), and/or between 215 and 330 degrees of circumference C (e.g., between 270 and 330 degrees, such as between 300 and 330 degrees, or between 270 and 300 degrees); and

- a plurality of outward protrusions 70 at respective outward circumferential locations 72 around higher-securement portion 64, and not around lower-securement portion 56.

Outward protrusions 70 of higher-securement portion 64 cause higher-securement...
portion 64 to apply greater securement forces against the body lumen wall than applied by lower-securement portion 56, which lacks outward protrusions. Such selective securement allows relative axial reciprocating movement of struts 40 of lower-securement portion 56, while maintaining the stent as a whole secured in the body lumen. Such selective securement may thus relieve stresses in the stent frame resulting from cyclic loads applied to the stent (e.g., cyclic cardiac loads) at the one or more tether circumferential locations 52, thereby on the one hand enabling higher fatigue endurance in the stent, while on the other hand reducing the risk of stent migration.

Each of outward protrusions 70 is shaped so as to include a radially outward directional component. Optionally, each of the protrusions is shaped so as to additionally include an axial directional component, i.e., to point toward one end of the stent, typically pointing against the direction of axial force.

For some applications, as shown in Figs. 1 and 2A-D, outward protrusions 70 are rotationally-asymmetrically distributed around circumference C of stent 20, when stent 20 is unconstrained in the radially-expanded state. Alternatively or additionally, for some applications, also as shown in Figs. 1 and 2A-D, outward protrusions 70 are periodically distributed around higher-securement circumferential portion 66, when stent 20 is unconstrained in the radially-expanded state.

Typically, as shown in Figs. 1 and 2A-D, outward protrusions 70 are blunt, when stent 20 is unconstrained in the radially-expanded state. Alternatively, outward protrusions 70 are shaped so as to define respective barbs 530, when stent 20 is unconstrained in the radially-expanded state, such as described hereinbelow with reference to Figs. 7A-B.

For some applications, an axial length of lower-securement axial segment 58 is greater than an axial length of higher-securement axial segment 65, such as at least 10% greater, e.g., at least 30% or at least 50% greater. Typically, lower-securement axial segment 58 and higher-securement axial segment 65 partially axially overlap. For some applications, higher-securement axial segment 65 is aligned entirely axially within lower-securement axial segment 58 (although not circumferentially aligned therewith).

For some applications (configuration not shown), stent 20 includes a securement portion that does not axially overlap with either lower-securement axial segment 58 or higher-securement axial segment 65, and is typically located near the end of stent 20.
opposite the end nearest the one or more tether interfaces 50.

For some applications, struts 40 are shaped so as to define a plurality of columnar struts 74 and a plurality of circumferential stent meanders 76 (defining a plurality of apices), coupled to columnar struts 74 at respective axial locations. Typically, each of circumferential stent meanders 76 is disposed around the entire circumference C of stent 20. For example, as perhaps may best seen in Fig. 2C, stent 20 may have eight circumferential stent meanders 76 and 14 columnar struts 74. It is to be understood that other configurations are possible, with any number of circumferential stent meanders 76. Typically, stent 20 comprises between three circumferential stent meanders 76 (for short stents, e.g., for a valve frame) and 20 circumferential stent meanders 76 (for long stents, e.g., for stent-grafts for treating abdominal aortic aneurisms ("AAAs")), and any number of columnar struts 74, typically between six and 20.

A set 80 of one or more of circumferential stent meanders 76 are shaped so as to define outward protrusions 70 at respective outward circumferential locations 72 around higher-securement portion 64, when stent 20 is unconstrained in the radially-expanded state. For some applications, each of circumferential stent meanders 76 of set 80 defines a number of outward protrusions 70 equal to between 20% and 100% of the total number of apices of the stent meander around the entire circumference C of the stent, such as between 50% and 90%, e.g., 86% (12/14). For some applications, each of circumferential stent meanders 76 of set 80 defines between 3 and 20 of outward protrusions 70, such as between 6 and 14 of outward protrusions 70, e.g., 12 of outward protrusions.

For some applications, when stent 20 is unconstrained in the radially-expanded state, at least one of circumferential stent meanders 76 is shaped so as to define:

- around higher-securement portion 64, outward protrusions 70 (the circumferential stent meander may thus define a polygon if projected onto a plane perpendicular to a longitudinal axis 82 of stent 20); and

- around lower-securement portion 56, an arc of a circle if the circumferential stent meander is projected onto the plane perpendicular to longitudinal axis 82 of stent 20.

For some applications, exactly one, exactly two, exactly three (as shown), exactly four, or five or more of circumferential stent meanders 76 are thus shaped. For example, first,
third, and fifth distal circumferential stent meanders 76A, 76C, and 76E include:

- respective portions around higher-securement portion 64, which define outward protrusions 70 (and thus define respective polygons if projected onto the plane perpendicular to longitudinal axis 82 of stent 20), and

- respective portions around lower-securement portion 56, which do not define outward protrusions 70 (and thus define respective arcs of a circle if projected onto the plane perpendicular to longitudinal axis 82 of stent 20).

In contrast, second, fourth, sixth, seventh, and eighth circumferential stent meanders 76B, 76D, 76F, 76G, and 76H do not define outward protrusions 70, and thus define respective circles if projected onto the plane perpendicular to longitudinal axis 82 of stent 20. Stent 20 may be shaped to define other polygon-circular shape patterns (e.g., every x circumferential stent meanders 76 may define outward protrusions, such as every second meander, or every third meander). For some applications, lower-securement portion 56 is generally shaped as a circumferential portion of a circular cylinder. Such providing of lower-securement axial spaces between circumferential stent meanders may facilitate better fatigue resistance. In addition, the securement is provided by a plurality of circumferential stent meanders 76 at a respective plurality of axial locations, rather than only by a single row at one end of the stent, or single rows at each end of the stent, as in some conventional stents.

For some applications, when stent 20 is unconstrained in the radially-expanded state, at least one of circumferential stent meanders 76 is shaped so as to define outward protrusions 70 around higher-securement portion 64 circumferentially between one or more circumferentially-adjacent pairs 84 of columnar struts 74, such as between every circumferentially-adjacent pair of columnar struts 74 around higher-securement portion 64, as shown). For some applications, exactly one, exactly two, exactly three (as shown and described above), exactly four, or five or more of circumferential stent meanders 76 are thus shaped.

