
(12)
(19)

(54)

(51)

(21)

(87)

(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

STANDARD PATENT
AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011235075 B2

Title
Systems and methods for securing data in motion

International Patent Classification(s)
H04L 29/08 (2006.01) G06F 17/30 (2006.01)
G06F 11/10 (2006.01) G06F 21/00 (2006.01)
G06F 11/20 (2006.01) H04L 9/08 (2006.01)

Application No: 2011235075 (22) Date of Filing: 2011.03.31

WIPO No: WO11/123699

Priority Data

Number
61/319,658
61/320,242

(32) Date
2010.03.31
2010.04.01

(33) Country
US
US

Publication Date:
Accepted Journal Date:

2011.10.06
2015.10.01

Applicant(s)
Security First Corp.

Inventor(s)
O'Hare, Mark S.;Orsini, Rick L.

Agent / Attorney
Cullens Patent and Trade Mark Attorneys, Level 32 239 George Street, Brisbane, QLD,
4000

Related Art
WO 2008/142440
US 2007/0079082
US 7577689
KLENSIN, J: Simple Mail Transfer Protocol , Internet Engineering Task Force,
IETF, Request for Comments RFC 5321, October 2008
US 6260125

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 October 2011 (06.10.2011) PCT

IIN
(10) International Publication Number

WO 2011/123699 A3

International Patent Classification:(51)
H04L 29/08 (2006.01)
G06F 21/00 (2006.01)
H04L 9/08 (2006.01)
G06F17/30 (2006.01)

G06F11/10 (2006.01)
G06F11/20 (2006.01)
G06F11/14 (2006.01)
G06F 3/06 (2006.01)

(21) International Application Number:
PCT/US2011/030811

(22) International Filing Date:
31 March 2011 (31.03.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/319,658 31 March 2010 (31.03.2010) US
61/320,242 1 April 2010 (01.04.2010) US

(72) Inventors; and

Ill

(71) Applicants : ORSINI, Rick L. [US/US]; 2100 Kings
Forest Lane, Flower Mound, TX 75028 (US). O'HARE,
Mark S. [US/US]; 8 Kennedy Court, Coto De Caza, CA
92679 (US).

(74) Agents: INGERMAN, Jeffrey, H. et al.; Ropes & Gray
LLP, 1211 Avenue Of The Americas, New York, NY
10036-8704 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR SECURING DATA IN MOTION

5900

FIG. 59

(57) Abstract: Systems and methods for reading and writing a set of data using a journal­
ing service are provided. The journaling service may be used to identify and record data
storage operations associated with one or more shares of data stored in one or more share
locations. The journaling service may use logs to record each of the read and write re­
quests to the share locations. In some embodiments, the log maybe a queue data structure
that stores information associated with failed data storage operations. In some embodi­
ments, the journaling service may leverage both memory and disk storage in order to
maintain the journaling queue. In some embodiments, the journaling queue may maintain
information associated with the state of each share location. In some embodiments, this
information may be used by the journaling service to determine when to monitor and
record information regarding data storage operations associated with the share locations.

wo 2011/123699 A3 llllllllllllllllllllllllllllllllll^
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, , r ,, .,. f t. ,. ., r ,. ,,-κγ! .,1, xtV ox, A, — bejore the exptratton oj the time limit jor amending theGW, ML, MR, NE, SN, TD, TG). , . , , , ,,. , , . ,, , r . ,’ claims and to be republished tn the event oj receipt oj

Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3)) (88) Date of publication of the international search report:
26 January 2012

WO 2011/123699 PCT/US2011/030811

SYSTEMS AND METHODS FOR SECURING DATA IN MOTION

Cross-Reference to Related Applications

[0001] This application claims the benefit of U.S. Provisional Patent Application Serial No.

61/319,658, filed March 31,2010, and U.S. Provisional Patent Application Serial No.

61/320,242, filed April 1, 2010. The contents of each of these provisional patent applications are

hereby incorporated by reference herein in their entireties.

Field of the Invention

[0002] The present invention relates in general to systems and methods for securing data in

motion. The systems and methods described herein may be used in conjunction with other

systems and methods described in commonly-owned U.S. Patent No. 7,391,865 and commonly-

owned U.S. Patent Application Nos. 11/258,839, filed October 25, 2005, 11/602,667, filed

November 20, 2006, 11/983,355, filed November 7, 2007, 11/999,575, filed December 5, 2007,

12/148,365, filed April 18, 2008, 12/209,703, filed September 12, 2008, 12/349,897, filed

January 7, 2009, 12/391,028, filed February 23, 2009, 12/783,276, filed May 19, 2010,

12/953,877, filed November 24, 2010, and U.S. Provisional Patent Application Nos. 61/436,991,

filed January 27, 2011, 61/264,464, filed November 25, 2009, 61/319,658, filed March 31, 2010,

61/320,242, filed April 1, 2010, 61/349,560, filed May 28, 2010, 61/373,187, filed August 12,

2010, 61/374,950, filed August 18, 2010, and 61/384,583, filed September 20, 2010. The

disclosures of each of the aforementioned, earlier-filed applications are hereby incorporated by

reference herein in their entireties.

Summary

[0003] Systems and methods for reading and writing a set of data using a journaling service are

provided. The journaling service may be used to identify and record data storage operations

associated with one or more shares of data stored in one or more share locations. The share

locations may include any suitable data storage facility or cominations of data storage facilities,

1

WO 2011/123699 PCT/US2011/030811

such as a local or networked hard disk, removable storage such as a USB key, or the resources of

a cloud storage provider such as DropBox or Amazon S3. The journaling service may use logs

to record each of the read and write requests to the share locations. In some embodiments, the

log may be a queue data structure that stores information associated with failed data storage

operations.

[0004] In some embodiments, the journaling queue may maintain information associated with

the state of each share location. For example, the journaling service may determine that one or

more of the share locations is unavailable to process data storage operations. A journaling queue

may then be established and maintained for each of the unavailable share locations. In some

embodiments, the journaling queues may be unique with respect to each of the unavailable share

locations. In some embodiments, the journaling queues may store incoming data storage

operations associated with each of the unavailable share locations. When a particular share

location becomes available, the journaling service may execute the data storage operations stored

in the journaling queue unique to that share location.

[0005] In some embodiments, the journaling service may leverage both memory and disk

storage in order to maintain the journaling queue. For example, a limit may be established that

defines the amount of data storage operations that may be stored in the journaling queues. If the

journaling service determines that the queue limit is exceeded for a particular journaling queue,

the journaling service may transfer the messages in the journaling queue from memory to disk

storage. In this manner, the journaling service ensures that the memory of the system running

the journaling service is not exceeded.

[0006] In some embodiments, the journaling service may define a maximum amount of time

that a share location is unavailable for data storage operations. If the journaling service

determines that this maximum amount of time is exceeded for a particular share location, the

journaling service may refuse to accept incoming data storage operations for the particular share

location. In this manner, the particular share location is marked as a catastrophic failure and all

data storage operations associated with the share location are halted until the share location is

repaired or rebuilt.

[0007] In some embodiments, the journaling service may determine that the integrity of the

data within a particular share location can no longer be trusted. The journaling service may

make this determination based on the number of data storage operations that have failed for a

-2 -

WO 2011/123699 PCT/US2011/030811

particular share location. If this number exceeds an established maximum number, the

journaling service may mark the share location as being in a critical failure state, and data

storage operations stored in the journaling queue associated with that share location may be

discarded. In addition, the journaling service may discard any incoming data storage operations

for the share location in the critical failure state. In this manner, the journaling service ensures

that the memory or disk space of the system running the journaling service is conserved.

[0008] In some embodiments, the journaling service may allow for a share to be rebuilt while

maintaining other shares on the system as being available for normal use. This rebuilding

process may use other share locations that are online and contain data similar to the share

location that is being rebuilt. In some embodiments, the journaling service may maintain a list of

files that have been restored on the share location that is being rebuilt. When a request to

perform a data storage operation on a file associated with the share location that is being rebuilt

is received, the journaling service may determine whether the file is in the list. If the file is in the

list, the data storage operation may be logged and executed once the share location is finished

rebuilding. If the file is not on the list, the journaling service may discard the data storage

operation.

Brief Description of the Drawings

[0009] The present invention is described in more detail below in connection with the attached

drawings, which are meant to illustrate and not to limit the invention, and in which:

[0010] FIGURE 1 illustrates a block diagram of a cryptographic system, according to aspects

of an embodiment of the invention;

[0011] FIGURE 2 illustrates a block diagram of the trust engine of FIGURE 1, according to

aspects of an embodiment of the invention;

[0012] FIGURE 3 illustrates a block diagram of the transaction engine of FIGURE 2,

according to aspects of an embodiment of the invention;

[0013] FIGURE 4 illustrates a block diagram of the depository of FIGURE 2, according to

aspects of an embodiment of the invention;

[0014] FIGURE 5 illustrates a block diagram of the authentication engine of FIGURE 2,

according to aspects of an embodiment of the invention;

-3 -

WO 2011/123699 PCT/US2011/030811

[0015] FIGURE 6 illustrates a block diagram of the cryptographic engine of FIGURE 2,

according to aspects of an embodiment of the invention;

[0016] FIGURE 7 illustrates a block diagram of a depository system, according to aspects of

another embodiment of the invention;

[0017] FIGURE 8 illustrates a flow chart of a data splitting process according to aspects of an

embodiment of the invention;

[0018] FIGURE 9, Panel A illustrates a data flow of an enrollment process according to

aspects of an embodiment of the invention;

[0019] FIGURE 9, Panel B illustrates a flow chart of an interoperability process according to

aspects of an embodiment of the invention;

[0020] FIGURE 10 illustrates a data flow of an authentication process according to aspects of

an embodiment of the invention;

[0021] FIGURE 11 illustrates a data flow of a signing process according to aspects of an

embodiment of the invention;

[0022] FIGURE 12 illustrates a data flow and an encryption/decryption process according to

aspects and yet another embodiment of the invention;

[0023] FIGURE 13 illustrates a simplified block diagram of a trust engine system according to

aspects of another embodiment of the invention;

[0024] FIGURE 14 illustrates a simplified block diagram of a trust engine system according to

aspects of another embodiment of the invention;

[0025] FIGURE 15 illustrates a block diagram of the redundancy module of FIGURE 14,

according to aspects of an embodiment of the invention;

[0026] FIGURE 16 illustrates a process for evaluating authentications according to one aspect

of the invention;

[0027] FIGURE 17 illustrates a process for assigning a value to an authentication according to

one aspect as shown in FIGURE 16 of the invention;

[0028] FIGURE 18 illustrates a process for performing trust arbitrage in an aspect of the

invention as shown in FIGURE 17; and

[0029] FIGURE 19 illustrates a sample transaction between a user and a vendor according to

aspects of an embodiment of the invention where an initial web based contact leads to a sales

contract signed by both parties.

-4-

WO 2011/123699 PCI7US2011/030811

[0030] FIGURE 20 illustrates a sample user system with a cryptographic service provider

module which provides security functions to a user system.

[0031] FIGURE 21 illustrates a process for parsing, splitting and/or separating data with

encryption and storage of the encryption master key with the data.

[0032] FIGURE 22 illustrates a process for parsing, splitting and/or separating data with

encryption and storing the encryption master key separately from the data.

[0033] FIGURE 23 illustrates the intermediary key process for parsing, splitting and/or

separating data with encryption and storage of the encryption master key with the data.

[0034] FIGURE 24 illustrates the intermediary key process for parsing, splitting and/or

separating data with encryption and storing the encryption master key separately from the data.

[0035] FIGURE 25 illustrates utilization of the cryptographic methods and systems of the

present invention with a small working group.

[0036] FIGURE 26 is a block diagram of an illustrative physical token security system

employing the secure data parser in accordance with one embodiment of the present invention.

[0037] FIGURE 27 is a block diagram of an illustrative arrangement in which the secure data

parser is integrated into a system in accordance with one embodiment of the present invention.

[0038] FIGURE 28 is a block diagram of an illustrative data in motion system in accordance

with one embodiment of the present invention.

[0039] FIGURE 29 is a block diagram of another illustrative data in motion system in

accordance with one embodiment of the present invention.

[0040] FIGURE 30-32 are block diagrams of an illustrative system having the secure data

parser integrated in accordance with one embodiment of the present invention.

[0041] FIGURE 33 is a process flow diagram of an illustrative process for parsing and splitting

data in accordance with one embodiment of the present invention.

[0042] FIGURE 34 is a process flow diagram of an illustrative process for restoring portions of

data into original data in accordance with one embodiment of the present invention.

[0043] FIGURE 35 is a process flow diagram of an illustrative process for splitting data at the

bit level in accordance with one embodiment of the present invention.

[0044] FIGURE 36 is a process flow diagram of illustrative steps and features, that may be

used in any suitable combination, with any suitable additions, deletions, or modifications in

accordance with one embodiment of the present invention.

-5 -

WO 2011/123699 PCI7US2011/030811

[0045] FIGURE 37 is a process flow diagram of illustrative steps and features that may be used

in any suitable combination, with any suitable additions, deletions, or modifications in

accordance with one embodiment of the present invention.

[0046] FIGURE 38 is a simplified block diagram of the storage of key and data components

within shares, that may be used in any suitable combination, with any suitable additions,

deletions, or modifications in accordance with one embodiment of the present invention.

[0047] FIGURE 39 is a simplified block diagram of the storage of key and data components

within shares using a workgroup key, that may be used in any suitable combination, with any

suitable additions, deletions, or modifications in accordance with one embodiment of the present

invention.

[0048] FIGURES 40A and 40B are simplified and illustrative process flow diagrams for header

generation and data splitting for data in motion, that may be used in any suitable combination,

with any suitable additions, deletions, or modifications in accordance with one embodiment of

the present invention.

[0049] FIGURE 41 is a simplified block diagram of an illustrative share format, that may be

used in any suitable combination, with any suitable additions, deletions, or modifications in

accordance with one embodiment of the present invention.

[0050] FIGURE 42 is a block diagram of an illustrative arrangement in which the secure data

parser is integrated into a system connected to cloud computing resources in accordance with one

embodiment of the present invention.

[0051] FIGURE 43 is a block diagram of an illustrative arrangement in which the secure data

parser is integrated into a system for sending data through the cloud in accordance with one

embodiment of the present invention.

[0052] FIGURE 44 is a block diagram of an illustrative arrangement in which the secure data

parser is used to secure data services in the cloud in accordance with one embodiment of the

present invention.

[0053] FIGURE 45 is a block diagram of an illustrative arrangement in which the secure data

parser is used to secure data storage in the cloud in accordance with one embodiment of the

present invention.

-6-

WO 2011/123699 PCT/US2011/030811

[0054] FIGURE 46 is a block diagram of an illustrative arrangement in which the secure data

parser is used to secure network access control in accordance with one embodiment of the

present invention.

[0055] FIGURE 47 is a block diagram of an illustrative arrangement in which the secure data

parser is used to secure high performance computing resources in accordance with one

embodiment of the present invention.

[0056] FIGURE 48 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of storage devices in a cloud in accordance

with one embodiment of the present invention.

[0057] FIGURE 49 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of private and public clouds in accordance with

one embodiment of the present invention.

[0058] FIGURE 50 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of private and public clouds via a public

Internet in accordance with one embodiment of the present invention.

[0059] FIGURE 51 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a user’s removable storage device in accordance with one

embodiment of the present invention.

[0060] FIGURE 52 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of user storage devices in accordance with one

embodiment of the present invention.

[0061] FIGURE 53 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of public and private clouds and at least one

user storage device in accordance with one embodiment of the present invention.

[0062] FIGURE 54 is a schematic of a co-processor acceleration device for the secure data

parser in accordance with one embodiment of the present invention.

[0063] FIGURE 55 is a first process flow diagram of an illustrative acceleration process using

the co-processor acceleration device of FIGURE 54 for the secure data parser in accordance with

one embodiment of the present invention.

-7 -

WO 2011/123699 PCT/US2011/030811

[0064] FIGURE 56 is a second process flow diagram of an illustrative acceleration process

using the co-processor acceleration device of FIGURE 54 for the secure data parser in

accordance with one embodiment of the present invention.

[0065] FIGURE 57 illustrates a process by which data is split into N shares and stored,

according to an illustrative embodiment of the present invention.

[0066] FIGURE 58 illustrates a process by which shares of data are rebuilt and/or re-keyed,

according to an illustrative embodiment of the present invention.

[0067] FIGURE 59 is an illustrative process for operating a journaling service in an

embodiment of the present invention.

[0068] FIGURE 60 is an illustrative process for operating a journaling service in an

embodiment of the present invention.

[0069] FIGURE 61 is an illustrative process for operating a journaling service using a critical

failure state in an embodiment of the present invention.

[0070] FIGURE 62 is an illustrative process for operating a journaling service using a critical

rebuilding state in an embodiment of the present invention.

Detailed Description of the Illustrative Embodiments

[0071] One aspect of the present invention is to provide a cryptographic system where one or

more secure servers, or a trust engine, stores cryptographic keys and user authentication data.

The system may store data across one or more storage devices in a cloud. The cloud may

include private storage devices (accessible only to a particular set of users) or public storage

devices (accessible to any set of users that subscribes to the storage provider).

[0072] Users access the functionality of conventional cryptographic systems through network

access to the trust engine, however, the trust engine does not release actual keys and other

authentication data and therefore, the keys and data remain secure. This server-centric storage of

keys and authentication data provides for user-independent security, portability, availability, and

straightforwardness.

[0073] Because users can be confident in, or trust, the cryptographic system to perform user

and document authentication and other cryptographic functions, a wide variety of functionality

may be incorporated into the system. For example, the trust engine provider can ensure against

-8-

WO 2011/123699 PCT/US2011/030811

agreement repudiation by, for example, authenticating the agreement participants, digitally

signing the agreement on behalf of or for the participants, and storing a record of the agreement

digitally signed by each participant. In addition, the cryptographic system may monitor

agreements and determine to apply varying degrees of authentication, based on, for example,

price, user, vendor, geographic location, place of use, or the like.

[0074] To facilitate a complete understanding of the invention, the remainder of the detailed

description describes the invention with reference to the figures, wherein like elements are

referenced with like numerals throughout.

[0075] FIGURE 1 illustrates a block diagram of a cryptographic system 100, according to

aspects of an embodiment of the invention. As shown in FIGURE 1, the cryptographic system

100 includes a user system 105, a trust engine 110, a certificate authority 115, and a vendor

system 120, communicating through a communication link 125.

[0076] According to one embodiment of the invention, the user system 105 comprises a

conventional general-purpose computer having one or more microprocessors, such as, for

example, an Intel-based processor. Moreover, the user system 105 includes an appropriate

operating system, such as, for example, an operating system capable of including graphics or

windows, such as Windows, Unix, Linux, or the like. As shown in FIGURE 1, the user system

105 may include a biometric device 107. The biometric device 107 may advantageously capture

a user's biometric and transfer the captured biometric to the trust engine 110. According to one

embodiment of the invention, the biometric device may advantageously comprise a device

having attributes and features similar to those disclosed in U.S. Patent Application

No. 08/926,277, filed on September 5, 1997, entitled "RELIEF OBJECT IMAGE GENERATOR,"

U.S. Patent Application No. 09/558,634, filed on April 26, 2000, entitled "IMAGING DEVICE

FOR A RELIEF OBJECT AND SYSTEM AND METHOD OF USING THE IMAGE DEVICE,"

U.S. Patent Application No. 09/435,011, filed on November 5, 1999, entitled "RELIEF OBJECT

SENSOR ADAPTOR," and U.S. Patent Application No. 09/477,943, filed on January 5, 2000,

entitled "PLANAR OPTICAL IMAGE SENSOR AND SYSTEM FOR GENERATING AN

ELECTRONIC IMAGE OF A RELIEF OBJECT FOR FINGERPRINT READING," all of which

are owned by the instant assignee, and all of which are hereby incorporated by reference herein.

[0077] In addition, the user system 105 may connect to the communication link 125 through a

conventional service provider, such as, for example, a dial up, digital subscriber line (DSL),

-9-

WO 2011/123699 PCT/US2011/030811

cable modem, fiber connection, or the like. According to another embodiment, the user system

105 connects the communication link 125 through network connectivity such as, for example, a

local or wide area network. According to one embodiment, the operating system includes a

TCP/IP stack that handles all incoming and outgoing message traffic passed over the

communication link 125.

[0078] Although the user system 105 is disclosed with reference to the foregoing

embodiments, the invention is not intended to be limited thereby. Rather, a skilled artisan will

recognize from the disclosure herein, a wide number of alternatives embodiments of the user

system 105, including almost any computing device capable of sending or receiving information

from another computer system. For example, the user system 105 may include, but is not limited

to, a computer workstation, an interactive television, an interactive kiosk, a personal mobile

computing device, such as a digital assistant, mobile phone, laptop, or the like, a wireless

communications device, a smartcard, an embedded computing device, or the like, which can

interact with the communication link 125. In such alternative systems, the operating systems

will likely differ and be adapted for the particular device. However, according to one

embodiment, the operating systems advantageously continue to provide the appropriate

communications protocols needed to establish communication with the communication link 125.

[0079] FIGURE 1 illustrates the trust engine 110. According to one embodiment, the trust

engine 110 comprises one or more secure servers for accessing and storing sensitive information,

which may be any type or form of data, such as, but not limited to text, audio, video, user

authentication data and public and private cryptographic keys. According to one embodiment,

the authentication data includes data designed to uniquely identify a user of the cryptographic

system 100. For example, the authentication data may include a user identification number, one

or more biometrics, and a series of questions and answers generated by the trust engine 110 or

the user, but answered initially by the user at enrollment. The foregoing questions may include

demographic data, such as place of birth, address, anniversary, or the like, personal data, such as

mother's maiden name, favorite ice cream, or the like, or other data designed to uniquely identify

the user. The trust engine 110 compares a user's authentication data associated with a current

transaction, to the authentication data provided at an earlier time, such as, for example, during

enrollment. The trust engine 110 may advantageously require the user to produce the

authentication data at the time of each transaction, or, the trust engine 110 may advantageously

- 10-

WO 2011/123699 PCT/US2011/030811

allow the user to periodically produce authentication data, such as at the beginning of a string of

transactions or the logging onto a particular vendor website.

[0080] According to the embodiment where the user produces biometric data, the user provides

a physical characteristic, such as, but not limited to, facial scan, hand scan, ear scan, iris scan,

retinal scan, vascular pattern, DNA, a fingerprint, writing or speech, to the biometric device 107.

The biometric device advantageously produces an electronic pattern, or biometric, of the

physical characteristic. The electronic pattern is transferred through the user system 105 to the

trust engine 110 for either enrollment or authentication purposes.

[0081] Once the user produces the appropriate authentication data and the trust engine 110

determines a positive match between that authentication data (current authentication data) and

the authentication data provided at the time of enrollment (enrollment authentication data), the

trust engine 110 provides the user with complete cryptographic functionality. For example, the

properly authenticated user may advantageously employ the trust engine 110 to perform hashing,

digitally signing, encrypting and decrypting (often together referred to only as encrypting),

creating or distributing digital certificates, and the like. However, the private cryptographic keys

used in the cryptographic functions will not be available outside the trust engine 110, thereby

ensuring the integrity of the cryptographic keys.

[0082] According to one embodiment, the trust engine 110 generates and stores cryptographic

keys. According to another embodiment, at least one cryptographic key is associated with each

user. Moreover, when the cryptographic keys include public-key technology, each private key

associated with a user is generated within, and not released from, the trust engine 110. Thus, so

long as the user has access to the trust engine 110, the user may perform cryptographic functions

using his or her private or public key. Such remote access advantageously allows users to

remain completely mobile and access cryptographic functionality through practically any

Internet connection, such as cellular and satellite phones, kiosks, laptops, hotel rooms and the

like.

[0083] According to another embodiment, the trust engine 110 performs the cryptographic

functionality using a key pair generated for the trust engine 110. According to this embodiment,

the trust engine 110 first authenticates the user, and after the user has properly produced

authentication data matching the enrollment authentication data, the trust engine 110 uses its own

cryptographic key pair to perform cryptographic functions on behalf of the authenticated user.

- 11 -

WO 2011/123699 PCT/US2011/030811

[0084] A skilled artisan will recognize from the disclosure herein that the cryptographic keys

may advantageously include some or all of symmetric keys, public keys, and private keys. In

addition, a skilled artisan will recognize from the disclosure herein that the foregoing keys may

be implemented with a wide number of algorithms available from commercial technologies, such

as, for example, RSA, ELGAMAL, or the like.

[0085] FIGURE 1 also illustrates the certificate authority 115. According to one embodiment,

the certificate authority 115 may advantageously comprise a trusted third-party organization or

company that issues digital certificates, such as, for example, VeriSign, Baltimore, Entrust, or

the like. The trust engine 110 may advantageously transmit requests for digital certificates,

through one or more conventional digital certificate protocols, such as, for example, PKCS10, to

the certificate authority 115. In response, the certificate authority 115 will issue a digital

certificate in one or more of a number of differing protocols, such as, for example, PKCS7.

According to one embodiment of the invention, the trust engine 110 requests digital certificates

from several or all of the prominent certificate authorities 115 such that the trust engine 110 has

access to a digital certificate corresponding to the certificate standard of any requesting party.

[0086] According to another embodiment, the trust engine 110 internally performs certificate

issuances. In this embodiment, the trust engine 110 may access a certificate system for

generating certificates and/or may internally generate certificates when they are requested, such

as, for example, at the time of key generation or in the certificate standard requested at the time

of the request. The trust engine 110 will be disclosed in greater detail below.

[0087] FIGURE 1 also illustrates the vendor system 120. According to one embodiment, the

vendor system 120 advantageously comprises a Web server. Typical Web servers generally

serve content over the Internet using one of several internet markup languages or document

format standards, such as the Hyper-Text Markup Language (HTML) or the Extensible Markup

Language (XML). The Web server accepts requests from browsers like Netscape and Internet

Explorer and then returns the appropriate electronic documents. A number of server or

client-side technologies can be used to increase the power of the Web server beyond its ability to

deliver standard electronic documents. For example, these technologies include Common

Gateway Interface (CGI) scripts, Secure Sockets Layer (SSL) security, and Active Server Pages

(ASPs). The vendor system 120 may advantageously provide electronic content relating to

commercial, personal, educational, or other transactions.

- 12-

WO 2011/123699 PCT/US2011/030811

[0088] Although the vendor system 120 is disclosed with reference to the foregoing

embodiments, the invention is not intended to be limited thereby. Rather, a skilled artisan will

recognize from the disclosure herein that the vendor system 120 may advantageously comprise

any of the devices described with reference to the user system 105 or combination thereof.

[0089] FIGURE 1 also illustrates the communication link 125 connecting the user system 105,

the trust engine 110, the certificate authority 115, and the vendor system 120. According to one

embodiment, the communication link 125 preferably comprises the Internet. The Internet, as

used throughout this disclosure is a global network of computers. The structure of the Internet,

which is well known to those of ordinary skill in the art, includes a network backbone with

networks branching from the backbone. These branches, in turn, have networks branching from

them, and so on. Routers move information packets between network levels, and then from

network to network, until the packet reaches the neighborhood of its destination. From the

destination, the destination network's host directs the information packet to the appropriate

terminal, or node. In one advantageous embodiment, the Internet routing hubs comprise domain

name system (DNS) servers using Transmission Control Proto co ^Internet Protocol (TCP/IP) as

is well known in the art. The routing hubs connect to one or more other routing hubs via

high-speed communication links.

[0090] One popular part of the Internet is the World Wide Web. The World Wide Web

contains different computers, which store documents capable of displaying graphical and textual

information. The computers that provide information on the World Wide Web are typically

called "websites." A website is defined by an Internet address that has an associated electronic

page. The electronic page can be identified by a Uniform Resource Locator (URL). Generally,

an electronic page is a document that organizes the presentation of text, graphical images, audio,

video, and so forth.

[0091] Although the communication link 125 is disclosed in terms of its preferred

embodiment, one of ordinary skill in the art will recognize from the disclosure herein that the

communication link 125 may include a wide range of interactive communications links. For

example, the communication link 125 may include interactive television networks, telephone

networks, wireless data transmission systems, two-way cable systems, customized private or

public computer networks, interactive kiosk networks, automatic teller machine networks, direct

links, satellite or cellular networks, and the like.

- 13-

WO 2011/123699 PCT/US2011/030811

[0092] FIGURE 2 illustrates a block diagram of the trust engine 110 of FIGURE 1 according

to aspects of an embodiment of the invention. As shown in FIGURE 2, the trust engine 110

includes a transaction engine 205, a depository 210, an authentication engine 215, and a

cryptographic engine 220. According to one embodiment of the invention, the trust engine 110

also includes mass storage 225. As further shown in FIGURE 2, the transaction engine 205

communicates with the depository 210, the authentication engine 215, and the cryptographic

engine 220, along with the mass storage 225. In addition, the depository 210 communicates with

the authentication engine 215, the cryptographic engine 220, and the mass storage 225.

Moreover, the authentication engine 215 communicates with the cryptographic engine 220.

According to one embodiment of the invention, some or all of the foregoing communications

may advantageously comprise the transmission of XML documents to IP addresses that

correspond to the receiving device. As mentioned in the foregoing, XML documents

advantageously allow designers to create their own customized document tags, enabling the

definition, transmission, validation, and interpretation of data between applications and between

organizations. Moreover, some or all of the foregoing communications may include

conventional SSL technologies.

[0093] According to one embodiment, the transaction engine 205 comprises a data routing

device, such as a conventional Web server available from Netscape, Microsoft, Apache, or the

like. For example, the Web server may advantageously receive incoming data from the

communication link 125. According to one embodiment of the invention, the incoming data is

addressed to a front-end security system for the trust engine 110. For example, the front-end

security system may advantageously include a firewall, an intrusion detection system searching

for known attack profiles, and/or a virus scanner. After clearing the front-end security system,

the data is received by the transaction engine 205 and routed to one of the depository 210, the

authentication engine 215, the cryptographic engine 220, and the mass storage 225. In addition,

the transaction engine 205 monitors incoming data from the authentication engine 215 and

cryptographic engine 220, and routes the data to particular systems through the communication

link 125. For example, the transaction engine 205 may advantageously route data to the user

system 105, the certificate authority 115, or the vendor system 120.

[0094] According to one embodiment, the data is routed using conventional HTTP routing

techniques, such as, for example, employing URLs or Uniform Resource Indicators (URIs).

- 14-

WO 2011/123699 PCT/US2011/030811

URIs are similar to URLs, however, URIs typically indicate the source of files or actions, such

as, for example, executables, scripts, and the like. Therefore, according to the one embodiment,

the user system 105, the certificate authority 115, the vendor system 120, and the components of

the trust engine 210, advantageously include sufficient data within communication URLs or

URIs for the transaction engine 205 to properly route data throughout the cryptographic system.

[0095] Although the data routing is disclosed with reference to its preferred embodiment, a

skilled artisan will recognize a wide number of possible data routing solutions or strategies. For

example, XML or other data packets may advantageously be unpacked and recognized by their

format, content, or the like, such that the transaction engine 205 may properly route data

throughout the trust engine 110. Moreover, a skilled artisan will recognize that the data routing

may advantageously be adapted to the data transfer protocols conforming to particular network

systems, such as, for example, when the communication link 125 comprises a local network.

[0096] According to yet another embodiment of the invention, the transaction engine 205

includes conventional SSL encryption technologies, such that the foregoing systems may

authenticate themselves, and vice-versa, with transaction engine 205, during particular

communications. As will be used throughout this disclosure, the term SSL" refers to

communications where a server but not necessarily the client, is SSL authenticated, and the term

"FULL SSL" refers to communications where the client and the server are SSL authenticated.

When the instant disclosure uses the term "SSL", the communication may comprise % or FULL

SSL.

[0097] As the transaction engine 205 routes data to the various components of the

cryptographic system 100, the transaction engine 205 may advantageously create an audit trail.

According to one embodiment, the audit trail includes a record of at least the type and format of

data routed by the transaction engine 205 throughout the cryptographic system 100. Such audit

data may advantageously be stored in the mass storage 225.

[0098] FIGURE 2 also illustrates the depository 210. According to one embodiment, the

depository 210 comprises one or more data storage facilities, such as, for example, a directory

server, a database server, or the like. As shown in FIGURE 2, the depository 210 stores

cryptographic keys and enrollment authentication data. The cryptographic keys may

advantageously correspond to the trust engine 110 or to users of the cryptographic system 100,

such as the user or vendor. The enrollment authentication data may advantageously include data

- 15-

WO 2011/123699 PCT/US2011/030811

designed to uniquely identify a user, such as, user ID, passwords, answers to questions, biometric

data, or the like. This enrollment authentication data may advantageously be acquired at

enrollment of a user or another alternative later time. For example, the trust engine 110 may

include periodic or other renewal or reissue of enrollment authentication data.

[0099] According to one embodiment, the communication from the transaction engine 205 to

and from the authentication engine 215 and the cryptographic engine 220 comprises secure

communication, such as, for example conventional SSL technology. In addition, as mentioned in

the foregoing, the data of the communications to and from the depository 210 may be transferred

using URLs, URIs, HTTP or XML documents, with any of the foregoing advantageously having

data requests and formats embedded therein.

[0100] As mentioned above, the depository 210 may advantageously comprises a plurality of

secure data storage facilities. In such an embodiment, the secure data storage facilities may be

configured such that a compromise of the security in one individual data storage facility will not

compromise the cryptographic keys or the authentication data stored therein. For example,

according to this embodiment, the cryptographic keys and the authentication data are

mathematically operated on so as to statistically and substantially randomize the data stored in

each data storage facility. According to one embodiment, the randomization of the data of an

individual data storage facility renders that data undecipherable. Thus, compromise of an

individual data storage facility produces only a randomized undecipherable number and does not

compromise the security of any cryptographic keys or the authentication data as a whole.

[0101] FIGURE 2 also illustrates the trust engine 110 including the authentication engine 215.

According to one embodiment, the authentication engine 215 comprises a data comparator

configured to compare data from the transaction engine 205 with data from the depository 210.

For example, during authentication, a user supplies current authentication data to the trust engine

110 such that the transaction engine 205 receives the current authentication data. As mentioned

in the foregoing, the transaction engine 205 recognizes the data requests, preferably in the URL

or URI, and routes the authentication data to the authentication engine 215. Moreover, upon

request, the depository 210 forwards enrollment authentication data corresponding to the user to

the authentication engine 215. Thus, the authentication engine 215 has both the current

authentication data and the enrollment authentication data for comparison.

- 16-

WO 2011/123699 PCT/US2011/030811

[0102] According to one embodiment, the communications to the authentication engine

comprise secure communications, such as, for example, SSL technology. Additionally, security

can be provided within the trust engine 110 components, such as, for example, super-encryption

using public key technologies. For example, according to one embodiment, the user encrypts the

current authentication data with the public key of the authentication engine 215. In addition, the

depository 210 also encrypts the enrollment authentication data with the public key of the

authentication engine 215. In this way, only the authentication engine's private key can be used

to decrypt the transmissions.

[0103] As shown in FIGURE 2, the trust engine 110 also includes the cryptographic engine

220. According to one embodiment, the cryptographic engine comprises a cryptographic

handling module, configured to advantageously provide conventional cryptographic functions,

such as, for example, public-key infrastructure (PKI) functionality. For example, the

cryptographic engine 220 may advantageously issue public and private keys for users of the

cryptographic system 100. In this manner, the cryptographic keys are generated at the

cryptographic engine 220 and forwarded to the depository 210 such that at least the private

cryptographic keys are not available outside of the trust engine 110. According to another

embodiment, the cryptographic engine 220 randomizes and splits at least the private

cryptographic key data, thereby storing only the randomized split data. Similar to the splitting of

the enrollment authentication data, the splitting process ensures the stored keys are not available

outside the cryptographic engine 220. According to another embodiment, the functions of the

cryptographic engine can be combined with and performed by the authentication engine 215.

[0104] According to one embodiment, communications to and from the cryptographic engine

include secure communications, such as SSL technology. In addition, XML documents may

advantageously be employed to transfer data and/or make cryptographic function requests.

[0105] FIGURE 2 also illustrates the trust engine 110 having the mass storage 225. As

mentioned in the foregoing, the transaction engine 205 keeps data corresponding to an audit trail

and stores such data in the mass storage 225. Similarly, according to one embodiment of the

invention, the depository 210 keeps data corresponding to an audit trail and stores such data in

the mass storage device 225. The depository audit trail data is similar to that of the transaction

engine 205 in that the audit trail data comprises a record of the requests received by the

- 17-

WO 2011/123699 PCT/US2011/030811

depository 210 and the response thereof. In addition, the mass storage 225 may be used to store

digital certificates having the public key of a user contained therein.

[0106] Although the trust engine 110 is disclosed with reference to its preferred and alternative

embodiments, the invention is not intended to be limited thereby. Rather, a skilled artisan will

recognize in the disclosure herein, a wide number of alternatives for the trust engine 110. For

example, the trust engine 110, may advantageously perform only authentication, or alternatively,

only some or all of the cryptographic functions, such as data encryption and decryption.

According to such embodiments, one of the authentication engine 215 and the cryptographic

engine 220 may advantageously be removed, thereby creating a more straightforward design for

the trust engine 110. In addition, the cryptographic engine 220 may also communicate with a

certificate authority such that the certificate authority is embodied within the trust engine 110.

According to yet another embodiment, the trust engine 110 may advantageously perform

authentication and one or more cryptographic functions, such as, for example, digital signing.

[0107] FIGURE 3 illustrates a block diagram of the transaction engine 205 of FIGURE 2,

according to aspects of an embodiment of the invention. According to this embodiment, the

transaction engine 205 comprises an operating system 305 having a handling thread and a

listening thread. The operating system 305 may advantageously be similar to those found in

conventional high volume servers, such as, for example, Web servers available from Apache.
The listening thread monitors the incoming communication from one of the communication link

125, the authentication engine 215, and the cryptographic engine 220 for incoming data flow.

The handling thread recognizes particular data structures of the incoming data flow, such as, for

example, the foregoing data structures, thereby routing the incoming data to one of the

communication link 125, the depository 210, the authentication engine 215, the cryptographic

engine 220, or the mass storage 225. As shown in FIGURE 3, the incoming and outgoing data

may advantageously be secured through, for example, SSL technology.

[0108] FIGURE 4 illustrates a block diagram of the depository 210 of FIGURE 2 according to

aspects of an embodiment of the invention. According to this embodiment, the depository 210

comprises one or more lightweight directory access protocol (LDAP) servers. LDAP directory

servers are available from a wide variety of manufacturers such as Netscape, ISO, and others.

FIGURE 4 also shows that the directory server preferably stores data 405 corresponding to the

cryptographic keys and data 410 corresponding to the enrollment authentication data. According

- 18-

WO 2011/123699 PCT/US2011/030811

to one embodiment, the depository 210 comprises a single logical memory structure indexing

authentication data and cryptographic key data to a unique user ID. The single logical memory

structure preferably includes mechanisms to ensure a high degree of trust, or security, in the data

stored therein. For example, the physical location of the depository 210 may advantageously

include a wide number of conventional security measures, such as limited employee access,

modern surveillance systems, and the like. In addition to, or in lieu of, the physical securities,

the computer system or server may advantageously include software solutions to protect the

stored data. For example, the depository 210 may advantageously create and store data 415

corresponding to an audit trail of actions taken. In addition, the incoming and outgoing

communications may advantageously be encrypted with public key encryption coupled with

conventional SSL technologies.

[0109] According to another embodiment, the depository 210 may comprise distinct and

physically separated data storage facilities, as disclosed further with reference to FIGURE 7.

[0110] FIGURE 5 illustrates a block diagram of the authentication engine 215 of FIGURE 2

according to aspects of an embodiment of the invention. Similar to the transaction engine 205 of

FIGURE 3, the authentication engine 215 comprises an operating system 505 having at least a

listening and a handling thread of a modified version of a conventional Web server, such as, for

example, Web servers available from Apache. As shown in FIGURE 5, the authentication

engine 215 includes access to at least one private key 510. The private key 510 may

advantageously be used for example, to decrypt data from the transaction engine 205 or the

depository 210, which was encrypted with a corresponding public key of the authentication

engine 215.

