发明名称
公铁两用牵引叉车及其驱动方法

摘要
本发明涉及一种公铁两用牵引叉车及其驱动方法，包括一个叉车本体，在其尾部转向轮的后方设置一对由液压传动机构控制的可升降的后轨道轮，在叉车本体前部驱动轮的前方设置一对固定在主框架上并可随主框架的摆动而升降的前轨道轮，在叉车本体前方的货叉上固定一个底座，底座上设置一个可绕固定在底座上的竖轴旋转的固定座，车钩固定在固定座上，在底座及竖轴的顶端各伸出一个支撑杆，分别与叉车本体前方的货叉升降架相固定连接。工人通过简单的操作就可实现在路面上和轨道上相互变换行驶，特别适合在地沟台位上作业，在牵引不同车辆时，不用拆卸车钩，只要旋转固定座，就可选择所需要的车钩，结构简单，操作方便，使用安全可靠，降低工人劳动强度。
权利要求书

1. 一种公铁两用牵引叉车，包括一个叉车本体（1），在其尾部转向轮（15）的后方设置一对可升降的后轨道轮（2），在所述叉车本体（1）前部驱动轮（16）的前方设置一对可升降的前轨道轮（3），其特征在于：

在所述叉车本体（1）前方的货叉（4）上固定一个底座（5），所述底座（5）上设置一个可绕固定在所述底座（5）上的竖轴（6）旋转的固定座（7），所述固定座（7）与所述底座（5）之间通过连接件相固定，车钩（8）固定在所述固定座（7）上；

在所述底座（5）及所述竖轴（6）的顶端各伸出一个支撑杆（9），分别与所述叉车本体（1）前方的货叉升降架（10）相固定连接。

2. 根据权利要求1所述的公铁两用牵引叉车，其特征在于：所述前轨道轮（3）固定于所述叉车本体（1）前方的主框架（17）的底部。

3. 根据权利要求1所述的公铁两用牵引叉车，其特征在于：在所述叉车本体（1）尾部固定一个液压传动机构（11），并在所述叉车本体（1）的车厢内设置有与所述液压传动机构（11）相对应的操纵手柄，所述后轨道轮（2）固定在液压传动机构（11）上。

4. 根据权利要求3所述的公铁两用牵引叉车，其特征在于：所述的一对后轨道轮（2）为双轴，远离所述后轨道轮（2）的轴端（12）直接固定于所述液压传动机构（11）上，靠近所述后轨道轮（2）的轴端（13）通过一个伸缩轴（14）固定在所述液压传动机构（11）上。

5. 根据权利要求1至4任一项所述的公铁两用牵引叉车，其特征在于：所述固定座（7）的横截面为多边形。

6. 根据权利要求1至4任一项所述的公铁两用牵引叉车，其特征在于：所述固定座（7）的横截面为圆形。

7. 一种利用如权利要求1所述的公铁两用牵引叉车的驱动方法，其特征在于：其步骤有，

A）将所述公铁两用牵引叉车移动到需要进行牵引作业的轨道上；

B）操纵控制所述液压传动机构（11）的操纵手柄，将两个后轨道轮（2）下降放在轨道上，直到将所述叉车本体（1）的转向轮（15）抬起，脱离地面；
C）操纵控制所述叉车本体（1）的主框架（17）的操纵手柄，使所述主框架（17）向前偏转，从而将所述固定在其底部的前轨道轮（3）放在轨道上；

D）根据被牵引的车辆的结构选择相应的车钩（8），使其正对被牵引的车辆，将所述固定座（7）与所述底座（5）用连接件固定；

E）操纵控制所述货叉升降架（10）的操纵手柄，使所述车钩（8）的高度正好与被牵引车辆上的车钩的高度相一致；

F）移动所述公铁两用牵引叉车，使其逐渐靠近被牵引的车辆，直至两个车钩扣在一起；

G）当完成在轨道上的牵引作业后，按照步骤F至步骤A的顺序，将所述公铁两用牵引叉车从轨道上移至路面。

8、根据权利要求7所述的公铁两用牵引叉车的驱动方法，其特征在于：在轨道上实施牵引作业时，所述叉车本体（1）的驱动轮（16）始终接触轨道面，起到制动的作用。
公铁两用牵引叉车及其驱动方法