For some applications, outward protrusions 70 are cascaded around higher-securement portion 64.

For some applications, at least one of circumferential stent meanders 76 is shaped so as to define a plurality of apices 86, at least some of which are shaped so as to define
outward protrusions 70, when stent 20 is unconstrained in the radially-expanded state.

For some applications, when stent 20 is unconstrained in the radially-expanded state, respective radii R of columnar struts 74 are measured between respective inner surfaces of columnar struts 74 and central longitudinal axis 82 of the stent. An average of respective distances D1 between respective most-outward surfaces 88 of outward protrusions 70 equals between 105% and 125% of an average of radii R. For applications in which stent 20 is shaped generally as a circular cylinder, radii R equal one another, and distances D1 typically equal one another. Alternatively or additionally, for some applications, when stent 20 is unconstrained in the radially-expanded state, outward protrusions 70 have a length P of at least 1 mm, no more than 5 mm, and/or between 1 and 5 mm, measured from an outer surface 90 of stent 20 other than at the protrusions. Further alternatively or additionally, for some applications, wherein an interior of stent 20 defines a right circular cylindrical shape having radius R, and outward protrusions 70 extend radially outward from the cylindrical shape by a distance equal to between 5% and 25% of radius R, when stent 20 is unconstrained in the radially-expanded state.

The dimensions of stent 20 may vary in order to fit the body lumen in which it is placed, according to the medical application. Typically, when unconstrained in the radially-expanded state, stent 20 has (a) an inner diameter D2 that equals about 10-30% larger than the inner diameter of the body lumen, and/or (b) axial length L1 that equals between 100% and 600% of inner diameter D2. For example, for applications in which stent 20 is configured to be implanted a vena cava for tethering anchor 30 at the tricuspid valve, such as described hereinbelow with reference to Figs. 5A-D, (a) inner diameter D2 may be at least 25 mm, no more than 60 mm, and/or between 25 and 60 mm, (b) stent length L1 may be at least 25 mm, no more than 100 mm, and/or between 25 and 100 mm, and (c) protrusion length P may be 3 mm. For applications in which stent 20 is configured to be implanted in the abdominal aorta, (a) inner diameter D2 may be at least 30 mm, no more than 50 mm, and/or between 30 and 50 mm, (b) stent length L1 may be at least 50 mm, no more than 300 mm, and/or between 50 and 300 mm, and (c) protrusion length P may be 5 mm. For some applications, stent length L1 is at least 20 mm, no more than 120 mm, and/or between 20 and 120 mm, when stent 20 is unconstrained in the radially-expanded state.

Typically, inner diameter D2 is constant along the stent, i.e., the stent is not flared
at either end.

For some applications, stent 20 is shaped so as to define one or more (e.g., exactly one) tension-distributing elements 94, which (a) extend along at least a tether-distribution axial segment 95 of stent 20 at the one or more tether circumferential locations 52, respectively, (b) define the one or more tether interfaces 50, respectively, and (c) are configured to distribute tension applied by the one or more tethers 34, respectively, along tether-distribution axial segment 95. For some applications, as shown, tether-distribution axial segment 95 axially coincides with lower-securement axial segment 58. Optionally, the one or more tension-distributing elements 94 and stent 20 are fabricated from a single unit.

For some applications, each of the one or more tension-distributing elements 94 has a circumferential arc A1 (labeled in Fig. 2C) of at least 1 degree, no more than 15 degrees, and/or between 1 and 15 degrees when stent 20 is unconstrained in the radially-expanded state. For some applications, an axial length L2 of each of tension-distributing elements 94 equals at least 15% of axial length L1 of stent 20, such as at least 75% of axial length L1 of stent 20. For some applications, such as when stent length L1 is at least 20 mm, no more than 120 mm, and/or between 20 and 120 mm, axial length L2 of each of tension-distributing elements 94 is at least 10 mm, no more than 120, and/or between 10 and 120 mm, when stent 20 is unconstrained in the radially-expanded state.

For some applications, lower-securement portion 56 has a circumferential arc A2 that equals at least 150% (e.g., at least 200%) of an average of circumferential distances D3 between circumferential midpoints 96 of circumferentially-adjacent ones 98 of outward protrusions 70 around higher-securement portion 64, when stent 20 is unconstrained in the radially-expanded state.

Reference is again made to Fig. 1. The one or more tethers 34 have respective first longitudinal portions 100 that are coupled to the one or more tether interfaces 50, respectively, and respective second longitudinal portions 102, different from respective first longitudinal portions 100, which are coupled to the one or more tissue anchors 30, respectively. For some applications, the one or more tether interfaces 50 are shaped so as to define one or more openings 104, respectively, through which the one or more tethers 34 are respectively coupled.

For some applications, each of the one or more tethers 34 comprises an element
selected from the group consisting of: one or more metal struts, one or more metal wires,
one or more flexible biocompatible textiles, and one or more flexible bands. For some
applications, each of the one or more tethers 34 has a length of at least 20 mm, no more
than 120 mm, and/or between 20 and 120 mm.

For some applications, at least one of the one or more tissue anchors 30 comprises
a helical tissue anchor. For some applications, the helical tissue anchor comprises a
generally helical shaftless tissue-coupling element 106 and, typically, a proximal head
108. For some applications, such as described in US Provisional Application 61/750,427,
filed January 9, 2013, which is assigned to the assignee of the present application and is
incorporated herein by reference, helical tissue-coupling element 106 has (a) a first axial
thickness along a first axial portion of a shaftless helical portion of the helical tissue-
coupling element, and (b) a second axial thickness along a second axial portion of the
shaftless helical portion more distal than the first axial portion. The second axial
thickness is greater than the first axial thickness. The first and second axial thicknesses
are measured along a longitudinal axis of the helical tissue-coupling element.
Alternatively or additionally, the helical tissue-coupling element has (a) a first axial yield
strength along the first axial portion, and (b) a second axial yield strength along the
second axial portion (more distal than the first axial portion). The second axial yield
strength is greater than the first axial yield strength. Further alternatively or additionally,
the helical tissue-coupling element has (a) a first axial stiffness along the first axial
portion, and (b) a second axial stiffness along the second axial portion (more distal than
the first axial portion). The second axial stiffness is greater than the first axial stiffness.