[0111] FIGURE 5 also illustrates the authentication engine 215 comprising a comparator 515,

a data splitting module 520, and a data assembling module 525. According to the preferred

embodiment of the invention, the comparator 515 includes technology capable of comparing

potentially complex patterns related to the foregoing biometric authentication data. The

technology may include hardware, software, or combined solutions for pattern comparisons, such

as, for example, those representing finger print patterns or voice patterns. In addition, according

to one embodiment, the comparator 515 of the authentication engine 215 may advantageously

compare conventional hashes of documents in order to render a comparison result. According to

one embodiment of the invention, the comparator 515 includes the application of heuristics 530

- 19-

WO 2011/123699 PCT/US2011/030811

to the comparison. The heuristics 530 may advantageously address circumstances surrounding

an authentication attempt, such as, for example, the time of day, IP address or subnet mask,

purchasing profile, email address, processor serial number or ID, or the like.

[0112] Moreover, the nature of biometric data comparisons may result in varying degrees of

confidence being produced from the matching of current biometric authentication data to

enrollment data. For example, unlike a traditional password which may only return a positive or

negative match, a fingerprint may be determined to be a partial match, e.g. a 90% match, a 75%

match, or a 10% match, rather than simply being correct or incorrect. Other biometric identifiers

such as voice print analysis or face recognition may share this property of probabilistic

authentication, rather than absolute authentication.

[0113] When working with such probabilistic authentication or in other cases where an

authentication is considered less than absolutely reliable, it is desirable to apply the heuristics

530 to determine whether the level of confidence in the authentication provided is sufficiently

high to authenticate the transaction which is being made.

[0114] It will sometimes be the case that the transaction at issue is a relatively low value

transaction where it is acceptable to be authenticated to a lower level of confidence. This could

include a transaction which has a low dollar value associated with it (e.g., a $10 purchase) or a

transaction with low risk (e.g., admission to a members-only web site).

[0115] Conversely, for authenticating other transactions, it may be desirable to require a high

degree of confidence in the authentication before allowing the transaction to proceed. Such

transactions may include transactions of large dollar value (e.g., signing a multi-million dollar

supply contract) or transaction with a high risk if an improper authentication occurs (e.g.,

remotely logging onto a government computer).

[0116] The use of the heuristics 530 in combination with confidence levels and transactions

values may be used as will be described below to allow the comparator to provide a dynamic

context-sensitive authentication system.

[0117] According to another embodiment of the invention, the comparator 515 may

advantageously track authentication attempts for a particular transaction. For example, when a

transaction fails, the trust engine 110 may request the user to re-enter his or her current

authentication data. The comparator 515 of the authentication engine 215 may advantageously

employ an attempt limiter 535 to limit the number of authentication attempts, thereby prohibiting

-20-

WO 2011/123699 PCT/US2011/030811

brute-force attempts to impersonate a user's authentication data. According to one embodiment,

the attempt limiter 535 comprises a software module monitoring transactions for repeating

authentication attempts and, for example, limiting the authentication attempts for a given

transaction to three. Thus, the attempt limiter 535 will limit an automated attempt to

impersonate an individual's authentication data to, for example, simply three "guesses." Upon

three failures, the attempt limiter 535 may advantageously deny additional authentication

attempts. Such denial may advantageously be implemented through, for example, the

comparator 515 returning a negative result regardless of the current authentication data being

transmitted. On the other hand, the transaction engine 205 may advantageously block any

additional authentication attempts pertaining to a transaction in which three attempts have

previously failed.

[0118] The authentication engine 215 also includes the data splitting module 520 and the data

assembling module 525. The data splitting module 520 advantageously comprises a software,

hardware, or combination module having the ability to mathematically operate on various data so

as to substantially randomize and split the data into portions. According to one embodiment,

original data is not recreatable from an individual portion. The data assembling module 525

advantageously comprises a software, hardware, or combination module configured to

mathematically operate on the foregoing substantially randomized portions, such that the

combination thereof provides the original deciphered data. According to one embodiment, the

authentication engine 215 employs the data splitting module 520 to randomize and split

enrollment authentication data into portions, and employs the data assembling module 525 to

reassemble the portions into usable enrollment authentication data.

[0119] FIGURE 6 illustrates a block diagram of the cryptographic engine 220 of the trust

engine 200 of FIGURE 2 according to aspects of one embodiment of the invention. Similar to

the transaction engine 205 of FIGURE 3, the cryptographic engine 220 comprises an operating

system 605 having at least a listening and a handling thread of a modified version of a

conventional Web server, such as, for example, Web servers available from Apache. As shown

in FIGURE 6, the cryptographic engine 220 comprises a data splitting module 610 and a data

assembling module 620 that function similar to those of FIGURE 5. However, according to one

embodiment, the data splitting module 610 and the data assembling module 620 process

cryptographic key data, as opposed to the foregoing enrollment authentication data. Although, a

-21 -

WO 2011/123699 PCT/US2011/030811

skilled artisan will recognize from the disclosure herein that the data splitting module 910 and

the data splitting module 620 may be combined with those of the authentication engine 215.

[0120] The cryptographic engine 220 also comprises a cryptographic handling module 625

configured to perform one, some or all of a wide number of cryptographic functions. According

to one embodiment, the cryptographic handling module 625 may comprise software modules or

programs, hardware, or both. According to another embodiment, the cryptographic handling

module 625 may perform data comparisons, data parsing, data splitting, data separating, data

hashing, data encryption or decryption, digital signature verification or creation, digital

certificate generation, storage, or requests, cryptographic key generation, or the like. Moreover,

a skilled artisan will recognize from the disclosure herein that the cryptographic handling module

825 may advantageously comprises a public-key infrastructure, such as Pretty Good Privacy

(PGP), an RSA-based public-key system, or a wide number of alternative key management

systems. In addition, the cryptographic handling module 625 may perform public-key

encryption, symmetric-key encryption, or both. In addition to the foregoing, the cryptographic

handling module 625 may include one or more computer programs or modules, hardware, or

both, for implementing seamless, transparent, interoperability functions.

[0121] A skilled artisan will also recognize from the disclosure herein that the cryptographic

functionality may include a wide number or variety of functions generally relating to

cryptographic key management systems.

[0122] FIGURE 7 illustrates a simplified block diagram of a depository system 700 according

to aspects of an embodiment of the invention. As shown in FIGURE 7, the depository system

700 advantageously comprises multiple data storage facilities, for example, data storage facilities

DI, D2, D3, and D4. However, it is readily understood by those of ordinary skill in the art that

the depository system may have only one data storage facility. According to one embodiment of

the invention, each of the data storage facilities D1 through D4 may advantageously comprise

some or all of the elements disclosed with reference to the depository 210 of FIGURE 4. Similar

to the depository 210, the data storage facilities DI through D4 communicate with the

transaction engine 205, the authentication engine 215, and the cryptographic engine 220,

preferably through conventional SSL. Communication links transferring, for example, XML

documents. Communications from the transaction engine 205 may advantageously include

requests for data, wherein the request is advantageously broadcast to the IP address of each data

-22-

WO 2011/123699 PCT/US2011/030811

storage facility DI through D4. On the other hand, the transaction engine 205 may broadcast

requests to particular data storage facilities based on a wide number of criteria, such as, for

example, response time, server loads, maintenance schedules, or the like.

[0123] In response to requests for data from the transaction engine 205, the depository system

700 advantageously forwards stored data to the authentication engine 215 and the cryptographic

engine 220. The respective data assembling modules receive the forwarded data and assemble

the data into useable formats. On the other hand, communications from the authentication

engine 215 and the cryptographic engine 220 to the data storage facilities D1 through D4 may

include the transmission of sensitive data to be stored. For example, according to one

embodiment, the authentication engine 215 and the cryptographic engine 220 may

advantageously employ their respective data splitting modules to divide sensitive data into

undecipherable portions, and then transmit one or more undecipherable portions of the sensitive

data to a particular data storage facility.

[0124] According to one embodiment, each data storage facility, DI through D4, comprises a

separate and independent storage system, such as, for example, a directory server. According to

another embodiment of the invention, the depository system 700 comprises multiple

geographically separated independent data storage systems. By distributing the sensitive data

into distinct and independent storage facilities DI through D4, some or all of which may be

advantageously geographically separated, the depository system 700 provides redundancy along

with additional security measures. For example, according to one embodiment, only data from

two of the multiple data storage facilities, DI through D4, are needed to decipher and reassemble

the sensitive data. Thus, as many as two of the four data storage facilities DI through D4 may be

inoperative due to maintenance, system failure, power failure, or the like, without affecting the

functionality of the trust engine 110. In addition, because, according to one embodiment, the

data stored in each data storage facility is randomized and undecipherable, compromise of any

individual data storage facility does not necessarily compromise the sensitive data. Moreover, in

the embodiment having geographical separation of the data storage facilities, a compromise of

multiple geographically remote facilities becomes increasingly difficult. In fact, even a rogue

employee will be greatly challenged to subvert the needed multiple independent geographically

remote data storage facilities.

-23-

WO 2011/123699 PCT/US2011/030811

[0125] Although the depository system 700 is disclosed with reference to its preferred and

alternative embodiments, the invention is not intended to be limited thereby. Rather, a skilled

artisan will recognize from the disclosure herein, a wide number of alternatives for the

depository system 700. For example, the depository system 700 may comprise one, two or more

data storage facilities. In addition, sensitive data may be mathematically operated such that

portions from two or more data storage facilities are needed to reassemble and decipher the

sensitive data.

[0126] As mentioned in the foregoing, the authentication engine 215 and the cryptographic

engine 220 each include a data splitting module 520 and 610, respectively, for splitting any type

or form of sensitive data, such as, for example, text, audio, video, the authentication data and the

cryptographic key data. FIGURE 8 illustrates a flowchart of a data splitting process 800

performed by the data splitting module according to aspects of an embodiment of the invention.

As shown in FIGURE 8, the data splitting process 800 begins at step 805 when sensitive data "S"

is received by the data splitting module of the authentication engine 215 or the cryptographic

engine 220. Preferably, in step 810, the data splitting module then generates a substantially

random number, value, or string or set of bits, "A." For example, the random number A may be

generated in a wide number of varying conventional techniques available to one of ordinary skill

in the art, for producing high quality random numbers suitable for use in cryptographic

applications. In addition, according to one embodiment, the random number A comprises a bit

length which may be any suitable length, such as shorter, longer or equal to the bit length of the

sensitive data, S.

[0127] In addition, in step 820 the data splitting process 800 generates another statistically

random number "C." According to the preferred embodiment, the generation of the statistically

random numbers A and C may advantageously be done in parallel. The data splitting module

then combines the numbers A and C with the sensitive data S such that new numbers "B" and

"D" are generated. For example, number B may comprise the binary combination of A XOR S

and number D may comprise the binary combination of C XOR S. The XOR function, or the

"exclusive-or" function, is well known to those of ordinary skill in the art. The foregoing

combinations preferably occur in steps 825 and 830, respectively, and, according to one

embodiment, the foregoing combinations also occur in parallel. The data splitting process 800

then proceeds to step 835 where the random numbers A and C and the numbers B and D are

-24-

WO 2011/123699 PCT/US2011/030811

paired such that none of the pairings contain sufficient data, by themselves, to reorganize and

decipher the original sensitive data S. For example, the numbers may be paired as follows: AC,

AD, BC, and BD. According to one embodiment, each of the foregoing pairings is distributed to

one of the depositories DI through D4 of FIGURE 7. According to another embodiment, each of

the foregoing pairings is randomly distributed to one of the depositories DI through D4. For

example, during a first data splitting process 800, the pairing AC may be sent to depository D2,

through, for example, a random selection of D2's IP address. Then, during a second data

splitting process 800, the pairing AC may be sent to depository D4, through, for example, a

random selection of D4's IP address. In addition, the pairings may all be stored on one

depository, and may be stored in separate locations on said depository.

[0128] Based on the foregoing, the data splitting process 800 advantageously places portions of

the sensitive data in each of the four data storage facilities DI through D4, such that no single

data storage facility D1 through D4 includes sufficient encrypted data to recreate the original

sensitive data S. As mentioned in the foregoing, such randomization of the data into individually

unusable encrypted portions increases security and provides for maintained trust in the data even

if one of the data storage facilities, DI through D4, is compromised.

[0129] Although the data splitting process 800 is disclosed with reference to its preferred

embodiment, the invention is not intended to be limited thereby. Rather a skilled artisan will

recognize from the disclosure herein, a wide number of alternatives for the data splitting process

800. For example, the data splitting process may advantageously split the data into two numbers,

for example, random number A and number B and, randomly distribute A and B through two

data storage facilities. Moreover, the data splitting process 800 may advantageously split the

data among a wide number of data storage facilities through generation of additional random

numbers. The data may be split into any desired, selected, predetermined, or randomly assigned

size unit, including but not limited to, a bit, bits, bytes, kilobytes, megabytes or larger, or any

combination or sequence of sizes. In addition, varying the sizes of the data units resulting from

the splitting process may render the data more difficult to restore to a useable form, thereby

increasing security of sensitive data. It is readily apparent to those of ordinary skill in the art that

the split data unit sizes may be a wide variety of data unit sizes or patterns of sizes or

combinations of sizes. For example, the data unit sizes may be selected or predetermined to be

all of the same size, a fixed set of different sizes, a combination of sizes, or randomly generates

-25-

WO 2011/123699 PCT/US2011/030811

sizes. Similarly, the data units may be distributed into one or more shares according to a fixed or

predetermined data unit size, a pattern or combination of data unit sizes, or a randomly generated

data unit size or sizes per share.

[0130] As mentioned in the foregoing, in order to recreate the sensitive data S, the data

portions need to be derandomized and reorganized. This process may advantageously occur in

the data assembling modules, 525 and 620, of the authentication engine 215 and the

cryptographic engine 220, respectively. The data assembling module, for example, data

assembly module 525, receives data portions from the data storage facilities DI through D4, and

reassembles the data into useable form. For example, according to one embodiment where the

data splitting module 520 employed the data splitting process 800 of FIGURE 8, the data

assembling module 525 uses data portions from at least two of the data storage facilities DI

through D4 to recreate the sensitive data S. For example, the pairings of AC, AD, BC, and BD,

were distributed such that any two provide one of A and B, or, C and D. Noting that S = A XOR

B or S = C XOR D indicates that when the data assembling module receives one of A and B, or,

C and D, the data assembling module 525 can advantageously reassemble the sensitive data S.

Thus, the data assembling module 525 may assemble the sensitive data S, when, for example, it

receives data portions from at least the first two of the data storage facilities DI through D4 to

respond to an assemble request by the trust engine 110.

[0131] Based on the above data splitting and assembling processes, the sensitive data S exists

in usable format only in a limited area of the trust engine 110. For example, when the sensitive

data S includes enrollment authentication data, usable, nonrandomized enrollment authentication

data is available only in the authentication engine 215. Likewise, when the sensitive data S

includes private cryptographic key data, usable, nonrandomized private cryptographic key data is

available only in the cryptographic engine 220.

[0132] Although the data splitting and assembling processes are disclosed with reference to

their preferred embodiments, the invention is not intended to be limited thereby. Rather, a

skilled artisan will recognize from the disclosure herein, a wide number of alternatives for

splitting and reassembling the sensitive data S. For example, public-key encryption may be used

to further secure the data at the data storage facilities DI through D4. In addition, it is readily

apparent to those of ordinary skill in the art that the data splitting module described herein is also

a separate and distinct embodiment of the present invention that may be incorporated into,

-26-

WO 2011/123699 PCT/US2011/030811

combined with or otherwise made part of any pre-existing computer systems, software suites,

database, or combinations thereof, or other embodiments of the present invention, such as the

trust engine, authentication engine, and transaction engine disclosed and described herein.

[0133] FIGURE 9A illustrates a data flow of an enrollment process 900 according to aspects of

an embodiment of the invention. As shown in FIGURE 9A, the enrollment process 900 begins at

step 905 when a user desires to enroll with the trust engine 110 of the cryptographic system 100.

According to this embodiment, the user system 105 advantageously includes a client-side applet,

such as a Java-based, that queries the user to enter enrollment data, such as demographic data

and enrollment authentication data. According to one embodiment, the enrollment

authentication data includes user ID, password(s), biometric(s), or the like. According to one

embodiment, during the querying process, the client-side applet preferably communicates with

the trust engine 110 to ensure that a chosen user ID is unique. When the user ID is nonunique,

the trust engine 110 may advantageously suggest a unique user ID. The client-side applet

gathers the enrollment data and transmits the enrollment data, for example, through and XML

document, to the trust engine 110, and in particular, to the transaction engine 205. According to

one embodiment, the transmission is encoded with the public key of the authentication engine

215.

[0134] According to one embodiment, the user performs a single enrollment during step 905 of

the enrollment process 900. For example, the user enrolls himself or herself as a particular

person, such as Joe User. When Joe User desires to enroll as Joe User, CEO of Mega Corp., then

according to this embodiment, Joe User enrolls a second time, receives a second unique user ID

and the trust engine 110 does not associate the two identities. According to another embodiment

of the invention, the enrollment process 900 provides for multiple user identities for a single user

ID. Thus, in the above example, the trust engine 110 will advantageously associate the two

identities of Joe User. As will be understood by a skilled artisan from the disclosure herein, a

user may have many identities, for example, Joe User the head of household, Joe User the

member of the Charitable Foundations, and the like. Even though the user may have multiple

identities, according to this embodiment, the trust engine 110 preferably stores only one set of

enrollment data. Moreover, users may advantageously add, edit/update, or delete identities as

they are needed.

-27-

WO 2011/123699 PCT/US2011/030811

[0135] Although the enrollment process 900 is disclosed with reference to its preferred

embodiment, the invention is not intended to be limited thereby. Rather, a skilled artisan will

recognize from the disclosure herein, a wide number of alternatives for gathering of enrollment

data, and in particular, enrollment authentication data. For example, the applet may be common

object model (COM) based applet or the like.

[0136] On the other hand, the enrollment process may include graded enrollment. For

example, at a lowest level of enrollment, the user may enroll over the communication link 125

without producing documentation as to his or her identity. According to an increased level of

enrollment, the user enrolls using a trusted third party, such as a digital notary. For example, and

the user may appear in person to the trusted third party, produce credentials such as a birth

certificate, driver's license, military ID, or the like, and the trusted third party may

advantageously include, for example, their digital signature in enrollment submission. The

trusted third party may include an actual notary, a government agency, such as the Post Office or

Department of Motor Vehicles, a human resources person in a large company enrolling an

employee, or the like. A skilled artisan will understand from the disclosure herein that a wide

number of varying levels of enrollment may occur during the enrollment process 900.

[0137] After receiving the enrollment authentication data, at step 915, the transaction engine

205, using conventional FULL SSL technology forwards the enrollment authentication data to

the authentication engine 215. In step 920, the authentication engine 215 decrypts the enrollment

authentication data using the private key of the authentication engine 215. In addition, the

authentication engine 215 employs the data splitting module to mathematically operate on the

enrollment authentication data so as to split the data into at least two independently

undecipherable, randomized, numbers. As mentioned in the foregoing, at least two numbers may

comprise a statistically random number and a binary XORed number. In step 925, the

authentication engine 215 forwards each portion of the randomized numbers to one of the data

storage facilities DI through D4. As mentioned in the foregoing, the authentication engine 215

may also advantageously randomize which portions are transferred to which depositories.

[0138] Often during the enrollment process 900, the user will also desire to have a digital

certificate issued such that he or she may receive encrypted documents from others outside the

cryptographic system 100. As mentioned in the foregoing, the certificate authority 115 generally

-28-

WO 2011/123699 PCT/US2011/030811

issues digital certificates according to one or more of several conventional standards. Generally,

the digital certificate includes a public key of the user or system, which is known to everyone.

[0139] Whether the user requests a digital certificate at enrollment, or at another time, the

request is transferred through the trust engine 110 to the authentication engine 215. According to

one embodiment, the request includes an XML document having, for example, the proper name

of the user. According to step 935, the authentication engine 215 transfers the request to the

cryptographic engine 220 instructing the cryptographic engine 220 to generate a cryptographic

key or key pair.

[0140] Upon request, at step 935, the cryptographic engine 220 generates at least one

cryptographic key. According to one embodiment, the cryptographic handling module 625

generates a key pair, where one key is used as a private key, and one is used as a public key. The

cryptographic engine 220 stores the private key and, according to one embodiment, a copy of the

public key. In step 945, the cryptographic engine 220 transmits a request for a digital certificate

to the transaction engine 205. According to one embodiment, the request advantageously

includes a standardized request, such as PKCS10, embedded in, for example, an XML document.

The request for a digital certificate may advantageously correspond to one or more certificate

authorities and the one or more standard formats the certificate authorities require.

[0141] In step 950 the transaction engine 205 forwards this request to the certificate authority

115, who, in step 955, returns a digital certificate. The return digital certificate may

advantageously be in a standardized format, such as PKCS7, or in a proprietary format of one or

more of the certificate authorities 115. In step 960, the digital certificate is received by the

transaction engine 205, and a copy is forwarded to the user and a copy is stored with the trust

engine 110. The trust engine 110 stores a copy of the certificate such that the trust engine 110

will not need to rely on the availability of the certificate authority 115. For example, when the

user desires to send a digital certificate, or a third party requests the user's digital certificate, the

request for the digital certificate is typically sent to the certificate authority 115. However, if the

certificate authority 115 is conducting maintenance or has been victim of a failure or security

compromise, the digital certificate may not be available.

[0142] At any time after issuing the cryptographic keys, the cryptographic engine 220 may

advantageously employ the data splitting process 800 described above such that the

cryptographic keys are split into independently undecipherable randomized numbers. Similar to

-29-

WO 2011/123699 PCT/US2011/030811

the authentication data, at step 965 the cryptographic engine 220 transfers the randomized

numbers to the data storage facilities DI through D4.

[0143] A skilled artisan will recognize from the disclosure herein that the user may request a

digital certificate anytime after enrollment. Moreover, the communications between systems

may advantageously include FULL SSL or public-key encryption technologies. Moreover, the

enrollment process may issue multiple digital certificates from multiple certificate authorities,

including one or more proprietary certificate authorities internal or external to the trust engine

110.

[0144] As disclosed in steps 935 through 960, one embodiment of the invention includes the

request for a certificate that is eventually stored on the trust engine 110. Because, according to

one embodiment, the cryptographic handling module 625 issues the keys used by the trust engine

110, each certificate corresponds to a private key. Therefore, the trust engine 110 may

advantageously provide for interoperability through monitoring the certificates owned by, or

associated with, a user. For example, when the cryptographic engine 220 receives a request for a

cryptographic function, the cryptographic handling module 625 may investigate the certificates

owned by the requesting user to determine whether the user owns a private key matching the

attributes of the request. When such a certificate exists, the cryptographic handling module 625

may use the certificate or the public or private keys associated therewith, to perform the

requested function. When such a certificate does not exist, the cryptographic handling module

625 may advantageously and transparently perform a number of actions to attempt to remedy the

lack of an appropriate key. For example, FIGURE 9B illustrates a flowchart of an

interoperability process 970, which according to aspects of an embodiment of the invention,

discloses the foregoing steps to ensure the cryptographic handling module 625 performs

cryptographic functions using appropriate keys.

[0145] As shown in FIGURE 9B, the interoperability process 970 begins with step 972 where

the cryptographic handling module 925 determines the type of certificate desired. According to

one embodiment of the invention, the type of certificate may advantageously be specified in the

request for cryptographic functions, or other data provided by the requestor. According to

another embodiment, the certificate type may be ascertained by the data format of the request.

For example, the cryptographic handling module 925 may advantageously recognize the request

corresponds to a particular type.

-30-

WO 2011/123699 PCT/US2011/030811

[0146] According to one embodiment, the certificate type may include one or more algorithm

standards, for example, RSA, ELGAMAL, or the like. In addition, the certificate type may

include one or more key types, such as symmetric keys, public keys, strong encryption keys such

as 256 bit keys, less secure keys, or the like. Moreover, the certificate type may include

upgrades or replacements of one or more of the foregoing algorithm standards or keys, one or

more message or data formats, one or more data encapsulation or encoding schemes, such as

Base 32 or Base 64. The certificate type may also include compatibility with one or more

third-party cryptographic applications or interfaces, one or more communication protocols, or

one or more certificate standards or protocols. A skilled artisan will recognize from the

disclosure herein that other differences may exist in certificate types, and translations to and

from those differences may be implemented as disclosed herein.

[0147] Once the cryptographic handling module 625 determines the certificate type, the

interoperability process 970 proceeds to step 974, and determines whether the user owns a

certificate matching the type determined in step 974. When the user owns a matching certificate,

for example, the trust engine 110 has access to the matching certificate through, for example,

prior storage thereof, the cryptographic handling module 825 knows that a matching private key

is also stored within the trust engine 110. For example, the matching private key may be stored

within the depository 210 or depository system 700. The cryptographic handling module 625

may advantageously request the matching private key be assembled from, for example, the

depository 210, and then in step 976, use the matching private key to perform cryptographic

actions or functions. For example, as mentioned in the foregoing, the cryptographic handling

module 625 may advantageously perform hashing, hash comparisons, data encryption or

decryption, digital signature verification or creation, or the like.

[0148] When the user does not own a matching certificate, the interoperability process 970

proceeds to step 978 where the cryptographic handling module 625 determines whether the users

owns a cross-certified certificate. According to one embodiment, cross-certification between

certificate authorities occurs when a first certificate authority determines to trust certificates from

a second certificate authority. In other words, the first certificate authority determines that

certificates from the second certificate authority meets certain quality standards, and therefore,

may be "certified" as equivalent to the first certificate authority's own certificates.

Cross-certification becomes more complex when the certificate authorities issue, for example,

-31 -

WO 2011/123699 PCT/US2011/030811

certificates having levels of trust. For example, the first certificate authority may provide three

levels of trust for a particular certificate, usually based on the degree of reliability in the

enrollment process, while the second certificate authority may provide seven levels of trust.

Cross-certification may advantageously track which levels and which certificates from the

second certificate authority may be substituted for which levels and which certificates from the

first. When the foregoing cross-certification is done officially and publicly between two

certification authorities, the mapping of certificates and levels to one another is often called

"chaining."

[0149] According to another embodiment of the invention, the cryptographic handling module

625 may advantageously develop cross-certifications outside those agreed upon by the certificate

authorities. For example, the cryptographic handling module 625 may access a first certificate

authority's certificate practice statement (CPS), or other published policy statement, and using,
for example, the authentication tokens required by particular trust levels, match the first

certificate authority's certificates to those of another certificate authority.

[0150] When, in step 978, the cryptographic handling module 625 determines that the users

owns a cross-certified certificate, the interoperability process 970 proceeds to step 976, and

performs the cryptographic action or function using the cross-certified public key, private key, or

both. Alternatively, when the cryptographic handling module 625 determines that the users does

not own a cross-certified certificate, the interoperability process 970 proceeds to step 980, where

the cryptographic handling module 625 selects a certificate authority that issues the requested

certificate type, or a certificate cross-certified thereto. In step 982, the cryptographic handling

module 625 determines whether the user enrollment authentication data, discussed in the

foregoing, meets the authentication requirements of the chosen certificate authority. For

example, if the user enrolled over a network by, for example, answering demographic and other

questions, the authentication data provided may establish a lower level of trust than a user

providing biometric data and appearing before a third-party, such as, for example, a notary.

According to one embodiment, the foregoing authentication requirements may advantageously

be provided in the chosen authentication authority's CPS.

[0151] When the user has provided the trust engine 110 with enrollment authentication data

meeting the requirements of chosen certificate authority, the interoperability process 970

proceeds to step 984, where the cryptographic handling module 825 acquires the certificate from

-32-

WO 2011/123699 PCT/US2011/030811

the chosen certificate authority. According to one embodiment, the cryptographic handling

module 625 acquires the certificate by following steps 945 through 960 of the enrollment process

900. For example, the cryptographic handling module 625 may advantageously employ one or

more public keys from one or more of the key pairs already available to the cryptographic engine

220, to request the certificate from the certificate authority. According to another embodiment,

the cryptographic handling module 625 may advantageously generate one or more new key pairs,

and use the public keys corresponding thereto, to request the certificate from the certificate

authority.

[0152] According to another embodiment, the trust engine 110 may advantageously include

one or more certificate issuing modules capable of issuing one or more certificate types.

According to this embodiment, the certificate issuing module may provide the foregoing

certificate. When the cryptographic handling module 625 acquires the certificate, the

interoperability process 970 proceeds to step 976, and performs the cryptographic action or

function using the public key, private key, or both corresponding to the acquired certificate.

[0153] When the user, in step 982, has not provided the trust engine 110 with enrollment

authentication data meeting the requirements of chosen certificate authority, the cryptographic

handling module 625 determines, in step 986 whether there are other certificate authorities that

have different authentication requirements. For example, the cryptographic handling module

625 may look for certificate authorities having lower authentication requirements, but still issue

the chosen certificates, or cross-certifications thereof.

[0154] When the foregoing certificate authority having lower requirements exists, the

interoperability process 970 proceeds to step 980 and chooses that certificate authority.

Alternatively, when no such certificate authority exists, in step 988, the trust engine 110 may

request additional authentication tokens from the user. For example, the trust engine 110 may

request new enrollment authentication data comprising, for example, biometric data. Also, the

trust engine 110 may request the user appear before a trusted third party and provide appropriate

authenticating credentials, such as, for example, appearing before a notary with a drivers license,

social security card, bank card, birth certificate, military ID, or the like. When the trust engine

110 receives updated authentication data, the interoperability process 970 proceeds to step 984

and acquires the foregoing chosen certificate.

-33-

WO 2011/123699 PCT/US2011/030811

[0155] Through the foregoing interoperability process 970, the cryptographic handling module

625 advantageously provides seamless, transparent, translations and conversions between

differing cryptographic systems. A skilled artisan will recognize from the disclosure herein, a

wide number of advantages and implementations of the foregoing interoperable system. For

example, the foregoing step 986 of the interoperability process 970 may advantageously include

aspects of trust arbitrage, discussed in further detail below, where the certificate authority may

under special circumstances accept lower levels of cross-certification. In addition, the

interoperability process 970 may include ensuring interoperability between and employment of

standard certificate revocations, such as employing certificate revocation lists (CRL), online

certificate status protocols (OCSP), or the like.

[0156] FIGURE 10 illustrates a data flow of an authentication process 1000 according to

aspects of an embodiment of the invention. According to one embodiment, the authentication

process 1000 includes gathering current authentication data from a user and comparing that to

the enrollment authentication data of the user. For example, the authentication process 1000

begins at step 1005 where a user desires to perform a transaction with, for example, a vendor.

Such transactions may include, for example, selecting a purchase option, requesting access to a

restricted area or device of the vendor system 120, or the like. At step 1010, a vendor provides

the user with a transaction ID and an authentication request. The transaction ID may

advantageously include a 192 bit quantity having a 32 bit timestamp concatenated with a 128 bit

random quantity, or a "nonce," concatenated with a 32 bit vendor specific constant. Such a

transaction ID uniquely identifies the transaction such that copycat transactions can be refused

by the trust engine 110.

[0157] The authentication request may advantageously include what level of authentication is

needed for a particular transaction. For example, the vendor may specify a particular level of

confidence that is required for the transaction at issue. If authentication cannot be made to this

level of confidence, as will be discussed below, the transaction will not occur without either

further authentication by the user to raise the level of confidence, or a change in the terms of the

authentication between the vendor and the server. These issues are discussed more completely

below.

[0158] According to one embodiment, the transaction ID and the authentication request may be

advantageously generated by a vendor-side applet or other software program. In addition, the

-34-

WO 2011/123699 PCT/US2011/030811

transmission of the transaction ID and authentication data may include one or more XML

documents encrypted using conventional SSL technology, such as, for example, % SSL, or, in

other words vendor-side authenticated SSL.

[0159] After the user system 105 receives the transaction ID and authentication request, the

user system 105 gathers the current authentication data, potentially including current biometric

information, from the user. The user system 105, at step 1015, encrypts at least the current

authentication data "B" and the transaction ID, with the public key of the authentication engine

215, and transfers that data to the trust engine 110. The transmission preferably comprises XML

documents encrypted with at least conventional % SSL technology. In step 1020, the transaction

engine 205 receives the transmission, preferably recognizes the data format or request in the

URL or URI, and forwards the transmission to the authentication engine 215.

[0160] During steps 1015 and 1020, the vendor system 120, at step 1025, forwards the

transaction ID and the authentication request to the trust engine 110, using the preferred FULL

SSL technology. This communication may also include a vendor ID, although vendor

identification may also be communicated through a non-random portion of the transaction ID.

At steps 1030 and 1035, the transaction engine 205 receives the communication, creates a record

in the audit trail, and generates a request for the user's enrollment authentication data to be

assembled from the data storage facilities DI through D4. At step 1040, the depository system

700 transfers the portions of the enrollment authentication data corresponding to the user to the

authentication engine 215. At step 1045, the authentication engine 215 decrypts the transmission

using its private key and compares the enrollment authentication data to the current

authentication data provided by the user.

[0161] The comparison of step 1045 may advantageously apply heuristical context sensitive

authentication, as referred to in the forgoing, and discussed in further detail below. For example,

if the biometric information received does not match perfectly, a lower confidence match results.

In particular embodiments, the level of confidence of the authentication is balanced against the

nature of the transaction and the desires of both the user and the vendor. Again, this is discussed

in greater detail below.

[0162] At step 1050, the authentication engine 215 fills in the authentication request with the

result of the comparison of step 1045. According to one embodiment of the invention, the

authentication request is filled with a YES/NO or TRUE/FALSE result of the authentication

-35-

WO 2011/123699 PCT/US2011/030811

process 1000. In step 1055 the filled-in authentication request is returned to the vendor for the

vendor to act upon, for example, allowing the user to complete the transaction that initiated the

authentication request. According to one embodiment, a confirmation message is passed to the

user.

[0163] Based on the foregoing, the authentication process 1000 advantageously keeps sensitive

data secure and produces results configured to maintain the integrity of the sensitive data. For

example, the sensitive data is assembled only inside the authentication engine 215. For example,

the enrollment authentication data is undecipherable until it is assembled in the authentication

engine 215 by the data assembling module, and the current authentication data is undecipherable

until it is unwrapped by the conventional SSL technology and the private key of the

authentication engine 215. Moreover, the authentication result transmitted to the vendor does

not include the sensitive data, and the user may not even know whether he or she produced valid

authentication data.

[0164] Although the authentication process 1000 is disclosed with reference to its preferred

and alternative embodiments, the invention is not intended to be limited thereby. Rather, a

skilled artisan will recognize from the disclosure herein, a wide number of alternatives for the

authentication process 1000. For example, the vendor may advantageously be replaced by

almost any requesting application, even those residing with the user system 105. For example, a

client application, such as Microsoft Word, may use an application program interface (API) or a

cryptographic API (CAPI) to request authentication before unlocking a document. Alternatively,

a mail server, a network, a cellular phone, a personal or mobile computing device, a workstation,

or the like, may all make authentication requests that can be filled by the authentication process

1000. In fact, after providing the foregoing trusted authentication process 1000, the requesting

application or device may provide access to or use of a wide number of electronic or computer

devices or systems.

[0165] Moreover, the authentication process 1000 may employ a wide number of alternative

procedures in the event of authentication failure. For example, authentication failure may

maintain the same transaction ID and request that the user reenter his or her current

authentication data. As mentioned in the foregoing, use of the same transaction ID allows the

comparator of the authentication engine 215 to monitor and limit the number of authentication

attempts for a particular transaction, thereby creating a more secure cryptographic system 100.

-36-

WO 2011/123699 PCT/US2011/030811

[0166] In addition, the authentication process 1000 may be advantageously be employed to

develop elegant single sign-on solutions, such as, unlocking a sensitive data vault. For example,

successful or positive authentication may provide the authenticated user the ability to

automatically access any number of passwords for an almost limitless number of systems and

applications. For example, authentication of a user may provide the user access to password,

login, financial credentials, or the like, associated with multiple online vendors, a local area

network, various personal computing devices, Internet service providers, auction providers,

investment brokerages, or the like. By employing a sensitive data vault, users may choose truly

large and random passwords because they no longer need to remember them through association.

Rather, the authentication process 1000 provides access thereto. For example, a user may choose

a random alphanumeric string that is twenty plus digits in length rather than something

associated with a memorable data, name, etc.

[0167] According to one embodiment, a sensitive data vault associated with a given user may

advantageously be stored in the data storage facilities of the depository 210, or split and stored in

the depository system 700. According to this embodiment, after positive user authentication, the

trust engine 110 serves the requested sensitive data, such as, for example, to the appropriate

password to the requesting application. According to another embodiment, the trust engine 110

may include a separate system for storing the sensitive data vault. For example, the trust engine

110 may include a stand-alone software engine implementing the data vault functionality and

figuratively residing "behind" the foregoing front-end security system of the trust engine 110.

According to this embodiment, the software engine serves the requested sensitive data after the

software engine receives a signal indicating positive user authentication from the trust engine

110.

[0168] In yet another embodiment, the data vault may be implemented by a third-party system.

Similar to the software engine embodiment, the third-party system may advantageously serve the

requested sensitive data after the third-party system receives a signal indicating positive user

authentication from the trust engine 110. According to yet another embodiment, the data vault

may be implemented on the user system 105. A user-side software engine may advantageously

serve the foregoing data after receiving a signal indicating positive user authentication from the

trust engine 110.

-37-

WO 2011/123699 PCT/US2011/030811

[0169] Although the foregoing data vaults are disclosed with reference to alternative

embodiments, a skilled artisan will recognize from the disclosure herein, a wide number of

additional implementations thereof. For example, a particular data vault may include aspects

from some or all of the foregoing embodiments. In addition, any of the foregoing data vaults

may employ one or more authentication requests at varying times. For example, any of the data

vaults may require authentication every one or more transactions, periodically, every one or

more sessions, every access to one or more Webpages or Websites, at one or more other

specified intervals, or the like.

[0170] FIGURE 11 illustrates a data flow of a signing process 1100 according to aspects of an

embodiment of the invention. As shown in FIGURE 11, the signing process 1100 includes steps

similar to those of the authentication process 1000 described in the foregoing with reference to

FIGURE 10. According to one embodiment of the invention, the signing process 1100 first

authenticates the user and then performs one or more of several digital signing functions as will

be discussed in further detail below. According to another embodiment, the signing process

1100 may advantageously store data related thereto, such as hashes of messages or documents, or

the like. This data may advantageously be used in an audit or any other event, such as for

example, when a participating party attempts to repudiate a transaction.

[0171] As shown in FIGURE 11, during the authentication steps, the user and vendor may

advantageously agree on a message, such as, for example, a contract. During signing, the

signing process 1100 advantageously ensures that the contract signed by the user is identical to

the contract supplied by the vendor. Therefore, according to one embodiment, during

authentication, the vendor and the user include a hash of their respective copies of the message

or contract, in the data transmitted to the authentication engine 215. By employing only a hash

of a message or contract, the trust engine 110 may advantageously store a significantly reduced

amount of data, providing for a more efficient and cost effective cryptographic system. In

addition, the stored hash may be advantageously compared to a hash of a document in question

to determine whether the document in question matches one signed by any of the parties. The

ability to determine whether the document is identical to one relating to a transaction provides

for additional evidence that can be used against a claim for repudiation by a party to a

transaction.

-38-

WO 2011/123699 PCT/US2011/030811

[0172] In step 1103, the authentication engine 215 assembles the enrollment authentication

data and compares it to the current authentication data provided by the user. When the

comparator of the authentication engine 215 indicates that the enrollment authentication data

matches the current authentication data, the comparator of the authentication engine 215 also

compares the hash of the message supplied by the vendor to the hash of the message supplied by

the user. Thus, the authentication engine 215 advantageously ensures that the message agreed to

by the user is identical to that agreed to by the vendor.

[0173] In step 1105, the authentication engine 215 transmits a digital signature request to the

cryptographic engine 220. According to one embodiment of the invention, the request includes a

hash of the message or contract. However, a skilled artisan will recognize from the disclosure

herein that the cryptographic engine 220 may encrypt virtually any type of data, including, but

not limited to, video, audio, biometrics, images or text to form the desired digital signature.

Returning to step 1105, the digital signature request preferably comprises an XML document

communicated through conventional SSL technologies.

[0174] In step 1110, the authentication engine 215 transmits a request to each of the data

storage facilities DI through D4, such that each of the data storage facilities DI through D4

transmit their respective portion of the cryptographic key or keys corresponding to a signing

party. According to another embodiment, the cryptographic engine 220 employs some or all of

the steps of the interoperability process 970 discussed in the foregoing, such that the

cryptographic engine 220 first determines the appropriate key or keys to request from the

depository 210 or the depository system 700 for the signing party, and takes actions to provide

appropriate matching keys. According to still another embodiment, the authentication engine

215 or the cryptographic engine 220 may advantageously request one or more of the keys

associated with the signing party and stored in the depository 210 or depository system 700.