技术领域

本发明涉及一种可应用于牵引作业的叉车，特别涉及可在公路和铁路上相互转换作业的牵引叉车，还涉及使用该牵引叉车的驱动方法。

背景技术

在现有技术中，已有安装轨道轮实现公铁两用的车辆，例如在中国发明专利申请公开说明书CN1681674A中公开了一种可在路面和铁轨上相互转换行驶的车辆及其驱动方法。该车辆包括一个能够沿铁轨轨道驱动的半挂车，半挂车的后部设有路面轮，用于在公路上行驶，半挂车的前端部通过一个可绕轴旋转的连接件与前面的牵引卡车相连接，这样牵引卡车可带动半挂车在公路上行驶。为了使该车可以在轨道上行驶，在路面轮的后部和半挂车的前部设有一对可垂直升降的轨道轮单元，当半挂车需要在铁路上行驶的时候，将轨道轮下降到轨道上，直到将路面轮抬起。在不需要半挂车的情况下，也可直接在车体本身的路面轮的前后各设置一对轨道轮。上述的公铁两用的车辆体积庞大，成本高，而且连接件的高度不可调，较适合在户外运输作业，在轨道车辆生产厂等进行室内作业时，就不适合。

在现有技术中，也有利用体积相对较小的叉车来完成牵引作业，一般是在叉车头部的货叉升降架上固定一个牵引架，其上固定车钩等与被牵引车相配合的装置，车钩的高度可通过货叉的货叉升降架来调控，但其车钩与牵引架是固定配合，在牵引不同车辆需要不同种类的车钩时，需要人工将原来的车钩取下，换上需要用的车钩，工人劳动强度大，效率低。另外，这种叉车在牵引轨道车辆时，只能人为的调控叉车的走行方向，使得叉车与被牵引的轨道车辆一条直线上行驶，如果偏差过大，车钩所承载的负荷就会加大，极易造成车钩的损坏，在有地沟的台位上进行作业时，因为不能准确控制行驶方向，就不适合使用上述牵引叉车。

发明内容

本发明主要目的在于解决上述问题和不足，提供一种公铁两用的牵引叉车，其可通过在原有叉车上加装简单的结构，实现在路面和铁路上相互转换行驶，特别适合在地沟台位上作业，不用拆卸车钩，就可牵引不同类型的车辆，结构简单，操作
方便，使用安全可靠，成本低，工人劳动强度低，效率高。

本发明另一个目的是提供一种操作简单，工人劳动强度低，效率高的驱动公铁两用牵引叉车，使其在路面和铁路轨道上相互转换行驶的方法。

为实现上述目的，所述的公铁两用牵引叉车包括：

包括一个叉车本体，在其尾部转向轮的后方设置一对可升降的后轨道轮，在所述叉车本体前部驱动轮的前方设置一对可升降的前轨道轮，在所述叉车本体前方的货叉上固定一个底座，所述底座上设置一个可绕固定在所述底座上的竖轴旋转的固定座，所述固定座与所述底座之间通过连接件相固定，车钩固定在所述固定座上，在所述底座及所述竖轴的顶端各伸出一个支撑杆，分别与所述叉车本体前方的货叉升降架相固定连接。

所述前轨道轮固定于所述叉车本体前方的主框架的底部。在所述叉车本体尾部固定一个液压传动机构，并在所述叉车本体的车厢内设置有与所述液压传动机构相对应的操纵手柄，所述后轨道轮固定在液压传动机构上。所述的一对后轨道轮为双轴，远离所述后轨道轮的轴端直接固定于所述液压传动机构上，靠近所述后轨道轮的轴端通过一个伸缩轴固定在所述液压传动机构上。