For some applications, such as described in the above-mentioned '427 application,
the helical tissue-coupling element 106 is shaped so as to define (a) a first surface along a
first axial surface characteristic portion of the shaftless helical portion of the helical
tissue-coupling element, which first surface has a first surface characteristic, and (b) a
second surface along a second axial surface characteristic portion of the shaftless helical
portion different from the first axial surface characteristic portion. The second surface has
a second surface characteristic that is configured to inhibit rotation of the helical tissue-
coupling element to a greater extent than does the first surface characteristic. The first
surface characteristic may, for example, be a high level of smoothness.

For some applications, stent 20 is a first stent, and at least one of the one or more
tissue anchors 30 comprises a second generally tubular stent. A similar two-stent configuration (albeit without the stent configurations described herein) is shown, for example, in Fig. 4C of PCT Publication WO 2013/011502, which is incorporated herein by reference. For some applications, the second stent is expanded in a portion of a second blood vessel of the patient, e.g., the superior vena cava, the inferior vena cava, the coronary sinus, or a hepatic vein, e.g., the left hepatic vein, the right hepatic vein, or the middle hepatic vein.

For some applications, as shown in Figs. 1 and 2A-D, the one more tether interfaces 50 comprise exactly one tether interface 50 at exactly one tether circumferential location 52, and the one or more tethers 34 comprise exactly one tether 34 having a first longitudinal portion that is coupled to the tether interface. In some of these applications, higher-securement portion 64 extends circumferentially around at least 270 degrees of circumference C of stent 20, when stent 20 is unconstrained in the radially-expanded state.

For some applications, tether circumferential location 34 is circumferentially centered in lower-securement circumferential portion 60, as shown in Figs. 2A-D. Alternatively, tether circumferential location 34 is not circumferentially centered in lower-securement circumferential portion 60 (configuration not shown). For some applications, the exactly one tether interface is shaped so as to define the one or more openings 104 through which the exactly one tether is coupled.

Reference is now made to Figs. 3A-B, which are schematic illustrations of another configuration of anchoring system 10, in accordance with an application of the present invention. In this configuration, anchoring system 10 comprises a radially-expandable stent 120, which is one configuration of stent 20 described hereinabove with reference to Figs. 1 and 2A-D. As mentioned above, anchoring system 10 typically comprises one or more tissue anchors 30 and one or more tethers 34 that connect the stent to the one or more tissue anchors. Also as mentioned above, stent 20, when unconstrained in the radially-expanded state (i.e., no forces are applied to the stent by a delivery tool, wall of a body vessel, or otherwise), is shaped so as to define one or more tether interfaces 50 at one or more tether circumferential locations 52, respectively.

In the configuration shown in Figs. 3A-B, anchoring system comprises two tissue anchors 30 and two tethers 30 that connect stent 120 to the two tissue anchors,
respectively. Stent 120 is shaped so as to define two tether interfaces 50 at two tether interface locations 52, respectively, each of which extends circumferentially contiguously around less than 30 degrees of circumference C of stent 20. Two tethers 34 have respective first longitudinal portions 100 that are coupled to two tether interfaces 50, respectively, and two respective second longitudinal portions 102, different from respective first longitudinal portions 100, which are coupled to two tissue anchors 30, respectively.

This configuration may be useful for applying tension to two sites to which the two anchors are coupled, such as two sites of the tricuspid valve. For example, this configuration may be used in combination with the anchor placement described with reference to, and shown in, Fig. 2B and/or Fig. 3B of above-mentioned PCT Publication WO 2013/011502, mutatis mutandis.

Reference is now made to Figs. 4A-B, which are schematic illustrations of another radially-expandable stent 220, in accordance with an application of the present invention. Figs. 4A and 4B are side- and end-views of stent 220, respectively. In this configuration, anchoring system 10 comprises radially-expandable stent 220, a plurality (e.g., two) of tissue anchors 30 and a plurality (e.g., two) of tethers 34 that connect the stent to the one or more tissue anchors. Other than as described below, stent 220 may have any of the features of stent 20, described hereinabove with reference to Figs. 1 and 2A-D.

Stent 220 typically comprises a plurality of interconnected superelastic metallic struts 40, and may be manufactured as described hereinabove regarding stent 20. Stent 220, when unconstrained in a radially-expanded state (i.e., no forces are applied to the stent by a delivery tool, wall of a body vessel, or otherwise), such as shown in Figs. 4A-D, is generally tubular and shaped so as to define:

- a plurality of interfaces 50 at a plurality of tether circumferential locations 52, respectively, each of which tether interfaces 50 extends circumferentially contiguously around less than 30 degrees of a circumference of stent 220. In the configuration shown in Figs. 4A-B, stent 220 is shaped so as to define two tether interfaces 50 at two tether interface locations 52;

- a plurality of lower-securement portions 56 that extend (a) along at least respective contiguous lower-securement axial segments 58 of stent 220 and (b) circumferentially around respective contiguous lower-securement
circumferential portions 60 of stent 220. Each of lower-securement axial segments 58 includes one or more of tether interfaces 50 (e.g., exactly one of tether interfaces 50, as shown in Figs. 4A-B). Each of lower-securement circumferential portions 60 includes one or more of tether interfaces 50 (e.g., exactly one of tether interfaces 50, as shown in Figs. 4A-B). Lower-securement circumferential portions 56 have respective circumferential arcs, each of which typically is between 30 and 90 degrees;

- a plurality of higher-securement portions 64 that extend (a) along at least respective contiguous higher-securement axial segments 65 and (b) circumferentially around respective higher-securement circumferential portions 66 of stent 220, collectively at all circumferential locations other than those lower-securement circumferential portions 60. Lower- and higher-securement portions 56 and 64 alternate around stent 220 (such that there are an equal number of lower- and higher-securement portions 56 and 64); and

- a plurality of outward protrusions 70 at respective outward circumferential locations 72 around higher-securement portions 64, and not around lower-securement portions 56, such that each of higher-securement portions 64 includes one or more of outward protrusions 70.