[0175] According to one embodiment, the signing party includes one or both the user and the

vendor. In such case, the authentication engine 215 advantageously requests the cryptographic

keys corresponding to the user and/or the vendor. According to another embodiment, the signing

party includes the trust engine 110. In this embodiment, the trust engine 110 is certifying that

the authentication process 1000 properly authenticated the user, vendor, or both. Therefore, the

authentication engine 215 requests the cryptographic key of the trust engine 110, such as, for

example, the key belonging to the cryptographic engine 220, to perform the digital signature.

-39-

WO 2011/123699 PCT/US2011/030811

According to another embodiment, the trust engine 110 performs a digital notary-like function.

In this embodiment, the signing party includes the user, vendor, or both, along with the trust

engine 110. Thus, the trust engine 110 provides the digital signature of the user and/or vendor,

and then indicates with its own digital signature that the user and/or vendor were properly

authenticated. In this embodiment, the authentication engine 215 may advantageously request

assembly of the cryptographic keys corresponding to the user, the vendor, or both. According to

another embodiment, the authentication engine 215 may advantageously request assembly of the

cryptographic keys corresponding to the trust engine 110.

[0176] According to another embodiment, the trust engine 110 performs power of attorney-like

functions. For example, the trust engine 110 may digitally sign the message on behalf of a third

party. In such case, the authentication engine 215 requests the cryptographic keys associated

with the third party. According to this embodiment, the signing process 1100 may

advantageously include authentication of the third party, before allowing power of attorney-like

functions. In addition, the authentication process 1000 may include a check for third party

constraints, such as, for example, business logic or the like dictating when and in what

circumstances a particular third-party's signature may be used.

[0177] Based on the foregoing, in step 1110, the authentication engine requested the

cryptographic keys from the data storage facilities D1 through D4 corresponding to the signing

party. In step 1115, the data storage facilities DI through D4 transmit their respective portions

of the cryptographic key corresponding to the signing party to the cryptographic engine 220.

According to one embodiment, the foregoing transmissions include SSL technologies.

According to another embodiment, the foregoing transmissions may advantageously be

super-encrypted with the public key of the cryptographic engine 220.

[0178] In step 1120, the cryptographic engine 220 assembles the foregoing cryptographic keys

of the signing party and encrypts the message therewith, thereby forming the digital signature(s).

In step 1125 of the signing process 1100, the cryptographic engine 220 transmits the digital

signature(s) to the authentication engine 215. In step 1130, the authentication engine 215

transmits the filled-in authentication request along with a copy of the hashed message and the

digital signature(s) to the transaction engine 205. In step 1135, the transaction engine 205

transmits a receipt comprising the transaction ID, an indication of whether the authentication was

successful, and the digital signature(s), to the vendor. According to one embodiment, the

-40-

WO 2011/123699 PCT/US2011/030811

foregoing transmission may advantageously include the digital signature of the trust engine 110.

For example, the trust engine 110 may encrypt the hash of the receipt with its private key,

thereby forming a digital signature to be attached to the transmission to the vendor.

[0179] According to one embodiment, the transaction engine 205 also transmits a confirmation

message to the user. Although the signing process 1100 is disclosed with reference to its

preferred and alternative embodiments, the invention is not intended to be limited thereby.

Rather, a skilled artisan will recognize from the disclosure herein, a wide number of alternatives

for the signing process 1100. For example, the vendor may be replaced with a user application,

such as an email application. For example, the user may wish to digitally sign a particular email

with his or her digital signature. In such an embodiment, the transmission throughout the signing

process 1100 may advantageously include only one copy of a hash of the message. Moreover, a

skilled artisan will recognize from the disclosure herein that a wide number of client applications

may request digital signatures. For example, the client applications may comprise word

processors, spreadsheets, emails, voicemail, access to restricted system areas, or the like.

[0180] In addition, a skilled artisan will recognize from the disclosure herein that steps 1105

through 1120 of the signing process 1100 may advantageously employ some or all of the steps of

the interoperability process 970 of FIGURE 9B, thereby providing interoperability between

differing cryptographic systems that may, for example, need to process the digital signature

under differing signature types.

[0181] FIGURE 12 illustrates a data flow of an encryption/decryption process 1200 according

to aspects of an embodiment of the invention. As shown in FIGURE 12, the decryption process

1200 begins by authenticating the user using the authentication process 1000. According to one

embodiment, the authentication process 1000 includes in the authentication request, a

synchronous session key. For example, in conventional PKI technologies, it is understood by

skilled artisans that encrypting or decrypting data using public and private keys is

mathematically intensive and may require significant system resources. However, in symmetric

key cryptographic systems, or systems where the sender and receiver of a message share a single

common key that is used to encrypt and decrypt a message, the mathematical operations are

significantly simpler and faster. Thus, in the conventional PKI technologies, the sender of a

message will generate synchronous session key, and encrypt the message using the simpler,

faster symmetric key system. Then, the sender will encrypt the session key with the public key

-41 -

WO 2011/123699 PCT/US2011/030811

of the receiver. The encrypted session key will be attached to the synchronously encrypted

message and both data are sent to the receiver. The receiver uses his or her private key to

decrypt the session key, and then uses the session key to decrypt the message. Based on the

foregoing, the simpler and faster symmetric key system is used for the majority of the

encryption/decryption processing. Thus, in the decryption process 1200, the decryption

advantageously assumes that a synchronous key has been encrypted with the public key of the

user. Thus, as mentioned in the foregoing, the encrypted session key is included in the

authentication request.

[0182] Returning to the decryption process 1200, after the user has been authenticated in step

1205, the authentication engine 215 forwards the encrypted session key to the cryptographic

engine 220. In step 1210, the authentication engine 215 forwards a request to each of the data

storage facilities, DI through D4, requesting the cryptographic key data of the user. In step

1215, each data storage facility, DI through D4, transmits their respective portion of the

cryptographic key to the cryptographic engine 220. According to one embodiment, the

foregoing transmission is encrypted with the public key of the cryptographic engine 220.

[0183] In step 1220 of the decryption process 1200, the cryptographic engine 220 assembles

the cryptographic key and decrypts the session key therewith. In step 1225, the cryptographic

engine forwards the session key to the authentication engine 215. In step 1227, the

authentication engine 215 fills in the authentication request including the decrypted session key,

and transmits the filled-in authentication request to the transaction engine 205. In step 1230, the

transaction engine 205 forwards the authentication request along with the session key to the

requesting application or vendor. Then, according to one embodiment, the requesting

application or vendor uses the session key to decrypt the encrypted message.

[0184] Although the decryption process 1200 is disclosed with reference to its preferred and

alternative embodiments, a skilled artisan will recognize from the disclosure herein, a wide

number of alternatives for the decryption process 1200. For example, the decryption process

1200 may forego synchronous key encryption and rely on full public-key technology. In such an

embodiment, the requesting application may transmit the entire message to the cryptographic

engine 220, or, may employ some type of compression or reversible hash in order to transmit the

message to the cryptographic engine 220. A skilled artisan will also recognize from the

-42-

WO 2011/123699 PCT/US2011/030811

disclosure herein that the foregoing communications may advantageously include XML

documents wrapped in SSL technology.

[0185] The encryption/decryption process 1200 also provides for encryption of documents or

other data. Thus, in step 1235, a requesting application or vendor may advantageously transmit

to the transaction engine 205 of the trust engine 110, a request for the public key of the user. The

requesting application or vendor makes this request because the requesting application or vendor

uses the public key of the user, for example, to encrypt the session key that will be used to

encrypt the document or message. As mentioned in the enrollment process 900, the transaction

engine 205 stores a copy of the digital certificate of the user, for example, in the mass storage

225. Thus, in step 1240 of the encryption process 1200, the transaction engine 205 requests the

digital certificate of the user from the mass storage 225. In step 1245, the mass storage 225

transmits the digital certificate corresponding to the user, to the transaction engine 205. In step

1250, the transaction engine 205 transmits the digital certificate to the requesting application or

vendor. According to one embodiment, the encryption portion of the encryption process 1200

does not include the authentication of a user. This is because the requesting vendor needs only

the public key of the user, and is not requesting any sensitive data.

[0186] A skilled artisan will recognize from the disclosure herein that if a particular user does

not have a digital certificate, the trust engine 110 may employ some or all of the enrollment
process 900 in order to generate a digital certificate for that particular user. Then, the trust

engine 110 may initiate the encryption/decryption process 1200 and thereby provide the

appropriate digital certificate. In addition, a skilled artisan will recognize from the disclosure

herein that steps 1220 and 1235 through 1250 of the encryption/decryption process 1200 may

advantageously employ some or all of the steps of the interoperability process of FIGURE 9B,

thereby providing interoperability between differing cryptographic systems that may, for

example, need to process the encryption.

[0187] FIGURE 13 illustrates a simplified block diagram of a trust engine system 1300

according to aspects of yet another embodiment of the invention. As shown in FIGURE 13, the

trust engine system 1300 comprises a plurality of distinct trust engines 1305, 1310, 1315, and

1320, respectively. To facilitate a more complete understanding of the invention, FIGURE 13

illustrates each trust engine, 1305, 1310, 1315, and 1320 as having a transaction engine, a

depository, and an authentication engine. However, a skilled artisan will recognize that each

-43-

WO 2011/123699 PCT/US2011/030811

transaction engine may advantageously comprise some, a combination, or all of the elements and

communication channels disclosed with reference to FIGURES 1-8. For example, one

embodiment may advantageously include trust engines having one or more transaction engines,

depositories, and cryptographic servers or any combinations thereof.

[0188] According to one embodiment of the invention, each of the trust engines 1305, 1310,

1315 and 1320 are geographically separated, such that, for example, the trust engine 1305 may

reside in a first location, the trust engine 1310 may reside in a second location, the trust engine

1315 may reside in a third location, and the trust engine 1320 may reside in a fourth location.

The foregoing geographic separation advantageously decreases system response time while

increasing the security of the overall trust engine system 1300.

[0189] For example, when a user logs onto the cryptographic system 100, the user may be

nearest the first location and may desire to be authenticated. As described with reference to

FIGURE 10, to be authenticated, the user provides current authentication data, such as a

biometric or the like, and the current authentication data is compared to that user's enrollment

authentication data. Therefore, according to one example, the user advantageously provides

current authentication data to the geographically nearest trust engine 1305. The transaction

engine 1321 of the trust engine 1305 then forwards the current authentication data to the

authentication engine 1322 also residing at the first location. According to another embodiment,

the transaction engine 1321 forwards the current authentication data to one or more of the

authentication engines of the trust engines 1310, 1315, or 1320.

[0190] The transaction engine 1321 also requests the assembly of the enrollment authentication

data from the depositories of, for example, each of the trust engines, 1305 through 1320.

According to this embodiment, each depository provides its portion of the enrollment

authentication data to the authentication engine 1322 of the trust engine 1305. The

authentication engine 1322 then employs the encrypted data portions from, for example, the first

two depositories to respond, and assembles the enrollment authentication data into deciphered

form. The authentication engine 1322 compares the enrollment authentication data with the

current authentication data and returns an authentication result to the transaction engine 1321 of

the trust engine 1305.

[0191] Based on the above, the trust engine system 1300 employs the nearest one of a plurality

of geographically separated trust engines, 1305 through 1320, to perform the authentication

-44-

WO 2011/123699 PCT/US2011/030811

process. According to one embodiment of the invention, the routing of information to the

nearest transaction engine may advantageously be performed at client-side applets executing on

one or more of the user system 105, vendor system 120, or certificate authority 115. According

to an alternative embodiment, a more sophisticated decision process may be employed to select

from the trust engines 1305 through 1320. For example, the decision may be based on the

availability, operability, speed of connections, load, performance, geographic proximity, or a

combination thereof, of a given trust engine.

[0192] In this way, the trust engine system 1300 lowers its response time while maintaining the

security advantages associated with geographically remote data storage facilities, such as those

discussed with reference to FIGURE 7 where each data storage facility stores randomized

portions of sensitive data. For example, a security compromise at, for example, the depository

1325 of the trust engine 1315 does not necessarily compromise the sensitive data of the trust

engine system 1300. This is because the depository 1325 contains only non-decipherable

randomized data that, without more, is entirely useless.

[0193] According to another embodiment, the trust engine system 1300 may advantageously

include multiple cryptographic engines arranged similar to the authentication engines. The

cryptographic engines may advantageously perform cryptographic functions such as those

disclosed with reference to FIGURES 1-8. According to yet another embodiment, the trust

engine system 1300 may advantageously replace the multiple authentication engines with

multiple cryptographic engines, thereby performing cryptographic functions such as those

disclosed with reference to FIGURES 1-8. According to yet another embodiment of the

invention, the trust engine system 1300 may replace each multiple authentication engine with an

engine having some or all of the functionality of the authentication engines, cryptographic

engines, or both, as disclosed in the foregoing,

[0194] Although the trust engine system 1300 is disclosed with reference to its preferred and

alternative embodiments, a skilled artisan will recognize that the trust engine system 1300 may

comprise portions of trust engines 1305 through 1320. For example, the trust engine system

1300 may include one or more transaction engines, one or more depositories, one or more

authentication engines, or one or more cryptographic engines or combinations thereof.

[0195] FIGURE 14 illustrates a simplified block diagram of a trust engine System 1400

according to aspects of yet another embodiment of the invention. As shown in FIGURE 14, the

-45-

WO 2011/123699 PCT/US2011/030811

trust engine system 1400 includes multiple trust engines 1405, 1410, 1415 and 1420. According

to one embodiment, each of the trust engines 1405, 1410, 1415 and 1420, comprise some or all

of the elements of trust engine 110 disclosed with reference to FIGURES 1-8. According to this

embodiment, when the client side applets of the user system 105, the vendor system 120, or the

certificate authority 115, communicate with the trust engine system 1400, those communications

are sent to the IP address of each of the trust engines 1405 through 1420. Further, each

transaction engine of each of the trust engines, 1405, 1410, 1415, and 1420, behaves similar to

the transaction engine 1321 of the trust engine 1305 disclosed with reference to FIGURE 13.

For example, during an authentication process, each transaction engine of each of the trust

engines 1405, 1410, 1415, and 1420 transmits the current authentication data to their respective

authentication engines and transmits a request to assemble the randomized data stored in each of

the depositories of each of the trust engines 1405 through 1420. FIGURE 14 does not illustrate

all of these communications; as such illustration would become overly complex. Continuing

with the authentication process, each of the depositories then communicates its portion of the

randomized data to each of the authentication engines of the each of the trust engines 1405

through 1420. Each of the authentication engines of the each of the trust engines employs its

comparator to determine whether the current authentication data matches the enrollment

authentication data provided by the depositories of each of the trust engines 1405 through 1420.
According to this embodiment, the result of the comparison by each of the authentication engines

is then transmitted to a redundancy module of the other three trust engines. For example, the

result of the authentication engine from the trust engine 1405 is transmitted to the redundancy

modules of the trust engines 1410, 1415, and 1420. Thus, the redundancy module of the trust

engine 1405 likewise receives the result of the authentication engines from the trust engines

1410, 1415, and 1420.

[0196] FIGURE 15 illustrates a block diagram of the redundancy module of FIGURE 14. The

redundancy module comprises a comparator configured to receive the authentication result from

three authentication engines and transmit that result to the transaction engine of the fourth trust

engine. The comparator compares the authentication result form the three authentication

engines, and if two of the results agree, the comparator concludes that the authentication result

should match that of the two agreeing authentication engines. This result is then transmitted

-46-

WO 2011/123699 PCT/US2011/030811

back to the transaction engine corresponding to the trust engine not associated with the three

authentication engines.

[0197] Based on the foregoing, the redundancy module determines an authentication result

from data received from authentication engines that are preferably geographically remote from

the trust engine of that the redundancy module. By providing such redundancy functionality, the

trust engine system 1400 ensures that a compromise of the authentication engine of one of the

trust engines 1405 through 1420, is insufficient to compromise the authentication result of the

redundancy module of that particular trust engine. A skilled artisan will recognize that

redundancy module functionality of the trust engine system 1400 may also be applied to the

cryptographic engine of each of the trust engines 1405 through 1420. However, such

cryptographic engine communication was not shown in FIGURE 14 to avoid complexity.

Moreover, a skilled artisan will recognize a wide number of alternative authentication result

conflict resolution algorithms for the comparator of FIGURE 15 are suitable for use in the

present invention.

[0198] According to yet another embodiment of the invention, the trust engine system 1400

may advantageously employ the redundancy module during cryptographic comparison steps.

For example, some or all of the foregoing redundancy module disclosure with reference to

FIGURES 14 and 15 may advantageously be implemented during a hash comparison of

documents provided by one or more parties during a particular transaction.

[0199] Although the foregoing invention has been described in terms of certain preferred and

alternative embodiments, other embodiments will be apparent to those of ordinary skill in the art

from the disclosure herein. For example, the trust engine 110 may issue short-term certificates,

where the private cryptographic key is released to the user for a predetermined period of time.

For example, current certificate standards include a validity field that can be set to expire after a

predetermined amount of time. Thus, the trust engine 110 may release a private key to a user

where the private key would be valid for, for example, 24 hours. According to such an

embodiment, the trust engine 110 may advantageously issue a new cryptographic key pair to be

associated with a particular user and then release the private key of the new cryptographic key

pair. Then, once the private cryptographic key is released, the trust engine 110 immediately

expires any internal valid use of such private key, as it is no longer securable by the trust engine

110.

-47-

WO 2011/123699 PCT/US2011/030811

[0200] In addition, a skilled artisan will recognize that the cryptographic system 100 or the

trust engine 110 may include the ability to recognize any type of devices, such as, but not limited

to, a laptop, a cell phone, a network, a biometric device or the like. According to one

embodiment, such recognition may come from data supplied in the request for a particular

service, such as, a request for authentication leading to access or use, a request for cryptographic

functionality, or the like. According to one embodiment, the foregoing request may include a

unique device identifier, such as, for example, a processor ID. Alternatively, the request may

include data in a particular recognizable data format. For example, mobile and satellite phones

often do not include the processing power for full X509.v3 heavy encryption certificates, and

therefore do not request them. According to this embodiment, the trust engine 110 may

recognize the type of data format presented, and respond only in kind.

[0201] In an additional aspect of the system described above, context sensitive authentication

can be provided using various techniques as will be described below. Context sensitive

authentication, for example as shown in FIGURE 16, provides the possibility of evaluating not

only the actual data which is sent by the user when attempting to authenticate himself, but also

the circumstances surrounding the generation and delivery of that data. Such techniques may

also support transaction specific trust arbitrage between the user and trust engine 110 or between

the vendor and trust engine 110, as will be described below.

[0202] As discussed above, authentication is the process of proving that a user is who he says

he is. Generally, authentication requires demonstrating some fact to an authentication authority.

The trust engine 110 of the present invention represents the authority to which a user must

authenticate himself. The user must demonstrate to the trust engine 110 that he is who he says

he is by either: knowing something that only the user should know (knowledge-based

authentication), having something that only the user should have (token-based authentication), or

by being something that only the user should be (biometric-based authentication).

[0203] Examples of knowledge-based authentication include without limitation a password,

PIN number, or lock combination. Examples of token-based authentication include without

limitation a house key, a physical credit card, a driver's license, or a particular phone number.

Examples of biometric-based authentication include without limitation a fingerprint, handwriting

analysis, facial scan, hand scan, ear scan, iris scan, vascular pattern, DNA, a voice analysis, or a

retinal scan.

-48-

WO 2011/123699 PCT/US2011/030811

[0204] Each type of authentication has particular advantages and disadvantages, and each

provides a different level of security. For example, it is generally harder to create a false

fingerprint that matches someone else's than it is to overhear someone's password and repeat it.

Each type of authentication also requires a different type of data to be known to the

authenticating authority in order to verify someone using that form of authentication.

[0205] As used herein, "authentication" will refer broadly to the overall process of verifying

someone's identity to be who he says he is. An "authentication technique" will refer to a

particular type of authentication based upon a particular piece of knowledge, physical token, or

biometric reading. "Authentication data" refers to information which is sent to or otherwise

demonstrated to an authentication authority in order to establish identity. "Enrollment data" will

refer to the data which is initially submitted to an authentication authority in order to establish a

baseline for comparison with authentication data. An "authentication instance" will refer to the

data associated with an attempt to authenticate by an authentication technique.

[0206] The internal protocols and communications involved in the process of authenticating a

user is described with reference to FIGURE 10 above. The part of this process within which the

context sensitive authentication takes place occurs within the comparison step shown as step

1045 of FIGURE 10. This step takes place within the authentication engine 215 and involves

assembling the enrollment data 410 retrieved from the depository 210 and comparing the

authentication data provided by the user to it. One particular embodiment of this process is

shown in FIGURE 16 and described below.

[0207] The current authentication data provided by the user and the enrollment data retrieved

from the depository 210 are received by the authentication engine 215 in step 1600 of FIGURE

16. Both of these sets of data may contain data which is related to separate techniques of

authentication. The authentication engine 215 separates the authentication data associated with

each individual authentication instance in step 1605. This is necessary so that the authentication

data is compared with the appropriate subset of the enrollment data for the user (e.g. fingerprint

authentication data should be compared with fingerprint enrollment data, rather than password

enrollment data).

[0208] Generally, authenticating a user involves one or more individual authentication

instances, depending on which authentication techniques are available to the user. These

methods are limited by the enrollment data which were provided by the user during his

-49-

WO 2011/123699 PCT/US2011/030811

enrollment process (if the user did not provide a retinal scan when enrolling, he will not be able

to authenticate himself using a retinal scan), as well as the means which may be currently

available to the user (e.g. if the user does not have a fingerprint reader at his current location,

fingerprint authentication will not be practical). In some cases, a single authentication instance

may be sufficient to authenticate a user; however, in certain circumstances a combination of

multiple authentication instances may be used in order to more confidently authenticate a user

for a particular transaction.

[0209] Each authentication instance consists of data related to a particular authentication

technique (e.g. fingerprint, password, smart card, etc.) and the circumstances which surround the

capture and delivery of the data for that particular technique. For example, a particular instance

of attempting to authenticate via password will generate not only the data related to the password

itself, but also circumstantial data, known as "metadata", related to that password attempt. This

circumstantial data includes information such as: the time at which the particular authentication

instance took place, the network address from which the authentication information was

delivered, as well as any other information as is known to those of skill in the art which may be

determined about the origin of the authentication data (the type of connection, the processor

serial number, etc.).

[0210] In many cases, only a small amount of circumstantial metadata will be available. For

example, if the user is located on a network which uses proxies or network address translation or

another technique which masks the address of the originating computer, only the address of the

proxy or router may be determined. Similarly, in many cases information such as the processor

serial number will not be available because of either limitations of the hardware or operating

system being used, disabling of such features by the operator of the system, or other limitations

of the connection between the user's system and the trust engine 110.

[0211] As shown in FIGURE 16, once the individual authentication instances represented

within the authentication data are extracted and separated in step 1605, the authentication engine

215 evaluates each instance for its reliability in indicating that the user is who he claims to be.

The reliability for a single authentication instance will generally be determined based on several

factors. These may be grouped as factors relating to the reliability associated with the

authentication technique, which are evaluated in step 1610, and factors relating to the reliability

of the particular authentication data provided, which are evaluated in step 1815. The first group

-50-

WO 2011/123699 PCT/US2011/030811

includes without limitation the inherent reliability of the authentication technique being used,

and the reliability of the enrollment data being used with that method. The second group

includes without limitation the degree of match between the enrollment data and the data

provided with the authentication instance, and the metadata associated with that authentication

instance. Each of these factors may vary independently of the others.

[0212] The inherent reliability of an authentication technique is based on how hard it is for an

imposter to provide someone else's correct data, as well as the overall error rates for the

authentication technique. For passwords and knowledge based authentication methods, this

reliability is often fairly low because there is nothing that prevents someone from revealing their

password to another person and for that second person to use that password. Even a more

complex knowledge based system may have only moderate reliability since knowledge may be

transferred from person to person fairly easily. Token based authentication, such as having a

proper smart card or using a particular terminal to perform the authentication, is similarly of low

reliability used by itself, since there is no guarantee that the right person is in possession of the

proper token.

[0213] However, biometric techniques are more inherently reliable because it is generally

difficult to provide someone else with the ability to use your fingerprints in a convenient manner,

even intentionally. Because subverting biometric authentication techniques is more difficult, the

inherent reliability of biometric methods is generally higher than that of purely knowledge or

token based authentication techniques. However, even biometric techniques may have some

occasions in which a false acceptance or false rejection is generated. These occurrences may be

reflected by differing reliabilities for different implementations of the same biometric technique.

For example, a fingerprint matching system provided by one company may provide a higher

reliability than one provided by a different company because one uses higher quality optics or a

better scanning resolution or some other improvement which reduces the occurrence of false

acceptances or false rejections.

[0214] Note that this reliability may be expressed in different manners. The reliability is

desirably expressed in some metric which can be used by the heuristics 530 and algorithms of the

authentication engine 215 to calculate the confidence level of each authentication. One preferred

mode of expressing these reliabilities is as a percentage or fraction. For instance, fingerprints

might be assigned an inherent reliability of 97%, while passwords might only be assigned an

-51 -

WO 2011/123699 PCT/US2011/030811

inherent reliability of 50%. Those of skill in the art will recognize that these particular values are

merely exemplary and may vary between specific implementations.

[0215] The second factor for which reliability must be assessed is the reliability of the

enrollment. This is part of the "graded enrollment" process referred to above. This reliability

factor reflects the reliability of the identification provided during the initial enrollment process.

For instance, if the individual initially enrolls in a manner where they physically produce

evidence of their identity to a notary or other public official, and enrollment data is recorded at

that time and notarized, the data will be more reliable than data which is provided over a network

during enrollment and only vouched for by a digital signature or other information which is not

truly tied to the individual.

[0216] Other enrollment techniques with varying levels of reliability include without

limitation: enrollment at a physical office of the trust engine 110 operator; enrollment at a user's

place of employment; enrollment at a post office or passport office; enrollment through an

affiliated or trusted party to the trust engine 110 operator; anonymous or pseudonymous

enrollment in which the enrolled identity is not yet identified with a particular real individual, as

well as such other means as are known in the art.

[0217] These factors reflect the trust between the trust engine 110 and the source of

identification provided during the enrollment process. For instance, if enrollment is performed

in association with an employer during the initial process of providing evidence of identity, this

information may be considered extremely reliable for purposes within the company, but may be

trusted to a lesser degree by a government agency, or by a competitor. Therefore, trust engines

operated by each of these other organizations may assign different levels of reliability to this

enrollment.

[0218] Similarly, additional data which is submitted across a network, but which is

authenticated by other trusted data provided during a previous enrollment with the same trust

engine 110 may be considered as reliable as the original enrollment data was, even though the

latter data were submitted across an open network. In such circumstances, a subsequent

notarization will effectively increase the level of reliability associated with the original

enrollment data. In this way for example, an anonymous or pseudonymous enrollment may then

be raised to a full enrollment by demonstrating to some enrollment official the identity of the

individual matching the enrolled data.

-52-

WO 2011/123699 PCT/US2011/030811

[0219] The reliability factors discussed above are generally values which may be determined in

advance of any particular authentication instance. This is because they are based upon the

enrollment and the technique, rather than the actual authentication. In one embodiment, the step

of generating reliability based upon these factors involves looking up previously determined

values for this particular authentication technique and the enrollment data of the user. In a

further aspect of an advantageous embodiment of the present invention, such reliabilities may be

included with the enrollment data itself. In this way, these factors are automatically delivered to

the authentication engine 215 along with the enrollment data sent from the depository 210.

[0220] While these factors may generally be determined in advance of any individual

authentication instance, they still have an effect on each authentication instance which uses that

particular technique of authentication for that user. Furthermore, although the values may

change over time (e.g. if the user re-enrolls in a more reliable fashion), they are not dependent on

the authentication data itself. By contrast, the reliability factors associated with a single specific

instance's data may vary on each occasion. These factors, as discussed below, must be evaluated

for each new authentication in order to generate reliability scores in step 1815.

[0221] The reliability of the authentication data reflects the match between the data provided

by the user in a particular authentication instance and the data provided during the authentication

enrollment. This is the fundamental question of whether the authentication data matches the

enrollment data for the individual the user is claiming to be. Normally, when the data do not

match, the user is considered to not be successfully authenticated, and the authentication fails.

The manner in which this is evaluated may change depending on the authentication technique

used. The comparison of such data is performed by the comparator 515 function of the

authentication engine 215 as shown in FIGURE 5.

[0222] For instance, matches of passwords are generally evaluated in a binary fashion. In other

words, a password is either a perfect match, or a failed match. It is usually not desirable to

accept as even a partial match a password which is close to the correct password if it is not

exactly correct. Therefore, when evaluating a password authentication, the reliability of the

authentication returned by the comparator 515 is typically either 100% (correct) or 0% (wrong),

with no possibility of intermediate values.

[0223] Similar rules to those for passwords are generally applied to token based authentication

methods, such as smart cards. This is because having a smart card which has a similar identifier

-53-

WO 2011/123699 PCT/US2011/030811

or which is similar to the correct one, is still just as wrong as having any other incorrect token.

Therefore tokens tend also to be binary authenticators: a user either has the right token, or he

doesn't.

[0224] However, certain types of authentication data, such as questionnaires and biometrics,

are generally not binary authenticators. For example, a fingerprint may match a reference

fingerprint to varying degrees. To some extent, this may be due to variations in the quality of the

data captured either during the initial enrollment or in subsequent authentications. (A fingerprint

may be smudged or a person may have a still healing scar or burn on a particular finger.) In other

instances the data may match less than perfectly because the information itself is somewhat

variable and based upon pattern matching. (A voice analysis may seem close but not quite right

because of background noise, or the acoustics of the environment in which the voice is recorded,

or because the person has a cold.) Finally, in situations where large amounts of data are being

compared, it may simply be the case that much of the data matches well, but some doesn't. (A

ten-question questionnaire may have resulted in eight correct answers to personal questions, but

two incorrect answers.) For any of these reasons, the match between the enrollment data and the

data for a particular authentication instance may be desirably assigned a partial match value by

the comparator 515. In this way, the fingerprint might be said to be a 85% match, the voice print

a 65% match, and the questionnaire an 80% match, for example.

[0225] This measure (degree of match) produced by the comparator 515 is the factor

representing the basic issue of whether an authentication is correct or not. However, as

discussed above, this is only one of the factors which may be used in determining the reliability

of a given authentication instance. Note also that even though a match to some partial degree

may be determined, that ultimately, it may be desirable to provide a binary result based upon a

partial match. In an alternate mode of operation, it is also possible to treat partial matches as

binary, i.e. either perfect (100%) or failed (0%) matches, based upon whether or not the degree

of match passes a particular threshold level of match. Such a process may be used to provide a

simple pass/fail level of matching for systems which would otherwise produce partial matches.

[0226] Another factor to be considered in evaluating the reliability of a given authentication

instance concerns the circumstances under which the authentication data for this particular

instance are provided. As discussed above, the circumstances refer to the metadata associated

with a particular authentication instance. This may include without limitation such information

-54-

WO 2011/123699 PCT/US2011/030811

as: the network address of the authenticator, to the extent that it can be determined; the time of

the authentication; the mode of transmission of the authentication data (phone line, cellular,

network, etc.); and the serial number of the system of the authenticator.

[0227] These factors can be used to produce a profile of the type of authentication that is
normally requested by the user. Then, this information can be used to assess reliability in at least

two manners. One manner is to consider whether the user is requesting authentication in a

manner which is consistent with the normal profile of authentication by this user. If the user

normally makes authentication requests from one network address during business days (when

she is at work) and from a different network address during evenings or weekends (when she is

at home), an authentication which occurs from the home address during the business day is less

reliable because it is outside the normal authentication profile. Similarly, if the user normally

authenticates using a fingerprint biometric and in the evenings, an authentication which

originates during the day using only a password is less reliable.

[0228] An additional way in which the circumstantial metadata can be used to evaluate the

reliability of an instance of authentication is to determine how much corroboration the

circumstance provides that the authenticator is the individual he claims to be. For instance, if the

authentication comes from a system with a serial number known to be associated with the user,

this is a good circumstantial indicator that the user is who they claim to be. Conversely, if the

authentication is coming from a network address which is known to be in Los Angeles when the

user is known to reside in London, this is an indication that this authentication is less reliable

based on its circumstances.

[0229] It is also possible that a cookie or other electronic data may be placed upon the system

being used by a user when they interact with a vendor system or with the trust engine 110. This

data is written to the storage of the system of the user and may contain an identification which

may be read by a Web browser or other software on the user system. If this data is allowed to

reside on the user system between sessions (a "persistent cookie"), it may be sent with the

authentication data as further evidence of the past use of this system during authentication of a

particular user. In effect, the metadata of a given instance, particularly a persistent cookie, may

form a sort of token based authenticator itself.

[0230] Once the appropriate reliability factors based on the technique and data of the

authentication instance are generated as described above in steps 1610 and 1615 respectively,

-55-

WO 2011/123699 PCT/US2011/030811

they are used to produce an overall reliability for the authentication instance provided in step

1620. One means of doing this is simply to express each reliability as a percentage and then to

multiply them together.

[0231] For example, suppose the authentication data is being sent in from a network address

known to be the user's home computer completely in accordance with the user's past

authentication profile (100%), and the technique being used is fingerprint identification (97%),

and the initial finger print data was roistered through the user's employer with the trust engine

110 (90%), and the match between the authentication data and the original fingerprint template

in the enrollment data is very good (99%). The overall reliability of this authentication instance

could then be calculated as the product of these reliabilities: 100% * 97% * 90% * 99% - 86.4%

reliability.

[0232] This calculated reliability represents the reliability of one single instance of
authentication. The overall reliability of a single authentication instance may also be calculated

using techniques which treat the different reliability factors differently, for example by using

formulas where different weights are assigned to each reliability factor. Furthermore, those of

skill in the art will recognize that the actual values used may represent values other than

percentages and may use non-arithmetic systems. One embodiment may include a module used

by an authentication requestor to set the weights for each factor and the algorithms used in

establishing the overall reliability of the authentication instance.

[0233] The authentication engine 215 may use the above techniques and variations thereof to

determine the reliability of a single authentication instance, indicated as step 1620. However, it

may be useful in many authentication situations for multiple authentication instances to be

provided at the same time. For example, while attempting to authenticate himself using the

system of the present invention, a user may provide a user identification, fingerprint

authentication data, a smart card, and a password. In such a case, three independent

authentication instances are being provided to the trust engine 110 for evaluation. Proceeding to

step 1625, if the authentication engine 215 determines that the data provided by the user includes

more than one authentication instance, then each instance in turn will be selected as shown in

step 1630 and evaluated as described above in steps 1610, 1615 and 1620.

[0234] Note that many of the reliability factors discussed may vary from one of these instances

to another. For instance, the inherent reliability of these techniques is likely to be different, as

-56-

WO 2011/123699 PCT/US2011/030811

well as the degree of match provided between the authentication data and the enrollment data.

Furthermore, the user may have provided enrollment data at different times and under different

circumstances for each of these techniques, providing different enrollment reliabilities for each

of these instances as well. Finally, even though the circumstances under which the data for each

of these instances is being submitted is the same, the use of such techniques may each fit the

profile of the user differently, and so may be assigned different circumstantial reliabilities. (For

example, the user may normally use their password and fingerprint, but not their smart card.)

[0235] As a result, the final reliability for each of these authentication instances may be

different from One another. However, by using multiple instances together, the overall

confidence level for the authentication will tend to increase.

[0236] Once the authentication engine has performed steps 1610 through 1620 for all of the

authentication instances provided in the authentication data, the reliability of each instance is

used in step 1635 to evaluate the overall authentication confidence level. This process of

combining the individual authentication instance reliabilities into the authentication confidence

level may be modeled by various methods relating the individual reliabilities produced, and may

also address the particular interaction between some of these authentication techniques. (For

example, multiple knowledge-based systems such as passwords may produce less confidence

than a single password and even a fairly weak biometric, such as a basic voice analysis.)

[0237] One means in which the authentication engine 215 may combine the reliabilities of

multiple concurrent authentication instances to generate a final confidence level is to multiply

the unreliability of each instance to arrive at a total unreliability. The unreliability is generally

the complementary percentage of the reliability. For example, a technique which is 84% reliable

is 16% unreliable. The three authentication instances described above (fingerprint, smart card,

password)which produce reliabilities of 86%, 75%, and 72% would have corresponding

unreliabilities of (100- 86)%, (100- 75)% and (100- 72)%, or 14%, 25%, and 28%, respectively.

By multiplying these unreliabilities, we get a cumulative unreliability of 14% * 25% * 28% -

.98% unreliability, which corresponds to a reliability of 99.02%.

[0238] In an additional mode of operation, additional factors and heuristics 530 may be applied

within the authentication engine 215 to account for the interdependence of various authentication

techniques. For example, if someone has unauthorized access to a particular home computer,

they probably have access to the phone line at that address as well. Therefore, authenticating

-57-

WO 2011/123699 PCT/US2011/030811

based on an originating phone number as well as upon the serial number of the authenticating

system does not add much to the overall confidence in the authentication. However, knowledge

based authentication is largely independent of token based authentication (i.e. if someone steals

your cellular phone or keys, they are no more likely to know your PIN or password than if they

hadn't).

[0239] Furthermore, different vendors or other authentication requestors may wish to weigh

different aspects of the authentication differently. This may include the use of separate weighing

factors or algorithms used in calculating the reliability of individual instances as well as the use

of different means to evaluate authentication events with multiple instances.

[0240] For instance, vendors for certain types of transactions, for instance corporate email

systems, may desire to authenticate primarily based upon heuristics and other circumstantial data

by default. Therefore, they may apply high weights to factors related to the metadata and other

profile related information associated with the circumstances surrounding authentication events.

This arrangement could be used to ease the burden on users during normal operating hours, by

not requiring more from the user than that he be logged on to the correct machine during

business hours. However, another vendor may weigh authentications coming from a particular

technique most heavily, for instance fingerprint matching, because of a policy decision that such

a technique is most suited to authentication for the particular vendor's purposes.

[0241] Such varying weights may be defined by the authentication requestor in generating the

authentication request and sent to the trust engine 110 with the authentication request in one

mode of operation. Such options could also be set as preferences during an initial enrollment

process for the authentication requestor and stored within the authentication engine in another

mode of operation.

[0242] Once the authentication engine 215 produces an authentication confidence level for the

authentication data provided, this confidence level is used to complete the authentication request

in step 1640, and this information is forwarded from the authentication engine 215 to the

transaction engine 205 for inclusion in a message to the authentication requestor.

[0243] The process described above is merely exemplary, and those of skill in the art will

recognize that the steps need not be performed in the order shown or that only certain of the steps

are desired to be performed, or that a variety of combinations of steps may be desired.

-58-

WO 2011/123699 PCT/US2011/030811

Furthermore, certain steps, such as the evaluation of the reliability of each authentication

instance provided, may be carried out in parallel with one another if circumstances permit.

[0244] In a further aspect of this invention, a method is provided to accommodate conditions

when the authentication confidence level produced by the process described above fails to meet

the required trust level of the vendor or other party requiring the authentication. In

circumstances such as these where a gap exists between the level of confidence provided and the

level of trust desired, the operator of the trust engine 110 is in a position to provide opportunities

for one or both parties to provide alternate data or requirements in order to close this trust gap.

This process will be referred to as "trust arbitrage" herein.

[0245] Trust arbitrage may take place within a framework of cryptographic authentication as

described above with reference to FIGURES 10 and 11. As shown therein, a vendor or other

party will request authentication of a particular user in association with a particular transaction.

In one circumstance, the vendor simply requests an authentication, either positive or negative,

and after receiving appropriate data from the user, the trust engine 110 will provide such a binary

authentication. In circumstances such as these, the degree of confidence required in order to

secure a positive authentication is determined based upon preferences set within the trust engine

110.

[0246] However, it is also possible that the vendor may request a particular level of trust in

order to complete a particular transaction. This required level may be included with the

authentication request (e.g. authenticate this user to 98% confidence) or may be determined by

the trust engine 110 based on other factors associated with the transaction (i.e. authenticate this

user as appropriate for this transaction). One such factor might be the economic value of the

transaction. For transactions which have greater economic value, a higher degree of trust may be

required. Similarly, for transactions with high degrees of risk a high degree of trust may be

required. Conversely, for transactions which are either of low risk or of low value, lower trust

levels may be required by the vendor or other authentication requestor.