所述固定座的横截面为多边形，也可为圆形。

一种利用公铁两用牵引叉车的驱动方法，其步骤有：

A）将所述公铁两用牵引叉车移动到需要进行牵引作业的轨道上；

B）操纵控制所述液压传动机构的操纵手柄，将两个后轨道轮下降放在轨道上，直到将所述叉车本体的转向轮抬起，脱离地面；

C）操纵控制所述叉车本体的主框架的操纵手柄，使所述主框架向前偏转，从而将所述固定在其底部的前轨道轮放在轨道上；

D）根据被牵引的车辆的结构选择相应的车钩，使其正对被牵引的车辆，将所述固定座与所述底座用连接件固定；

E）操纵控制所述货叉升降架的操纵手柄，使所述车钩的高度正好与被牵引车辆上的车钩的高度相一致；

F）移动所述公铁两用牵引叉车，使其逐渐靠近被牵引的车辆，直至两个车钩扣在一起；

G）当完成在轨道上的牵引作业后，按照步骤 F 至步骤 A 的顺序，将所述公铁两
用牵引叉车从轨道上移至路面。

在轨道上实施牵引作业时，所述叉车本体的驱动轮始终接触轨道面，起到制动的作用。

综上内容，本发明所提供的公铁两用的牵引叉车及其驱动方法，通过在所述牵引叉车的前部安装了可旋转的固定座结构，不用拆卸车钩，只要旋转固定座，就可选择所需的车钩，从而牵引不同类型车辆，结构简单，操作方便，使用安全可靠，成本低，降低工人劳动强度，效率高。

本发明在原有叉车的基础上进一步加装了由液压传动机构驱动的后轨道轮，以及直接固定在叉车本体前方主框架上的前轨道轮，通过简单的操作就可实现在路面和轨道上相互转换行驶，特别适合在地沟台位上作业。由于前轨道轮直接固定在后框架上，所以不需要单独的驱动结构及操纵手柄，结构简单。后轨道轮采用了可相对折起的双轴结构，便于所述牵引叉车在上下坡度较大的坡道时，后轨道轮不至于摩擦地面，避免损坏后轨道轮和路面。

附图说明

图1 本发明的组成结构示意图；
图2 图1的俯视图；
图3 图1的右视图。

如图1 至图3 所示，叉车本体1，后轨道轮2，前轨道轮3，货叉4，底座5，竖轴6，固定座7，车钩8，支撑杆9，货叉升降架10，液压传动机构11，轴端12，轴端13，伸缩轴14，转向轮15，驱动轮16，主框架17，插销结构18，加挂的驱动轮19。

具体实施方式

下面结合附图与具体实施方式对本发明作进一步详细描述：

如图1 至图3 所示，所述公铁两用牵引叉车：

包括一个叉车本体1，在其尾部转向轮15 的后方设置一对可升降的后轨道轮2，在叉车本体1 前部驱动轮16 的前方设置一对可升降的前轨道轮3，牵引叉车在轨道上行驶的时候，前轨道轮3 和后轨道轮2 的轮缘刚好卡放在轨道的内侧，这样可保证叉车在行驶的时候不偏离方向，使得叉车与被牵引的轨道车辆在一条直线上行驶，此时车钩8 所承载的负荷小，不易造成车钩8 的损坏。在有地沟的台位上进行作业
时，采用轨道轮就能更好的控制行驶方向。

在叉车本体 1 尾部固定一个液压传动机构 11，并在叉车本体 1 的车厢内设置有与液压传动机构 11 相对应的操纵手柄，后轨道轮 2 就固定在液压传动机构 11 上。
一对后轨道轮 2 为双轴结构，两个远离后轨道轮 2 的轴端 12 直接固定于液压传动机构 11 的底部，两个靠近后轨道轮 2 的轴端 13 各通过一个伸缩轴 14 固定在液压传动机构 11 的顶部，这样牵引叉车只在路面行驶的时候，可将后轨道轮 2 相对折起，使得后轨道轮 2 远离地面，叉车在坡度较大的坡道上行驶时，由于后轨道轮 2 距离地面较高，所以不会磨擦地面，避免造成路面及后轨道轮的损坏。