Outward protrusions 70 of higher-securement portion 64 cause higher-securement portion 64 to apply greater securement forces against the body lumen wall than applied by lower-securement portion 56, which lacks outward protrusions. Such selective securement allows relative axial reciprocating movement of struts 40 of lower-securement portion 56, while maintaining the stent as a whole secured in the body lumen. Such selective securement may thus relieve stresses in the stent frame resulting from cyclic loads applied to the stent (e.g., cyclic cardiac loads) at tether circumferential locations 52, thereby enabling higher fatigue endurance in the stent.

For some applications, the circumferential arcs of lower-securement circumferential portions 60 are equal to one another. Alternatively or additionally, for some applications, higher-securement circumferential portions 66 have respective circumferential arcs that are equal to one another.

For some applications, stent 220, when unconstrained in the radially-expanded state, is shaped so as to define a same number of tether interfaces 50 and lower-
securement portions 56. For some applications, tether circumferential locations 52 are circumferentially centered in lower-securement circumferential portions 60, respectively, as shown in Figs 4A-B. Alternatively, tether circumferential locations 52 are not circumferentially centered in lower-securement circumferential portions 60, respectively (configuration not shown).

For some applications, struts 40 are shaped so as to define the plurality of columnar struts 74 and the plurality of circumferential stent meanders 76 coupled to columnar struts 74 at respective axial locations. Typically, each of circumferential stent meanders 76 is disposed around the entire circumference of stent 220. For some applications, when stent 220 is unconstrained in the radially-expanded state, at least one of circumferential stent meanders 76 is shaped so as to define (a) around higher-securement portions 64, outward protrusions 70, and (b) around lower-securement portions 56, respective arcs of a circle if the circumferential stent meander is projected onto a plane perpendicular to longitudinal axis 82 of stent 220.

As mentioned above, stent 220 may have any of the features of stent 20, described hereinabove with reference to Figs. 1 and 2A-D. Such features include, but are not limited to, (a) a plurality of tension-distributing elements 94, which are configured to distribute tension applied by tethers 34, respectively, along the axial portion of stent 220, (b) the rotationally asymmetric distribution of outward protrusions 70 around the circumference of stent 220, when stent 220 is unconstrained in the radially-expanded state, and (c) the periodic distribution of outward protrusions 70 around each of higher-securement circumferential portions 66, when stent 220 is unconstrained in the radially-expanded state.

The configuration described with reference to Figs. 4A-B may be useful for applying tension to two sites to which the two anchors are coupled, such as two sites of the tricuspid valve. For example, this configuration may be used in combination with the anchor placement described with reference to, and shown in, Fig. 2B and/or Fig. 3B of above-mentioned PCT Publication WO 2013/011502, mutatis mutandis.

Reference is now made to Figs. 5A-D, which are schematic illustrations of an exemplary deployment of anchoring system 10 for repairing a tricuspid valve 304 of a heart 302 of a patient, in accordance with some applications of the present invention. Although Figs. 5A-D show the deployment of stent 20, described hereinabove with
reference to Figs. 1 and 2A-D, the same techniques, mutatis mutandis, may be used for deploying stent 120, described hereinabove with reference to Figs. 3A-B, stent 220, described hereinabove with reference to Figs. 4A-B, and stent 420, described hereinbelow with reference to Figs. 6A-B.

System 10 is used for adjusting a distance between first and second implantation sites by pulling to apply tension to or relaxing tether 34 and/or by applying tension to at least one of tissue anchor 30 and stent 20. Responsively, a distance between the leaflets of tricuspid valve 304 is adjusted to reduce and eliminate regurgitation through valve 304, and thereby, valve 304 is repaired. For some applications, tether 34 is pulled or relaxed by manipulating stent 20, as is described hereinbelow.

For some applications, stent 20 is advanced toward and expanded in a portion of an inferior vena cava 308 (such as shown in Figs. 5A-D) or a superior vena cava 310 (such as shown in Figs. 1E-G of the above-mentioned '601 publication), i.e., a blood vessel that is in direct contact with a right atrium 306 of heart 302.

Fig. 5A shows the advancement of a catheter 322 toward atrium 306 until a distal end 323 of the catheter is disposed within atrium 306. The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal echo, and/or echocardiography. For some applications, the procedure begins by advancing a semi-rigid guidewire into right atrium 306 of the patient. The guidewire provides a guide for the subsequent advancement of catheter 322 therealong and into the right atrium. Catheter 322 typically comprises a 14-20 F sheath, although the size may be selected as appropriate for a given patient. Catheter 322 is advanced through vasculature into right atrium 306 using a suitable point of origin typically determined for a given patient, such as described in PCT Publication WO 2011/089601, which is assigned to the assignee of the present application and is incorporated herein by reference.

Once distal end 323 of catheter 322 is disposed within atrium 306, an anchor-deployment tube 324 is extended from within catheter 322 beyond distal end 323 thereof and toward a first implantation site 330. Anchor-deployment tube 324 holds tissue anchor 30 and a distal portion of tether 34. For some applications, tube 324 is steerable, as is known in the catheter art, while for other applications, a separate steerable element may be coupled to anchor-deployment tube 324. Under the aid of imaging guidance, anchor-deployment tube 324 is advanced toward first implantation site 330 until a distal end
thereof contacts cardiac tissue of heart 302 at first implantation site 330. Anchor-deployment tube 324 facilitates atraumatic advancement of tissue anchor 30 toward first implantation site 330. For such applications in which anchor-deployment tube 324 is used, stent 20 is compressed within a portion of tube 324.

As shown, first implantation site 330 comprises a portion of an annulus of tricuspid valve 304. Implantation site 330 typically comprises a portion of the annulus of valve 304 that is between (1) the middle of the junction between the annulus and anterior leaflet 314, and (2) the middle of the junction between the annulus and posterior leaflet 316, e.g., between the middle of the junction between the annulus and anterior leaflet 314 and the commissure between the anterior and posterior leaflets. That is, tissue anchor 30 is coupled to, e.g., screwed into, the fibrous tissue of the tricuspid annulus close to the commissure in between anterior leaflet 314 and posterior leaflet 316. Implantation site 330 is typically close to the mural side of valve 304. For such applications, the drawing together of first and second implantation sites 330 and 352 cinches valve 304 and may create a bicuspidization of tricuspid valve 304, and thereby achieve stronger coaptation between anterior leaflet 314 and septal leaflet 312.