[0247] The process of trust arbitrage occurs between the steps of the trust engine 110 receiving

the authentication data in step 1050 of FIGURE 10 and the return of an authentication result to

the vendor in step 1055 of FIGURE 10. Between these steps, the process which leads to the

evaluation of trust levels and the potential trust arbitrage occurs as shown in FIGURE 17. In

circumstances where simple binary authentication is performed, the process shown in FIGURE

-59-

WO 2011/123699 PCT/US2011/030811

17 reduces to having the transaction engine 205 directly compare the authentication data

provided with the enrollment data for the identified user as discussed above with reference to

FIGURE 10, flagging any difference as a negative authentication.

[0248] As shown in FIGURE 17, the first step after receiving the data in step 1050 is for the

transaction engine 205 to determine the trust level which is required for a positive authentication

for this particular transaction in step 1710. This step may be performed by one of several

different methods. The required trust level may be specified to the trust engine 110 by the

authentication requestor at the time when the authentication request is made. The authentication

requestor may also set a preference in advance which is stored within the depository 210 or other

storage which is accessible by the transaction engine 205. This preference may then be read and

used each time an authentication request is made by this authentication requestor. The

preference may also be associated with a particular user as a security measure such that a

particular level of trust is always required in order to authenticate that user, the user preference

being stored in the depository 210 or other storage media accessible by the transaction engine

205. The required level may also be derived by the transaction engine 205 or authentication

engine 215 based upon information provided in the authentication request, such as the value and

risk level of the transaction to be authenticated.

[0249] In one mode of operation, a policy management module or other software which is used

when generating the authentication request is used to specify the required degree of trust for the

authentication of the transaction. This may be used to provide a series of rules to follow when

assigning the required level of trust based upon the policies which are specified within the policy

management module. One advantageous mode of operation is for such a module to be

incorporated with the web server of a vendor in order to appropriately determine required level

of trust for transactions initiated with the vendor's web server. In this way, transaction requests

from users may be assigned a required trust level in accordance with the policies of the vendor

and such information may be forwarded to the trust engine 110 along with the authentication

request.

[0250] This required trust level correlates with the degree of certainty that the vendor wants to

have that the individual authenticating is in fact who he identifies himself as. For example, if the

transaction is one where the vendor wants a fair degree of certainty because goods are changing

hands, the vendor may require a trust level of 85%. For situation where the vendor is merely

-60-

WO 2011/123699 PCT/US2011/030811

authenticating the user to allow him to view members only content or exercise privileges on a

chat room, the downside risk may be small enough that the vendor requires only a 60% trust

level. However, to enter into a production contract with a value of tens of thousands of dollars,

the vendor may require a trust level of 99% or more.

[0251] This required trust level represents a metric to which the user must authenticate himself

in order to complete the transaction. If the required trust level is 85% for example, the user must

provide authentication to the trust engine 110 sufficient for the trust engine 110 to say with 85%

confidence that the user is who they say they are. It is the balance between this required trust

level and the authentication confidence level which produces either a positive authentication (to

the satisfaction of the vendor) or a possibility of trust arbitrage.

[0252] As shown in FIGURE 17, after the transaction engine 205 receives the required trust

level, it compares in step 1720 the required trust level to the authentication confidence level
which the authentication engine 215 calculated for the current authentication (as discussed with

reference to FIGURE 16). If the authentication confidence level is higher than the required trust

level for the transaction in step 1730, then the process moves to step 1740 where a positive

authentication for this transaction is produced by the transaction engine 205. A message to this

effect will then be inserted into the authentication results and returned to the vendor by the

transaction engine 205 as shown in step 1055 (see FIGURE 10).

[0253] However, if the authentication confidence level does not fulfill the required trust level

in step 1730, then a confidence gap exists for the current authentication, and trust arbitrage is

conducted in step 1750. Trust arbitrage is described more completely with reference to FIGURE

18 below. This process as described below takes place within the transaction engine 205 of the

trust engine 110. Because no authentication or other cryptographic operations are needed to

execute trust arbitrage (other than those required for the SSL communication between the

transaction engine 205 and other components), the process may be performed outside the

authentication engine 215. However, as will be discussed below, any reevaluation of

authentication data or other cryptographic or authentication events will require the transaction

engine 205 to resubmit the appropriate data to the authentication engine 215. Those of skill in

the art will recognize that the trust arbitrage process could alternately be structured to take place

partially or entirely within the authentication engine 215 itself.

-61 -

WO 2011/123699 PCT/US2011/030811

[0254] As mentioned above, trust arbitrage is a process where the trust engine 110 mediates a

negotiation between the vendor and user in an attempt to secure a positive authentication where

appropriate. As shown in step 1805, the transaction engine 205 first determines whether or not

the current situation is appropriate for trust arbitrage. This may be determined based upon the

circumstances of the authentication, e.g. whether this authentication has already been through

multiple cycles of arbitrage, as well as upon the preferences of either the vendor or user, as will

be discussed further below.

[0255] In such circumstances where arbitrage is not possible, the process proceeds to step 1810

where the transaction engine 205 generates a negative authentication and then inserts it into the

authentication results which are sent to the vendor in step 1055 (see FIGURE 10). One limit

which may be advantageously used to prevent authentications from pending indefinitely is to set

a time-out period from the initial authentication request. In this way, any transaction which is

not positively authenticated within the time limit is denied further arbitrage and negatively

authenticated. Those of skill in the art will recognize that such a time limit may vary depending

upon the circumstances of the transaction and the desires of the user and vendor. Limitations

may also be placed upon the number of attempts that may be made at providing a successful

authentication. Such limitations may be handled by an attempt limiter 535 as shown in FIGURE

5.

[0256] If arbitrage is not prohibited in step 1805, the transaction engine 205 will then engage in

negotiation with one or both of the transacting parties. The transaction engine 205 may send a

message to the user requesting some form of additional authentication in order to boost the

authentication confidence level produced as shown in step 1820. In the simplest form, this may

simply indicates that authentication was insufficient. A request to produce one or more

additional authentication instances to improve the overall confidence level of the authentication

may also be sent.

[0257] If the user provides some additional authentication instances in step 1825, then the

transaction engine 205 adds these authentication instances to the authentication data for the

transaction and forwards it to the authentication engine 215 as shown in step 1015 (see FIGURE

10), and the authentication is reevaluated based upon both the pre-existing authentication

instances for this transaction and the newly provided authentication instances.

-62-

WO 2011/123699 PCT/US2011/030811

[0258] An additional type of authentication may be a request from the trust engine 110 to make

some form of person-to-person contact between the trust engine 110 operator (or a trusted

associate) and the user, for example, by phone call. This phone call or other non-computer

authentication can be used to provide personal contact with the individual and also to conduct

some form of questionnaire based authentication. This also may give the opportunity to verify

an originating telephone number and potentially a voice analysis of the user when he calls in.

Even if no additional authentication data can be provided, the additional context associated with

the user's phone number may improve the reliability of the authentication context. Any revised

data or circumstances based upon this phone call are fed into the trust engine 110 for use in

consideration of the authentication request.

[0259] Additionally, in step 1820 the trust engine 110 may provide an opportunity for the user

to purchase insurance, effectively buying a more confident authentication. The operator of the

trust engine 110 may, at times, only want to make such an option available if the confidence

level of the authentication is above a certain threshold to begin with. In effect, this user side

insurance is a way for the trust engine 110 to vouch for the user when the authentication meets

the normal required trust level of the trust engine 110 for authentication, but does not meet the

required trust level of the vendor for this transaction. In this way, the user may still successfully

authenticate to a very high level as may be required by the vendor, even though he only has

authentication instances which produce confidence sufficient for the trust engine 110.

[0260] This function of the trust engine 110 allows the trust engine 110 to vouch for someone

who is authenticated to the satisfaction of the trust engine 110, but not of the vendor. This is

analogous to the function performed by a notary in adding his signature to a document in order to

indicate to someone reading the document at a later time that the person whose signature appears

on the document is in fact the person who signed it. The signature of the notary testifies to the

act of signing by the user. In the same way, the trust engine is providing an indication that the

person transacting is who they say they are.

[0261] However, because the trust engine 110 is artificially boosting the level of confidence

provided by the user, there is a greater risk to the trust engine 110 operator, since the user is not

actually meeting the required trust level of the vendor. The cost of the insurance is designed to

offset the risk of a false positive authentication to the trust engine 110 (who may be effectively

-63-

WO 2011/123699 PCT/US2011/030811

notarizing the authentications of the user). The user pays the trust engine 110 operator to take

the risk of authenticating to a higher level of confidence than has actually been provided.

[0262] Because such an insurance system allows someone to effectively buy a higher

confidence rating from the trust engine 110, both vendors and users may wish to prevent the use

of user side insurance in certain transactions. Vendors may wish to limit positive authentications

to circumstances where they know that actual authentication data supports the degree of

confidence which they require and so may indicate to the trust engine 110 that user side

insurance is not to be allowed. Similarly, to protect his online identity, a user may wish to

prevent the use of user side insurance on his account, or may wish to limit its use to situations

where the authentication confidence level without the insurance is higher than a certain limit.

This may be used as a security measure to prevent someone from overhearing a password or

stealing a smart card and using them to falsely authenticate to a low level of confidence, and then

purchasing insurance to produce a very high level of (false) confidence. These factors may be

evaluated in determining whether user side insurance is allowed.

[0263] If user purchases insurance in step 1840, then the authentication confidence level is

adjusted based upon the insurance purchased in step 1845, and the authentication confidence

level and required trust level are again compared in step 1730 (see FIGURE 17). The process

continues from there, and may lead to either a positive authentication in step 1740 (see FIGURE

17), or back into the trust arbitrage process in step 1750 for either further arbitrage (if allowed)

or a negative authentication in step 1810 if further arbitrage is prohibited.

[0264] In addition to sending a message to the user in step 1820, the transaction engine 205

may also send a message to the vendor in step 1830 which indicates that a pending authentication

is currently below the required trust level. The message may also offer various options on how

to proceed to the vendor. One of these Options is to simply inform the vendor of what the

current authentication confidence level is and ask if the vendor wishes to maintain their current

unfulfilled required trust level. This may be beneficial because in some cases, the vendor may

have independent means for authenticating the transaction or may have been using a default set

of requirements which generally result in a higher required level being initially specified than is

actually needed for the particular transaction at hand.

[0265] For instance, it may be standard practice that all incoming purchase order transactions

with the vendor are expected to meet a 98% trust level. However, if an order was recently

-64-

WO 2011/123699 PCT/US2011/030811

discussed by phone between the vendor and a long-standing customer, and immediately

thereafter the transaction is authenticated, but only to a 93% confidence level, the vendor may

wish to simply lower the acceptance threshold for this transaction, because the phone call

effectively provides additional authentication to the vendor. In certain circumstances, the vendor

may be willing to lower their required trust level, but not all the way to the level of the current

authentication confidence. For instance, the vendor in the above example might consider that the

phone call prior to the order might merit a 4% reduction in the degree of trust needed; however,

this is still greater than the 93% confidence produced by the user.

[0266] If the vendor does adjust their required trust level in step 1835, then the authentication

confidence level produced by the authentication and the required trust level are compared in step

1730 (see FIGURE 17). If the confidence level now exceeds the required trust level, a positive

authentication may be generated in the transaction engine 205 in step 1740 (see FIGURE 17). If

not, further arbitrage may be attempted as discussed above if it is permitted.

[0267] In addition to requesting an adjustment to the required trust level, the transaction engine

205 may also offer vendor side insurance to the vendor requesting the authentication. This

insurance serves a similar purpose to that described above for the user side insurance. Here,

however, rather than the cost corresponding to the risk being taken by the trust engine 110 in

authenticating above the actual authentication confidence level produced, the cost of the

insurance corresponds to the risk being taken by the vendor in accepting a lower trust level in the

authentication.

[0268] Instead of just lowering their actual required trust level, the vendor has the option of

purchasing insurance to protect itself from the additional risk associated with a lower level of

trust in the authentication of the user. As described above, it may be advantageous for the

vendor to only consider purchasing such insurance to cover the trust gap in conditions where the

existing authentication is already above a certain threshold.

[0269] The availability of such vendor side insurance allows the vendor the option to either:

lower his trust requirement directly at no additional cost to himself, bearing the risk of a false

authentication himself (based on the lower trust level required); or, buying insurance for the trust

gap between the authentication confidence level and his requirement, with the trust engine 110

operator bearing the risk of the lower confidence level which has been provided. By purchasing

-65-

WO 2011/123699 PCT/US2011/030811

the insurance, the vendor effectively keeps his high trust level requirement; because the risk of a

false authentication is shifted to the trust engine 110 operator.

[0270] If the vendor purchases insurance in step 1840, the authentication confidence level and

required trust levels are compared in step 1730 (see FIGURE 17), and the process continues as

described above.

[0271] Note that it is also possible that both the user and the vendor respond to messages from

the trust engine 110. Those of skill in the art will recognize that there are multiple ways in which

such situations can be handled. One advantageous mode of handling the possibility of multiple

responses is simply to treat the responses in a first-come, first-served manner. For example, if

the vendor responds with a lowered required trust level and immediately thereafter the user also

purchases insurance to raise his authentication level, the authentication is first reevaluated based

upon the lowered trust requirement from the vendor. If the authentication is now positive, the

user's insurance purchase is ignored. In another advantageous mode of operation, the user might

only be charged for the level of insurance required to meet the new, lowered trust requirement of

the vendor (if a trust gap remained even with the lowered vendor trust requirement).

[0272] If no response from either party is received during the trust arbitrage process at step

1850 within the time limit set for the authentication, the arbitrage is reevaluated in step 1805.

This effectively begins the arbitrage process again. If the time limit was final or other

circumstances prevent further arbitrage in step 1805, a negative authentication is generated by

the transaction engine 205 in step 1810 and returned to the vendor in step 1055 (see FIGURE

10). If not, new messages may be sent to the user and vendor, and the process may be repeated

as desired.

[0273] Note that for certain types of transactions, for instance, digitally signing documents

which are not part of a transaction, there may not necessarily be a vendor or other third party;

therefore the transaction is primarily between the user and the trust engine 110. In circumstances

such as these, the trust engine 110 will have its own required trust level which must be satisfied

in order to generate a positive authentication. However, in such circumstances, it will often not

be desirable for the trust engine 110 to offer insurance to the user in order for him to raise the

confidence of his own signature.

[0274] The process described above and shown in FIGURES 16-18 may be carried out using

various communications modes as described above with reference to the trust engine 110. For

-66-

WO 2011/123699 PCT/US2011/030811

instance, the messages may be web-based and sent using SSL connections between the trust

engine 110 and applets downloaded in real time to browsers running on the user or vendor

systems. In an alternate mode of operation, certain dedicated applications may be in use by the

user and vendor which facilitate such arbitrage and insurance transactions. In another alternate

mode of operation, secure email operations may be used to mediate the arbitrage described

above, thereby allowing deferred evaluations and batch processing of authentications. Those of

skill in the art will recognize that different communications modes may be used as are

appropriate for the circumstances and authentication requirements of the vendor.

[0275] The following description with reference to FIGURE 19 describes a sample transaction

which integrates the various aspects of the present invention as described above. This example

illustrates the overall process between a user and a vendor as mediates by the trust engine 110.

Although the various steps and components as described in detail above may be used to carry out

the following transaction, the process illustrated focuses on the interaction between the trust

engine 110, user and vendor.

[0276] The transaction begins when the user, while viewing web pages online, fills out an

order form on the web site of the vendor in step 1900. The user wishes to submit this order form

to the vendor, signed with his digital signature. In order to do this, the user submits the order

form with his request for a signature to the trust engine 110 in step 1905. The user will also

provide authentication data which will be used as described above to authenticate his identity.

[0277] In step 1910 the authentication data is compared to the enrollment data by the trust

engine 110 as discussed above, and if a positive authentication is produced, the hash of the order

form, signed with the private key of the user, is forwarded to the vendor along with the order

form itself.

[0278] The vendor receives the signed form in step 1915, and then the vendor will generate an

invoice or other contract related to the purchase to be made in step 1920. This contract is sent

back to the user with a request for a signature in step 1925. The vendor also sends an

authentication request for this contract transaction to the trust engine 110 in step 1930 including

a hash of the contract which will be signed by both parties. To allow the contract to be digitally

signed by both parties, the vendor also includes authentication data for itself so that the vendor's

signature upon the contract can later be verified if necessary.

-67-

WO 2011/123699 PCT/US2011/030811

[0279] As discussed above, the trust engine 110 then verifies the authentication data provided

by the vendor to confirm the vendor's identity, and if the data produces a positive authentication

in step 1935, continues with step 1955 when the data is received from the user. If the vendor's

authentication data does not match the enrollment data of the vendor to the desired degree, a

message is returned to the vendor requesting further authentication. Trust arbitrage may be

performed here if necessary, as described above, in order for the vendor to successfully

authenticate itself to the trust engine 110.

[0280] When the user receives the contract in step 1940, he reviews it, generates authentication

data to sign it if it is acceptable in step 1945, and then sends a hash of the contract and his

authentication data to the trust engine 110 in step 1950. The trust engine 110 verifies the

authentication data in step 1955 and if the authentication is good, proceeds to process the

contract as described below. As discussed above with reference to FIGURES 17 and 18, trust

arbitrage may be performed as appropriate to close any trust gap which exists between the

authentication confidence level and the required authentication level for the transaction.

[0281] The trust engine 110 signs the hash of the contract with the user's private key, and sends

this signed hash to the vendor in step 1960, signing the complete message on its own behalf, i.e.,

including a hash of the complete message (including the user's signature) encrypted with the

private key 510 of the trust engine 110. This message is received by the vendor in step 1965.

The message represents a signed contract (hash of contract encrypted using user's private key)

and a receipt from the trust engine 110 (the hash of the message including the signed contract,

encrypted using the trust engine 110's private key).

[0282] The trust engine 110 similarly prepares a hash of the contract with the vendor's private

key in step 1970, and forwards this to the user, signed by the trust engine 110. In this way, the

user also receives a copy of the contract, signed by the vendor, as well as a receipt, signed by the

trust engine 110, for delivery of the signed contract in step 1975.

[0283] In addition to the foregoing, an additional aspect of the invention provides a

cryptographic Service Provider Module (SPM) which may be available to a client side

application as a means to access functions provided by the trust engine 110 described above.

One advantageous way to provide such a service is for the cryptographic SPM is to mediate

communications between a third party Application Programming Interface (API) and a trust

-68-

WO 2011/123699 PCT/US2011/030811

engine 110 which is accessible via a network or other remote connection. A sample

cryptographic SPM is described below with reference to FIGURE 20.

[0284] For example, on a typical system, a number of API's are available to programmers.

Each API provides a set of function calls which may be made by an application 2000 running

upon the system. Examples of API's which provide programming interfaces suitable for

cryptographic functions, authentication functions, and other security function include the

Cryptographic API (CAPI) 2010 provided by Microsoft with its Windows operating systems,

and the Common Data Security Architecture (CDSA), sponsored by IBM, Intel and other

members of the Open Group. CAPI will be used as an exemplary security API in the discussion

that follows. However, the cryptographic SPM described could be used with CDSA or other

security API's as are known in the art.

[0285] This API is used by a user system 105 or vendor system 120 when a call is made for a

cryptographic function. Included among these functions may be requests associated with

performing various cryptographic operations, such as encrypting a document with a particular

key, signing a document, requesting a digital certificate, verifying a signature upon a signed

document, and such other cryptographic functions as are described herein or known to those of

skill in the art.

[0286] Such cryptographic functions are normally performed locally to the system upon which

CAPI 2010 is located. This is because generally the functions called require the use of either

resources of the local user system 105, such as a fingerprint reader, or software functions which

are programmed using libraries which are executed on the local machine. Access to these local

resources is normally provided by one or more Service Provider Modules (SPM's) 2015, 2020 as

referred to above which provide resources with which the cryptographic functions are carried

out. Such SPM's may include software libraries 2015 to perform encrypting or decrypting

operations, or drivers and applications 2020 which are capable of accessing specialized hardware

2025, such as biometric scanning devices. In much the way that CAPI 2010 provides functions

which may be used by an application 2000 of the system 105, the SPM's 2015, 2020 provide

CAPI with access to the lower level functions and resources associated with the available

services upon the system.

[0287] In accordance with the invention, it is possible to provide a cryptographic SPM 2030

which is capable of accessing the cryptographic functions provided by the trust engine 110 and

-69-

WO 2011/123699 PCT/US2011/030811

making these functions available to an application 2000 through CAPI 2010. Unlike

embodiments where CAPI 2010 is only able to access resources which are locally available

through SPM's 2015, 2020, a cryptographic SPM 2030 as described herein would be able to

submit requests for cryptographic operations to a remotely-located, network-accessible trust

engine 110 in order to perform the operations desired.

[0288] For instance, if an application 2000 has a need for a cryptographic operation, such as

signing a document, the application 2000 makes a function call to the appropriate CAPI 2010

function. CAPI 2010 in turn will execute this function, making use of the resources which are

made available to it by the SPM's 2015, 2020 and the cryptographic SPM 2030. In the case of a

digital signature function, the cryptographic SPM 2030 will generate an appropriate request

which will be sent to the trust engine 110 across the communication link 125.

[0289] The operations which occur between the cryptographic SPM 2030 and the trust engine

110 are the same operations that would be possible between any other system and the trust

engine 110. However, these functions are effectively made available to a user system 105

through CAPI 2010 such that they appear to be locally available upon the user system 105 itself.

However, unlike ordinary SPM's 2015, 2020, the functions are being carried out on the remote

trust engine 110 and the results relayed to the cryptographic SPM 2030 in response to

appropriate requests across the communication link 125.

[0290] This cryptographic SPM 2030 makes a number of operations available to the user

system 105 or a vendor system 120 which might not otherwise be available. These functions

include without limitation: encryption and decryption of documents; issuance of digital

certificates; digital signing of documents; verification of digital signatures; and such other

operations as will be apparent to those of skill in the art.

[0291] In a separate embodiment, the present invention comprises a complete system for

performing the data securing methods of the present invention on any data set. The computer

system of this embodiment comprises a data splitting module that comprises the functionality

shown in FIGURE 8 and described herein. In one embodiment of the present invention, the data

splitting module, sometimes referred to herein as a secure data parser, comprises a parser

program or software suite which comprises data splitting, encryption and decryption,

reconstitution or reassembly functionality. This embodiment may further comprise a data

storage facility or multiple data storage facilities, as well. The data splitting module, or secure

-70-

WO 2011/123699 PCT/US2011/030811

data parser, comprises a cross-platform software module suite which integrates within an

electronic infrastructure, or as an add-on to any application which requires the ultimate security

of its data elements. This parsing process operates on any type of data set, and on any and all file

types, or in a database on any row, column or cell of data in that database.

[0292] The parsing process of the present invention may, in one embodiment, be designed in a

modular tiered fashion, and any encryption process is suitable for use in the process of the

present invention. The modular tiers of the parsing and splitting process of the present invention

may include, but are not limited to, 1) cryptographic split, dispersed and securely stored in

multiple locations; 2) encrypt, cryptographically split, dispersed and securely stored in multiple

locations; 3) encrypt, cryptographically split, encrypt each share, then dispersed and securely

stored in multiple locations; and 4) encrypt, cryptographically split, encrypt each share with a

different type of encryption than was used in the first step, then dispersed and securely stored in

multiple locations.

[0293] The process comprises, in one embodiment, splitting of the data according to the

contents of a generated random number, or key and performing the same cryptographic splitting

of the key used in the encryption of splitting of the data to be secured into two or more portions,

or shares, of parsed and split data, and in one embodiment, preferably into four or more portions

of parsed and split data, encrypting all of the portions, then scattering and storing these portions

back into the database, or relocating them to any named device, fixed or removable, depending

on the requestor's need for privacy and security. Alternatively, in another embodiment,

encryption may occur prior to the splitting of the data set by the splitting module or secure data

parser. The original data processed as described in this embodiment is encrypted and obfuscated

and is secured. The dispersion of the encrypted elements, if desired, can be virtually anywhere,

including, but not limited to, a single server or data storage device, or among separate data

storage facilities or devices. Encryption key management in one embodiment may be included

within the software suite, or in another embodiment may be integrated into an existing

infrastructure or any other desired location.

[0294] A cryptographic split (cryptosplit) partitions the data into N number of shares. The

partitioning can be on any size unit of data, including an individual bit, bits, bytes, kilobytes,

megabytes, or larger units, as well as any pattern or combination of data unit sizes whether

predetermined or randomly generated. The units can also be of different sized, based on either a

-71 -

WO 2011/123699 PCT/US2011/030811

random or predetermined set of values. This means the data can be viewed as a sequence of

these units. In this manner the size of the data units themselves may render the data more secure,

for example by using one or more predetermined or randomly generated pattern, sequence or

combination of data unit sizes. The units are then distributed (either randomly or by a

predetermined set of values) into the N shares. This distribution could also involve a shuffling of

the order of the units in the shares. It is readily apparent to those of ordinary skill in the art that

the distribution of the data units into the shares may be performed according to a wide variety of

possible selections, including but not limited to size-fixed, predetermined sizes, or one or more

combination, pattern or sequence of data unit sizes that are predetermined or randomly

generated.

[0295] One example of this cryptographic split process, or cryptosplit, would be to consider the

data to be 23 bytes in size, with the data unit size chosen to be one byte, and with the number of

shares selected to be 4. Each byte would be distributed into one of the 4 shares. Assuming a

random distribution, a key would be obtained to create a sequence of 23 random numbers (rl, r2,

r3 through r23), each with a value between 1 and 4 corresponding to the four shares. Each of the

units of data (in this example 23 individual bytes of data) is associated with one of the 23 random

numbers corresponding to one of the four shares. The distribution of the bytes of data into the

four shares would occur by placing the first byte of the data into share number rl, byte two into
share r2, byte three into share r3, through the 23rd byte of data into share r23. It is readily

apparent to those of ordinary skill in the art that a wide variety of other possible steps or

combination or sequence of steps, including the size of the data units, may be used in the

cryptosplit process of the present invention, and the above example is a non-limiting description

of one process for cryptosplitting data. To recreate the original data, the reverse operation would

be performed.

[0296] In another embodiment of the cryptosplit process of the present invention, an option for

the cryptosplitting process is to provide sufficient redundancy in the shares such that only a

subset of the shares are needed to reassemble or restore the data to its original or useable form.

As a non-limiting example, the cryptosplit may be done as a "3 of 4" cryptosplit such that only

three of the four shares are necessary to reassemble or restore the data to its original or useable

form. This is also referred to as a "M of N cryptosplit" wherein N is the total number of shares,

and M is at least one less than N. It is readily apparent to those of ordinary skill in the art that

-72-

WO 2011/123699 PCT/US2011/030811

there are many possibilities for creating this redundancy in the cryptosplitting process of the

present invention.

[0297] In one embodiment of the crypto splitting process of the present invention, each unit of

data is stored in two shares, the primary share and the backup share. Using the "3 of 4"

cryptosplitting process described above, any one share can be missing, and this is sufficient to

reassemble or restore the original data with no missing data units since only three of the total

four shares are required. As described herein, a random number is generated that corresponds to

one of the shares. The random number is associated with a data unit, and stored in the

corresponding share, based on a key. One key is used, in this embodiment, to generate the

primary and backup share random number. As described herein for the cryptosplitting process

of the present invention, a set of random numbers (also referred to as primary share numbers)

from 0 to 3 are generated equal to the number of data units. Then another set of random numbers

is generated (also referred to as backup share numbers) from 1 to 3 equal to the number of data

units. Each unit of data is then associated with a primary share number and a backup share

number. Alternatively, a set of random numbers may be generated that is fewer than the number

of data units, and repeating the random number set, but this may reduce the security of the

sensitive data. The primary share number is used to determine into which share the data unit is

stored. The backup share number is combined with the primary share number to create a third

share number between 0 and 3, and this number is used to determine into which share the data

unit is stored. In this example, the equation to determine the third share number is:

(primary share number + backup share number) MOD 4 = third share number.

[0298] In the embodiment described above where the primary share number is between 0 and

3, and the backup share number is between 1 and 3 ensures that the third share number is

different from the primary share number. This results in the data unit being stored in two

different shares. It is readily apparent to those of ordinary skill in the art that there are many

ways of performing redundant cryptosplitting and non-redundant cryptosplitting in addition to

the embodiments disclosed herein. For example, the data units in each share could be shuffled

utilizing a different algorithm. This data unit shuffling may be performed as the original data is

split into the data units, or after the data units are placed into the shares, or after the share is full,

for example.

-73-

WO 2011/123699 PCT/US2011/030811

[0299] The various cryptosplitting processes and data shuffling processes described herein, and

all other embodiments of the cryptosplitting and data shuffling methods of the present invention

may be performed on data units of any size, including but not limited to, as small as an

individual bit, bits, bytes, kilobytes, megabytes or larger.

[0300] An example of one embodiment of source code that would perform the crypto splitting

process described herein is:

DATA [1:24] - array of bytes with the data to be split

SHARES[0:3; 1:24] - 2-dimensionalarray with each row representing one of the shares

RANDOM[1:24] - array random numbers in the range of 0..3

51 = 1;

52 = 1;

53 = 1;

54 = 1;

For J = 1 to 24 do

Begin

IF RANDOM[J[==0 then

Begin

SHARES [1,S 1] = DATA [J];

51 = S1 + 1;

End

ELSE IF RANDOM[J[==1 then

Begin

SHARES[2,S2] = DATA [J];

52 = S2+ 1;

END

ELSE IF RANDOM [J[==2 then

Begin

Shares[3,S3] = data [J];

53 = S3 + 1;

End

-74-

WO 2011/123699 PCT/US2011/030811

Else begin

Shares[4,S4] = data [J];

S4 = S4+ 1;

End;

END;

[0301] An example of one embodiment of source code that would perform the crypto splitting

RAID process described herein is:

[0302] Generate two sets of numbers, PrimaryShare is 0 to 3, BackupShare is 1 to 3. Then put

each data unit into share[primaryshare[l]] and share[(primaryshare[l]+backupshare[l]) mod 4,

with the same process as in crypto splitting described above. This method will be scalable to any

size N, where only N-l shares are necessary to restore the data.

[0303] The retrieval, recombining, reassembly or reconstituting of the encrypted data elements

may utilize any number of authentication techniques, including, but not limited to, biometrics,

such as fingerprint recognition, facial scan, hand scan, iris scan, retinal scan, ear scan, vascular

pattern recognition or DNA analysis. The data splitting and/or parser modules of the present

invention may be integrated into a wide variety of infrastructure products or applications as

desired.

[0304] Traditional encryption technologies known in the art rely on one or more key used to

encrypt the data and render it unusable without the key. The data, however, remains whole and

intact and subject to attack. The secure data parser of the present invention, in one embodiment,

addresses this problem by performing a cryptographic parsing and splitting of the encrypted file

into two or more portions or shares, and in another embodiment, preferably four or more shares,

adding another layer of encryption to each share of the data, then storing the shares in different

physical and/or logical locations. When one or more data shares are physically removed from

the system, either by using a removable device, such as a data storage device, or by placing the

share under another party's control, any possibility of compromise of secured data is effectively

removed.

[0305] An example of one embodiment of the secure data parser of the present invention and

an example of how it may be utilized is shown in FIGURE 21 and described below. However, it

is readily apparent to those of ordinary skill in the art that the secure data parser of the present

invention may be utilized in a wide variety of ways in addition to the non-limiting example

-75-

WO 2011/123699 PCT/US2011/030811

below. As a deployment option, and in one embodiment, the secure data parser may be

implemented with external session key management or secure internal storage of session keys.

Upon implementation, a Parser Master Key will be generated which will be used for securing the

application and for encryption purposes. It should be also noted that the incorporation of the

Parser Master key in the resulting secured data allows for a flexibility of sharing of secured data

by individuals within a workgroup, enterprise or extended audience.

[0306] As shown in Figure 21, this embodiment of the present invention shows the steps of the

process performed by the secure data parser on data to store the session master key with the

parsed data:

[0307] 1. Generating a session master key and encrypt the data using RS 1 stream cipher.

[0308] 2. Separating the resulting encrypted data into four shares or portions of parsed data

according to the pattern of the session master key.

[0309] 3 .In this embodiment of the method, the session master key will be stored along with

the secured data shares in a data depository. Separating the session master key according to the

pattern of the Parser Master Key and append the key data to the encrypted parsed data.

[0310] 4. The resulting four shares of data will contain encrypted portions of the original

data and portions of the session master key. Generate a stream cipher key for each of the four

data shares.

[0311] 5. Encrypting each share, then store the encryption keys in different locations from

the encrypted data portions or shares: Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets Key

2, Share 4 gets Key 3.

[0312] To restore the original data format, the steps are reversed.

[0313] It is readily apparent to those of ordinary skill in the art that certain steps of the methods

described herein may be performed in different order, or repeated multiple times, as desired. It is

also readily apparent to those skilled in the art that the portions of the data may be handled

differently from one another. For example, multiple parsing steps may be performed on only one

portion of the parsed data. Each portion of parsed data may be uniquely secured in any desirable

way provided only that the data may be reassembled, reconstituted, reformed, decrypted or

restored to its original or other usable form.

-76-

WO 2011/123699 PCT/US2011/030811

[0314] As shown in FIGURE 22 and described herein, another embodiment of the present

invention comprises the steps of the process performed by the secure data parser on data to store

the session master key data in one or more separate key management table:

[0315] 1. Generating a session master key and encrypt the data using RS 1 stream cipher.

[0316] 2. Separating the resulting encrypted data into four shares or portions of parsed data

according to the pattern of the session master key.

[0317] 3. In this embodiment of the method of the present invention, the session master key

will be stored in a separate key management table in a data depository. Generating a unique

transaction ID for this transaction. Storing the transaction ID and session master key in a

separate key management table. Separating the transaction ID according to the pattern of the

Parser Master Key and append the data to the encrypted parsed or separated data.

[0318] 4. The resulting four shares of data will contain encrypted portions of the original

data and portions of the transaction ID.

[0319] 5. Generating a stream cipher key for each of the four data shares.

[0320] 6. Encrypting each share, then store the encryption keys in different locations from

the encrypted data portions or shares: Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets Key

2, Share 4 gets Key 3.

[0321] To restore the original data format, the steps are reversed.
[0322] It is readily apparent to those of ordinary skill in the art that certain steps of the method

described herein may be performed in different order, or repeated multiple times, as desired. It is

also readily apparent to those skilled in the art that the portions of the data may be handled

differently from one another. For example, multiple separating or parsing steps may be

performed on only one portion of the parsed data. Each portion of parsed data may be uniquely

secured in any desirable way provided only that the data may be reassembled, reconstituted,

reformed, decrypted or restored to its original or other usable form.

[0323] As shown in Figure 23, this embodiment of the present invention shows the steps of the

process performed by the secure data parser on data to store the session master key with the

parsed data:

[0324] 1. Accessing the parser master key associated with the authenticated user

[0325] 2. Generating a unique Session Master key

-77-

WO 2011/123699 PCT/US2011/030811

[0326] 3. Derive an Intermediary Key from an exclusive OR function of the Parser Master

Key and Session Master key

[0327] 4. Optional encryption of the data using an existing or new encryption algorithm

keyed with the Intermediary Key.

[0328] 5. Separating the resulting optionally encrypted data into four shares or portions of

parsed data according to the pattern of the Intermediary key.

[0329] 6. In this embodiment of the method, the session master key will be stored along

with the secured data shares in a data depository. Separating the session master key according to

the pattern of the Parser Master Key and append the key data to the optionally encrypted parsed

data shares.

[0330] 7. The resulting multiple shares of data will contain optionally encrypted portions of

the original data and portions of the session master key.

[0331] 8. Optionally generate an encryption key for each of the four data shares.

[0332] 9. Optionally encrypting each share with an existing or new encryption algorithm,

then store the encryption keys in different locations from the encrypted data portions or shares:

for example, Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

[0333] To restore the original data format, the steps are reversed.

[0334] It is readily apparent to those of ordinary skill in the art that certain steps of the methods

described herein may be performed in different order, or repeated multiple times, as desired. It is

also readily apparent to those skilled in the art that the portions of the data may be handled

differently from one another. For example, multiple parsing steps may be performed on only one

portion of the parsed data. Each portion of parsed data may be uniquely secured in any desirable

way provided only that the data may be reassembled, reconstituted, reformed, decrypted or

restored to its original or other usable form.

[0335] As shown in FIGURE 24 and described herein, another embodiment of the present

invention comprises the steps of the process performed by the secure data parser on data to store

the session master key data in one or more separate key management table:

[0336] 1. Accessing the Parser Master Key associated with the authenticated user

[0337] 2. Generating a unique Session Master Key

[0338] 3. Derive an Intermediary Key from an exclusive OR function of the Parser Master

Key and Session Master key

-78-

WO 2011/123699 PCT/US2011/030811

[0339] 4. Optionally encrypt the data using an existing or new encryption algorithm keyed

with the Intermediary Key.

[0340] 5. Separating the resulting optionally encrypted data into four shares or portions of

parsed data according to the pattern of the Intermediary Key.

[0341] 6. In this embodiment of the method of the present invention, the session master key

will be stored in a separate key management table in a data depository. Generating a unique

transaction ID for this transaction. Storing the transaction ID and session master key in a

separate key management table or passing the Session Master Key and transaction ID back to the

calling program for external management. Separating the transaction ID according to the pattern

of the Parser Master Key and append the data to the optionally encrypted parsed or separated

data.

[0342] 7. The resulting four shares of data will contain optionally encrypted portions of the

original data and portions of the transaction ID.

[0343] 8. Optionally generate an encryption key for each of the four data shares.

[0344] 9. Optionally encrypting each share, then store the encryption keys in different

locations from the encrypted data portions or shares. For example: Share 1 gets Key 4, Share 2

gets Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

[0345] To restore the original data format, the steps are reversed.

[0346] It is readily apparent to those of ordinary skill in the art that certain steps of the method

described herein may be performed in different order, or repeated multiple times, as desired. It is

also readily apparent to those skilled in the art that the portions of the data may be handled

differently from one another. For example, multiple separating or parsing steps may be

performed on only one portion of the parsed data. Each portion of parsed data may be uniquely

secured in any desirable way provided only that the data may be reassembled, reconstituted,

reformed, decrypted or restored to its original or other usable form.

[0347] A wide variety of encryption methodologies are suitable for use in the methods of the

present invention, as is readily apparent to those skilled in the art. The One Time Pad algorithm,

is often considered one of the most secure encryption methods, and is suitable for use in the

method of the present invention. Using the One Time Pad algorithm requires that a key be

generated which is as long as the data to be secured. The use of this method may be less

desirable in certain circumstances such as those resulting in the generation and management of

-79-

WO 2011/123699 PCT/US2011/030811

very long keys because of the size of the data set to be secured. In the One-Time Pad (OTP)

algorithm, the simple exclusive-or function, XOR, is used. For two binary streams x and y of the

same length, x XOR y means the bitwise exclusive-or of x and y.

[0348] At the bit level is generated:

0 XOR 0 = 0

0 XOR1 = 1

1XOR 0 = 1

1 XOR1= 0

[0349] An example of this process is described herein for an n-byte secret, s, (or data set) to be

split. The process will generate an n-byte random value, a, and then set:

b = a XOR s.

[0350] Note that one can derive "s" via the equation:

s = a XOR b.

[0351] The values a and b are referred to as shares or portions and are placed in separate

depositories. Once the secret s is split into two or more shares, it is discarded in a secure

manner.

[0352] The secure data parser of the present invention may utilize this function, performing

multiple XOR functions incorporating multiple distinct secret key values: KI, K2, K3, Kn, K5.

At the beginning of the operation, the data to be secured is passed through the first encryption

operation, secure data = data XOR secret key 5:

S = D XOR K5

[0353] In order to securely store the resulting encrypted data in, for example, four shares, SI,

S2, S3, Sn, the data is parsed and split into "n" segments, or shares, according to the value of K5.

This operation results in "n" pseudorandom shares of the original encrypted data. Subsequent

XOR functions may then be performed on each share with the remaining secret key values, for

example: Secure data segment 1 = encrypted data share 1 XOR secret key 1:

-80-

WO 2011/123699 PCT/US2011/030811

SD1 = SI XORKI

SD2 = S2 XOR K2

SD3 = S3 XOR K3

SDn = Sn XOR Kn.

[0354] In one embodiment, it may not be desired to have any one depository contain enough

information to decrypt the information held there, so the key required to decrypt the share is

stored in a different data depository:

Depository 1: SD 1, Kn

Depository 2: SD2, KI

Depository 3: SD3, K2

Depository n: SDn, K3.

[0355] Additionally, appended to each share may be the information required to retrieve the

original session encryption key, K5. Therefore, in the key management example described

herein, the original session master key is referenced by a transaction ID split into "n" shares

according to the contents of the installation dependant Parser Master Key (TID1, TID2, TID3,

TIDn):

Depository 1: SD 1, Kn, TID1

Depository 2: SD2, KI, TID2

Depository 3: SD3, K2, TID3

Depository n: SDn, K3, TIDn.