为了使结构简单，前轨道轮 3 不通过液压传动机构来控制，也不需要再另外设置操纵手柄，而是将前轨道轮 3 直接固定于叉车本体 1 前方的主框架 17 的底部，利用叉车本体 1 的主框 17 本身所具有的可前后调整角度的功能（一般叉车的主框架 17 都可在 5° 范围内摆动），抬起或放下前轨道轮 3。

在叉车本体 1 前方的货叉 4 上固定一个底座 5，底座 5 上固定了一个竖轴 6，固定座 7 套在竖轴的外边，并可绕竖轴 6 旋转，车钩 8 固定在固定座 7 上，车钩 8 可以围绕固定座 7 的周边设置为多个，在需要使用不同的车钩 8 时，工人只需转动固定座 7 即可。

固定座 7 与底座 5 之间通过连接件相固定，一般可通过插销的接头来连接固定，就是在底座 5 上和固定座 7 的底部各设置一个可插入插销的相互对应的结构 18，当工人选好所需要的车钩 8 时，此时底座 5 和固定座 7 上的相对应的插销结构 18 刚好对齐，插入插销将底座 5 和固定座 7 连接固定。为了配合多个车钩 8 的需要，在固定座 7 上设置多个插销结构 18，同样，也可以在固定座 7 上只设置一个插销结构 18，而在底座 5 上设置多个与此相对应的插销结构 18，只要保证在使用每个车钩 8 时，都可以将固定座 7 和底座 5 相固定即可。当需要转换车钩 8 时，只需将插销取出，旋转固定座 7，在车钩 8 旋转到需要位置时，在底座 5 和固定座 7 上相对齐的插销结构 18 中插入插销即可，操作简单方便，大大降低了工人的劳动强度，提高了生产效率。

固定座 7 的横截面可为多边形，也可为圆形。

在底座 5 及竖轴 6 的顶端各伸出一个支撑杆 9，分别与叉车本体 1 前方的货叉升降架 10 相固定连接，这样工人通过调整货叉升降架 10 就可调整车钩 8 的高度。
一种利用公铁两用牵引叉车的驱动方法，其步骤有，

A）将所述公铁两用牵引叉车移动到需要进行牵引作业的轨道上；

B）操纵控制液压传动机构 11 的操纵手柄，将两个后轨道轮 2 下降放在轨道上，直到将叉车本体 1 的转向轮 15 抬起，脱离地面，同时注意使得两个后轨道轮 2 的轮缘刚好卡放在轨道的内侧；

C）操纵控制叉车本体 1 的主框架 17 的操纵手柄，使主框架 17 向前偏转，从而将固定在其底部的前轨道轮 3 放在轨道上，同时注意使得两个前轨道轮 3 的轮缘刚好卡放在轨道的内侧；

D）根据被牵引的车辆的结构选择相应的车钩 8，使其正对被牵引的车辆，在固定座 7 与底座 5 上相互对齐的插销结构 18 中插入插销，从而将车钩 8 的位置固定；

E）操纵控制货叉升降架 10 的操纵手柄，调整车钩 8 的高度，使车钩 8 的高度正好与被牵引车辆上的车钩的高度相一致；

F）移动所述公铁两用牵引叉车，使其逐渐靠近被牵引的车辆，直至两个车钩扣在一起；

G）当完成在轨道上的牵引作业后，按照步骤 F 至步骤 A 的顺序，将所述公铁两用牵引叉车从轨道上移至地面。

所述牵引叉车在轨道上实施牵引作业时，叉车本体 1 的驱动轮 16 始终接触轨道面，起到制动的作用。当所述牵引叉车在进行地沟位作业时，往往地沟的宽度要宽于叉车本体 1 的前驱动轮 16 的宽度，为了能在作业时起到制动的作用，此时，如图 2 所示，可将前驱动轮 3 的轮胎加长，在外侧再各挂一个驱动轮 19，使叉车在进行地沟位作业时，加挂的驱动轮 19 刚好落在轨道上，在刹车或停车时能较好地起到制动的作用。

如上所述，结合附图和实施例所给出的方案内容，可以衍生出类似的技术方案。但凡是未脱离本发明技术方案的内容，依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰，均仍属于本发明技术方案的范围内。