As shown in Fig. 5B, an anchor-manipulating tool (not shown for clarity of illustration), which is slidably disposed within anchor-deployment tube 324, is slid distally within tube 324 so as to push distally tissue anchor 30 and expose tissue anchor 30 from within tube 324. For some applications of the present invention, the anchor-manipulating tool is reversibly coupled to tissue anchor 30 and facilitates implantation of tissue anchor 30 in the cardiac tissue.

The physician rotates the anchor-manipulating tool from a site outside the body of the patient in order to rotate tissue anchor 30 and thereby screw at least a portion of tissue anchor 30 in the cardiac tissue. Alternatively, system 320 is provided independently of the anchor-manipulating tool, and anchor-deployment tube 324 facilitates implantation of tissue anchor 30 in the cardiac tissue. The physician rotates anchor-deployment tube 324 from a site outside the body of the patient in order to rotate tissue anchor 30 and thereby screw at least a portion of tissue anchor 30 in the cardiac tissue.

As shown in Fig. 5C, following the implantation of tissue anchor 30 at first implantation site 330, anchor-deployment tube 324 is retracted within catheter 322 in
order to expose tether 34. Subsequently, tether 34 is tensioned in order to repair tricuspid valve 304, as described hereinbelow.

For some applications, prior to pulling the portion of tether 34 that is disposed between tissue anchor 30 and distal end 323 of catheter 322, a mechanism that facilitates the application of a pulling force to tether 34 is fixed in place, as described in the above-mentioned '601 publication.

For some applications, catheter 322 is reversibly coupled to a proximal portion of tether 34 by being directly coupled to the proximal portion of tether 34 and/or catheter 322 is reversibly coupled to stent 20. For example, catheter 322 may be reversibly coupled to stent 20 by the stent's application of a radial force against the inner wall of catheter 322 because of the tendency of stent 20 to expand radially. Following implantation of tissue anchor 30, catheter 322 (or an element disposed therein) is then pulled proximally to apply tension to tether 34, which, in such an application, functions as a tensioning element. For some applications, catheter 322 pulls on stent 20 in order to pull tether 34. For other applications, catheter 322 pulls directly on tether 34. For yet other applications, a pulling mechanism pulls on tether 34, as is described with reference to Figs. 5A-D in the above-referenced '601 publication.

Pulling tether 34 pulls taut the portion of tether 34 that is disposed between tissue anchor 30 and distal end 323 of catheter 322. Responsively to the pulling of tether 34, at least the anterior and septal leaflets of tricuspid valve 304 are drawn together because the geometry of the annulus and/or of the wall of atrium 306 is altered in accordance with the pulling of tether 34 and depending on the positioning of tissue anchor 30.

For some applications, during the pulling of tether 34 by catheter 322, a level of regurgitation of tricuspid valve 304 is monitored. Tether 34 is pulled until the regurgitation is reduced or ceases. Once the physician determines that the regurgitation of valve 304 is reduced or ceases, and valve 304 has been repaired, the physician decouples catheter 322 from stent 20 disposed therein and/or from tether 34, and then retracts catheter 322 in order to expose stent 20. During the advancement of catheter 322 toward atrium 306, stent 20 is disposed within a distal portion of catheter 322 in a compressed state. Following initial retracting of catheter 322, stent 20 is exposed and is allowed to expand and contact a wall of inferior vena cava 308.

Fig. 5D shows stent 20 fully exposed and fully expanded, and thus implanted in
inferior vena cava 308. Stent 20 maintains the tension of tether 34 on tissue anchor 30 and thereby on the portion of cardiac tissue to which tissue anchor 30 is coupled.

The techniques described with reference to Figs. 5A-B may be performed in combination with techniques described in the above-mentioned ‘601 publication, mutatis mutandis.

As described above, for some applications the techniques described herein are used to repair the tricuspid valve. The techniques described herein may also be used to repair the mitral valve of the patient, mutatis mutandis.

Reference is now made to Figs. 6A-B, which are schematic illustrations of another radially-expandable stent 420, in accordance with an application of the present invention. Figs. 6A and 4B are side- and end-views of stent 420, respectively. In this configuration, anchoring system 10 comprises radially-expandable stent 420, one or more tissue anchors 30, and one or more tethers 34 that connect the stent to the one or more tissue anchors. Other than as described below, stent 420 may have any of the features of stent 20, described herein above with reference to Figs. 1 and 2A-D, stent 120, described herein above with reference to Figs. 3A-D, and/or stent 220, described herein above with reference to Figs. 4A-D.

Unlike stents 20, 120, and 220, stent 420 is not shaped so as to define lower-securement portion 56. Thus, the portion of stent 420 that includes one or more tether interfaces 50 (e.g., exactly one tether interface 50) at one or more tether circumferential locations 52 (e.g., at exactly one tether circumferential location 52) provides the same level of securement to the body lumen as do the other portions of the stent.

When stent 420 is unconstrained in the radially-expanded state (i.e., no forces are applied to the stent by a delivery tool, wall of a body vessel, or otherwise), only a portion of circumferential stent meanders 76 (e.g., exactly one, exactly two, exactly three (as shown), exactly four, or five or more of circumferential stent meanders 76) are shaped so as to define one or more outward protrusions. For example, first, third, and fifth distal circumferential stent meanders 76A, 76C, and 76E may define outward protrusions 70, and thus define respective polygons if projected onto the plane perpendicular to longitudinal axis 82 of stent 420. In contrast, the other circumferential stent meanders may not define any outward protrusions 70, and thus define respective circles if projected onto the plane perpendicular to longitudinal axis 82 of stent 420. Stent 420 may be
shaped to define other polygon-circular shape patterns (e.g., every x circumferential stent meanders 76 may define outward protrusions, such as every second meander, or every third meander). Such providing of lower-securement axial spaces between circumferential stent meanders may facilitate better tissue fixation by scattering the protrusions.

For some applications, when stent 420 is unconstrained in the radially-expanded state, at least one of circumferential stent meanders 76 is shaped so as to define outward protrusions 70 circumferentially between one or more circumferentially-adjacent pairs 84 of columnar struts 74, such as between every circumferentially-adjacent pair of columnar struts 74. For some applications, exactly one, exactly two, exactly three (as shown and described above), exactly four, or five or more of circumferential stent meanders 76 are thus shaped.

For some applications, outward protrusions 70 are cascaded around stent 420.