[0356] In the incorporated session key example described herein, the session master key is split

into "n" shares according to the contents of the installation dependant Parser Master Key (SKI,

SK2, SK3, SKn):

Depository 1: SD1, Kn, SKI

Depository 2: SD2, KI, SK2

Depository 3: SD3, K2, SK3

Depository n: SDn, K3, SKn.

[0357] Unless all four shares are retrieved, the data cannot be reassembled according to this

example. Even if all four shares are captured, there is no possibility of reassembling or restoring

the original information without access to the session master key and the Parser Master Key.

-81 -

WO 2011/123699 PCT/US2011/030811

[0358] This example has described an embodiment of the method of the present invention, and

also describes, in another embodiment, the algorithm used to place shares into depositories so

that shares from all depositories can be combined to form the secret authentication material. The

computations needed are very simple and fast. However, with the One Time Pad (OTP)

algorithm there may be circumstances that cause it to be less desirable, such as a large data set to

be secured, because the key size is the same size as the data to be stored. Therefore, there would

be a need to store and transmit about twice the amount of the original data which may be less

desirable under certain circumstances.

Stream Cipher RS 1

[0359] The stream cipher RS 1 splitting technique is very similar to the OTP splitting technique

described herein. Instead of an n-byte random value, an n' = min(n, 16)-byte random value is

generated and used to key the RSI Stream Cipher algorithm. The advantage of the RSI Stream

Cipher algorithm is that a pseudorandom key is generated from a much smaller seed number.

The speed of execution of the RSI Stream Cipher encryption is also rated at approximately 10

times the speed of the well known in the art Triple DES encryption without compromising

security. The RSI Stream Cipher algorithm is well known in the art, and may be used to

generate the keys used in the XOR function. The RS 1 Stream Cipher algorithm is interoperable

with other commercially available stream cipher algorithms, such as the RC4™ stream cipher

algorithm of RS A Security, Inc and is suitable for use in the methods of the present invention.

[0360] Using the key notation above, KI thru K5 are now an n' byte random values and we set:

SD1 = SI XOR E(K1)

SD2 = S2 XOR E(K2)

SD3 = S3 XOR E(K3)

SDn = Sn XOR E(Kn)

where E(K1) thru E(Kn) are the first n' bytes of output from the RSI Stream Cipher algorithm

keyed by KI thru Kn. The shares are now placed into data depositories as described herein.

[0361] In this stream cipher RS 1 algorithm, the required computations needed are nearly as

simple and fast as the OTP algorithm. The benefit in this example using the RS 1 Stream Cipher

is that the system needs to store and transmit on average only about 16 bytes more than the size

of the original data to be secured per share. When the size of the original data is more than 16

-82-

WO 2011/123699 PCT/US2011/030811

bytes, this RSI algorithm is more efficient than the OTP algorithm because it is simply shorter.

It is readily apparent to those of ordinary skill in the art that a wide variety of encryption

methods or algorithms are suitable for use in the present invention, including, but not limited to

RSI, OTP, RC4™, Triple DES and AES.

[0362] There are major advantages provided by the data security methods and computer

systems of the present invention over traditional encryption methods. One advantage is the

security gained from moving shares of the data to different locations on one or more data

depositories or storage devices, that may be in different logical, physical or geographical

locations. When the shares of data are split physically and under the control of different

personnel, for example, the possibility of compromising the data is greatly reduced.

[0363] Another advantage provided by the methods and system of the present invention is the

combination of the steps of the method of the present invention for securing data to provide a

comprehensive process of maintaining security of sensitive data. The data is encrypted with a

secure key and split into one or more shares, and in one embodiment, four shares, according to

the secure key. The secure key is stored safely with a reference pointer which is secured into

four shares according to a secure key. The data shares are then encrypted individually and the

keys are stored safely with different encrypted shares. When combined, the entire process for

securing data according to the methods disclosed herein becomes a comprehensive package for

data security.

[0364] The data secured according to the methods of the present invention is readily retrievable

and restored, reconstituted, reassembled, decrypted, or otherwise returned into its original or

other suitable form for use. In order to restore the original data, the following items may be

utilized:

[0365] 1. All shares or portions of the data set.

[0366] 2. Knowledge of and ability to reproduce the process flow of the method used to

secure the data.

[0367] 3. Access to the session master key.

[0368] 4. Access to the Parser Master Key.

[0369] Therefore, it may be desirable to plan a secure installation wherein at least one of the

above elements may be physically separated from the remaining components of the system

(under the control of a different system administrator for example).

-83-

WO 2011/123699 PCT/US2011/030811

[0370] Protection against a rogue application invoking the data securing methods application

may be enforced by use of the Parser Master Key. A mutual authentication handshake between

the secure data parser and the application may be required in this embodiment of the present

invention prior to any action taken.

[0371] The security of the system dictates that there be no "backdoor" method for recreation of

the original data. For installations where data recovery issues may arise, the secure data parser

can be enhanced to provide a mirror of the four shares and session master key depository.

Hardware options such as RAID (redundant array of inexpensive disks, used to spread

information over several disks) and software options such as replication can assist as well in the

data recovery planning.

Key Management

[0372] In one embodiment of the present invention, the data securing method uses three sets of

keys for an encryption operation. Each set of keys may have individual key storage, retrieval,

security and recovery options, based on the installation. The keys that may be used, include, but

are not limited to:

The Parser Master Key

[0373] This key is an individual key associated with the installation of the secure data parser.

It is installed on the server on which the secure data parser has been deployed. There are a

variety of options suitable for securing this key including, but not limited to, a smart card,

separate hardware key store, standard key stores, custom key stores or within a secured database

table, for example.

The Session Master Key

[0374] A Session Master Key may be generated each time data is secured. The Session Master

Key is used to encrypt the data prior to the parsing and splitting operations. It may also be

incorporated (if the Session Master Key is not integrated into the parsed data) as a means of

parsing the encrypted data. The Session Master Key may be secured in a variety of manners,

including, but not limited to, a standard key store, custom key store, separate database table, or

secured within the encrypted shares, for example.

The Share Encryption Keys

-84-

WO 2011/123699 PCT/US2011/030811

[0375] For each share or portions of a data set that is created, an individual Share Encryption

Key may be generated to further encrypt the shares. The Share Encryption Keys may be stored

in different shares than the share that was encrypted.

[0376] It is readily apparent to those of ordinary skill in the art that the data securing methods

and computer system of the present invention are widely applicable to any type of data in any

setting or environment. In addition to commercial applications conducted over the Internet or

between customers and vendors, the data securing methods and computer systems of the present

invention are highly applicable to non-commercial or private settings or environments. Any data

set that is desired to be kept secure from any unauthorized user may be secured using the

methods and systems described herein. For example, access to a particular database within a

company or organization may be advantageously restricted to only selected users by employing

the methods and systems of the present invention for securing data. Another example is the

generation, modification or access to documents wherein it is desired to restrict access or prevent

unauthorized or accidental access or disclosure outside a group of selected individuals,

computers or workstations. These and other examples of the ways in which the methods and

systems of data securing of the present invention are applicable to any non-commercial or

commercial environment or setting for any setting, including, but not limited to any organization,

government agency or corporation.

[0377] In another embodiment of the present invention, the data securing method uses three

sets of keys for an encryption operation. Each set of keys may have individual key storage,

retrieval, security and recovery options, based on the installation. The keys that may be used,

include, but are not limited to:

1. The Parser Master Key

[0378] This key is an individual key associated with the installation of the secure data parser.

It is installed on the server on which the secure data parser has been deployed. There are a

variety of options suitable for securing this key including, but not limited to, a smart card,

separate hardware key store, standard key stores, custom key stores or within a secured database

table, for example.

2. The Session Master Key

[0379] A Session Master Key may be generated each time data is secured. The Session Master

Key is used in conjunction with the Parser Master key to derive the Intermediary Key. The

-85-

WO 2011/123699 PCT/US2011/030811

Session Master Key may be secured in a variety of manners, including, but not limited to, a

standard key store, custom key store, separate database table, or secured within the encrypted

shares, for example.

3. The Intermediary Key

[0380] An Intermediary Key may be generated each time data is secured. The Intermediary

Key is used to encrypt the data prior to the parsing and splitting operation. It may also be

incorporated as a means of parsing the encrypted data.

4. The Share Encryption Keys

[0381] For each share or portions of a data set that is created, an individual Share Encryption

Key may be generated to further encrypt the shares. The Share Encryption Keys may be stored

in different shares than the share that was encrypted.

[0382] It is readily apparent to those of ordinary skill in the art that the data securing methods

and computer system of the present invention are widely applicable to any type of data in any

setting or environment. In addition to commercial applications conducted over the Internet or

between customers and vendors, the data securing methods and computer systems of the present

invention are highly applicable to non-commercial or private settings or environments. Any data

set that is desired to be kept secure from any unauthorized user may be secured using the

methods and systems described herein. For example, access to a particular database within a

company or organization may be advantageously restricted to only selected users by employing

the methods and systems of the present invention for securing data. Another example is the

generation, modification or access to documents wherein it is desired to restrict access or prevent

unauthorized or accidental access or disclosure outside a group of selected individuals,

computers or workstations. These and other examples of the ways in which the methods and

systems of data securing of the present invention are applicable to any non-commercial or

commercial environment or setting for any setting, including, but not limited to any organization,

government agency or corporation.

Workgroup, Project, Individual PC/Laptop or Cross Platform Data Security

[0383] The data securing methods and computer systems of the present invention are also

useful in securing data by workgroup, project, individual PC/Laptop and any other platform that

is in use in, for example, businesses, offices, government agencies, or any setting in which

-86-

WO 2011/123699 PCT/US2011/030811

sensitive data is created, handled or stored. The present invention provides methods and

computer systems to secure data that is known to be sought after by organizations, such as the

U.S. Government, for implementation across the entire government organization or between

governments at a state or federal level.

[0384] The data securing methods and computer systems of the present invention provide the

ability to not only parse and split flat files but also data fields, sets and or table of any type.

Additionally, all forms of data are capable of being secured under this process, including, but not

limited to, text, video, images, biometrics and voice data. Scalability, speed and data throughput

of the methods of securing data of the present invention are only limited to the hardware the user

has at their disposal.

[0385] In one embodiment of the present invention, the data securing methods are utilized as

described below in a workgroup environment. In one embodiment, as shown in FIGURE 23 and

described below, the Workgroup Scale data securing method of the present invention uses the

private key management functionality of the TrustEngine to store the user/group relationships

and the associated private keys (Parser Group Master Keys) necessary for a group of users to

share secure data. The method of the present invention has the capability to secure data for an

enterprise, workgroup, or individual user, depending on how the Parser Master Key was

deployed.

[0386] In one embodiment, additional key management and user/group management programs

may be provided, enabling wide scale workgroup implementation with a single point of

administration and key management. Key generation, management and revocation are handled

by the single maintenance program, which all become especially important as the number of

users increase. In another embodiment, key management may also be set up across one or

several different system administrators, which may not allow any one person or group to control

data as needed. This allows for the management of secured data to be obtained by roles,

responsibilities, membership, rights, etc., as defined by an organization, and the access to

secured data can be limited to just those who are permitted or required to have access only to the

portion they are working on, while others, such as managers or executives, may have access to

all of the secured data. This embodiment allows for the sharing of secured data among different

groups within a company or organization while at the same time only allowing certain selected

individuals, such as those with the authorized and predetermined roles and responsibilities, to

-87-

WO 2011/123699 PCT/US2011/030811

observe the data as a whole. In addition, this embodiment of the methods and systems of the

present invention also allows for the sharing of data among, for example, separate companies, or

separate departments or divisions of companies, or any separate organization departments,

groups, agencies, or offices, or the like, of any government or organization or any kind, where

some sharing is required, but not any one party may be permitted to have access to all the data.

Particularly apparent examples of the need and utility for such a method and system of the

present invention are to allow sharing, but maintain security, in between government areas,

agencies and offices, and between different divisions, departments or offices of a large company,

or any other organization, for example.

[0387] An example of the applicability of the methods of the present invention on a smaller

scale is as follows. A Parser Master key is used as a serialization or branding of the secure data

parser to an organization. As the scale of use of the Parser Master key is reduced from the whole

enterprise to a smaller workgroup, the data securing methods described herein are used to share

files within groups of users.

[0388] In the example shown in FIGURE 25 and described below, there are six users defined

along with their title or role within the organization. The side bar represents five possible groups

that the users can belong to according to their role. The arrow represents membership by the

user in one or more of the groups.
[0389] When configuring the secure data parser for use in this example, the system

administrator accesses the user and group information from the operating system by a

maintenance program. This maintenance program generates and assigns Parser Group Master

Keys to users based on their membership in groups.

[0390] In this example, there are three members in the Senior Staff group. For this group, the

actions would be:

[0391] 1. Access Parser Group Master Key for the Senior Staff group (generate a key if

not available);

[0392] 2. Generate a digital certificate associating CEO with the Senior Staff group;

[0393] 3. Generate a digital certificate associating CFO with the Senior Staff group;

[0394] 4. Generate a digital certificate associating Vice President, Marketing with the

Senior Staff group.

-88-

WO 2011/123699 PCT/US2011/030811

[0395] The same set of actions would be done for each group, and each member within each

group. When the maintenance program is complete, the Parser Group Master Key becomes a

shared credential for each member of the group. Revocation of the assigned digital certificate

may be done automatically when a user is removed from a group through the maintenance

program without affecting the remaining members of the group.

[0396] Once the shared credentials have been defined, the parsing and splitting process

remains the same. When a file, document or data element is to be secured, the user is prompted

for the target group to be used when securing the data. The resulting secured data is only

accessible by other members of the target group. This functionality of the methods and systems

of the present invention may be used with any other computer system or software platform, any

may be, for example, integrated into existing application programs or used standalone for file

security.

[0397] It is readily apparent to those of ordinary skill in the art that any one or combination of

encryption algorithms are suitable for use in the methods and systems of the present invention.

For example, the encryption steps may, in one embodiment, be repeated to produce a multi­

layered encryption scheme. In addition, a different encryption algorithm, or combination of

encryption algorithms, may be used in repeat encryption steps such that different encryption

algorithms are applied to the different layers of the multi-layered encryption scheme. As such,

the encryption scheme itself may become a component of the methods of the present invention

for securing sensitive data from unauthorized use or access.

[0398] The secure data parser may include as an internal component, as an external

component, or as both an error-checking component. For example, in one suitable approach, as

portions of data are created using the secure data parser in accordance with the present invention,

to assure the integrity of the data within a portion, a hash value is taken at preset intervals within

the portion and is appended to the end of the interval. The hash value is a predictable and

reproducible numeric representation of the data. If any bit within the data changes, the hash

value would be different. A scanning module (either as a stand-alone component external to the

secure data parser or as an internal component) may then scan the portions of data generated by

the secure data parser. Each portion of data (or alternatively, less than all portions of data

according to some interval or by a random or pseudo-random sampling) is compared to the

appended hash value or values and an action may be taken. This action may include a report of

-89-

WO 2011/123699 PCI7US2011/030811

values that match and do not match, an alert for values that do not match, or invoking of some

external or internal program to trigger a recovery of the data. For example, recovery of the data

could be performed by invoking a recovery module based on the concept that fewer than all

portions may be needed to generate original data in accordance with the present invention.

[0399] Any other suitable integrity checking may be implemented using any suitable integrity

information appended anywhere in all or a subset of data portions. Integrity information may

include any suitable information that can be used to determine the integrity of data portions.

Examples of integrity information may include hash values computed based on any suitable

parameter (e.g., based on respective data portions), digital signature information, message

authentication code (MAC) information, any other suitable information, or any combination

thereof.

[0400] The secure data parser of the present invention may be used in any suitable application.

Namely, the secure data parser described herein has a variety of applications in different areas of

computing and technology. Several such areas are discussed below. It will be understood that

these are merely illustrative in nature and that any other suitable applications may make use of

the secure data parser. It will further be understood that the examples described are merely

illustrative embodiments that may be modified in any suitable way in order to satisfy any

suitable desires. For example, parsing and splitting may be based on any suitable units, such as

by bits, by bytes, by kilobytes, by megabytes, by any combination thereof, or by any other

suitable unit.

[0401] The secure data parser of the present invention may be used to implement secure

physical tokens, whereby data stored in a physical token may be required in order to access

additional data stored in another storage area. In one suitable approach, a physical token, such as

a compact USB flash drive, a floppy disk, an optical disk, a smart card, or any other suitable

physical token, may be used to store one of at least two portions of parsed data in accordance

with the present invention. In order to access the original data, the USB flash drive would need

to be accessed. Thus, a personal computer holding one portion of parsed data would need to

have the USB flash drive, having the other portion of parsed data, attached before the original

data can be accessed. FIGURE 26 illustrates this application. Storage area 2500 includes a

portion of parsed data 2502. Physical token 2504, having a portion of parsed data 2506 would

need to be coupled to storage area 2500 using any suitable communications interface 2508 (e.g.,

-90-

WO 2011/123699 PCT/US2011/030811

USB, serial, parallel, Bluetooth, IR, IEEE 1394, Ethernet, or any other suitable communications

interface) in order to access the original data. This is useful in a situation where, for example,

sensitive data on a computer is left alone and subject to unauthorized access attempts. By

removing the physical token (e.g., the USB flash drive), the sensitive data is inaccessible. It will

be understood that any other suitable approach for using physical tokens may be used.

[0402] The secure data parser of the present invention may be used to implement a secure

authentication system whereby user enrollment data (e.g., passwords, private encryption keys,

fingerprint templates, biometric data or any other suitable user enrollment data) is parsed and

split using the secure data parser. The user enrollment data may be parsed and split whereby one

or more portions are stored on a smart card, a government Common Access Card, any suitable

physical storage device (e.g., magnetic or optical disk, USB key drive, etc.), or any other suitable

device. One or more other portions of the parsed user enrollment data may be stored in the

system performing the authentication. This provides an added level of security to the

authentication process (e.g., in addition to the biometric authentication information obtained

from the biometric source, the user enrollment data must also be obtained via the appropriate

parsed and split data portion).

[0403] The secure data parser of the present invention may be integrated into any suitable

existing system in order to provide the use of its functionality in each system's respective

environment. FIGURE 27 shows a block diagram of an illustrative system 2600, which may

include software, hardware, or both for implementing any suitable application. System 2600

may be an existing system in which secure data parser 2602 may be retrofitted as an integrated

component. Alternatively, secure data parser 2602 may be integrated into any suitable system

2600 from, for example, its earliest design stage. Secure data parser 2600 may be integrated at

any suitable level of system 2600. For example, secure data parser 2602 may be integrated into

system 2600 at a sufficiently back-end level such that the presence of secure data parser 2602

may be substantially transparent to an end user of system 2600. Secure data parser 2602 may be

used for parsing and splitting data among one or more storage devices 2604 in accordance with

the present invention. Some illustrative examples of systems having the secure data parser

integrated therein are discussed below.

[0404] The secure data parser of the present invention may be integrated into an operating

system kernel (e.g., Linux, Unix, or any other suitable commercial or proprietary operating

-91 -

WO 2011/123699 PCT/US2011/030811

system). This integration may be used to protect data at the device level whereby, for example,

data that would ordinarily be stored in one or more devices is separated into a certain number of

portions by the secure data parser integrated into the operating system and stored among the one

or more devices. When original data is attempted to be accessed, the appropriate software, also

integrated into the operating system, may recombine the parsed data portions into the original

data in a way that may be transparent to the end user.

[0405] The secure data parser of the present invention may be integrated into a volume

manager or any other suitable component of a storage system to protect local and networked data

storage across any or all supported platforms. For example, with the secure data parser

integrated, a storage system may make use of the redundancy offered by the secure data parser

(i.e., which is used to implement the feature of needing fewer than all separated portions of data

in order to reconstruct the original data) to protect against data loss. The secure data parser also

allows all data written to storage devices, whether using redundancy or not, to be in the form of

multiple portions that are generated according to the parsing of the present invention. When

original data is attempted to be accessed, the appropriate software, also integrated into the

volume manager or other suitable component of the storage system, may recombine the parsed

data portions into the original data in a way that may be transparent to the end user.

[0406] In one suitable approach, the secure data parser of the present invention may be

integrated into a RAID controller (as either hardware or software). This allows for the secure

storage of data to multiple drives while maintaining fault tolerance in case of drive failure.

[0407] The secure data parser of the present invention may be integrated into a database in

order to, for example, protect sensitive table information. For example, in one suitable approach,

data associated with particular cells of a database table (e.g., individual cells, one or more

particular columns, one or more particular rows, any combination thereof, or an entire database

table) may be parsed and separated according to the present invention (e.g., where the different

portions are stored on one or more storage devices at one or more locations or on a single storage

device). Access to recombine the portions in order to view the original data may be granted by

traditional authentication methods (e.g., username and password query).

[0408] The secure parser of the present invention may be integrated in any suitable system that

involves data in motion (i.e., transfer of data from one location to another). Such systems

include, for example, email, streaming data broadcasts, and wireless (e.g., WiFi)

-92-

WO 2011/123699 PCT/US2011/030811

communications. With respect to email, in one suitable approach, the secure parser may be used

to parse outgoing messages (i.e., containing text, binary data, or both (e.g., files attached to an

email message)) and sending the different portions of the parsed data along different paths thus

creating multiple streams of data. If any one of these streams of data is compromised, the

original message remains secure because the system may require that more than one of the

portions be combined, in accordance with the present invention, in order to generate the original

data. In another suitable approach, the different portions of data may be communicated along

one path sequentially so that if one portion is obtained, it may not be sufficient to generate the

original data. The different portions arrive at the intended recipient's location and may be

combined to generate the original data in accordance with the present invention.

[0409] FIGURES 28 and 29 are illustrative block diagrams of such email systems. FIGURE

28 shows a sender system 2700, which may include any suitable hardware, such as a computer
terminal, personal computer, handheld device (e.g., PDA, Blackberry), cellular telephone,

computer network, any other suitable hardware, or any combination thereof. Sender system

2700 is used to generate and/or store a message 2704, which may be, for example, an email

message, a binary data file (e.g., graphics, voice, video, etc.), or both. Message 2704 is parsed

and split by secure data parser 2702 in accordance with the present invention. The resultant data

portions may be communicated across one or more separate communications paths 2706 over

network 2708 (e.g., the Internet, an intranet, a LAN, WiFi, Bluetooth, any other suitable hard­

wired or wireless communications means, or any combination thereof) to recipient system 2710.

The data portions may be communicated parallel in time or alternatively, according to any

suitable time delay between the communication of the different data portions. Recipient system

2710 may be any suitable hardware as described above with respect to sender system 2700. The

separate data portions carried along communications paths 2706 are recombined at recipient

system 2710 to generate the original message or data in accordance with the present invention.

[0410] FIGURE 29 shows a sender system 2800, which may include any suitable hardware,

such as a computer terminal, personal computer, handheld device (e.g., PDA), cellular telephone,

computer network, any other suitable hardware, or any combination thereof. Sender system

2800 is used to generate and/or store a message 2804, which may be, for example, an email

message, a binary data file (e.g., graphics, voice, video, etc.), or both. Message 2804 is parsed

and split by secure data parser 2802 in accordance with the present invention. The resultant data

-93-

WO 2011/123699 PCT/US2011/030811

portions may be communicated across a single communications paths 2806 over network 2808

(e.g., the Internet, an intranet, a LAN, WiFi, Bluetooth, any other suitable communications

means, or any combination thereof) to recipient system 2810. The data portions may be

communicated serially across communications path 2806 with respect to one another. Recipient

system 2810 may be any suitable hardware as described above with respect to sender system

2800. The separate data portions carried along communications path 2806 are recombined at

recipient system 2810 to generate the original message or data in accordance with the present

invention.

[0411] It will be understood that the arrangement of FIGURES 28 and 29 are merely

illustrative. Any other suitable arrangement may be used. For example, in another suitable

approach, the features of the systems of FIGURES 28 and 29 may be combined whereby the

multi-path approach of FIGURE 28 is used and in which one or more of communications paths

2706 are used to carry more than one portion of data as communications path 2806 does in the

context of FIGURE 29.

[0412] The secure data parser may be integrated at any suitable level of a data-in motion

system. For example, in the context of an email system, the secure parser may be integrated at

the user-interface level (e.g., into Microsoft® Outlook), in which case the user may have control

over the use of the secure data parser features when using email. Alternatively, the secure parser

may be implemented in a back-end component such as at the exchange server, in which case

messages may be automatically parsed, split, and communicated along different paths in

accordance with the present invention without any user intervention.

[0413] Similarly, in the case of streaming broadcasts of data (e.g., audio, video), the outgoing

data may be parsed and separated into multiple streams each containing a portion of the parsed

data. The multiple streams may be transmitted along one or more paths and recombined at the

recipient's location in accordance with the present invention. One of the benefits of this

approach is that it avoids the relatively large overhead associated with traditional encryption of

data followed by transmission of the encrypted data over a single communications channel. The

secure parser of the present invention allows data in motion to be sent in multiple parallel

streams, increasing speed and efficiency.

[0414] It will be understand that the secure data parser may be integrated for protection of and

fault tolerance of any type of data in motion through any transport medium, including, for

-94-

WO 2011/123699 PCT/US2011/030811

example, wired, wireless, or physical. For example, voice over Internet protocol (VoIP)

applications may make use of the secure data parser of the present invention. Wireless or wired

data transport from or to any suitable personal digital assistant (PDA) devices such as

Blackberries and SmartPhones may be secured using the secure data parser of the present

invention. Communications using wireless 802.11 protocols for peer to peer and hub based

wireless networks, satellite communications, point to point wireless communications, Internet

client/server communications, or any other suitable communications may involve the data in

motion capabilities of the secure data parser in accordance with the present invention. Data

communication between computer peripheral device (e.g., printer, scanner, monitor, keyboard,

network router, biometric authentication device (e.g., fingerprint scanner), or any other suitable

peripheral device) between a computer and a computer peripheral device, between a computer

peripheral device and any other suitable device, or any combination thereof may make use of the

data in motion features of the present invention.

[0415] The data in motion features of the present invention may also apply to physical

transportation of secure shares using for example, separate routes, vehicles, methods, any other

suitable physical transportation, or any combination thereof. For example, physical

transportation of data may take place on digital/magnetic tapes, floppy disks, optical disks,

physical tokens, USB drives, removable hard drives, consumer electronic devices with flash

memory (e.g., Apple IPODs or other MP3 players), flash memory, any other suitable medium

used for transporting data, or any combination thereof.

[0416] The secure data parser of the present invention may provide security with the ability for

disaster recovery. According to the present invention, fewer than all portions of the separated

data generated by the secure data parser may be necessary in order to retrieve the original data.

That is, out of m portions stored, n may be the minimum number of these m portions necessary

to retrieve the original data, where n <= m. For example, if each of four portions is stored in a

different physical location relative to the other three portions, then, if n=2 in this example, two of

the locations may be compromised whereby data is destroyed or inaccessible, and the original

data may still be retrieved from the portions in the other two locations. Any suitable value for n

or m may be used.

[0417] In addition, the n of m feature of the present invention may be used to create a "two

man rule" whereby in order to avoid entrusting a single individual or any other entity with full

-95-

WO 2011/123699 PCT/US2011/030811

access to what may be sensitive data, two or more distinct entities, each with a portion of the

separated data parsed by the secure parser of the present invention may need to agree to put their

portions together in order to retrieve the original data.

[0418] The secure data parser of the present invention may be used to provide a group of

entities with a group-wide key that allows the group members to access particular information

authorized to be accessed by that particular group. The group key may be one of the data

portions generated by the secure parser in accordance with the present invention that may be

required to be combined with another portion centrally stored, for example in order to retrieve

the information sought. This feature allows for, for example, secure collaboration among a

group. It may be applied in for example, dedicated networks, virtual private networks, intranets,

or any other suitable network.

[0419] Specific applications of this use of the secure parser include, for example, coalition

information sharing in which, for example, multi-national friendly government forces are given

the capability to communicate operational and otherwise sensitive data on a security level

authorized to each respective country over a single network or a dual network (i.e., as compared

to the many networks involving relatively substantial manual processes currently used). This

capability is also applicable for companies or other organizations in which information needed to

be known by one or more specific individuals (within the organization or without) may be

communicated over a single network without the need to worry about unauthorized individuals

viewing the information.

[0420] Another specific application includes a multi-level security hierarchy for government

systems. That is, the secure parser of the present invention may provide for the ability to operate

a government system at different levels of classified information (e.g., unclassified, classified,

secret, top secret) using a single network. If desired, more networks may be used (e.g., a

separate network for top secret), but the present invention allows for substantially fewer than

current arrangement in which a separate network is used for each level of classification.

[0421] It will be understood that any combination of the above described applications of the

secure parser of the present invention may be used. For example, the group key application can

be used together with the data in motion security application (i.e., whereby data that is

communicated over a network can only be accessed by a member of the respective group and

-96-

WO 2011/123699 PCT/US2011/030811

where, while the data is in motion, it is split among multiple paths (or sent in sequential portions)

in accordance with the present invention).

[0422] The secure data parser of the present invention may be integrated into any middleware

application to enable applications to securely store data to different database products or to

different devices without modification to either the applications or the database. Middleware is a

general term for any product that allows two separate and already existing programs to

communicate. For example, in one suitable approach, middleware having the secure data parser

integrated, may be used to allow programs written for a particular database to communicate with

other databases without custom coding.

[0423] The secure data parser of the present invention may be implemented having any

combination of any suitable capabilities, such as those discussed herein. In some embodiments

of the present invention, for example, the secure data parser may be implemented having only

certain capabilities whereas other capabilities may be obtained through the use of external

software, hardware, or both interfaced either directly or indirectly with the secure data parser.

[0424] FIGURE 30, for example, shows an illustrative implementation of the secure data

parser as secure data parser 3000. Secure data parser 3000 may be implemented with very few

built-in capabilities. As illustrated, secure data parser 3000 may include built-in capabilities for

parsing and splitting data into portions (also referred to herein as shares) of data using module

3002 in accordance with the present invention. Secure data parser 3000 may also include built in

capabilities for performing redundancy in order to be able to implement, for example, the m of n

feature described above (i.e., recreating the original data using fewer than all shares of parsed

and split data) using module 3004. Secure data parser 3000 may also include share distribution

capabilities using module 3006 for placing the shares of data into buffers from which they are

sent for communication to a remote location, for storage, etc. in accordance with the present

invention. It will be understood that any other suitable capabilities may be built into secure data

parser 3000.

[0425] Assembled data buffer 3008 may be any suitable memory used to store the original data

(although not necessarily in its original form) that will be parsed and split by secure data parser

3000. In a splitting operation, assembled data buffer 3008 provides input to secure data parser

3008. In a restore operation, assembled data buffer 3008 may be used to store the output of

secure data parser 3000.

-97-

WO 2011/123699 PCT/US2011/030811

[0426] Split shares buffers 3010 may be one or more memory modules that may be used to

store the multiple shares of data that resulted from the parsing and splitting of original data. In a

splitting operation, split shares buffers 3010 hold the output of the secure data parser. In a

restore operation, split shares buffers hold the input to secure data parser 3000.

[0427] It will be understood that any other suitable arrangement of capabilities may be built-in

for secure data parser 3000. Any additional features may be built-in and any of the features

illustrated may be removed, made more robust, made less robust, or may otherwise be modified

in any suitable way. Buffers 3008 and 3010 are likewise merely illustrative and may be

modified, removed, or added to in any suitable way.

[0428] Any suitable modules implemented in software, hardware or both may be called by or

may call to secure data parser 3000. If desired, even capabilities that are built into secure data

parser 3000 may be replaced by one or more external modules. As illustrated, some external

modules include random number generator 3012, cipher feedback key generator 3014, hash

algorithm 3016, any one or more types of encryption 3018, and key management 3020. It will be

understood that these are merely illustrative external modules. Any other suitable modules may

be used in addition to or in place of those illustrated.

[0429] Cipher feedback key generator 3014 may, externally to secure data parser 3000,

generate for each secure data parser operation, a unique key, or random number (using, for

example, random number generator 3012), to be used as a seed value for an operation that

extends an original session key size (e.g., a value of 128, 256, 512, or 1024 bits) into a value

equal to the length of the data to be parsed and split. Any suitable algorithm may be used for the

cipher feedback key generation, including, for example, the AES cipher feedback key generation

algorithm.

[0430] In order to facilitate integration of secure data parser 3000 and its external modules

(i.e., secure data parser layer 3026) into an application layer 3024 (e.g., email application,

database application, etc.), a wrapping layer that may make use of, for example, API function

calls may be used. Any other suitable arrangement for facilitating integration of secure data

parser layer 3026 into application layer 3024 may be used.

[0431] FIGURE 31 illustratively shows how the arrangement of FIGURE 30 may be used

when a write (e.g., to a storage device), insert (e.g., in a database field), or transmit (e.g., across a

network) command is issued in application layer 3024. At step 3100 data to be secured is

-98-

WO 2011/123699 PCT/US2011/030811

identified and a call is made to the secure data parser. The call is passed through wrapper layer

3022 where at step 3102, wrapper layer 3022 streams the input data identified at step 3100 into

assembled data buffer 3008. Also at step 3102, any suitable share information, filenames, any

other suitable information, or any combination thereof may be stored (e.g., as information 3106

at wrapper layer 3022). Secure data processor 3000 then parses and splits the data it takes as

input from assembled data buffer 3008 in accordance with the present invention. It outputs the

data shares into split shares buffers 3010. At step 3104, wrapper layer 3022 obtains from stored

information 3106 any suitable share information (i.e., stored by wrapper 3022 at step 3102) and

share location(s) (e.g., from one or more configuration files). Wrapper layer 3022 then writes

the output shares (obtained from split shares buffers 3010) appropriately (e.g., written to one or

more storage devices, communicated onto a network, etc.).

[0432] FIGURE 32 illustratively shows how the arrangement of FIGURE 30 may be used

when a read (e.g., from a storage device), select (e.g., from a database field), or receive (e.g.,

from a network) occurs. At step 3200, data to be restored is identified and a call to secure data

parser 3000 is made from application layer 3024. At step 3202, from wrapper layer 3022, any

suitable share information is obtained and share location is determined. Wrapper layer 3022

loads the portions of data identified at step 3200 into split shares buffers 3010. Secure data

parser 3000 then processes these shares in accordance with the present invention (e.g., if only

three of four shares are available, then the redundancy capabilities of secure data parser 3000

may be used to restore the original data using only the three shares). The restored data is then

stored in assembled data buffer 3008. At step 3204, application layer 3022 converts the data

stored in assembled data buffer 3008 into its original data format (if necessary) and provides the

original data in its original format to application layer 3024.

[0433] It will be understood that the parsing and splitting of original data illustrated in

FIGURE 31 and the restoring of portions of data into original data illustrated in FIGURE 32 is

merely illustrative. Any other suitable processes, components, or both may be used in addition

to or in place of those illustrated.

[0434] FIGURE 33 is a block diagram of an illustrative process flow for parsing and splitting

original data into two or more portions of data in accordance with one embodiment of the present

invention. As illustrated, the original data desired to be parsed and split is plain text 3306 (i.e.,

the word "SUMMIT" is used as an example). It will be understood that any other type of data

-99-

WO 2011/123699 PCT/US2011/030811

may be parsed and split in accordance with the present invention. A session key 3300 is

generated. If the length of session key 3300 is not compatible with the length of original data

3306, then cipher feedback session key 3304 may be generated.

[0435] In one suitable approach, original data 3306 may be encrypted prior to parsing,

splitting, or both. For example, as FIGURE 33 illustrates, original data 3306 may be XORed

with any suitable value (e.g., with cipher feedback session key 3304, or with any other suitable

value). It will be understood that any other suitable encryption technique may be used in place

of or in addition to the XOR technique illustrate. It will further be understood that although

FIGURE 33 is illustrated in terms of byte by byte operations, the operation may take place at the

bit level or at any other suitable level. It will further be understood that, if desired, there need

not be any encryption whatsoever of original data 3306.

[0436] The resultant encrypted data (or original data if no encryption took place) is then hashed

to determine how to split the encrypted (or original) data among the output buckets (e.g., of

which there are four in the illustrated example). In the illustrated example, the hashing takes

place by bytes and is a function of cipher feedback session key 3304. It will be understood that

this is merely illustrative. The hashing may be performed at the bit level, if desired. The

hashing may be a function of any other suitable value besides cipher feedback session key 3304.

In another suitable approach, hashing need not be used. Rather, any other suitable technique for

splitting data may be employed.

[0437] FIGURE 34 is a block diagram of an illustrative process flow for restoring original data

3306 from two or more parsed and split portions of original data 3306 in accordance with one

embodiment of the present invention. The process involves hashing the portions in reverse (i.e.,

to the process of FIGURE 33) as a function of cipher feedback session key 3304 to restore the

encrypted original data (or original data if there was no encryption prior to the parsing and

splitting). The encryption key may then be used to restore the original data (i.e., in the illustrated

example, cipher feedback session key 3304 is used to decrypt the XOR encryption by XORing it

with the encrypted data). This the restores original data 3306.

[0438] FIGURE 35 shows how bit-splitting may be implemented in the example of FIGURES

33 and 34. A hash may be used (e.g., as a function of the cipher feedback session key, as a

function of any other suitable value) to determine a bit value at which to split each byte of data.

- 100-

WO 2011/123699 PCT/US2011/030811

It will be understood that this is merely one illustrative way in which to implement splitting at

the bit level. Any other suitable technique may be used.

[0439] It will be understood that any reference to hash functionality made herein may be made

with respect to any suitable hash algorithm. These include for example, MD5 and SHA-1.

Different hash algorithms may be used at different times and by different components of the

present invention.

[0440] After a split point has been determined in accordance with the above illustrative

procedure or through any other procedure or algorithm, a determination may be made with

regard to which data portions to append each of the left and right segments. Any suitable

algorithm may be used for making this determination. For example, in one suitable approach, a

table of all possible distributions (e.g., in the form of pairings of destinations for the left segment

and for the right segment) may be created, whereby a destination share value for each of the left

and right segment may be determined by using any suitable hash function on corresponding data

in the session key, cipher feedback session key, or any other suitable random or pseudo-random

value, which may be generated and extended to the size of the original data. For example, a hash

function of a corresponding byte in the random or pseudo-random value may be made. The

output of the hash function is used to determine which pairing of destinations (i.e., one for the

left segment and one for the right segment) to select from the table of all the destination

combinations. Based on this result, each segment of the split data unit is appended to the

respective two shares indicated by the table value selected as a result of the hash function.

[0441] Redundancy information may be appended to the data portions in accordance with the

present invention to allow for the restoration of the original data using fewer than all the data

portions. For example, if two out of four portions are desired to be sufficient for restoration of

data, then additional data from the shares may be accordingly appended to each share in, for

example, a round-robin manner (e.g., where the size of the original data is 4MB, then share 1

gets its own shares as well as those of shares 2 and 3; share 2 gets its own share as well as those

of shares 3 and 4; share 3 gets its own share as well as those of shares 4 and 1; and share 4 gets

its own shares as well as those of shares 1 and 2). Any such suitable redundancy may be used in

accordance with the present invention.

[0442] It will be understood that any other suitable parsing and splitting approach may be used

to generate portions of data from an original data set in accordance with the present invention.

- 101 -

WO 2011/123699 PCT/US2011/030811

For example, parsing and splitting may be randomly or pseudo-randomly processed on a bit by

bit basis. A random or pseudo-random value may be used (e.g., session key, cipher feedback

session key, etc.) whereby for each bit in the original data, the result of a hash function on

corresponding data in the random or pseudo-random value may indicate to which share to

append the respective bit. In one suitable approach the random or pseudo-random value may be

generated as, or extended to, 8 times the size of the original data so that the hash function may be

performed on a corresponding byte of the random or pseudo-random value with respect to each

bit of the original data. Any other suitable algorithm for parsing and splitting data on a bit by bit

level may be used in accordance with the present invention. It will further be appreciated that

redundancy data may be appended to the data shares such as, for example, in the manner

described immediately above in accordance with the present invention.

[0443] In one suitable approach, parsing and splitting need not be random or pseudo-random.

Rather, any suitable deterministic algorithm for parsing and splitting data may be used. For

example, breaking up the original data into sequential shares may be employed as a parsing and

splitting algorithm. Another example is to parse and split the original data bit by bit, appending

each respective bit to the data shares sequentially in a round-robin manner. It will further be

appreciated that redundancy data may be appended to the data shares such as, for example, in the

manner described above in accordance with the present invention.

[0444] In one embodiment of the present invention, after the secure data parser generates a

number of portions of original data, in order to restore the original data, certain one or more of

the generated portions may be mandatory. For example, if one of the portions is used as an

authentication share (e.g., saved on a physical token device), and if the fault tolerance feature of

the secure data parser is being used (i.e., where fewer than all portions are necessary to restore

the original data), then even though the secure data parser may have access to a sufficient

number of portions of the original data in order to restore the original data, it may require the

authentication share stored on the physical token device before it restores the original data. It

will be understood that any number and types of particular shares may be required based on, for

example, application, type of data, user, any other suitable factors, or any combination thereof.

[0445] In one suitable approach, the secure data parser or some external component to the

secure data parser may encrypt one or more portions of the original data. The encrypted portions

may be required to be provided and decrypted in order to restore the original data. The different

- 102-

WO 2011/123699 PCT/US2011/030811

encrypted portions may be encrypted with different encryption keys. For example, this feature

may be used to implement a more secure "two man rule" whereby a first user would need to have

a particular share encrypted using a first encryption and a second user would need to have a

particular share encrypted using a second encryption key. In order to access the original data,

both users would need to have their respective encryption keys and provide their respective

portions of the original data. In one suitable approach, a public key may be used to encrypt one

or more data portions that may be a mandatory share required to restore the original data. A

private key may then be used to decrypt the share in order to be used to restore to the original

data.

[0446] Any such suitable paradigm may be used that makes use of mandatory shares where

fewer than all shares are needed to restore original data.

[0447] In one suitable embodiment of the present invention, distribution of data into a finite

number of shares of data may be processed randomly or pseudo-randomly such that from a

statistical perspective, the probability that any particular share of data receives a particular unit

of data is equal to the probability that any one of the remaining shares will receive the unit of

data. As a result, each share of data will have an approximately equal amount of data bits.

[0448] According to another embodiment of the present invention, each of the finite number of

shares of data need not have an equal probability of receiving units of data from the parsing and

splitting of the original data. Rather certain one or more shares may have a higher or lower

probability than the remaining shares. As a result, certain shares may be larger or smaller in

terms of bit size relative to other shares. For example, in a two-share scenario, one share may

have a 1 % probability of receiving a unit of data whereas the second share has a 99% probability.

It should follow, therefore that once the data units have been distributed by the secure data parser

among the two share, the first share should have approximately 1 % of the data and the second

share 99%. Any suitable probabilities may be used in accordance with the present invention.

[0449] It will be understood that the secure data parser may be programmed to distribute data

to shares according to an exact (or near exact) percentage as well. For example, the secure data

parser may be programmed to distribute 80% of data to a first share and the remaining 20% of

data to a second share.

[0450] According to another embodiment of the present invention, the secure data parser may

generate data shares, one or more of which have predefined sizes. For example, the secure data

- 103-

WO 2011/123699 PCT/US2011/030811

parser may split original data into data portions where one of the portions is exactly 256 bits. In

one suitable approach, if it is not possible to generate a data portion having the requisite size,

then the secure data parser may pad the portion to make it the correct size. Any suitable size

may be used.

[0451] In one suitable approach, the size of a data portion may be the size of an encryption

key, a splitting key, any other suitable key, or any other suitable data element.

[0452] As previously discussed, the secure data parser may use keys in the parsing and

splitting of data. For purposes of clarity and brevity, these keys shall be referred to herein as

"splitting keys." For example, the Session Master Key, previously introduced, is one type of

splitting key. Also, as previously discussed, splitting keys may be secured within shares of data

generated by the secure data parser. Any suitable algorithms for securing splitting keys may be

used to secure them among the shares of data. For example, the Shamir algorithm may be used

to secure the splitting keys whereby information that may be used to reconstruct a splitting key is

generated and appended to the shares of data. Any other such suitable algorithm may be used in

accordance with the present invention.

[0453] Similarly, any suitable encryption keys may be secured within one or more shares of

data according to any suitable algorithm such as the Shamir algorithm. For example, encryption

keys used to encrypt a data set prior to parsing and splitting, encryption keys used to encrypt a

data portions after parsing and splitting, or both may be secured using, for example, the Shamir

algorithm or any other suitable algorithm.

[0454] According to one embodiment of the present invention, an All or Nothing Transform

(AoNT), such as a Full Package Transform, may be used to further secure data by transforming

splitting keys, encryption keys, any other suitable data elements, or any combination thereof.

For example, an encryption key used to encrypt a data set prior to parsing and splitting in

accordance with the present invention may be transformed by an AoNT algorithm. The

transformed encryption key may then be distributed among the data shares according to, for

example, the Shamir algorithm or any other suitable algorithm. In order to reconstruct the

encryption key, the encrypted data set must be restored (e.g., not necessarily using all the data

shares if redundancy was used in accordance with the present invention) in order to access the

necessary information regarding the transformation in accordance with AoNTs as is well known

by one skilled in the art. When the original encryption key is retrieved, it may be used to decrypt

- 104-

WO 2011/123699 PCT/US2011/030811

the encrypted data set to retrieve the original data set. It will be understood that the fault

tolerance features of the present invention may be used in conjunction with the AoNT feature.

Namely, redundancy data may be included in the data portions such that fewer than all data

portions are necessary to restore the encrypted data set.

[0455] It will be understood that the AoNT may be applied to encryption keys used to encrypt

the data portions following parsing and splitting either in place of or in addition to the encryption

and AoNT of the respective encryption key corresponding to the data set prior to parsing and

splitting. Likewise, AoNT may be applied to splitting keys.

[0456] In one embodiment of the present invention, encryption keys, splitting keys, or both as

used in accordance with the present invention may be further encrypted using, for example, a

workgroup key in order to provide an extra level of security to a secured data set.

[0457] In one embodiment of the present invention, an audit module may be provided that

tracks whenever the secure data parser is invoked to split data.

[0458] FIGURE 36 illustrates possible options 3600 for using the components of the secure

data parser in accordance with the invention. Each combination of options is outlined below and

labeled with the appropriate step numbers from FIGURE 36. The secure data parser may be

modular in nature, allowing for any known algorithm to be used within each of the function

blocks shown in FIGURE 36. For example, other key splitting (e.g., secret sharing) algorithms

such as Blakely may be used in place of Shamir, or the AES encryption could be replaced by

other known encryption algorithms such as Triple DES. The labels shown in the example of

FIGURE 36 merely depict one possible combination of algorithms for use in one embodiment of

the invention. It should be understood that any suitable algorithm or combination of algorithms

may be used in place of the labeled algorithms.

[0459] 1) 3610, 3612,3614,3615,3616,3617,3618,3619

[0460] Using previously encrypted data at step 3610, the data may be eventually split into a

predefined number of shares. If the split algorithm requires a key, a split encryption key may be

generated at step 3612 using a cryptographically secure pseudo-random number generator. The

split encryption key may optionally be transformed using an All or Nothing Transform (AoNT)

into a transform split key at step 3614 before being key split to the predefined number of shares

with fault tolerance at step 3615. The data may then be split into the predefined number of

shares at step 3616. A fault tolerant scheme may be used at step 3617 to allow for regeneration

- 105-

WO 2011/123699 PCT/US2011/030811

of the data from less than the total number of shares. Once the shares are created,

authentication/integrity information may be embedded into the shares at step 3618. Each share

may be optionally post-encrypted at step 3619.

[0461] 2) 3111, 3612, 3614, 3615, 3616, 3617, 3618, 3619

[0462] In some embodiments, the input data may be encrypted using an encryption key

provided by a user or an external system. The external key is provided at step 3611. For

example, the key may be provided from an external key store. If the split algorithm requires a

key, the split encryption key may be generated using a cryptographically secure pseudo-random

number generator at step 3612. The split key may optionally be transformed using an All or

Nothing Transform (AoNT) into a transform split encryption key at step 3614 before being key

split to the predefined number of shares with fault tolerance at step 3615. The data is then split

to a predefined number of shares at step 3616. A fault tolerant scheme may be used at step 3617

to allow for regeneration of the data from less than the total number of shares. Once the shares

are created, authentication/integrity information may be embedded into the shares at step 3618.

Each share may be optionally post-encrypted at step 3619.

[0463] 3) 3612, 3613,3614, 3615,3612,3614,3615,3616,3617,3618,3619

[0464] In some embodiments, an encryption key may be generated using a cryptographically

secure pseudo-random number generator at step 3612 to transform the data. Encryption of the

data using the generated encryption key may occur at step 3613. The encryption key may

optionally be transformed using an All or Nothing Transform (AoNT) into a transform

encryption key at step 3614. The transform encryption key and/or generated encryption key may

then be split into the predefined number of shares with fault tolerance at step 3615. If the split

algorithm requires a key, generation of the split encryption key using a cryptographically secure

pseudo-random number generator may occur at step 3612. The split key may optionally be

transformed using an All or Nothing Transform (AoNT) into a transform split encryption key at

step 3614 before being key split to the predefined number of shares with fault tolerance at step

3615. The data may then be split into a predefined number of shares at step 3616. A fault

tolerant scheme may be used at step 3617 to allow for regeneration of the data from less than the

total number of shares. Once the shares are created, authentication/integrity information will be

embedded into the shares at step 3618. Each share may then be optionally post-encrypted at step

3619.

- 106-

WO 2011/123699 PCT/US2011/030811

[0465] 4) 3612, 3614, 3615, 3616, 3617, 3618, 3619

[0466] In some embodiments, the data may be split into a predefined number of shares. If the

split algorithm requires a key, generation of the split encryption key using a cryptographically

secure pseudo-random number generator may occur at step 3612. The split key may optionally

be transformed using an All or Nothing Transform (AoNT) into a transformed split key at step

3614 before being key split into the predefined number of shares with fault tolerance at step

3615. The data may then be split at step 3616. A fault tolerant scheme may be used at step 3617

to allow for regeneration of the data from less than the total number of shares. Once the shares

are created, authentication/integrity information may be embedded into the shares at step 3618.

Each share may be optionally post-encrypted at step 3619.

[0467] Although the above four combinations of options are preferably used in some

embodiments of the invention, any other suitable combinations of features, steps, or options may

be used with the secure data parser in other embodiments.

[0468] The secure data parser may offer flexible data protection by facilitating physical

separation. Data may be first encrypted, then split into shares with "m of n" fault tolerance. This

allows for regeneration of the original information when less than the total number of shares is

available. For example, some shares may be lost or corrupted in transmission. The lost or

corrupted shares may be recreated from fault tolerance or integrity information appended to the

shares, as discussed in more detail below.

[0469] In order to create the shares, a number of keys are optionally utilized by the secure data

parser. These keys may include one or more of the following:

[0470] Pre-encryption key: When pre-encryption of the shares is selected, an external key may

be passed to the secure data parser. This key may be generated and stored externally in a key

store (or other location) and may be used to optionally encrypt data prior to data splitting.

[0471] Split encryption key: This key may be generated internally and used by the secure data

parser to encrypt the data prior to splitting. This key may then be stored securely within the

shares using a key split algorithm.

[0472] Split session key: This key is not used with an encryption algorithm; rather, it may be

used to key the data partitioning algorithms when random splitting is selected. When a random

split is used, a split session key may be generated internally and used by the secure data parser to

partition the data into shares. This key may be stored securely within the shares using a key

- 107-

WO 2011/123699 PCT/US2011/030811

splitting algorithm.

[0473] Post encryption key: When post encryption of the shares is selected, an external key

may be passed to the secure data parser and used to post encrypt the individual shares. This key

may be generated and stored externally in a key store or other suitable location.

[0474] In some embodiments, when data is secured using the secure data parser in this way, the

information may only be reassembled provided that all of the required shares and external

encryption keys are present.

[0475] FIGURE 37 shows illustrative overview process 3700 for using the secure data parser

of the present invention in some embodiments. As described above, two well-suited functions

for secure data parser 3706 may include encryption 3702 and backup 3704. As such, secure data

parser 3706 may be integrated with a RAID or backup system or a hardware or software

encryption engine in some embodiments.

[0476] The primary key processes associated with secure data parser 3706 may include one or

more of pre-encryption process 3708, encrypt/transform process 3710, key secure process 3712,

parse/distribute process 3714, fault tolerance process 3716, share authentication process 3716,

and post-encryption process 3720. These processes may be executed in several suitable orders or

combinations, as detailed in FIGURE 36. The combination and order of processes used may

depend on the particular application or use, the level of security desired, whether optional pre­

encryption, post-encryption, or both, are desired, the redundancy desired, the capabilities or

performance of an underlying or integrated system, or any other suitable factor or combination of

factors.

[0477] The output of illustrative process 3700 may be two or more shares 3722. As described

above, data may be distributed to each of these shares randomly (or pseudo-randomly) in some

embodiments. In other embodiments, a deterministic algorithm (or some suitable combination of

random, pseudo-random, and deterministic algorithms) may be used.

[0478] In addition to the individual protection of information assets, there is sometimes a

requirement to share information among different groups of users or communities of interest. It

may then be necessary to either control access to the individual shares within that group of users

or to share credentials among those users that would only allow members of the group to

reassemble the shares. To this end, a workgroup key may be deployed to group members in

some embodiments of the invention. The workgroup key should be protected and kept

- 108-

WO 2011/123699 PCT/US2011/030811

confidential, as compromise of the workgroup key may potentially allow those outside the group

to access information. Some systems and methods for workgroup key deployment and

protection are discussed below.

[0479] The workgroup key concept allows for enhanced protection of information assets by

encrypting key information stored within the shares. Once this operation is performed, even if

all required shares and external keys are discovered, an attacker has no hope of recreating the

information without access to the workgroup key.

[0480] FIGURE 38 shows illustrative block diagram 3800 for storing key and data components

within the shares. In the example of diagram 3800, the optional pre-encrypt and post-encrypt

steps are omitted, although these steps may be included in other embodiments.

[0481] The simplified process to split the data includes encrypting the data using encryption

key 3804 at encryption stage 3802. Portions of encryption key 3804 may then be split and stored

within shares 3810 in accordance with the present invention. Portions of split encryption key

3806 may also be stored within shares 3810. Using the split encryption key, data 3808 is then

split and stored in shares 3810.

[0482] In order to restore the data, split encryption key 3806 may be retrieved and restored in

accordance with the present invention. The split operation may then be reversed to restore the

ciphertext. Encryption key 3804 may also be retrieved and restored, and the ciphertext may then

be decrypted using the encryption key.

[0483] When a workgroup key is utilized, the above process may be changed slightly to protect

the encryption key with the workgroup key. The encryption key may then be encrypted with the

workgroup key prior to being stored within the shares. The modified steps are shown in

illustrative block diagram 3900 of FIGURE 39.

[0484] The simplified process to split the data using a workgroup key includes first encrypting

the data using the encryption key at stage 3902. The encryption key may then be encrypted with

the workgroup key at stage 3904. The encryption key encrypted with the workgroup key may

then be split into portions and stored with shares 3912. Split key 3908 may also be split and

stored in shares 3912. Finally, portions of data 3910 are split and stored in shares 3912 using

split key 3908.

[0485] In order to restore the data, the split key may be retrieved and restored in accordance

with the present invention. The split operation may then be reversed to restore the ciphertext in

- 109-

WO 2011/123699 PCT/US2011/030811

accordance with the present invention. The encryption key (which was encrypted with the

workgroup key) may be retrieved and restored. The encryption key may then be decrypted using

the workgroup key. Finally, the ciphertext may be decrypted using the encryption key.

[0486] There are several secure methods for deploying and protecting workgroup keys. The

selection of which method to use for a particular application depends on a number of factors.

These factors may include security level required, cost, convenience, and the number of users in

the workgroup. Some commonly used techniques used in some embodiments are provided

below:

[0487] Hardware-based Key Storage

Hardware-based solutions generally provide the strongest guarantees for the security of

encryption/decryption keys in an encryption system. Examples of hardware-based storage

solutions include tamper-resistant key token devices which store keys in a portable device (e.g.,

smartcard/dongle), or non-portable key storage peripherals. These devices are designed to

prevent easy duplication of key material by unauthorized parties. Keys may be generated by a

trusted authority and distributed to users, or generated within the hardware. Additionally, many

key storage systems provide for multi-factor authentication, where use of the keys requires

access both a physical object (token) and a passphrase or biometric.

[0488] Software-based Key Storage

While dedicated hardware-based storage may be desirable for high-security deployments or

applications, other deployments may elect to store keys directly on local hardware (e.g., disks,

RAM or non-volatile RAM stores such as USB drives). This provides a lower level of protection

against insider attacks, or in instances where an attacker is able to directly access the encryption

machine.

[0489] To secure keys on disk, software-based key management often protects keys by storing

them in encrypted form under a key derived from a combination of other authentication metrics,

including: passwords and passphrases, presence of other keys (e.g., from a hardware-based

solution), biometrics, or any suitable combination of the foregoing. The level of security

provided by such techniques may range from the relatively weak key protection mechanisms

provided by some operating systems (e.g., MS Windows and Linux), to more robust solutions

implemented using multi-factor authentication.

- 110-

WO 2011/123699 PCT/US2011/030811

[0490] The secure data parser of the present invention may be advantageously used in a

number of applications and technologies. For example, email system, RAID systems, video

broadcasting systems, database systems, tape backup systems, or any other suitable system may

have the secure data parser integrated at any suitable level. As previously discussed, it will be

understand that the secure data parser may also be integrated for protection and fault tolerance of

any type of data in motion through any transport medium, including, for example, wired,

wireless, or physical transport mediums. As one example, voice over Internet protocol (VoIP)

applications may make use of the secure data parser of the present invention to solve problems

relating to echoes and delays that are commonly found in VoIP. The need for network retry on

dropped packets may be eliminated by using fault tolerance, which guarantees packet delivery

even with the loss of a predetermined number of shares. Packets of data (e.g., network packets)

may also be efficiently split and restored "on-the-fly" with minimal delay and buffering,

resulting in a comprehensive solution for various types of data in motion. The secure data parser

may act on network data packets, network voice packets, file system data blocks, or any other

suitable unit of information. In addition to being integrated with a VoIP application, the secure

data parser may be integrated with a file-sharing application (e.g., a peer-to-peer file-sharing

application), a video broadcasting application, an electronic voting or polling application (which

may implement an electronic voting protocol and blind signatures, such as the Sensus protocol),
an email application, or any other network application that may require or desire secure

communication.

[0491] In some embodiments, support for network data in motion may be provided by the

secure data parser of the present invention in two distinct phases — a header generation phase and

a data partitioning phase. Simplified header generation process 4000 and simplified data

partitioning process 4010 are shown in FIGURES 40A and 40B, respectively. One or both of

these processes may be performed on network packets, file system blocks, or any other suitable

information.

[0492] In some embodiments, header generation process 4000 may be performed one time at

the initiation of a network packet stream. At step 4002, a random (or pseudo-random) split

encryption key, K, may be generated. The split encryption key, K, may then be optionally

encrypted (e.g., using the workgroup key described above) at AES key wrap step 4004.

Although an AES key wrap may be used in some embodiments, any suitable key encryption or

- Ill -

WO 2011/123699 PCT/US2011/030811

key wrap algorithm may be used in other embodiments. AES key wrap step 4004 may operate

on the entire split encryption key, K, or the split encryption key may be parsed into several

blocks (e.g., 64-bit blocks). AES key wrap step 4004 may then operate on blocks of the split

encryption key, if desired.

[0493] At step 4006, a secret sharing algorithm (e.g., Shamir) may be used to split the split

encryption key, K, into key shares. Each key share may then be embedded into one of the output

shares (e.g., in the share headers). Finally, a share integrity block and (optionally) a post­

authentication tag (e.g., MAC) may be appended to the header block of each share. Each header

block may be designed to fit within a single data packet.

[0494] After header generation is complete (e.g., using simplified header generation process

4000), the secure data parser may enter the data partitioning phase using simplified data splitting

process 4010. Each incoming data packet or data block in the stream is encrypted using the split

encryption key, K, at step 4012. At step 4014, share integrity information (e.g., a hash H) may

be computed on the resulting ciphertext from step 4012. For example, a SHA-256 hash may be

computed. At step 4106, the data packet or data block may then be partitioned into two or more

data shares using one of the data splitting algorithms described above in accordance with the

present invention. In some embodiments, the data packet or data block may be split so that each

data share contains a substantially random distribution of the encrypted data packet or data

block. The integrity information (e.g., hash H) may then be appended to each data share. An

optional post-authentication tag (e.g., MAC) may also be computed and appended to each data

share in some embodiments.

[0495] Each data share may include metadata, which may be necessary to permit correct

reconstruction of the data blocks or data packets. This information may be included in the share

header. The metadata may include such information as cryptographic key shares, key identities,

share nonces, signatures/MAC values, and integrity blocks. In order to maximize bandwidth

efficiency, the metadata may be stored in a compact binary format.

[0496] For example, in some embodiments, the share header includes a cleartext header chunk,

which is not encrypted and may include such elements as the Shamir key share, per-session

nonce, per-share nonce, key identifiers (e.g., a workgroup key identifier and a post­

authentication key identifier). The share header may also include an encrypted header chunk,

which is encrypted with the split encryption key. An integrity header chunk, which may include

- 112-

WO 2011/123699 PCT/US2011/030811

integrity checks for any number of the previous blocks (e.g., the previous two blocks) may also

be included in the header. Any other suitable values or information may also be included in the

share header.

[0497] As shown in illustrative share format 4100 of FIGURE 41, header block 4102 may be

associated with two or more output blocks 4104. Each header block, such as header block 4102,

may be designed to fit within a single network data packet. In some embodiments, after header

block 4102 is transmitted from a first location to a second location, the output blocks may then

be transmitted. Alternatively, header block 4102 and output blocks 4104 may be transmitted at

the same time in parallel. The transmission may occur over one or more similar or dissimilar

communications paths.

[0498] Each output block may include data portion 4106 and integrity/authenticity portion

4108. As described above, each data share may be secured using a share integrity portion

including share integrity information (e.g., a SHA-256 hash) of the encrypted, pre-partitioned

data. To verify the integrity of the outputs blocks at recovery time, the secure data parser may

compare the share integrity blocks of each share and then invert the split algorithm. The hash of

the recovered data may then be verified against the share hash.

[0499] As previously mentioned, in some embodiments of the present invention, the secure

date parser may be used in conjunction with a tape backup system. For example, an individual

tape may be used as a node (i.e., portion/share) in accordance with the present invention. Any

other suitable arrangement may be used. For example, a tape library or subsystem, which is

made up of two or more tapes, may be treated as a single node.

[0500] Redundancy may also be used with the tapes in accordance with the present invention.

For example, if a data set is apportioned among four tapes (i.e., portions/shares), then two of the

four tapes may be necessary in order to restore the original data. It will be understood that any

suitable number of nodes (i.e., less than the total number of nodes) may be required to restore the

original data in accordance with the redundancy features of the present invention. This

substantially increases the probability for restoration when one or more tapes expire.

[0501] Each tape may also be digitally protected with a SHA-256, HMAC hash value, any

other suitable value, or any combination thereof to insure against tampering. Should any data on

the tape or the hash value change, that tape would not be a candidate for restoration and any

minimum required number of tapes of the remaining tapes would be used to restore the data.

- 113-

WO 2011/123699 PCT/US2011/030811

[0502] In conventional tape backup systems, when a user calls for data to be written to or read

from a tape, the tape management system (TMS) presents a number that corresponds to a

physical tape mount. This tape mount points to a physical drive where the data will be mounted.

The tape is loaded either by a human tape operator or by a tape robot in a tape silo.
[0503] Under the present invention, the physical tape mount may be considered a logical

mount point that points to a number of physical tapes. This not only increases the data capacity

but also improves the performance because of the parallelism.

[0504] For increased performance the tape nodes may be or may include a RAID array of disks

used for storing tape images. This allows for high-speed restoration because the data may

always be available in the protected RAID.

[0505] In any of the foregoing embodiments, the data to be secured may be distributed into a

plurality of shares using deterministic, probabilistic, or both deterministic and probabilistic data

distribution techniques. In order to prevent an attacker from beginning a crypto attack on any

cipher block, the bits from cipher blocks may be deterministically distributed to the shares. For

example, the distribution may be performed using the BitSegment routine, or the BlockSegment

routine may be modified to allow for distribution of portions of blocks to multiple shares. This

strategy may defend against an attacker who has accumulated less than "M" shares.

[0506] In some embodiments, a keyed secret sharing routine may be employed using keyed

information dispersal (e.g., through the use of a keyed information dispersal algorithm or

“IDA”). The key for the keyed IDA may also be protected by one or more external workgroup

keys, one or more shared keys, or any combination of workgroup keys and shared keys. In this

way, a multi-factor secret sharing scheme may be employed. To reconstruct the data, at least

"M" shares plus the workgroup key(s) (and/or shared key(s)) may be required in some

embodiments. The IDA (or the key for the IDA) may also be driven into the encryption process.

For example, the transform may be driven into the clear text (e.g., during the pre-processing

layer before encrypting) and may further protect the clear text before it is encrypted.

[0507] For example, in some embodiments, keyed information dispersal is used to distribute

unique portions of data from a data set into two or more shares. The keyed information dispersal

may use a session key to first encrypt the data set, to distribute unique portions of encrypted data

from the data set into two or more encrypted data set shares, or both encrypt the data set and

distribute unique portions of encrypted data from the data set into the two or more encrypted data

- 114-

WO 2011/123699 PCT/US2011/030811

set shares. For example, to distribute unique portions of the data set or encrypted data set, secret

sharing (or the methods described above, such as BitSegment or BlockSegment) may be used.

The session key may then optionally be transformed (for example, using a full package transform

or AoNT) and shared using, for example, secret sharing (or the keyed information dispersal and

session key).

[0508] In some embodiments, the session key may be encrypted using a shared key (e.g., a

workgroup key) before unique portions of the key are distributed or shared into two or more

session key shares. Two or more user shares may then be formed by combining at least one

encrypted data set share and at least one session key share. In forming a user share, in some

embodiments, the at least one session key share may be interleaved into an encrypted data set

share. In other embodiments, the at least one session key share may be inserted into an

encrypted data set share at a location based at least in part on the shared workgroup key. For

example, keyed information dispersal may be used to distribute each session key share into a

unique encrypted data set share to form a user share. Interleaving or inserting a session key

share into an encrypted data set share at a location based at least in part on the shared workgroup

may provide increased security in the face of cryptographic attacks. In other embodiments, one

or more session key shares may be appended to the beginning or end of an encrypted data set

share to form a user share. The collection of user shares may then be stored separately on at least

one data depository. The data depository or depositories may be located in the same physical

location (for example, on the same magnetic or tape storage device) or geographically separated

(for example, on physically separated servers in different geographic locations). To reconstruct

the original data set, an authorized set of user shares and the shared workgroup key may be

required.

[0509] Keyed information dispersal may be secure even in the face of key-retrieval oracles. For

example, take a blockcipher E and a key-retrieval oracle for E that takes a list (Xi, F|), ..., (Xc,

Ye) of input/output pairs to the blockcipher, and returns a key K that is consistent with the

input/output examples (e.g., Yj = EK(X·) for all z). The oracle may return the distinguished value

± if there is no consistent key. This oracle may model a cryptanalytic attack that may recover a

key from a list of input/output examples.

- 115-

WO 2011/123699 PCT/US2011/030811

[0510] Standard blockcipher-based schemes may fail in the presence of a key-retrieval oracle.

For example, CBC encryption or the CBC MAC may become completely insecure in the

presence of a key-retrieval oracle.
[0511] If n1DA is an IDA scheme and Π/;'" is an encryption scheme given by a mode of operation

of some blockcipher E, then (Π/ΰΑ, Π/;"') provides security in the face of a key-retrieval attack if

the two schemes, when combined with an arbitrary perfect secret-sharing scheme (PSS) as per

HK1 or HK2, achieve the robust computational secret sharing (RCSS) goal, but in the model in

which the adversary has a key-retrieval oracle.

[0512] If there exists an IDA scheme n1DA and an encryption scheme Π/;'" such that the pair of

schemes provides security in the face of key-retrieval attacks, then one way to achieve this pair

may be to have a “clever” IDA and a “dumb” encryption scheme. Another way to achieve this

pair of schemes may be to have a “dumb” IDA and a “clever” encryption scheme.

[0513] To illustrate the use of a clever IDA and a dumb encryption scheme, in some

embodiments, the encryption scheme may be CBC and the IDA may have a “weak privacy”

property. The weak privacy property means, for example, that if the input to the IDA is a

random sequence of blocks M = M\ ... Mi and the adversary obtains shares from a non­

authorized collection, then there is some block index i such that it is infeasible for the adversary

to compute Mi. Such a weakly-private IDA may be built by first applying to M an information-

theoretic AoNT, such as Stinson’s AoNT, and then applying a simple IDA such as

BlockSegment, or a bit-efficient IDA like Rabin’s scheme (e.g., Reed-Solomon encoding).

[0514] To illustrate the use of a dumb IDA and a clever encryption scheme, in some

embodiments, one may use a CBC mode with double encryption instead of single encryption.

Now any IDA may be used, even replication. Having the key-retrieval oracle for the blockcipher

would be useless to an adversary, as the adversary will be denied any singly-enciphered

input/output example.

[0515] While a clever IDA has value, it may also be inessential in some contexts, in the sense

that the “smarts” needed to provide security in the face of a key-retrieval attack could have been

“pushed” elsewhere. For example, in some embodiments, no matter how smart the IDA, and for

whatever goal is trying to be achieved with the IDA in the context of HK1/HK2, the smarts may

be pushed out of the IDA and into the encryption scheme, being left with a fixed and dumb IDA.

- 116-

WO 2011/123699 PCT/US2011/030811

[0516] Based on the above, in some embodiments, a “universally sound” clever IDA Tl1DA may

be used. For example, an IDA is provided such that, for all encryption schemes Π/;'", the pair

(Π®'4, n/;'") universally provides security in the face of key-retrieval attacks.

[0517] In some embodiments, an encryption scheme is provided that is RCSS secure in the

face of a key-retrieval oracle. The scheme may be integrated with HK1/HK2, with any IDA, to

achieve security in the face of key-retrieval. Using the new scheme may be particularly useful,

for example, for making symmetric encryption schemes more secure against key-retrieval

attacks.

[0518] As mentioned above, classical secret-sharing notions are typically unkeyed. Thus, a

secret is broken into shares, or reconstructed from them, in a way that requires neither the dealer

nor the party reconstructing the secret to hold any kind of symmetric or asymmetric key. The

secure data parser described herein, however, is optionally keyed. The dealer may provide a

symmetric key that, if used for data sharing, may be required for data recovery. The secure data

parser may use the symmetric key to disperse or distribute unique portions of the message to be

secured into two or more shares.

[0519] The shared key may enable multi-factor or two-factor secret-sharing (2FSS). The

adversary may then be required to navigate through two fundamentally different types of security

in order to break the security mechanism. For example, to violate the secret-sharing goals, the

adversary (1) may need to obtain the shares of an authorized set of players, and (2) may need to

obtain a secret key that it should not be able to obtain (or break the cryptographic mechanism

that is keyed by that key).

[0520] In some embodiments, a new set of additional requirements is added to the RCSS goal.

The additional requirements may include the “second factor”—key possession. These additional

requirements may be added without diminishing the original set of requirements. One set of

requirements may relate to the adversary’s inability to break the scheme if it knows the secret

key but does not obtain enough shares (e.g., the classical or first-factor requirements) while the

other set of requirements may relate to the adversary’s inability to break the scheme if it does

have the secret key but manages to get hold of all of the shares (e.g., the new or second-factor

requirements).

[0521] In some embodiments, there may be two second-factor requirements: a privacy

requirement and an authenticity requirement. In the privacy requirement, a game may be

- 117-

WO 2011/123699 PCT/US2011/030811

involved where a secret key K and a bit b are selected by the environment. The adversary now
supplies a pair of equal-length messages in the domain of the secret-sharing scheme, M° and

Μγ1. The environment computes the shares of Mf to get a vector of shares, S'] = (S) [1], ... , S']

[«]), and it gives the shares S'] (all of them) to the adversary. The adversary may now choose
another pair of messages (M20, Mf) and everything proceeds as before, using the same key K and

hidden bit b. The adversary’s job is to output the bit b' that it believes to be b. The adversary

privacy advantage is one less than twice the probability that b = b'. This games captures the

notion that, even learning all the shares, the adversary still cannot learn anything about the

shared secret if it lacks the secret key.

[0522] In the authenticity requirement, a game may be involved where the environment

chooses a secret key K and uses this in the subsequent calls to Share and Recover. Share and

Recover may have their syntax modified, in some embodiments, to reflect the presence of this

key. Then the adversary makes Share requests for whatever messages Mi, ... , M(/ it chooses in

the domain of the secret-sharing scheme. In response to each Share request it gets the

corresponding «-vector of shares, Si, ... , Sq. The adversary’s aim is to forge a new plaintext; it

wins if it outputs a vector of shares S' such that, when fed to the Recover algorithm, results in

something not in {Mi, ... , Mq}. This is an “integrity of plaintext” notion.

[0523] There are two approaches to achieve multi-factor secret-sharing. The first is a generic

approach — generic in the sense of using an underlying (R)CSS scheme in a black-box way. An

authenticated-encryption scheme is used to encrypt the message that is to be CSS-shared, and

then the resulting ciphertext may be shared out, for example, using a secret sharing algorithm,

such as Blakely or Shamir.

[0524] A potentially more efficient approach is to allow the shared key to be the workgroup

key. Namely, (1) the randomly generated session key of the (R)CSS scheme may be encrypted

using the shared key, and (2) the encryption scheme applied to the message (e.g., the file) may be

replaced by an authenticated-encryption scheme. This approach may entail only a minimal

degradation in performance.

[0525] Although some applications of the secure data parser are described above, it should be

clearly understood that the present invention may be integrated with any network application in

order to increase security, fault-tolerance, anonymity, or any suitable combination of the

foregoing.

- 118-

WO 2011/123699 PCT/US2011/030811

[0526] The secure data parser of the present invention may be used to implement a cloud

computing data security solution. Cloud computing is network-based computing, storage, or both

where computing and storage resources may be provided to computer systems and other devices

over a network. Cloud computing resources are generally accessed over the Internet, but cloud

computing may be performed over any suitable public or private network. Cloud computing may

provide a level of abstraction between computing resources and their underlying hardware

components (e.g., servers, storage devices, networks), enabling remote access to apool of

computing resources. These cloud computing resources may be collectively referred to as the

"cloud." Cloud computing may be used to provide dynamically scalable and often virtualized

resources as a service over the Internet or any other suitable network or combination of

networks.

[0527] Security is an important concern with cloud computing because private data (e.g., from

an enterprises’ private network) may be transferred over public networks and may be processed

and stored within publicly accessible or shared systems (e.g., Google (e.g., Google Apps

Storage), Dropbox, or Amazon (e.g., Amazon’s S3 storage facility)). These publicly accessible

systems do not necessarily provided encrypted storage space, however, they do provide user’s

with the capability of storing a set of files on their servers. The secure data parser may be used

to protect cloud computing resources and the data being communicated between the cloud and an

end-user or device. For example, the secure data parser may be used to secure data storage in the

cloud, data-in-motion to/from the cloud, network access in the cloud, data services in the cloud,

access to high-performance computing resources in the cloud, and any other operations in the

cloud.

[0528] FIGURE 42 is an illustrative block diagram of a cloud computing security solution.

System 4200, including secure data parser 4210, is coupled to cloud 4250 including cloud

resources 4260. System 4200 may include any suitable hardware, such as a computer terminal,

personal computer, handheld device (e.g., PDA, Blackberry, smart phone, tablet device), cellular

telephone, computer network, any other suitable hardware, or any combination thereof. Secure

data parser 4210 may be integrated at any suitable level of system 4200. For example, secure

data parser 4210 may be integrated into the hardware and/or software of system 4200 at a

sufficiently back-end level such that the presence of secure data parser 4210 may be substantially

transparent to an end user of system 4200. The integration of the secure data parser within

- 119-

WO 2011/123699 PCT/US2011/030811

suitable systems is described in greater detail above with respect to, for example, FIGURES 27

and 28. Cloud 4250 includes multiple illustrative cloud resources 4260 including, data storage

resources 4260a and 4260e, data service resources 4260b and 4260g, network access control

resources 4260c and 4260h, and high performing computing resources 4260d and 4260f. The

cloud resources may be provided by a plurality of cloud resource providers, e.g., Amazon,

Google, or Dropbox. Each of these cloud computing resources will be described in greater detail

below with respect to FIGURES 43-56. These cloud computing resources are merely

illustrative. It should be understood that any suitable number and type of cloud computing

resources may be accessible from system 4200.

[0529] One advantage of cloud computing is that the user of system 4200 may be able to

access multiple cloud computing resources without having to invest in dedicated storage

hardware. The user may have the ability to dynamically control the number and type of cloud

computing resources accessible to system 4200. For example, system 4200 may be provided

with on-demand storage resources in the cloud having capacities that are dynamically adjustable

based on current needs. In some embodiments, one or more software applications executed on

system 4200 may couple system 4200 to cloud resources 4260. For example, an Internet web

browser may be used to couple system 4200 to one or more cloud resources 4260 over the

Internet. In some embodiments, hardware integrated with or connected to system 4200 may

couple system 4200 to cloud resources 4260. In both embodiments, secure data parser 4210 may

secure communications with cloud resources 4260 and/or the data stored within cloud resources

4260. The coupling of cloud resources 4260 to system 4200 may be transparent to system 4200

or the users of system 4200 such that cloud resources 4260 appear to system 4200 as local

hardware resources. Furthermore shared cloud resources 4260 may appear to system 4200 as

dedicated hardware resources.

[0530] In some embodiments, secure data parser 4210 may encrypt and split data such that no

forensically discernable data will traverse or will be stored within the cloud. The underlying

hardware components of the cloud (e.g., servers, storage devices, networks) may be

geographically disbursed to ensure continuity of cloud resources in the event of a power grid

failure, weather event or other man-made or natural event. As a result, even if some of the

hardware components within the cloud suffer a catastrophic failure, the cloud resources may still

- 120-

WO 2011/123699 PCT/US2011/030811

be accessible. Cloud resources 4260 may be designed with redundancies to provide

uninterrupted service in spite of one or more hardware failures.

[0531] In some embodiments, the secure parser of the present invention may first randomize

the original data and then split the data according to either a randomized or deterministic

technique. For example, if randomizing at the bit level, the secure parser of the present invention

may jumble the bits of original data according to a randomized technique (e.g., according to a

random or pseudo-random session key) to form a sequence of randomized bits. The secure

parser may then split the bits into a predetermined number of shares by any suitable technique

(e.g., a suitable information dispersal algorithm (IDA)) as previously discussed.

[0532] FIGURE 43 is an illustrative block diagram of a cloud computing security solution for

securing data in motion (i.e., during the transfer of data from one location to another) through the

cloud. FIGURE 43 shows a sender system 4300, which may include any suitable hardware, such

as a computer terminal, personal computer, handheld device (e.g., PDA, Blackberry), cellular

telephone, computer network, any other suitable hardware, or any combination thereof. Sender

system 4300 is used to generate and/or store data, which may be, for example, an email message,

a binary data file (e.g., graphics, voice, video, etc.), or both. The data is parsed and split by

secure data parser 4310 in accordance with the present invention. The resultant data portions

may be communicated over cloud 4350 to recipient system 4370.

[0533] Cloud 4350 may include any suitable combination of public and private cloud storage

shown illustratively as clouds 4350a, 4350b, and 4350c. For instance, clouds 4350a and 4350c

may be cloud storage resources that are publically accessible, such as those provided by

Amazon, Google, or Dropbox. Cloud 4350b may be a private cloud that is inaccessible to any

individual or group outside of a particular organization, e.g., an enterprise or educational

institution. In other embodiments, a cloud may be a hybrid of a public and private cloud.

[0534] Recipient system 4370 of system 4300 may be any suitable hardware as described

above with respect to sender system 4300. The separate data portions may be recombined at

recipient system 4370 to generate the original data in accordance with the present invention.

When traveling through cloud 4310 the data portions may be communicated across one or more

communications paths including the Internet and/or one or more intranets, LANs, WiFi,

Bluetooth, any other suitable hard-wired or wireless communications networks, or any

- 121 -

WO 2011/123699 PCT/US2011/030811

combination thereof. As described above with respect to FIGURES 28 and 29, the original data

is secured by the secure data parser even if some of the

data portions are compromised.

[0535] FIGURE 44 is an illustrative block diagram of a cloud computing security solution for

securing data services in the cloud. In this embodiment, a user 4400 may provide data services

4420 to an end user 4440 over cloud 4430. Secure parser 4410 may secure the data services in

accordance with the disclosed embodiments. Data service 4420 may be any suitable application

or software service that is accessible over cloud 4430. For example, data service 4420 may be a

web-based application implemented as part of a service-oriented architecture (SOA) system.