Reference is now made to Figs. 7A-B, which are schematic illustrations of a barbed configuration of anchoring system 10, in accordance with an application of the present invention. In this configuration, anchoring system 10 comprises a radially-expandable stent 520, which is one configuration of stent 20 described hereinabove with reference to Figs. 1 and 2A-D. As mentioned above, anchoring system 10 typically comprises one or more tissue anchors 30 and one or more tethers 34 that connect the stent to the one or more tissue anchors. Also as mentioned above, stent 20, when unconstrained in the radially-expanded state, is shaped so as to define one or more tether interfaces 50 at one or more tether circumferential locations 52, respectively.

In this configuration, unlike the configurations shown in the other figures, outward protrusions 70 are shaped so as to define respective barbs 530, when stent 520 is unconstrained in the radially-expanded state (i.e., no forces are applied to the stent by a delivery tool, wall of a body vessel, or otherwise). The barbs may aid in securing higher-securement portion 64 of stent 520 to the vessel wall. The barbs may protrude from one or more of columnar struts 74 of higher-securement portion 64, as shown, or from one or more of circumferential stent meanders 76 of higher-securement portion 64 (configuration not shown).

Medical applications
The anchoring system and stents described herein may be used for a number of different medical applications, including but not limited to the following applications. For some of these applications, tissue anchors 30 and tethers 34 are not provided.

- The anchor system and stents described herein may be used in tricuspid valve repair, such as described hereinabove with reference to Figs. 5A-D. One of the stents may be used as an anchor point in the vena cava, to tether the tissue anchor which is coupled to the native valve (typically at the anterior-posterior comissure), thus lowering the anterior-posterior comissure and diminishing regurgitation.

- The stents described herein may be used in aortic transcatheter valve implantation (TAVI), as a frame for the valve. The unique designs of the stent allow anchoring the prosthetic valve more securely to the native annulus, thereby preventing the prosthetic valve from migration at early and midterm follow-up. The stents described herein may also be used for mitral, pulmonary, and tricuspid replacement, using a transfemoral, transaxillary, transaortic, or transapical approach.

- The stents described herein may be coupled to a filter, and may be used, for example, as a vena cava filter in patients suffering from a disorder of coagulation, in order to prevent pulmonary thromboembolism.

- The stents described herein may be used as a transjugular intrahepatic portacaval shunt (TIPS) in patients suffering from cirrhosis and portal hypertension.

- The stents described herein may be used for endoprosthesis placement in aortic abdominal and bisiliac vascular aneurism.

- The stents described herein may be used for thoracic endovascular aortic repair (TEVAR) or for traditional open surgery elephant trunk or frozen elephant trunk technique in descending aortic thoracic and in Stanford Type A aortic dissection.

- The stents described herein may be used for treating prostatic hypertrophy in patients suffering from prostate enlargement.

- The stents described herein may be used be used to stent oncologic patients
suffering from partial obstruction of the trachea.

As used in the present application, including in the claims, "tubular" means having the form of an elongated hollow object that defines a conduit therethrough. A "tubular" structure may have varied cross-sections therealong, and the cross-sections are not necessarily circular. For example, one or more of the cross-sections may be generally circular, or generally elliptical but not circular, or circular.

The scope of the present invention includes embodiments described in the following applications, which are assigned to the assignee of the present application and are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:

- International Application PCT/IL2012/000282, filed July 19, 2012, which published as PCT Publication WO 2013/011502;
- US Provisional Application 61/750,427, filed January 9, 2013, entitled, "Soft tissue anchors and implantation techniques"; and

In particular, the stents described herein may be used as one or more of the stents described in the above-listed applications, in combination with the other techniques
described therein.

It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
CLAIMS

1. Apparatus comprising:
a radially-expandable stent, which, when unconstrained in a radially-expanded state, is generally tubular and shaped so as to define:
one or more tether interfaces at one or more tether circumferential locations, respectively, each of which tether interfaces extends circumferentially contiguously around less than 30 degrees of a circumference of the stent,
a lower-securement portion that extends (a) along at least a contiguous lower-securement axial segment of the stent and (b) circumferentially around a contiguous lower-securement circumferential portion of the stent, which lower-securement axial segment and lower-securement circumferential portion include the one or more tether interfaces,
a higher-securement portion that extends (a) along at least a contiguous higher-securement axial segment of the stent and (b) circumferentially around between 215 and 330 degrees of the circumference, at all circumferential locations other than those of the lower-securement circumferential portion, and
a plurality of outward protrusions at respective circumferential locations around the higher-securement portion, and not around the lower-securement portion;
one or more tissue anchors; and
one or more tethers having respective first longitudinal portions that are coupled to the one or more tether interfaces, respectively, and respective second longitudinal portions, different from the respective first longitudinal portions, which are coupled to the one or more tissue anchors, respectively.

2. The apparatus according to claim 1, wherein the stent is shaped so as to define one or more tension-distributing elements, which (a) extend along at least a tension-distribution axial segment of the stent at the one or more tether circumferential locations, respectively, (b) define the one or more tether interfaces, respectively, and (c) are configured to distribute tension applied by the one or more tethers, respectively, along the tension-distribution axial segment of the stent.

3. The apparatus according to claim 2, wherein the tension-distribution axial segment axially coincides with the lower-securement axial segment.
4. The apparatus according to claim 2, wherein the one or more tension-distributing elements and the stent are fabricated from a single unit.

5. The apparatus according to claim 2, wherein each of the one or more tension-distributing elements has a circumferential arc of between 1 and 15 degrees, when the stent is unconstrained in the radially-expanded state.

6. The apparatus according to claim 2, wherein an axial length of each of the tension-distributing elements equals at least 15% of an axial length of the stent.

7. The apparatus according to claim 6, wherein the axial length of the stent is between 20 and 120 mm, and the axial length of each of the tension-distributing elements is between 10 and 120 mm, when the stent is unconstrained in the radially-expanded state.

8. The apparatus according to claim 1, wherein the lower-securement axial segment of the stent extends along at least 30% of an axial length of the stent, when the stent is unconstrained in the radially-expanded state.

9. The apparatus according to claim 8, wherein the lower-securement axial segment of the stent extend along 100% of the axial length of the stent, when the stent is unconstrained in the radially-expanded state.