Data service 4420 may be stored and executed on one or more systems within cloud 4430. The

abstraction provided by this cloud computing implementation allows data service 4420 to appear

as a virtualized resource to end user 4440 irrespective of the underlying hardware resources.

Secure parser 4410 may secure data in motion between data service 4420 and end user 4440.

Secure parser 4410 may also secure stored data associated with data service 4420. The stored

data associated with data service 4420 may be secured within the system or systems

implementing data service 4420 and/or within separate secure cloud data storage devices, which

will be described in greater detail below. Although data service 4420 and other portions of

FIGURE 44 are shown outside of cloud 4430, it should be understood that any of these elements

may be incorporated within cloud 4430.

[0536] FIGURE 45 is an illustrative block diagram of a cloud computing security solution for

securing data storage resources in the cloud. System 4500, including secure data parser 4510, is

coupled to cloud 4550 which includes data storage resources 4560. Secure data parser 4510 may

be used for parsing and splitting data among one or more data storage resources 4560. Each data

storage resource 4560 may represent a one or more networked storage devices. These storage

devices may be assigned to a single user/system of may be shared by multiple users/systems.

The security provided by secure data parser 4510 may allow data from multiple users/systems to

securely co-exist on the same storage devices or resources of cloud storage providers. The

abstraction provided by this cloud computing implementation allows data storage resources 4560

to appear as a single virtualized storage resource to system 4500 irrespective of the number and

location of the underlying data storage resources. When data is written to or read from data

storage resources 4560, secure data parser 4510 may split and recombine the data in a way that

- 122-

WO 2011/123699 PCT/US2011/030811

may be transparent to the end user. In this manner, an end user may be able to access to

dynamically scalable storage on demand.

[0537] Data storage in the cloud using secure data parser 4510 is secure, resilient, persistent,

and private. Secure data parser 4510 secures the data by ensuring that no forensically

discernable data traverses the cloud or is stored in a single storage device. The cloud storage

system is resilient because of the redundancy offered by the secure data parser (i.e., fewer than

all separated portions of the data are needed to reconstruct the original data). Storing the

separated portions within multiple storage devices and/or within multiple data storage resources

4560 ensures that the data may be reconstructed even if one or more of the storage devices fail or

are inaccessible. The cloud storage system is persistent because loss of a storage device within

data storage resources 4560 has no impact on the end user. If one storage device fails, the data

portions that were stored within that storage device may be rebuilt at another storage device

without having to expose the data. Furthermore, the storage resources 4560 (or even the multiple

networked storage devices that make up a data storage resource 4560) may be geographically

dispersed to limit the risk of multiple failures. Finally, the data stored in the cloud may be kept

private using one or more keys. As described above, data may be assigned to a user or a

community of interest by unique keys such that only that user or community will have access to

the data.

[0538] Data storage in the cloud using the secure data parser may also provide a performance

boost over traditional local or networked storage. The throughput of the system may be

improved by writing and reading separate portions of data to multiple storage devices in parallel.

This increase in throughput may allow slower, less expensive storage devices to be used without

substantially affecting the overall speed of the storage system.

[0539] FIGURE 46 is an illustrative block diagram for securing network access using a secure

data parser in accordance with the disclosed embodiments. Secure data parser 4610 may be used

with network access control block 4620 to control access to network resources. As illustrated in

FIGURE 46, network access control block 4620 may be used to provide secure network

communications between user 4600 and end user 4640. In some embodiments, network access

control block 4620 may provide secure network access for one or more network resources in the

cloud (e.g., cloud 4250, FIGURE 42). Authorized users (e.g., user 4600 and end user 4640) may

be provided with group-wide keys that provide the users with the ability to securely

- 123 -

WO 2011/123699 PCT/US2011/030811

communicate over a network and/or to access secure network resources. The secured network

resources will not respond unless the proper credentials (e.g., group keys) are presented. This

may prevent common networking attacks such as, for example, denial of service attacks, port

scanning attacks, man-in-the-middle attacks, and playback attacks.

[0540] In addition to providing security for data at rest stored within a communications

network and security for data in motion through the communications network, network access

control block 4620 may be used with secure data parser 4620 to share information among

different groups of users or communities of interest. Collaboration groups may be set up to

participate as secure communities of interest on secure virtual networks. A workgroup key may

be deployed to group members to provide members of the group access to the network and

networked resources. Systems and methods for workgroup key deployments have been

discussed above.
[0541] FIGURE 47 is an illustrative block diagram for securing access to high performance

computing resources using a secure data parser in accordance with the disclosed embodiments.

Secure data parser 4710 may be used to provide secure access to high performance computing

resources 4720. As illustrated in FIGURE 47 end user 4740 may access high performance

computing resources 4720. In some embodiments, secure data parser 4710 may provide secure

access to high performance resources in the cloud (e.g., cloud 4250, FIGURE 42). High

performance computing resources may be large computer servers or server farms. These high

performance computing resources may provide flexible, scalable, and configurable data services

and data storage services to users.

[0542] The secure data parser of the present invention may be configured to implement a

server-based secure data solution. The server-based solution of the secure parser of the present

invention refers to a backend server-based Data at Rest (DAR) solution. The server may be any

Windows-based, Linux-based, Solaris-based, or any other suitable operating system. This

server-based solution presents a transparent file system to a user, i.e., a user does not observe any

indication of the splits of data. When data is presented to the backend server of the secure data

parser of the present invention, the data is split into N shares and sent to N accessible (therefore,

available) data storage locations mounted/attached to the server. However, only some number M

of those shares is required to rebuild the data. In some embodiments, the server-based solution

of the secure parser of the present invention may first randomize the original data and then split

- 124-

WO 2011/123699 PCT/US2011/030811

the data according to either a randomized or deterministic technique. For example, if

randomizing at the bit level, the secure parser of the present invention may jumble the bits of

original data according to a randomized technique (e.g., according to a random or pseudo­

random session key) to form a sequence of randomized bits. The server-based solution of the

secure parser of the present invention may then split the bits into a predetermined number of

shares by any suitable technique (e.g., round robin) as previously discussed. For the

embodiments of FIGURES 42-47 above, and the embodiments of the FIGURES below, it will be

assumed that the secure parser of the present invention may first split the data according to either

a randomized or deterministic technique. Furthermore, in the embodiments described below,

splitting data may include splitting data using any suitable information dispersion algorithm

(IDA), including round robin or random bit splitting, as described above.

[0543] The abovedescribed solutions enable the recovery of data from local storage or remote

storage such as single or multiple clouds because data may be rebuilt from any M of the N data

shares, even when the data is first randomized and then split according to either a randomized or

deterministic technique. Further descriptions of the server-based solution of the secure parser of

the present invention are provided below, particularly with respect to FIGURES 48-56. In some

embodiments, the server-based solution may be used in conjunction with cloud computing

embodiments described above with respect to FIGURES 42-47.

[0544] In the embodiments of FIGURES 48-50, embodiments of the server-based solution of

the secure parser of the present invention will be described in relation to their implemented in

connection with public clouds (e.g., Dropbox), as well as other private, public, and hybrid clouds

or cloud computing resources.

[0545] FIGURE 48 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of storage devices in a private and a public

cloud in accordance with one embodiment of the present invention. Private cloud 4804 includes

a processor 4808 which is configured to implement the server-based solution of a secure parser

of the present invention and generate encrypted data shares 4816b, 4818b, 4814b, 4812b, 4820b,

and 4822b. Private cloud 4804 may optionally be accessible, e.g., via an Internet connection, to

an end user device 4800. Remote users may access their data stored on the private cloud 4804

via end user device 4800, and may also transmit commands relating to data share generation and

management from end user device 4800 to processor 4804 of cloud 4804. A subset of these

- 125-

WO 2011/123699 PCT/US2011/030811

encrypted data shares are stored on storage devices within the private cloud 4804. In particular,

data share 4814b is stored on storage device 4814a, while data share 4812b is stored on storage

device 4812a. Processor 4808 is also configured to store other subsets of the encrypted data

shares in other public, private, or hybrid clouds 4802, 4806, or 4810. For instance, cloud 4806

may include public cloud resources provided by Amazon, while cloud 4802 may include public

cloud resources provided by Dropbox. In this illustrative embodiment, shares 4818b and 4816b

are stored on storage devices 4818a and 4816a, respectively, in cloud 4802, share 4822b is stored

on storage device 4822a in cloud 4806, and share 4820b is stored on storage device 4820a in

cloud 4810. In this manner, the provider of private cloud 4804 may leverage the storage

resources of other cloud storage providers to store data shares, thereby reducing the storage

burden on the storage devices with cloud 4804. The secure parser of private cloud 4804

simultaneously secures data while providing robust data survivability from disasters because

only M of N parsed shares will be required to rebuild the data, where M<N. For example, if

access to one of the public or private clouds 4806, 4810, or 4802 is interrupted or lost, the data

can still be accessed and recovered using the available subset of encrypted data shares. In

general, only M of N parsed shares will be required to rebuild the data, where M<N. For

example, if access to one of the public or private clouds 4806, 4810, or 4802 is interrupted or

lost, the data can still be accessed and recovered using the available subset of encrypted data

shares. As a further illustrative example, if a storage resource within one or more of public or

private clouds 4806, 4810, or 4802 is down or otherwise inaccessible, the data can still be

accessed and recovered using the accessible subset of encrypted data shares within the cloud(s).

[0546] FIGURE 49 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of private and public clouds similar to the

arrangement of FIGURE 48, in accordance with one embodiment of the present invention.

FIGURE 49 illustrates a private cloud 4904 which is coupled, e.g., via an Internet connection, to

an end user device such as laptop 4902, and to public clouds 4906 and 4908, e.g., via an Internet

connection. Public clouds include cloud storage resources that are publically accessible, such as

those provided by Dropbox and Amazon (e.g., Amazon’s S3 storage facility). The

abovedescribed Internet connections may be secure or unsecure. In the illustrative embodiment

of FIGURE 49, public cloud 4906 is provided by Dropbox, while public cloud 4908 is provided

by Amazon. Data from the end user device 4902 may be transmitted to private cloud 4904. The

- 126-

WO 2011/123699 PCT/US2011/030811

processor 4905 of the private cloud 4904 may be configured to implement the server-based

solution of a secure parser of the present invention and generate encrypted data shares 4910a,

4910b, 4910c, and 4910d. Shares 4910a and 4910b are stored on storage devices within private

cloud 4904, while shares 4910c and 4910d are transmitted to and stored on public clouds 4906

and 4908, respectively. As with the arrangement of FIGURE 48, the provider of private cloud

4904 may leverage the storage resources of other cloud storage providers to store data shares,

thereby reducing the storage burden on the storage devices with cloud 4904. The secure parser

of private cloud 4904 simultaneously secures data while providing robust data survivability from

disasters because only M of N parsed shares will be required to rebuild the data, where M<N.

For example, if access to one of the public or private clouds 4906 or 4908 is interrupted or lost,

the data can still be accessed and recovered using the available subset of encrypted data shares.

[0547] FIGURE 50 is a schematic of another illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of private and public clouds via the Internet

5006 in accordance with one embodiment of the present invention. In the arrangement of

FIGURE 50, similar to that of FIGURES 48 and 49, an end user device 5002 is coupled to a

private cloud 5008 via the publicly-accessible Internet 5006. Private cloud 5008 includes a

processor 5001 that is configured to implement the server-based solution of the secure parser of

the present invention and generate two sets of encrypted data shares: 5014a-d and 5016a-d.

Some of these encrypted data shares are stored in the same storage device, e.g., shares 5014b and

5016a, and shares 5014c and 5016b, while other shares are stored in different storage devices,

e.g., shares 5016c, and 5016d. Shares 5014a and 5014d are transmitted to and stored on public

clouds 5010 and 5012, respectively, provided by public cloud storage providers Google,

Amazon, and Dropbox, which were described above respectively. As with the arrangement of

FIGURES 48 and 49, the provider of private cloud 5008 may leverage the storage resources of

other cloud storage providers to store data shares, thereby reducing the storage burden on the

storage devices within private cloud 5008. The secure parser of private cloud 5008 therefore

simultaneously secures data while providing robust data survivability from disasters because

only M of N parsed shares will be required to rebuild the data, where M<N. Thus, if access to

one of the public or private clouds 5010 or 5012 is interrupted or lost, the data can still be

accessed and recovered using the available subset of encrypted data shares. In some

embodiments, a removable storage device such as USB access key 5004 may be required at the

- 127-

WO 2011/123699 PCT/US2011/030811

end user device 5002 for authenticating the identity of a remote user who wishes to view,

encrypt, or decrypt data that is managed by processor 5001 of private cloud 5008. In some

embodiments, a removable storage device such as USB token 5004 may be required at the end

user device 5002 to initiate the encryption, decryption, or splitting of data by processor 5001 of

private cloud 5008. In some embodiments, data is split using any suitable information dispersion

algorithm (IDA). In some embodiments, data is first randomized prior to splitting. In some

embodiments, a user may manage their cryptographic keys themselves. In these embodiments, a

user’s keys may be stored on a user’s end device such as USB token 5004 or end-user device

5002. In other embodiments, any suitable centralized or dispersed key management system may

be used to manage a user’s or work groups’ cryptographic keys.

[0548] In some embodiments, to allow for data viewing and/or reconstruction at each of a

plurality of distinct end-user devices, one or more cryptographic keys and/or one or more data

shares may be stored on the USB memory device 5004. In addition, one or more of the data

shares may also be stored on a cloud 5010 and/or 5012. Thus, a user in possession of the

portable user device may access the USB memory device 5004 from a different end user device

than device 5002 to view and/or rebuild the data from the shares dispersed across the USB

memory device 5004 and if necessary, the cloud. For instance, two data shares may be stored on

USB memory device 5004 and two data shares may be stored in each of clouds 5010 and 5012.
A user in possession of USB memory device 5004 may use any computing device with the

secure parser of the present invention coupled to USB memory device 5004 to access the two

data shares stored on device 5004. For example, a user may use a first laptop computer to create

and disperse the shares across the USB memory device 5004 and the cloud, and may then use a

second, different laptop computer to retrieve the shares from the USB memory device 5004

and/or the clouds 5010 and 5012, and then reconstruct/rebuild the data from the retrieved shares.

[0549] In some embodiments, the secure parser of the present invention may provide

confidentiality, availability, and integrity of stored data by ensuring that a lost or stolen device’s

data remains secure and undecipherable. In some embodiments, the present invention may

include software running at the kernel level in the background of any Windows or Linux enabled

PC or end user device (e.g., mobile phone, laptop computer, personal computer, tablet computer,

smart phone, set-top box, etc.). In some embodiments, a secure parser such as Security First

Corp.'s FIPS 140-2 certified, Suite B compliant, SecureParser Eytcndcd (S Ρχ) may be used to

- 128 -

WO 2011/123699 PCT/US2011/030811

split the data to be secured. In some embodiments, FIPS 140-2 AES 256 encryption, random bit

data splitting, integrity checking and re-encrypting split shares is performed. In some

embodiments, the data is split using any suitable information dispersion algorithm (IDA). In

some embodiments, the splitting is deterministic. In some embodiments, the data may also be

randomized prior to the splitting. In some embodiments, any files stored to a secure location

(e.g. the “C:” drive) on a user’s end device are invisible without the proper credentials and

access. In some embodiments, even the file names cannot be seen or recovered without the

requisite cryptographic key and authentication process.

[0550] In some embodiments, a set of N shares are created and the secure parser of the present

invention stores these N shares in N separate, possibly geographically-dispersed storage

locations. For instance, four (4) encrypted shares may be created and the secure parser of the

present invention then stores these four encrypted shares in four (4) separate storage locations.

FIGURES 51-53 illustrate two such embodiments, in which four encrypted shares are created, of

the secure parser of the present invention.

[0551] FIGURE 51 is a schematic of an illustrative arrangement in which the secure data parser

is used to secure data storage in a user’s removable storage device 5104 and on mass storage

device 5106 in accordance with one embodiment of the present invention. FIGURE 51 shows an

end user device such as a laptop computer 5102 that has generated four encrypted shares 5108a,

5108b, 5108c, and 5108d. Each of these encrypted shares 5108a-d is stored in a different storage

sector within mass storage device 5106 of the end user device 5102. The secure parser of the

end-user device simultaneously secures data while providing robust data survivability from

disasters because only M of N parsed shares will be required to rebuild the data, where M<N. In

the embodiment of FIGURE 51, there are 4 shares, and 2 or 3 of these shares would be required

to re-construct the data. Assuming that only two of the four, or three of the four, encrypted

shares are required to re-construct the data, the disaster recovery process is accelerated if one or

two of the encrypted shares are lost, e.g., if one of the sectors of mass storage 5106 is corrupted.

The removable storage device 5104 may be used to store one or more cryptographic access keys

that may be required in order to view and/or decrypt and/or encrypt data within the mass storage

5106 of the end user device 5102. In some embodiments, without the cryptographic key on the

removable storage device 5104, the encrypted data shares 5108a-d cannot be decrypted and/or

- 129-

WO 2011/123699 PCT/US2011/030811

reconstituted. In some embodiments, a user may manage their cryptographic keys themselves.

In these embodiments, a user’s keys may be stored on a user’s end device such as removable

storage device (e.g., USB memory) 5104 or end-user device 5102. In other embodiments, any

suitable centralized or dispersed key management system may be used to manage a user’s or

work groups’ cryptographic keys.

[0552] In some embodiments, to allow for data viewing and/or reconstruction at each of a

plurality of distinct end-user devices, one or more cryptographic keys and/or one or more data

shares may be stored on the USB memory device 5104. In addition, one or more of the data

shares may also be stored on a cloud. Thus, a user in possession of the portable user device may

access the USB memory device 5104 from a different end user device than device 5102 to view

and/or rebuild the data from the shares dispersed across the USB memory device 5104 and if

necessary, the cloud. For instance, two data shares may be stored on USB memory device 5104

and two data shares may be stored in end user device 5102. A user in possession of USB

memory device 5104 may use any computing device with the secure parser of the present

invention coupled to USB memory device 5104 to access the two data shares stored on USB

memory device 5104. For example, a user may use a first laptop computer to create and disperse

the shares across the USB memory device 5104 and the end user device 5102, and may then use

a second, different laptop computer to retrieve the shares from the USB memory device 5104

and, assuming these two shares are sufficient for reconstructing the data, reconstruct/rebuild the

data from these two shares.

[0553] FIGURE 52 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of user storage devices in accordance with one

embodiment of the present invention. FIGURE 52 shows an end user device such as a laptop

computer 5202 that has generated four encrypted shares 5208a, 5208b, 5208c, and 5208d. Each

of these encrypted shares 5208a-d is stored in geographically dispersed storage location and/or

different parts of the same storage location. In particular, encrypted shares 5208c and 5208d are

stored in two different sectors on mass storage device 5206 of the laptop computer 5202, while

encrypted shares 5308a and 5308b are each stored on a removable storage device such as USB

memory device 5204. The secure parser of the end-user device simultaneously secures data

while providing robust data survivability from disasters because only M of N parsed shares will

be required to rebuild the data, where M<N. In the embodiment of FIGURE 52, there are 4

- 130-

WO 2011/123699 PCT/US2011/030811

shares, and 2 or 3 of these shares would be required to re-construct the data. Thus, the encrypted

shares are geographically and physically dispersed, and assuming that only two of the four, or

three of the four encrypted shares are required to re-construct the data, the disaster recovery

process is accelerated if one or two of the encrypted shares are lost. Such a loss may occur, e.g.,

if one of the sectors of mass storage 5202 is corrupted, or if the removable storage device such as

USB memory device 5204 is lost, or any combination thereof.

[0554] In some embodiments, instead of or in addition to storing encrypted shares on the USB

memory device 5204, one or more keys (e.g., encryption key, split key, or authentication key)

are stored on the USB memory device 5204. These keys may be used to split, encrypt/decrypt,

or authenticate shares of data stored on the USB memory device 5204 itself, or elsewhere, e.g.,

in the end-user device mass storage 5202 or in a public or private cloud storage. For example, a

user may store a key on USB memory device 5204 and use this key to decrypt encrypted shares

of data stored on mass storage device 5202. As a further illustrative example, two data shares

may be stored on USB memory device 5204 and two data shares may be stored in end user

device mass storage 5202. A user in possession of USB memory device 5204 may use any

computing device with the secure parser of the present invention coupled to USB memory device

5204 to access the key stored on USB memory device 5204. For example, a user may use a first

laptop computer to store the key within USB memory device 5204, and may then use a second,

different laptop computer to retrieve the key from the USB memory device 5204. This key may

then be used to encrypt/decrypt, split, or authenticate data.

[0555] In some embodiments, to allow for data viewing and/or reconstruction at each of a

plurality of distinct end-user devices, one or more cryptographic keys and/or one or more data

shares may be stored on the USB memory device 5204. In addition, one or more of the data

shares may also be stored on a cloud. Thus, a user in possession of the portable user device may

access the USB memory device 5204 from a different end user device than device 5202 to view

and/or rebuild the data from the shares dispersed across the USB memory device 5204 and if

necessary, the cloud. For instance, two data shares may be stored on USB memory device 5204

and two data shares may be stored in end user device 5202. A user in possession of USB

memory device 5204 may use any computing device with the secure parser of the present

invention coupled to USB memory device 5204 to access the two data shares stored on USB

memory device 5204. For example, a user may use a first laptop computer to create and disperse

- 131 -

WO 2011/123699 PCI7US2011/030811

the shares across the USB memory device 5204 and the end user device 5202, and may then use

a second, different laptop computer to retrieve the shares from the USB memory device 5204

and, assuming these two shares are sufficient for reconstructing the data, reconstruct/rebuild the

data from these two shares.

[0556] FIGURE 53 is a schematic of an illustrative arrangement in which the secure data

parser is used to secure data storage in a plurality of public and private clouds and at least one

user storage device in accordance with one embodiment of the present invention. FIGURE 53

shows an end user device such as a laptop computer 5302 that has generated four encrypted

shares 5306a, 5306b, 5306c, and 5306d. Each of these encrypted shares 5306a-d is stored in

geographically dispersed storage location and/or different parts of the same storage location. In

particular, encrypted shares 5306a and 5306b are stored in two different sectors on mass storage

device 5308 of the laptop computer 5302, while encrypted share 5306c is stored, by transmission

over a secure network connection, in a publicly accessible cloud storage such as Amazon’s S3

cloud storage 5310, and encrypted share 5306d is stored, by transmission over a secure network

connection, in a publicly accessible cloud storage such as Dropbox’s cloud storage 5312. In this

manner, the encrypted shares are geographically and physically dispersed, and assuming that

only two of the four, or three of the four, encrypted shares are required to re-construct the data,

the disaster recovery process is accelerated if one or two of the encrypted shares are lost. Such a

loss may occur, e.g., if one of the sectors of mass storage 5308 is corrupted, or if the internet

connection between the end user device 5302 and the clouds 5310 and 5312 is lost.

[0557] In each of the embodiments of FIGURES 51-53, the encrypted data share generation

process splitting process is transparent to the user. Furthermore, the secure parser of the present

invention simultaneously secures data while providing robust data survivability from disasters

because only M of N parsed shares will be required to rebuild the data, where M<N. For

example, in some of the embodiments described above, only two (2) or three (3) of the four (4)

parsed shares would be needed to re-construct or rebuild the data. If a hard drive’s sector fails,

or a removable USB device is lost, or a remote storage location is down or inaccessible, the data

can still be accessed and recovered. Furthermore, if a failed drive’s share is recovered, or if a

share is stolen, goes off-line or is hacked into, the data may remain safe and protected since any

single parsed share contains no forensically discernable information. In other words, a single

- 132-

WO 2011/123699 PCT/US2011/030811

parsed share cannot be reconstituted, decrypted, hacked or recovered without first having the

corresponding second and/or third shares, proper user authentication, the secure parser of the

present invention, and in some cases, the USB key or USB memory device.

[0558] In some embodiments, the secure parser of the present invention may be used in a

mobile device such as an Apple iPad, a RIM Blackberry, an Apple iPhone, a Motorola Droid

phone, or any suitable mobile device. Those skilled in the art will come to realize that the

systems and methods disclosed herein are application to a variety of end user devices, including

but not limited to mobile devices, personal computers, tablet computers, smart phones and the

like.

[0559] The secure parser of the present invention may be implemented using one or more

processors, each of which performs one or more of the secure parser functions such as key

generation, data encryption, share generation, data decryption, etc. In some embodiments,

splitting data includes cryptographically splitting data, e.g., random bit splitting. In some

embodiments, the data is split using any suitable information dispersal algorithm (IDA). The

processor(s) may be any suitable processors, e.g., Intel or AMD, and may run a back end for a

server based platform. In some embodiments, one or more dedicated coprocessors may be used

to accelerate the operation of the secure parser of the present invention. In the embodiments of

FIGURES 54-56 described below, one or more functions of secure parser of the present

invention are implemented on one or more dedicated co-processors, which allows for the

acceleration of the secure parser functions. In some embodiments, the coprocessors may be

included in a main motherboard or in a daughterboard, or any suitable combination thereof, of

the secure parser hardware platform.

[0560] FIGURE 54 is a schematic of a co-processor acceleration device 5400 for the secure

data parser in accordance with one embodiment of the present invention. Device 5400 includes

two processors: central processing unit (CPU) or main processor 5402 and rapid processing unit

(RPU) or auxiliary processor 5404. Processors 5402 and 5404 are coupled to one another, and

also coupled to a memory device 5406 and mass storage device 5408. The coupling of these

devices may include the use of an interconnect bus. Each of the CPU and RPU may include a

single microprocessor or a plurality of microprocessors for configuring the CPU and/or RPU as a

multiprocessor system. Memory 5406 may include dynamic random access memory (DRAM)

- 133-

WO 2011/123699 PCT/US2011/030811

and/or high-speed cache memory. Memory 5406 may include at least two dedicated memory

devices, one for each of CPU 5402 and RPU 5404. Mass storage device 5408 may include one

or more magnetic disk or tape drives or optical disk drives, for storing data and instructions for

use by the CPU 5402 and/or RPU 5406. Mass storage device 5408 may also include one or more

drives for various portable media, such as a floppy disk, a compact disc read only memory (CD-

ROM), DVD, a FLASH drive, or an integrated circuit non-volatile memory adapter (i.e. PC­

MCIA adapter) to input and output data and code to and from the CPU 5402 and/or RPU 5406.

The CPU 5402 and/or RPU 5406 may each also include one or more input/output interfaces for

communications, shown by way of example, as the communications bus 5410. Communications

bus may also include an interface for data communications via the network 5412. The network

5412 may include one or more storage devices, e.g., cloud storage devices, NAS, SAN, etc. The

interface to the network 5412 via the communications bus 5410 may be a modem, a network

card, serial port, bus adapter, or any other suitable data communications mechanism for

communicating with one or more systems on-board the aircraft or on the ground. The

communication link to the network 5412 may be, for example, optical, wired, or wireless (e.g.,

via satellite or cellular network).

[0561] In some embodiments, RPU may include a redundant array of independent disks

(RAID) processing unit that implements one or more RAID functions for one or more storage

devices associated with the co-processor acceleration device 5400. In some embodiments, RPU

5404 may include a general purpose or special purpose integrated circuit (IC) to perform array

built calculations and/or RAID calculations. In some embodiments, the RPU 5404 may be

coupled to the CPU 5402 via a PCIe connection such as a PCIe bus coupled to the RPU. If RPU

includes a RAID processing unit, then the PCIe connection may include a specialized RAID

adapter. In some embodiments, the PCIe card may run at 10 Gigabits/sec (Gb/s) or more. In

some embodiments, the RPU 5404 may be coupled to the CPU 5402 via an HT connection, such

as a socketed RPU connected to an HT bus. The processors 5402 and 5404 will typically access

the same memory and mass storage devices such that the same data is accessible to both these

processors. The coprocessor may perform dedicated secure parsing accelerated functions

including, but not limited to, data splitting, encryption, and decryption. These functions are

independent of one another, and may be performed using different algorithms. For example,

encryption may be performed using any of the abovedescribed techniques, while splitting may be

- 134-

WO 2011/123699 PCT/US2011/030811

performed using any suitable information dispersal algorithm (IDA), such as those described

above. In some embodiments, the RPU may be coupled to a Field Programmable Gate Array

(FPGA) device that could also perform dedicated accelerated functions of the secure parser of

the present invention external to the coprocessor acceleration device 5400.

[0562] FIGURE 55 is a first process flow diagram of an illustrative acceleration process using

the co-processor acceleration device 5400 of FIGURE 54 for the secure data parser in

accordance with one embodiment of the present invention. With continued reference to

FIGURES 54 and 55, in this illustrative embodiment, the RPU 5510 may be coupled to the CPU

5520 via an HT connection, such as a socketed RPU via an HT bus. The left side of FIGURE 55

illustrates that certain functions of the secure parser such as the data splitting and share

generation functions (3910 and 3912 in FIGURE 39) may be performed by the CPU, while other

functions such as the encryption (e.g., the AES, IDA, SHA algorithms) (3902, 3904, 3906 in

FIGURE 39) may be performed by the RPU. These functions of encryption and encryption share

generation are shown on the right side of FIGURE 55, in which there is an indication of whether

the CPU or RPU performs a particular secure parser function.

[0563] FIGURE 56 is a second process flow diagram of an illustrative acceleration process

using the co-processor acceleration device 5400 of FIGURE 54 for the secure data parser in

accordance with one embodiment of the present invention. With continued reference to

FIGURES 54 and 56, in this illustrative embodiment, the RPU 5610 may be coupled to the CPU

5620 via an HT connection, such as a socketed RPU via an HT bus. The left side of FIGURE 56

illustrates that certain functions of the secure parser such as the data splitting and share

generation functions (3910 and 3912 in FIGURE 39) may be performed by the CPU, while other

functions such as the encryption (e.g., the AES, IDA, SHA algorithms) (3902, 3904, 3906 in

FIGURE 39) may be performed by the RPU. These functions of encryption and encryption

share generation are shown on the right side of FIGURE 55, in which there is an indication of

whether the CPU or RPU performs a particular secure parser function.

[0564] With respect to the embodiments in FIGURES 48-56 describing the server-based

solution of the secure parser of the present invention, there are several additional functions and

characteristics of the secure parser of the present invention that may be enabled or provided by

the server-based solution. In addition to performing cryptographic splitting and data share

rebuilding, other functionality may be included such as block level updates of encrypted data

- 135-

WO 2011/123699 PCT/US2011/030811

shares and cryptographic key management. The description that follows will describe each of

these functions. Those skilled in the art will come to realize that this functionality may be easily

incorporated into any of the embodiments described with respect to FIGURES 48-56.

[0565] In some embodiments, the server-based solution of the secure parser of the present

invention allows block level updates/changes to files, instead of updates/changes to the entire

data file. In some embodiments, once a data share has been sent from the secure parser to a

cloud storage device, in order to operate more efficiently, when the underlying data is updated by

a user or workgroup, instead of restoring the entire data file, only the updates at the file block

level of particular data shares may be transmitted to the cloud storage device using the

cryptographic systems of the present invention. Thus, restoration of an entire data file is not

performed nor required when only minor changes are made to the data file.

[0566] In some embodiments, the server-based solution of the secure parser of the present

invention generates a stub for each of the data shares. In some embodiments, a stub may include

a list of attributes for its associated data share, and is stored together with the data share. In

some embodiments, a stub may include information about the data share including, e.g., the

name of a data share, the date the data share was created, the last time the data share was

modified, a pointer to the location of the data share within the file system of a storage device,

etc. Such information could be used to quickly provide a user with information regarding the

data shares. In some embodiments, a user may designate a stub directory which stores the stubs.

For instance, a user may designate a particular virtual or physical drive on their storage device on

which the stub directory should be stored. For instance, a stub directory may be created for a

user, wherein each of the stubs in the directory points the user to secure data stored by the secure

parser in a mass storage device, removable storage device, public cloud, private cloud, or any

combination thereof. In this manner, stubs may be utilized to generate a virtual file system of

data shares for a user.

[0567] In some embodiments, the stubs may be stored in a separate location from the data

shares, in the same location as the data shares, or both. In some embodiments, when a user

wishes to view some information on the data shares, they may access the stub directory. In some

embodiments, instead of directly viewing the stub directory, the stubs are retrieved from the stub

directory, processed by the server-based solution of the secure parser of the present invention,

- 136-

WO 2011/123699 PCT/US2011/030811

and subsequently used to provide the aforementioned information to the user. In this manner,

stubs may be utilized to generate a virtual file system of data shares for a user.

[0568] In some embodiments, the stubs are stored in the respective headers of the data shares.

Thus, if a user wishes to view the information in a stub, the stub is retrieved from the header,

processed by the server-based solution of the secure parser of the present invention, and

subsequently a stub directory is generated and provided to the user.

[0569] In some embodiments, the server-based solution of the secure parser of the present

invention frequently checks the stub(s) and/or encrypted data shares for data integrity using the

above described techniques. The secure parser of the present invention is essentially proactive in

retrieving and examining data shares for data integrity, even when not initiated or prompted by a

user. If a data share or stub is missing or damaged, the secure parser of the present invention

attempts to recreate and restore the stub or data share.

[0570] The server-based solution of the secure parser of the present invention may be

configured to provide a centralized cryptographic key management facility. In particular,

cryptographic keys used to encrypt/decrypt data, data shares and communication sessions across

a plurality of storage devices and systems may be stored in a central location within an

enterprises’ storage facility, e.g., an enterprises’ private cloud. This centralized key management

facility may also interface with hardware-based key management based solutions such as those

provided by SafeNet, Inc., Belcamp, MD, or with software-based key management systems. For

instance, an existing private cloud may control access to encrypted shares of data via an

authentication/access/authorization system, and the server-based solution may use the

authentication information to allow access to the cryptographic keys used to encrypt those

shares, thereby allowing a user to cryptographically split data, or restore the encrypted shares of

data. In other words, the server-based solution of the secure parser of the present invention may

act in conjunction with an existing authentication/access/authorization system. In this manner,

an enterprise is not forced to change its current way of managing users’ and work groups’ access

to data.

[0571] In some embodiments, the server-based solution of the secure parser of the present

invention may perform share rebuilding without decrypting any of the encrypted data shares. In

some embodiments, the server-based solution of the secure parser of the present invention may

re-generate splits of data using one or more new keys without decrypting any of the encrypted

- 137-

WO 2011/123699 PCT/US2011/030811

data shares. FIGURE 57 illustrates a process 5700 by which data is split into N shares and

stored, according to an illustrative embodiment of the present invention. FIGURE 58 illustrates

a process by which shares of data are rebuilt and/or re-keyed, according to an illustrative

embodiment of the present invention. In each of FIGURES 57 and 58 each of the steps of the

process may be optional. For instance, it is not necessary to encrypt data prior to splitting the

data.

[0572] With reference to FIGURE 57, the secure parser first encrypts the data using an

encryption key (5702). The encryption key may be generated internally within the secure parser

of the present invention. The encryption key may be generated based at least in part on an

external workgroup key. The secure parser then splits the data into N shares using a split key

(5704). The split key may be generated internally within the secure parser of the present

invention. The split key may be generated based at least in part on an external workgroup key.

The secure parser then ensures that only M of N shares will be required to rebuild the data (5706)

and authenticates the N shares using an authentication key (5708). The authentication key may

be generated internally within the secure parser of the present invention. The authentication key

may be generated based at least in part on an external workgroup key. The authentication, split,

and encryption keys are each wrapped using a key encryption key (5710). The KEK is then split

and stored within the headers of the N shares (5712). The N shares are then dispersed across N

storage locations.

[0573] In some instances, it is desirable for a user or an enterprise to use a new split key and/or

a new authentication key for a set of data shares. With the server-based solution of the secure

parser of the present invention, this re-keying of the data may be performed without decrypting

any of the data shares. In other instances, it is desirable for a user or an enterprise to regenerate a

set of new data shares because one or more existing data shares have been corrupted, lost or

otherwise inaccessible. With the server-based solution of the secure parser of the present

invention, this rebuilding of the lost data shares may be performed without decrypting any of the

remaining, available data shares. With reference to FIGURE 58, assuming that N-M shares of

data are corrupted or otherwise inaccessible, the secure parser retrieves the remaining M of N

shares from their storage locations (5802). These M shares are authenticated using an

authentication key (5804). Using the authenticated M shares, the encrypted data is reconstructed

by the secure parser (5806). The split key is then used to regenerate the N shares (5808), and the

- 138-

WO 2011/123699 PCT/US2011/030811

authentication key is used to authenticate the N shares (5810). If a different split key or

authentication key were used (5812) for steps 5808 or 5810, then the headers of each of the M

shares are retrieved (5816), the key encryption key is reconstructed (5818), and similar to the

processes of steps 5710 and 5712 (FIGURE 57), the new split key and/or authentication key are

wrapped/encrypted using the key encryption key (5820). The N shares are then stored in one or

more storage devices of the secure parser of the present invention (5822). If a different split key

or authentication was not used (5812) in steps 5808 or 5810, then the lost/inaccessible N-M

shares are stored in one or more storage devices of the secure parser of the present invention

(5814).

[0574] The server-based solution of the secure parser of the present invention may be

configured to secure the file name of a data share, such as the data shares described in relation to

the embodiments of FIGURES 42-58 above. In some embodiments, when splitting a file into N

data shares, e.g., using an IDA, the generated data shares are stored on one or more share

locations in a storage network. The storage network may include a private cloud, a public cloud,

a hybrid cloud, a removable storage device, a mass storage device, or any combination thereof.

In many applications, there will be more than one file that is split and stored in a share location

in the storage network. In other words, there may be several files, each of which may be split

into N data shares (e.g., using an IDA), where each of the generated data shares may be stored as

files on the share locations. In these applications, it is advantageous to have a unique identifier

such as a file name that associates a data share in a share location with the file from it was

generated.

[0575] In some embodiments, the secure parser of the present invention may be configured to

use a portion of the file name of the original file (i.e., the file that is to be split) to name the data

shares with the same name as the original file. As an illustrative example, if an original file

“2010Budget.xls” is split into 4 data shares, these data shares may be named

“2010Budget.xls. 1”, “2010Budget.xls.2”, “2010Budget.xls.3” and “2010Budget.xls.4”, thereby

associating each generated data share with the original file. By this process, the secure parser of

the present invention would efficiently be able to locate the data shares and associate them with

the original file. The drawback of this process, however, is that it may expose information such

as the fact that the budge information is for year 2010 to a third party. In many applications,

- 139-

WO 2011/123699 PCT/US2011/030811

exposing the file name in this manner is not acceptable, and thus the file name of a data share

cannot be easily associated with the file name of the original file

[0576] In some embodiments, the secure parser of the present invention may be configured to

first secure the file name would be to use an authentication algorithm such as HMAC-SHA256 to

hash the file name of the original file into a value that cannot be reversed. The secure parser of

the present invention would thus process the file name of the original file with the HMAC-

SHA256 algorithm to obtain a “hashed” file name and receive an authentication value that is

secure and may not be reversed to the file name of the original file. The file names of the data

shares associated with the original file are then generated using this hashed file name instead of

the file name of the original file. In these embodiments, in order to locate the data shares (on a

storage network) associated with the file name of the original file, the secure parser of the

present invention would once again use the HMAC-SHA256 algorithm on the original file name

and regenerate the authentication value. In some embodiments, the authentication value for the

original file name and the file names of the generated shares are substantially equal. The secure

parser of the present invention would then search the share locations on the storage network for

data share file names that match this authentication value. The storage network may include a

private cloud, a public cloud, a hybrid cloud, a removable storage device, a mass storage device,

or any combination thereof. In some embodiments, the full path of the original file name is used

so that the authentication value generated for a file with full path, e.g.,

“\Marketing\2010Budget.xls” is different from the authentication value generated for the file

with full path, e.g., “\Sales\2010Budget.xls”. In some embodiments, the resulting data share

filenames corresponding to each data share location are made different by hashing the full path

for a file, the full path including the share location. For instance, by appending the share

number of a data share to the full path of the original file, for example

“\Sales\2010Budget.xls. 1”, the resulting data share filenames are different for each data share

location.

[0577] In some embodiments, the secure parser of the present invention secures the file name

of a file by encrypting the full path of the original filename using an encryption algorithm such

as AES, as described above. Such encryption ensures that the file name of the original file is

secure until it is decrypted by the secure parser of the present invention based on authenticated

access to the share locations on a storage network, the retrieved data shares and the encryption

- 140-

WO 2011/123699 PCI7US2011/030811

key. The storage network may include a private cloud, a public cloud, a hybrid cloud, a

removable storage device, a mass storage device, or any combination thereof. As with the

abovedescribed example, unique data share filenames for each share location can be created by

first appending additional information such as the share number for a data share to the full path

of the original file.

[0578] In some embodiments, a journaling service may be used to protect against I/O failures,

such as read and write failures to a disk. In these embodiments, the journaling service may be

used to identify and record each of the data storage operations, such as read and write requests,

associated with one or more shares of data stored in one or more share locations. The one or

more shares of data may be created from a set of original data using any suitable information

dispersal algorithm, such as a keyed IDA. The shares of data may include data jumbled and then

split using any suitable randomized or deterministic techniques disclosed above. The share

locations may include any suitable data storage facility or combinations of data storage facilities

described above, such as a local or networked hard disk, removable storage such as a USB key,

or the resources of a cloud storage provider such as DropBox or Amazon S3. In addition, the

share locations may store any suitable number of files associated with shares of data. In some

embodiments, the journaling service may integrated with a secure data parser, such as secure

data parser 3706 of illustrative overview process 3700 of FIGURE 37, in order to maintain the

health of data on share locations that the secure data parser uses to store data. In some

embodiments, the journaling service may be implemented on a general-purpose computer having

one or more microprocessors or processing circuitry.

[0579] In some embodiments, the journaling service may use one or more logs to record each

of the read and write requests to the share locations. This log may be managed centrally on the

facilities running the journaling service, or may be located at the share locations themselves. In

some embodiments, the log may be a queue data structure that stores information associated with

failed data storage operations, such as read and write operations, associated with a particular

share location. In some embodiments, a journaling queue may be maintained for each share

location associated with the journaling service. The journaling queues may store information for

failed data storage operations at the file level, the block level, the bit level, or any suitable level

of granularity. In some embodiments, the journaling queue may be maintained in a memory

associated with the journaling service, such as the RAM of a server running the journaling

- 141 -

WO 2011/123699 PCT/US2011/030811

service. In some embodiments, the journaling queue may be maintained in disk storage

associated with the journaling service. For example, the journaling queue may be maintained in

a configuration filed stored on a disk in a server running the journaling service. As will be

described below with respect to FIGURE 60, in some embodiments the journaling service may

leverage both memory and disk storage in order to maintain the journaling queue.

[0580] FIGURE 59 is an illustrative process 5900 for operating a journaling service in an

embodiment of the present invention. Process 5900 begins at step 5910. At step 5910, one or

more shares of data may be stored in share locations. As discussed above, the one or more

shares of data may be created using any suitable IDA, and may include data that has been

jumbled and split using any suitable randomized or deterministic technique. Process 5900 then

proceeds to step 5920. At step 5920, the journaling service may determine if a particular share

location is offline, or unavailable for data storage operations. This determination may result
from an attempted data storage operation associated with the particular share location. For

example, the journaling service may attempt to write a data share to a particular share location.

If the write operation is unsuccessful, the journaling service may receive a notification that that

the write operation has failed. Accordingly, the journaling service will mark the particular share

location as being unavailable, or offline, for future read or write operations. In some

embodiments, the indication that a share location is offline may be stored in any suitable data

flag maintained in memory or disk central to the journaling service, or on the data share itself.

Process 5900 then proceeds to step 5930.

[0581] At step 5930, a journaling queue may be established and maintained for the particular

share location that has been designated as offline. In some embodiments, as long as the share

location has been designated as offline, the journaling service may store information associated

with incoming data storage operations related to the share location in the journaling queue. For

example, if a share location has been marked as offline, future read and write operations related

to that share location are stored in the journaling queue that has been established for that share

location. In some embodiments, each journaling queue maintained by the journaling service may

be associated with a unique share location. In addition, each journaling queue maintained by the

journaling service may be managed by a separate processing thread. Process 5900 then proceeds

to step 5940.

- 142-

WO 2011/123699 PCT/US2011/030811

[0582] At step 5940, the journaling service may determine whether an offline storage location

has been made available. In some embodiments, this determination may be performed by the

journaling service constantly monitoring the offline share location for an indication that the share

location has been restored. This indication may be a change in a data flag associated with the

share location that is caused by, for example, the repair of the share location by the journaling

service or an administrator of the journaling service. Process 5900 then proceeds to step 5950.

[0583] At step 5950, the journaling service may replay the failed data storage operations stored

in the journaling queue for the share location that has been made available. In some

embodiments, replaying the failed operations may include executing the failed read and write

operations that have been stored in the journaling queue. Once the failed operations stored in the

journaling queue have been executed, the journaling service may optionally clear or flush the

journaling queue. In flushing the journaling queue, the journaling service may free up any

memory or disk resources associated with the journaling queue. Once the failed operations

stored in the journaling queue are replayed, process 5900 then ends.

[0584] FIGURE 60 is an illustrative process 6000 for operating a journaling service in an

embodiment of the present invention. Process 6000 begins at step 6010. At step 6010, the

journaling service may establish a queue limit may for each share location that has an associated

journaling queue. This queue limit may specify the maximum number of messages (for example,

failed read or write operations) associated with a journaling queue that can be stored in a

memory associated with the journaling service. The journaling service may then track the

number of messages in each journaling queue by, for example, maintaining a log of the number

of messages in each journaling queue. Process 6000 then proceeds to step 6020. At step 6020,

the journaling service may determine that the queue limit has been exceeded for a particular

journaling queue. For example, the journaling service may determine that the number of failed

operations stored in the particular queue exceeds a preconfigured maximum number. If the

journaling service determines that the queue limit has been exceeded, process 6000 proceeds to

step 6030.

[0585] At step 6030, the journaling queue may be flushed, or stored, to a file maintained in

disk storage associated with the journaling service. In some embodiments, the file may be

maintained in disk storage until the share location becomes available. For example, after the

share location becomes available, the journaling service may replay each operation stored in the

- 143-

WO 2011/123699 PCT/US2011/030811

file, and then remove the file from disk storage. In this manner, the number of failed operations

recorded by the journaling service are allowed to surpass the memory limitations of the system

running the journaling service. In some embodiments, the contents of the journaling queue that

are stored in memory may be flushed to file in the event of a system shutdown (for example, a

loss of power to the system running the journaling service). In this manner, the journaling

service may recover operations without a loss of data integrity once the system running the

journaling service is restored. Process 6000 then ends. If the journaling service determines that

the queue limit has not been exceeded, process 6000 proceeds to step 6040. At step 6040, the

journaling service may continue to write failed operations to the queue in memory. Process 6000

then ends.

[0586] In some embodiments, if too many failed data storage operations are logged for a share

location, the journaling service will log a “critical failure” state. This critical failure state may

indicate that the integrity of the data within the share location can no longer be trusted and a

restore or rebuild operation is required. As will be described with respect to FIGURE 61,

marking a share location as being in a critical failure state may effectively place an upper limit

on the amount of memory and/or disk space used by the system running the journaling service.

FIGURE 61 is an illustrative process 6100 for operating a journaling service using a critical

failure state in an embodiment of the present invention. Process 6100 begins at step 6110. At

step 6110, the journaling service establishes a maximum failure count. In some embodiments,

this maximum failure count may be a preconfigured number of failed operations that the

journaling service is permitted to record in a journaling queue associated with a share location

before that share location is marked as being in a critical failure state. Process 6100 then

proceeds to step 6120. At step 6120, the journaling service monitors the number of failed

operations for each share location. In some embodiments, this monitoring may include the

journaling service maintaining a running tally of the number of failed operations stored in the

journaling queue for each share location. Process 6100 then proceeds to step 6130.

[0587] At step 6130, the journaling service may determine whether the maximum failure count

has been exceeded for a particular share location. In some embodiments, the journaling service

may perform this determination by comparing a running tally of the number of failed data

storage operations stored in a journaling queue associated with the particular share location to the

maximum failure count. If the maximum failure count has been exceeded, process 6100

- 144-

WO 2011/123699 PCT/US2011/030811

proceeds to step 6140. In some embodiments, if the maximum failure count has been exceeded

for a particular share location, the journaling service may mark that share location as being in a

critical failure state. In some embodiments, an indication that a share location is in a critical

failure state may be stored in any suitable data flag maintained in memory or disk central to the

journaling service, or on the data share itself.

[0588] At step 6140, the journaling service may discard any failed data storage operations

stored in the journaling queue associated with the share location that is in a critical failure state.

In some embodiments, the journaling service may discard these failed operations by clearing the

journaling queue associated with the share location that is in a critical failure state.

Alternatively, the journaling service may delete the entire journaling queue associated with the

share location that is in a critical failure state. Additionally, at step 6140 the journaling service

may stop logging failed operations associated with the share location that is in a critical failure

state. For example, the journaling service may no longer update the journaling queue associated

with the share location that is in a critical failure state. Process 6100 then proceeds to step 6150.

[0589] At step 6150, the journaling service may rebuild a share location that is in a critical

failure state. In some embodiments, the restore functionality of a secure data parser may be used

to rebuild a share location. For example, the data stored in the share location that is in a critical

failure state may be associated with original data that was split using any suitable information

dispersal algorithm into any number of data shares. Each of these data shares may be stored in

two or more share locations, such as any suitable combination of a public or private cloud,

removable storage device, or mass storage device. As long as the secure parser is able to recover

this data from at least one of the other share locations that are online (in other words, not in a

critical failure state), then the secure data parser may rebuild the share location. In some

embodiments, the share location may be rebuilt from scratch. For example, all files that are to be

restored on the share location may be removed before the rebuilding process is initially executed

on the share location. In some embodiments, administrative permissions to read and write to the

share location may be required for the rebuilding process to be executed on the share location.

[0590] As will be described below with respect to FIGURE 62, in some embodiments the share

locations that are in the process of being rebuilt may be marked as being in a “critical rebuilding

state”. This critical rebuilding state may indicate to the journaling service that certain failed

operations should be logged. These operations may be at the file level, block level, bit level, or

- 145-

WO 2011/123699 PCT/US2011/030811

any suitable level of file granularity. In some embodiments, step 6150 may be optional. Process

6100 then proceeds to step 6160. At step 6160, the journaling service may resume maintaining a

journaling queue for the share location that was rebuilt at step 6150. In some embodiments, step

6150 may be optional. Process 6100 may then end.

[0591] If the journaling service determines that the maximum failure count for a particular

share location is not exceeded at step 6130, process 6100 may proceed to step 6170. At step

6170, the journaling service may continue to log failed operations for the particular share

location. Process 6100 then ends.

[0592] In some embodiments, process 6100 may use a maximum timeout in addition to the

maximum failure count at steps 6110, 6120, and 6130 in order to determine whether a share

location is in a catastrophic failure state. In some embodiments, the maximum timeout may be

preconfigured amount of time that a particular share location can remain offline before the share

location is marked as being in a catastrophic failure state. The catastrophic failure state may

indicate to the journaling service that all read and write operations to the share should be refused

until the share is restored or in the process of being restored. In some embodiments, the share

may be restored according to the rebuild process described with respect to step 6150. In other

embodiments, the share location may be restored by an administrator of the journaling service by

manually restoring the share location. For example, an administrator of the journaling service

may replace or remap the data storage facility associated with the share location.

[0593] In some embodiments, the journaling service may log a critical rebuilding state for a

share location that is in the process of being rebuilt. In some embodiments, the journaling

service may log a critical rebuilding state for a particular share location as soon as the rebuilding

process begins. In some embodiments, this rebuilding process may be similar to that described

with respect to step 6150 of FIGURE 61. As will be described below with respect to FIGURE

62, this critical rebuilding state may indicate to the journaling service that it should log failed

operations for files that have already been restored in the share location that is being rebuilt.

[0594] FIGURE 62 is an illustrative process 6200 for operating a journaling service using a

critical rebuilding state in an embodiment of the present invention. While process 6200 is

described as operating on the file level, it will be recognized that the journaling service may

execute process 6200 at any suitable level of granularity, such as at the block level or bit level.

Process 6200 begins at step 6210. At step 6210, the journaling service receives a request to

- 146-

WO 2011/123699 PCT/US2011/030811

perform a data storage operation on a file associated with a share location that is in a critical

rebuilding state. In some embodiments, this data storage operation may be a read or write

request on the file. Because the share location is in a critical rebuilding state, the read or write

request for the share location will fail. For example, the journaling service may receive a request

to write to a file that contains a slideshow presentation. Shares of data associated with the file

containing the slideshow presentation may be stored in a share location that is being rebuilt and

is in a critical rebuilding state, as well as three other share locations that are in an online state.

The request to write to the file will fail with respect to the share location that is in a critical

rebuilding state, but succeed with respect to the share locations that are in an online state.

Process 6200 proceeds to step 6220.

[0595] At step 6220, the journaling service determines whether the file exists in the share

location that is in a critical rebuilding state. In some embodiments, the journaling service may

maintain a list of files that have been restored in the share location that is in a critical rebuilding

state. If the file associated with the data storage operation is on the list, the journaling service

may determine that the file exists in the share location. Process 6200 then proceeds to step 6240.

At step 6240, the journaling service logs the data storage operation, such as a read or write

request, which failed at step 6210. In some embodiments, this failed operation may be stored in

a journaling queue similar to that described with respect to process 5900 of FIGURE 59. Process

6200 then proceeds to step 6250. At step 6250, the journaling service replays the failed

operation once the rebuild process is complete. In some embodiments, the journaling service

may be informed that the rebuild process is complete with respect to a share location when all of

the files associated with the share location are restored. When all files associated with the share

location are restored, the share location may be marked as being available for data storage

operations (i.e., is in an online state). In this manner, the critical rebuilding status allows the

journaling service to continue to maintain the health of the file system while one or more share

locations in the file system are being rebuilt. Process 6200 then ends.

[0596] If the journaling service determines at step 6220 that the file from the request to

perform an operation at step 6210 does not exist (i.e., has not yet been restored) at the share

location that is being rebuilt, process 6200 proceeds to step 6230. At step 6230, the operation

which failed at step 6210 is discardedby the journaling service. In some embodiments, the

journaling service may discard these failed operations by not writing them to the journaling

- 147-

20
11

23
50

75

21
 M

ay
 2

01
3 queue associated with the share location that is in a critical rebuilding state. In such

embodiments, the journaling service may rely on the operation on the file being successful

with respect to other data stores associated with the journaling service. For example, an

update to a file containing a slideshow presentation may be discarded with respect to a share

location that is in a critical rebuilding state and has not yet restored the file containing the

slideshow presentation. However, the update operation may be successful with respect to

three other share locations which are in an online state and contain the file. Process 6200 then

ends.

[0597] Although some applications of the secure data parser are described above, it should

be clearly understood that the present invention may be integrated with any network

application in order to increase security, fault-tolerance, anonymity, or any suitable

combination of the foregoing.

[0598] Additionally, other combinations, additions, substitutions and modifications will be

apparent to the skilled artisan in view of the disclosure herein.

(0599] The term “comprise” and variants of that term such as “comprises” or “comprising”

are used herein to denote the inclusion of a stated integer or integers but not to exclude any

other integer or any other integers, unless in the context or usage an exclusive interpretation

of the term is required.

[0600] Reference to prior art disclosures in this specification is not an admission that the

disclosures constitute common general knowledge in Australia.

- 148-

20
11

23
50

75

20
 A

ug
 2

01
5 CLAIMS

1. A method for reading and writing a set of data, comprising:

splitting the set of data into one or more data shares using an information dispersal

algorithm;

storing the one or more data shares in share locations;

determining that at least one of the share locations is unavailable for data storage

operations; and

storing incoming data storage operations associated with each of the unavailable share

locations in respective journaling queues unique to each of the unavailable share locations.

2. The method of claim 1, further comprising:

determining that at least one of the unavailable share locations has been made

available; and

executing the data storage operations stored in the journaling queue unique to the at

least one unavailable share location that has been made available.

3. The method of claim 2, further comprising flushing the executed data storage

operations.

4. The method of any one claims 1 to 3, further comprising:

storing the journaling queues in memory;

establishing a queue limit associated with an amount of data storage operations;

determining that the queue limit is exceeded for at least one of the journaling queues;

and

for each of the journaling queues exceeding the queue limit, flushing the journaling

queue from memory to disk storage.

5. The method of any one claims 1 to 4, further comprising:

establishing a maximum amount of time that a share location is unavailable for data

storage operations;

determining that the maximum amount of time is exceeded for at least one of

unavailable share locations;

- 149-

20
11

23
50

75

20
 A

ug
 2

01
5 for each of the unavailable share locations exceeding the maximum amount of time,

refusing incoming data storage operations.

6. A system for reading and writing a set of data, the system comprising a

processor configured to:

split the set of data into one or more data shares using an information dispersal

algorithm;

store the one or more data shares in share locations;

determine that at least one of the share locations is unavailable for data storage

operations; and

store incoming data storage operations associated with each of the unavailable share

locations in respective journaling queues unique to each of the unavailable share locations.

7. The system of claim 6, wherein the processor is further configured to:

determine that at least one of the unavailable share locations has been made available;

and

execute the data storage operations stored in the journaling queue unique to the at least

one unavailable share location that has been made available.

8. The system of claim 7, wherein the processor is further configured to flush the

executed data storage operations.

9. The system of any one of claims 6 to 8, wherein the processor is further

configured to:

store the journaling queues in memory;

establish a queue limit associated with an amount of data storage operations;

determine that the queue limit is exceeded for at least one of the journaling queues;

and

for each of the journaling queues exceeding the queue limit, flush the journaling queue

from memory to disk storage.

10. The system of any one of claims 6 to 9, wherein the processor is further

configured to:

- 150-

20
11

23
50

75

20
 A

ug
 2

01
5 establish a maximum amount of time that a share location is unavailable for data

storage operations;

determine that the maximum amount of time is exceeded for at least one of

unavailable share locations;

for each of the unavailable share locations exceeding the maximum amount of time,

refuse incoming data storage operations.

11. A method for reading and writing a set of data, comprising:

splitting the set of data into one or more data shares using an information dispersal

algorithm;

storing the one or more data shares in share locations;

establishing a maximum number of failed data storage operations;

storing failed incoming data storage operations associated with each of the share

locations in respective journaling queues;

determining that the failed incoming data storage operations stored in at least one of

the journaling queues exceeds the established maximum number; and

discarding the failed incoming data storage operations stored in the at least one of the

journaling queues that exceeds the established maximum number.

12. The method of claim 11, further comprising discarding incoming data storage

operations associated with each of the respective journaling queues that exceed the

established maximum number.

13. The method of claim 11 or 12, further comprising:

storing each of the one or more data shares in two or more share locations; and

for each share location associated with at least one of the journaling queues that

exceeds the established maximum number, rebuilding the share using at least one of the two

or more share locations that are online.

14. A system for reading and writing a set of data, the system comprising a

processor configured to:

split the set of data into one or more data shares using an information dispersal

algorithm;

store the one or more data shares in share locations;

- 151 -

20
11

23
50

75

20
 A

ug
 2

01
5 establish a maximum number of failed data storage operations;

store failed incoming data storage operations associated with each of the share

locations in respective journaling queues;

determine that the failed incoming data storage operations stored in at least one of the

journaling queues exceeds the established maximum number; and

discard the failed incoming data storage operations stored in the at least one of the

journaling queues that exceeds the established maximum number.

15. The system of claim 14, wherein the processor is further configured to discard

incoming data storage operations associated with each of the respective journaling queues that

exceed the established maximum number.

16. The system of claim 14 or 15, wherein the processor is further configured to:

store each of the one or more data shares in two or more share locations; and

for each share location associated with at least one of the journaling queues that

exceeds the established maximum number, rebuild the share using at least one of the two or

more share locations that are online.

17. A method for reading and writing a set of data, comprising:

splitting the set of data into one or more data shares using an information dispersal

algorithm;

storing the one or more data shares in share locations including a rebuilding share

location;

receiving a request to perform a data storage operation on a file associated with the

rebuilding share location;

determining that the file is restored in the rebuilding share location; and

based on the determination, storing the data storage operation in a respective

journaling queue associated with the rebuilding share location.

18. The method of claim 17, further comprising:

determining that the file is not restored in the rebuilding share location; and

based on the determination, discarding the data storage operation.

19. The method of claim 17 or 18, further comprising:

- 152-

20
11

23
50

75

20
 A

ug
 2

01
5 determining that the rebuilding share location is available for data storage operations;

and

based on the determination, executing the data storage operations stored in the

journaling queue associated with the rebuilding share location that is rebuilding.

20. A system for reading and writing a set of data, the system comprising a

processor configured to:

split the set of data into one or more data shares using an information dispersal

algorithm;

store the one or more data shares in share locations, including a rebuilding share

location;

receive a request to perform a data storage operation on a file associated with the

rebuilding share location;

determine that the file is restored in the rebuilding share location; and

based on the determination, store the data storage operation in a respective journaling

queue associated with the rebuilding share location.

21. The system of claim 20, wherein the processor is further configured to:

determine that the file is not restored in the rebuilding share location; and

based on the determination, discard the data storage operation.

22. The system of claim 20 or 21, wherein the processor is further configured to:

determine that the rebuilding share location is available for data storage operations;

and

based on the determination, execute the data storage operations stored in the

journaling queue associated with the rebuilding share location.

- 153 -

WO 2011/123699 PCT/US2011/030811

1/63

ο

0
LL

WO 2011/123699 PCT/US2011/030811
2/63

11
0

WO 2011/123699 PCT/US2011/030811
3/63

FI
G

. 3

φ φε ε .Ε□ ”5> "Β
ε
.2

C SU ε ίυ
■X ε οw ο .2 Ξχ ο.Έ CS CSs >2
Ε raε οΕ ο
Q

φ χ:
□

a.
2?

Ε < υ
ο Ε Ε

LL. ο ο &UO
U, LL

WO 2011/123699 PCT/US2011/030811

4/63

φ
TO
φ s~>
O
0

Φ
c

‘5s
£
0
C
.2
¢8
.2
£
Φ
X
5<

Φ
.2
'5>
c

LU
.2 Ξ
Ώ.
ra s™
OS
o
Ω.
&
Q

D
ep

os
ito

ry

o o o
H S™ H

OT OT 05
C C S!
0 0 LU

"<
2
LL

o o
o ‘X
Φ
Φ
Φ

c
Φ

<
E o 4» u.

E o s™ LU

WO 2011/123699 PCT/US2011/030811

5/63

0

8 8

Au
th

en
tic

at
io

n
En

gi
ne

E o

WO 2011/123699 PCT/US2011/030811

6/63

Φ ε
”5>

£
o
"5 o a ®
D
o

C
ry

pt
og

ra
ph

ic
 E

ng
in

e
/

o c HSU

CD

O

Φ ε £7 o
ε
.2"5sε sis "5

o
«S
.2

ε
.2

Ω.
Φ
D

ε
Φ
X

0 E
■J".5

2 <
£ a Eo

WO 2011/123699 PCT/US2011/030811

7/63

I**»
d

LL

WO 2011/123699 PCT/US2011/030811

8/63

B ^00¾

WO 2011/123699 PCT/US2011/030811

9/63

900

>

905

Enrollment Data Flow

Send Receive SSL Action

User Transaction
Engine (TE) 1/2

Transmit Enrollment Authentication
Data (B) and the User ID (UID)
encrypted with the Public Key of
the Authentication Engine (AE) as
(PUB...AE(UID,B))

TE AE Full Forward Transmission
AE Decrypts and Splits Forwarded
Data

AE The Xth
Depository (DX) Full Store Respective Portion of Data

When Digital Certificate Requested

AE Cryptographic
Engine (CE) Full Request Key Generation

CE Generates and Splits Key

CE TE Full Transmit Request for Digital
Certificate

TE Certification
Authority (CA) 1/2 Transmit Request

CA TE 1/2 Transmit Digital Certificate

TE User 1/2 Transmit Digital Certificate

TE MS Full Store Digital Certificate

CE DX Full Store Respective Portion of Key

915

925

930

950

955

960

945
j

935
/

965

FIG. 9, Panel A

WO 2011/123699 PCT/US2011/030811
10/63

900

FIG. 9S Panel B

WO 2011/123699 PCT/US2011/030811

11/63

/- 1000

1030

1035

1040

1045

1050

1055

1010

1025

1005

Authentication Data Flow

SEND RECEIVE SSL ACTION

User Vendor 1/2 Transaction occurs, such as selecting
purchase

Vendor User 1/2 Transmit transaction ID (TID) and
authentication request (AR)

Authentication data (B:) is gathered
from User

User TE 1/2
Transmit TID and B’ wrapped in the
Public Key of the Authentication
Engine (AE), as (PUB_AE(TID, B’))

TE AE Full Forward transmission

Enrollment authentication data (B) is
requested and gathered

Vendor Transaction Engine
(TE) Full Transmits TID, AR

TE Mass Storage (MS) Full Create Record in database

TE The Xth Depository
(DX) Full USD, TID

DX AE Full
Transmit the TID and the portion of
the authentication data stored at
enrollment (BX) as (PUB AE(TID,
BX))

AE assembles B and compares to B’

AE TE Full TID, the filled in AR

TE Vendor Full TID, Yes/No

TE User 1/2 TID, confirmation message

FIG. 10

WO 2011/123699 PCT/US2011/030811
12/63

1110

1115

1120

1125

1105

1130

1135

Signing Data Flow

SEND RECEIVE SSL ACTION

User Vendor 1/2 Transaction occurs, such as agreeing on
a deal

Vendor User 1/2
Transmit transaction identification
number (TID), authentication request
(AR), and agreement or message (M)

Current authentication data (B’) and a
hash of the message received by the
User (h(M’)) is is gathered from User

User TE 1/2
Transmit TID, B’, AR, and h(M’) wrapped
in the Public Key of the Authentication
Engine (AE), as (PUB AE(TID, B’, h(M’))

TE AE Full Forward transmission

Gather enrollment authentication data

Vendor Transaction Engine
(TE) Full Transmits UID, TID, AR, and a hash of

the message (h(M’)).
TE Mass Storage (MS) Full Create Record in database

TE The Xth Depository
(DX) Full UID, TID

DX AE Full
Transmit the TID and the portion of the
authentication data stored at Enrollment
(BX), as (PUB AE/TID. BX))
The original vendor message is
transmitted to the AE

TE AE Full Transmit h(M)

AE assembles B, compares to B’ and
compares h(M) to h(M’)

AE Cryptographic
Engine (CE) Full

Request for digital signature and a
message to be signed, for example, the
hashed message

AE DX Full TID, signing UID

DX CE Full
Transmit the portion of the Crypto­
graphic Key corresponding to the signing
party
CE assembles key and signs

GE AE Full Transmit the digital signature (S) of
signing party

AE TE Full TID, the filled in AR, h(M), and S

TE Vendor Full

TID, a receipt~(TID, Yes/No, and S), and
the digital signature of the trust engine,
for example, a hash of the receipt
encrypted with the trust engine’s Private
Key (Priv TE(h(receipt)))

TE User 1/2 TID, confirmation message

WO 2011/123699 PCT/US2011/030811

13/63

1200

1205

Encryption/Decryption Data Flow

Send Receive SSL Action

Decryption

Perform Authentication Data Process
1000, include the Session Key (sync) in
the AR, where the sync has been
encrypted with the Public Key of the User
as PUBJJSER(SYNC)
Authenticate the User

AE CE Fuil Forward PUBJJSER(SYNC) to CE

AE DX Full USD, TID

DX CE Full
Transmit the TID and the portion of the
Private Key as (PUB AE(TID,
KEY__USER))
CE assembles the Cryptographic Key and
decrypts the sync

CE AE Fuil TID, the filled in AR including decrypted
sync

AE TE Fuil Forward to TE

TE Requesting
APP/Vendor 1/2 TID, Yes/No, Sync

Encryption
Requesting

APR/
Vendor

TE 1/2 Request for Public Key of User

TE MS Full Request Digital Certificate

MS TE Full Transmit Digital Certificate

TE Requesting
APP/Vendor 1/2 Transmit Digital Certificate

1210

1215

1220

1225

1230

1235

1240

1245
/

FIG. 12

1250

WO 2011/123699 PCT/US2011/030811

14/63

o

WO 2011/123699 PCT/US2011/030811
15/63

WO 2011/123699 PCT/US2011/030811

16/63

Redundancy

To A4
Transaction

Engine

FIG. 1

WO 2011/123699 PCT/US2011/030811

17/63

1045

I
I
I

I
I
I
I

I
I
I

I
I
I

I
I

I
I
I
I

I
I
I

I
I
I

I
I
I

“I

ι
!_____________________________________

I
I
I

J

FIG. 16

WO 2011/123699 PCT/US2011/030811
18/63

1050

ransaction Engine Receives
TID and Completed

Authentication Request
1700

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

v
1710

Generate Required Trust Level
Based on Size/Risk of

Transaction Specified in
Authentication Request

1
1720

r (

Compare Requ
and Authi
Confider

red Trust Level
sntication
see Level

1740

s Authenucauon
Confidence Leve

greater than Required
Trust Level?

YES

Generate Passive
Authentication

v
1055

1750

NO—►^Perform Trust Arbitrage^

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.1

Send Authentication
Result to Vendor

FIG» 17

WO 2011/123699 PCT/US2011/030811

19/63

NO->
Is Further
Arbitrage

Permitted?

YES

.X
Contact User:

Request Additional
Authentication and

Offer Insurance

1820

1810

Generate Negative
Authentication

1055
z

Send Authentication)
Result to Vendor J

1830
I (

Contact Vendor:
Confirm Required
Trust Level and
Offer Insurance

YES
I ^-1015Ψ (

Has User
Provided

Addraona
Data?

NO
Has Vendor

Trust Level?
Adjusted Required

f Send New \
I Authentication Data to)
^Authentication Engine/

±
Compare

Authentication
Confidence Level and

equired Trust Leve

1850

Wait for Response
Period to Expire «-NO Was nsurance

Purchased?

Adjust
Authentication

Confidence Level
YES> and Required

Trust Level Based
on Insurance
Purchased

FIG. 18 1845

WO 2011/123699 PCT/US2011/030811

20/63

in o in o co— CM CM co co
σ> σ» o> cn σ>

Tr
us

t E
ng

in
e

,
Ve

nd
or

FI
G

. 1
9

"Ώ©EE
δ 0 Φ *“ix

“S
(51« ω s

raΦ © © O QΦ
o ™

55 o«3
« -K”Ώ Φ s™ Φ ©
is ® Έ®
® σ

φ Φ Q ΦQ Q o T5££
Qi © Φ

OT

n o
co co
03 03

© ©
O o

&
¢8 «5
O Soo U

©s o *"* Soo.
© ·© © Φ

φ © Φ «5
X Φ -► “°b -►
”S>

©
<15 < O

£<

■© "©
© Φ
> >

ϋ
loo ^oS
© o
o

-i-·’ ra Ώ
ω © "S © Soo *-> Φ ra © o
φ

“> O © ΦO©
S£ <

WO 2011/123699 PCT/US2011/030811
21/63

FIG. 20

WO 2011/123699 PCT/US2011/030811
22/63

Data to be
parsed

Generate
session

master key
>

RC4
Encryption

with session
Master key

Session
key to be
secured

Split data
according to
session key

Access
session
master

Encrypted^Session
data

share 1

tncrypted/Session
data / key

share 3 / share 3,

share 2

EncryptedySession
data / key

share n / share n;

1 r

Split Session
key according

to Parser
Master key

F

key //Encrypted/Session
share 1// data

/ share 2

v

Generate
share 1 key

Generate
share 2 key.,
ΠΊ7

Generate
share 3 key

Generate
share n key _ “ri?

____ t____
Encrypt share

1 data with
share
1 key

____ t____
Encrypt share

2 data with
share
2 key

____ t____
Encrypt share

3 data with
share
3 key

____ t____
Encrypt share

n data with
share
n key

▼__________
Encrypted

share 1 (data / /
session key) /

Encrypted -
share 3 (data / /
session key) /

Encrypted share
n (data / session

key) y

Key 2

WO 2011/123699 PCT/US2011/030811
23/63

Generate
session

master key
>

▼
RC4

Encryption
with session
Master key

/ Session key
y to be secured

Session key / Store
management / transaction

I ID:/Session
\ Key

▼
Generate

Transaction
ID

Λ

y

Split data
> according to

session key

_____t_____
Split transaction
ID according to
Parser Master

Encrypted/ Trans //Encrypted/ Trans //Encrypted/ Trans //Encrypted/ Trans /
data / ID // data / ID // data / ID // data / ID /

share 1 / share 1// share 2/share 2// share 3/ share 3// share n / share n/

Access
parser

master key

v

Generate
share 3

key

Generate
share n

key

Encrypt
share n

data with
share n

Encrypt
share 1

data with
share 1

▼
Encrypt
share 3

data with
share 3

▼
Encrypt
share 2

data with
share 2

Encrypted
/ share 2
(data/trans ID)

tncrypiea
share n

(data/trans ID)

WO 2011/123699
24/63

PCT/US2011/030811

Session
Master key

to be secured

I Access
/ Parser
/ master ke

Intermediary
Key (Parser
Master XOR

Session
Master

▼
Encrypt data

with
Intermediary

key
>

Session key / store
management I transaction

I ID: / Session
\ Key

Generate
Transaction

ID

Λ

Encrypt
/Access
/ Intermediary
/ key

Parse

Spiit data
according to
intermediary

Split transaction
ID according to
Parser Master

key

Access
Parser

Master key

/
EncryptecV Trans //Encrypted/ Trans / /Encrypted/ Trans //Encrypted/ Trans /

data 7 ID // data 7 ID // data / ID // data / ID /
share 1 / share 1// share 2/share 2// shares/ shares// share n / share n/

Generate
share 1

key

Encrvot
Pieces

Encrypt
share 1

data with
share 1

Generate
share 2

key

13
Encrypt'
share 2

data with
share 2

key

Generate
share 3

key

Encrypt
share 3

data with
share 3

key

Generate
share n

Encrypt
share n

data with
share n

Obfuscate

/ Encrypted
' share 3
(data/trans ID)

FIG. 23

/ Encrypted
/ share 1
/(data/trans I Dy

WO 2011/123699 PCT/US2011/030811
25/63

/ Session
U Master key
/ to be secured

Z
' Access

Parser
master ke

Generate
Session
Master

key

Intermediary
Key (Parser
Master XOR

Session
Master)

Encrypt data
with

Intermediary
key

Session key / store
management / transaction

I ID:/Session
\ Key

Generate
Transaction

ID

Λ

j

/Access7
/ Intermediary /—>
/ key /

Split data
according to
Intermediary

Split transaction
ID according to
Parser Master

kev

/
Encrypted/ Trans //Encrypted/ Trans / /Encrypted/ Trans //Encrypted/ Trans /

data / ID // data / ID // data / ID // data / ID /
share 1 / share 1// share 2/share 2// shares/ shares// share n / share n/

▼
Generate
share 1

key

Encrypt
share 1

data with
share 1

key

Generate
share 2

key
JC\

Encrypt'
share 2

data with
share 2

key

▼
Generate
share 3

key

Encrypt
share 3

data with
share 3

key

“T

V

Generate
share n

Encrypt
share n

data with
share n

/ Encrypted
' share 3
(data/trans ID)/

WO 2011/123699 PCT/US2011/030811

26/63

Jss .
Ιί

.E o
Φ 15

■g £

TO
.E

a ©
>■£

£S
2

Φ
a a
< £

KJ
2

O a
O

O
ω
Q

A
V

A
V

a
3
o
o
Φ

s>
s
Q
Φ
X
to

A
V

Ώ.
3 o s~
0

03s™
.2Έ
φ

03

A
V

a □ o
0

OT

A
-/

A
A

A
V

φ
o
£
ra
.E
IZ

l·-

V
l·-

V
l·-

V
G

en
er

al
|

A
7

A
7

A
7

A
7

A
7

A
7

Φ
_>
3
Q
Φ
X
to Se

ni
or

 S
ta

ff

ts
OT

Fi
na

nc
e

G
en

er
al

WO 2011/123699 PCT/US2011/030811

27/63

FIG. 26

WO 2011/123699 PCT/US2011/030811

28/63

2600

2604 2604 2604

WO 2011/123699 PCT/US2011/030811

29/63

Recipient

Network

2702
Parser

2704
Message

Sender

FIG. 28

WO 2011/123699 PCT/US2011/030811

30/63

8““ Srm, z

WO 2011/123699 PCT/US2011/030811

31/63

Ap
pl

ic
at

io
n

La
ye

r

O

0
lx

WO 2011/123699 PCT/US2011/030811

32/63

W
rit

e
/ I

ns
er

t /
 T

ra
ns

m
it

¢8
© g Φ s= £
O KJ 2 o

«SOU
IS o Φ s"·
p s:
© o 2 ©O"Xffi s o ±Q

© L

ra ©vjw m ©■Ώ +-< Φ E <5
©fc a s
© js

& ££ t Φ o °°“
E2 “» ©

Φ ■"■© s > 8
φ -™
Soo «31

OT w

c £
Ο φ
X Ω. . E

X

¢8
LJJ s

WO 2011/123699 PCT/US2011/030811

33/63

o o

«J
£
O

Q.
Q.<

R
ea

d
/ S

el
ec

t /
 R

ec
ei

ve

CM
CO

Φ
.Ω
O

’~v
«5 O

u e
ω

2
ra
Q
ffi S"® Φ
S »
Φ 2

03

©
OT O

s — £
Ο Φ Φ

■js a E
Φ ®

e
a ra

iXJ - 2

CM
CO

WO 2011/123699 PCT/US2011/030811
34/63

o
Li_.

WO 2011/123699 PCT/US2011/030811

34/63

WO 2011/123699 PCT/US2011/030811

36/63

O

WO 2011/123699 PCT/US2011/030811

37/63

(In
pu

t D
at

a
An

y
Ty

pe
)

Sh
am

ir I
Ke

y
Se

cu
re

 In
te

rn
al

 4—I
(s

ec
re

t-
En

cr
yp

tio
n

Se
ss

io
n K

ey
 —

sp
lit

tin
g)

 [
(S

ec
re

t S
ha

rin
g)

WO 2011/123699 PCT/US2011/030811

38/63

a
©

© o
"K <

co ■K3 «
< roco
ra«©

00

1«
Φ £

o
«5 *«S
a. Ω.
cs 3
φ
Ω
φ

< a

o
3 £
O
Φ

TO

Φ
Φ
a.

Cxi
|X-

co

b*
co

o
IL

WO 2011/123699 PCT/US2011/030811
39/63

ο
ο
co
Μ

©0
©ο

0
LL

WO 2011/123699 PCT/US2011/030811
40/63

39
00

CO

0

WO 2011/123699 PCT/US2011/030811

41/63

O
o
IL

<

CD
LB-

WO 2011/123699 PCT/US2011/030811

42/63

ο
ο d

LL

WO 2011/123699 PCT/US2011/030811
43/63

Ω φ
CO

Φ
fi.

WO 2011/123699 PCT/US2011/030811
44/63

Μ

Ο
LL

WO 2011/123699 PCT/US2011/030811
45/63

ο

Μ”
Ο

ο

Ω Φ

ϋΩ~
Φ

οο

φ

Ω

WO 2011/123699 PCT/US2011/030811

46/63

45
50

WO 2011/123699 PCT/US2011/030811

47/63

M"
o

WO 2011/123699 PCT/US2011/030811

48/63

M-
o
LL.

WO 2011/123699 PCT/US2011/030811
49/63

48
06

wo 2011/123699

PCT/US2011/030811
50/63

Φ

dMOWN
u.

WO 2011/123699 PCT/US2011/030811
51/63

WO 2011/123699 PCT/US2011/030811
52/63

51
02

WO 2011/123699 PCT/US2011/030811

53/63

52
04

WO 2011/123699 PCT/US2011/030811

54/63

53
12

WO 2011/123699 PCT/US2011/030811

55/63

•ςΤ
Ο
ιο

3
0
IX

WO 2011/123699 PCT/US2011/030811
56/63

a.

FI
G

. 5
5

o oT- cm

WO 2011/123699 PCT/US2011/030811
57/63

Φ
Φ

a.
φS™
5
Q
Φ
W

□
ffl

O
a.

’>
s
a
a
ή
φ
©

O
O
ω

3
Ο.

<dSO
O

o o
CXI

WO 2011/123699 PCT/US2011/030811

58/63

FIG. 57

WO 2011/123699 PCT/US2011/030811
59/63

FIG. 58

WO 2011/123699 PCT/US2011/030811
60/63

5900

FIG. 59

WO 2011/123699 PCT/US2011/030811

61/63

6000

FIG. 60

WO 2011/123699 PCT/US2011/030811
62/63

6100

FIG. 61

WO 2011/123699 PCT/US2011/030811

63/63

6200

FIG. 62