10. The apparatus according to claim 1, wherein an interior of the stent defines a right circular cylindrical shape having a radius, and wherein the outward protrusions extend radially outward from the cylindrical shape by a distance equal to between 5% and 25% of the radius, when the stent is unconstrained in the radially-expanded state.

11. The apparatus according to claim 1, wherein the one or more tether interfaces are shaped so as to define one or more openings, respectively, through which the one or more tethers are respectively coupled.

12. The apparatus according to claim 1, wherein each of the one or more tethers comprises an element selected from the group consisting of: one or more metal struts, one or more metal wires, one or more flexible biocompatible textiles, and one or more flexible bands.

13. The apparatus according to claim 1, wherein each of the one or more tethers has a length of between 20 and 120 mm.
14. The apparatus according to claim 1, wherein at least one of the one or more tissue anchors comprises a helical tissue anchor.

15. The apparatus according to claim 1, wherein the stent is a first stent, and wherein at least one of the one or more tissue anchors comprises a second generally tubular stent.

16. The apparatus according to any one of claims 1-15, wherein the one or more tether interfaces comprise exactly one tether interface at exactly one tether circumferential location, and wherein the one or more tethers comprise exactly one tether having a first longitudinal portion that is coupled to the tether interface.

17. The apparatus according to claim 16, wherein the tether circumferential location is circumferentially centered in the lower-securement circumferential portion.

18. The apparatus according to claim 16, wherein the higher-securement portion extends circumferentially around at least 270 degrees of the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

19. The apparatus according to claim 16, wherein the exactly one tether interface is shaped so as to define one or more openings through which the exactly one tether is coupled.

20. The apparatus according to any one of claims 1-15, wherein the outward protrusions are rotationally-asymmetrically distributed around the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

21. The apparatus according to any one of claims 1-15, wherein the outward protrusions are periodically distributed around the higher-securement circumferential portion, when the stent is unconstrained in the radially-expanded state.

22. The apparatus according to any one of claims 1-15, wherein the outward protrusions are blunt, when the stent is unconstrained in the radially-expanded state.

23. The apparatus according to any one of claims 1-15, wherein the outward protrusions are shaped so as to define respective barbs, when the stent is unconstrained in the radially-expanded state.

24. The apparatus according to any one of claims 1-15, wherein the lower-securement portion has a circumferential arc that equals at least 200% of an average of circumferential distances between circumferential midpoints of circumferentially-adjacent
ones of the outward protrusions around the higher-securement portion, when the stent is unconstrained in the radially-expanded state.

25. The apparatus according to any one of claims 1-15,

wherein the stent comprises a plurality of columnar struts and a plurality of circumferential stent meanders coupled to the columnar struts at respective axial locations, and

wherein one or more of the circumferential stent meanders are shaped so as to define the outward protrusions at the respective circumferential locations around the higher-securement portion, when the stent is unconstrained in the radially-expanded state.

26. The apparatus according to claim 25, wherein, when the stent is unconstrained in the radially-expanded state, at least one of the circumferential stent meanders is shaped so as to define (a) around the higher-securement portion, the outward protrusions, and (b) around the lower-securement portion, an arc of a circle if the circumferential stent meander is projected onto a plane perpendicular to a longitudinal axis of the stent.

27. The apparatus according to claim 25, wherein at least one of the circumferential stent meanders is shaped so as to define the outward protrusions around the higher-securement portion circumferentially between one or more circumferentially-adjacent pairs of the columnar struts, when the stent is unconstrained in the radially-expanded state.

28. The apparatus according to claim 25, wherein at least one of the circumferential stent meanders is shaped so as to define a plurality of apices, at least some of which are shaped so as to define the outward protrusions, when the stent is unconstrained in the radially-expanded state.

29. The apparatus according to claim 25, wherein respective radii of the columnar struts are measured between respective inner surfaces of the columnar struts and a central longitudinal axis of the stent, and wherein an average of respective distances between the central longitudinal axis and respective most-outward surfaces of the protrusions equals between 105% and 125% of an average of the radii, when the stent is unconstrained in the radially-expanded state.
30. The apparatus according to any one of claims 1-15, wherein the higher-securement portion extends circumferentially around at least 270 degrees of the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

31. The apparatus according to claim 30, wherein the higher-securement portion extends circumferentially around at least 300 degrees of the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

32. The apparatus according to any one of claims 1-15, wherein the higher-securement portion extends circumferentially around no more than 300 degrees of the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

33. Apparatus comprising:

 a radially-expandable stent, which, when unconstrained in a radially-expanded state, is generally tubular and shaped so as to define:

 a plurality of tether interfaces at a plurality of tether circumferential locations, respectively, each of which tether interfaces extends circumferentially contiguously around less than 30 degrees of a circumference of the stent,

 a plurality of lower-securement portions that extend (a) along at least respective contiguous lower-securement axial segments of the stent and (b) circumferentially around respective contiguous lower-securement circumferential portions of the stent, wherein (i) each of the lower-securement axial segments includes one or more of the tether interfaces, (ii) each of the lower-securement circumferential portions includes one or more of the tether interfaces, and (iii) the lower-securement circumferential portions have respective circumferential arcs, each of which is between 30 and 90 degrees,

 a plurality of higher-securement portions that extend (a) along at least respective contiguous higher-securement axial segments of the stent and (b) circumferentially around respective higher-securement circumferential portions of the stent, collectively at all circumferential locations other than those of the lower-securement circumferential portions, wherein the lower- and the higher-securement portions alternate around the stent, and

 a plurality of outward protrusions at respective circumferential locations around the higher-securement portions, and not around the lower-securement
portions, such that each of the higher-securement portions includes one or more of the outward protrusions;
a plurality of tissue anchors; and
a plurality of tethers having respective first longitudinal portions that are coupled to the plurality of tether interfaces, respectively, and respective second longitudinal portions, different from the respective first longitudinal portions, that are coupled the plurality of tissue anchors, respectively.

34. The apparatus according to claim 33, wherein the circumferential arcs of the lower-securement circumferential portions are equal to one another.

35. The apparatus according to claim 33, wherein the higher-securement circumferential portions have respective circumferential arcs that are equal to one another.

36. The apparatus according to claim 33, wherein the circumferential arcs of the lower-securement circumferential portions are equal to one another, and wherein the higher-securement circumferential portions have respective circumferential arcs that are equal to one another.

37. The apparatus according to claim 33, wherein the stent is shaped so as to define a plurality of tension-distributing elements, which (a) extend along at least respective tension-distribution axial segments of the stent at the tether circumferential locations, respectively, (b) define the tether interfaces, respectively, and (c) are configured to distribute tension applied by the tethers, respectively, along the tension-distribution axial segments of the stent, respectively.

38. The apparatus according to claim 37, wherein the tension-distribution axial segments axially coincide with the lower-securement axial segments, respectively.

39. The apparatus according to claim 37, wherein the tension-distributing elements and the stent are fabricated from a single unit.

40. The apparatus according to claim 37, wherein each of the tension-distributing elements has a circumferential arc of between 1 and 15 degrees, when the stent is unconstrained in the radially-expanded state.

41. The apparatus according to claim 37, wherein an axial length of each of the tension-distributing elements equals at least 15% of an axial length of the stent.
42. The apparatus according to claim 41, wherein the axial length of the stent is between 20 and 120 mm, and the axial length of each of the tension-distributing elements is between 10 and 120 mm, when the stent is unconstrained in the radially-expanded state.

43. The apparatus according to claim 33, wherein the lower-securement axial segment of the stent extends along at least 30% of an axial length of the stent, when the stent is unconstrained in the radially-expanded state.

44. The apparatus according to claim 43, wherein the lower-securement axial segment of the stent extend along 100% of the axial length of the stent, when the stent is unconstrained in the radially-expanded state.

45. The apparatus according to claim 33, wherein an interior of the stent defines a right circular cylindrical shape having a radius, and wherein the outward protrusions extend radially outward from the cylindrical shape by a distance equal to between 5% and 25% of the radius, when the stent is unconstrained in the radially-expanded state.

46. The apparatus according to claim 33, wherein the tether interfaces are shaped so as to define respective one or more openings through which the tethers are respectively coupled.

47. The apparatus according to claim 33, wherein each of the tethers comprises an element selected from the group consisting of: one or more metal struts, one or more metal wires, one or more flexible biocompatible textiles, and one or more flexible bands.

48. The apparatus according to claim 33, wherein each of the tethers has a length of between 20 and 120 mm.

49. The apparatus according to claim 33, wherein at least one of the tissue anchors comprises a helical tissue anchor.

50. The apparatus according to claim 33, wherein the stent is a first stent, and wherein at least one of the tissue anchors comprises a second generally tubular stent.

51. The apparatus according to any one of claims 33-50, wherein the stent, when unconstrained in the radially-expanded state, is shaped so as to define a same number of the tether interfaces and the lower-securement portions.

52. The apparatus according to claim 51, wherein the tether circumferential locations are circumferentially centered in the lower-securement portions, respectively.
53. The apparatus according to any one of claims 33-50, wherein the outward protrusions are rotationally-asymmetrically distributed around the circumference of the stent, when the stent is unconstrained in the radially-expanded state.

54. The apparatus according to any one of claims 33-50, wherein the outward protrusions are periodically distributed around each of the higher-securement circumferential portions, when the stent is unconstrained in the radially-expanded state.

55. The apparatus according to any one of claims 33-50, wherein the outward protrusions are blunt, when the stent is unconstrained in the radially-expanded state.

56. The apparatus according to any one of claims 33-50, wherein the outward protrusions are shaped so as to define respective barbs, when the stent is unconstrained in the radially-expanded state.

57. The apparatus according to any one of claims 33-50, wherein each of the circumferential arcs of the lower-securement circumferential portions equals at least 200% of an average of circumferential distances between circumferential midpoints of circumferentially-adjacent ones of the outward protrusions around the higher-securement portions, when the stent is unconstrained in the radially-expanded state.

58. The apparatus according to any one of claims 33-50,

wherein the stent comprises a plurality of columnar struts and a plurality of circumferential stent meanders coupled to the columnar struts at respective axial locations, and

wherein one or more of the circumferential stent meanders are shaped so as to define the outward protrusions at the respective circumferential locations around the higher-securement portions, when the stent is unconstrained in the radially-expanded state.

59. The apparatus according to claim 58, wherein, when the stent is unconstrained in the radially-expanded state, at least one of the circumferential stent meanders is shaped so as to define (a) around the higher-securement portions, the outward protrusions, and (b) around the lower-securement portions, respective arcs of a circle if the circumferential stent meander is projected onto a plane perpendicular to a longitudinal axis of the stent.

60. The apparatus according to claim 58, wherein at least one of the circumferential stent meanders is shaped so as to define the outward protrusions around the higher-
securement portions circumferentially between one or more circumferentially-adjacent pairs of the columnar struts, when the stent is unconstrained in the radially-expanded state.

61. The apparatus according to claim 58, wherein at least one of the circumferential stent meanders is shaped so as to define a plurality of apices, at least some of which are shaped so as to define the outward protrusions, when the stent is unconstrained in the radially-expanded state.

62. The apparatus according to claim 58, wherein respective radii of the columnar struts are measured between respective inner surfaces of the columnar struts and a central longitudinal axis of the stent, and wherein an average of respective distances between the central longitudinal axis and respective most-outward surfaces of the protrusions equals between 105% and 125% of an average of the radii, when the stent is unconstrained in the radially-expanded state.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61F2/848 A61F2/24 A61B17/04

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61F A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 7 258 697 BI [US]; ET AL) 21 August 2007 (2007-08-21) the whole document</td>
<td>1,33</td>
</tr>
<tr>
<td>A</td>
<td>US 2010/217382 AI [US]; ET AL) 26 August 2010 (2010-08-26) the whole document</td>
<td>1,33</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[X] See patent family annex.

* Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "A" document member of the same patent family

Date of the actual completion of the international search: 30 June 2014

Date of mailing of the international search report: 08/07/2014

Name and mailing address of the ISA:

European Patent Office, P.B. 5018, Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer:

Steiner, Bronwen

Form PCT/ISA/210 (second sheet) (April 2005)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2013011502 A2</td>
<td>24-01-2013</td>
<td>CA 2842288 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2734157 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013018459 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013011502 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008015685 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013289708 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4691017 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006520651 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004186566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004082538 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010217382 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011112632 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010099032 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008091510 A1</td>
</tr>
</tbody>
</table>