A maternity and nursing garment is disclosed that is formed from a seamless double layer circular knit tube. The garment is flexible and stretchable throughout. The garment provides support and comfort for a woman’s breasts as they change throughout pregnancy and afterwards. The garment also provides convenience and ease of access for nursing a baby.
Start

Provide seamless double layer circular knit tube with a knitted band around a circumference of the tube

Remove fabric from one portion of outer layer and inner layer to create openings for arms

Remove fabric from a middle portion of outer layer and inner layer to create brassiere cups and neckline

Sew shoulder straps together at top of garment

Sew bindings on edges of armholes and neckline

End

FIG. 6
CROSSOVER MATERNITY AND NURSING GARMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part and claims the priority benefit of U.S. patent application No. 13/560,579 filed on July 27, 2012. The disclosure of the above-referenced application is incorporated herein by reference in its entirety for all purposes.

FIELD OF THE INVENTION

[0002] This invention relates generally to apparel, and more specifically to a brassiere that is suited for the unique needs of a woman whose breast size changes as she progresses through pregnancy and afterwards when she may be nursing a child. The brassiere is configured to provide comfort and support while the woman’s body changes, and convenience for nursing.

BACKGROUND OF THE INVENTION

[0003] In general, a brassiere, also known as a bra, is an article of clothing that covers and supports a woman’s breasts. Traditional bras have two cups to cover and hold the breasts, shoulder straps connected to each of the cups, and a band encircling the torso under the breasts. They are often made from fabric, such as cotton or polyester, and may or may not have underwire support in the cups.

[0004] Throughout pregnancy, a woman’s breast size may change, thus changing her brassiere needs. As a woman’s breasts swell as she progresses through her pregnancy, the increasingly heavier breasts may be uncomfortable without the proper support. Also, after a woman gives birth, her breasts may be heavier and difficult to manipulate for breast-feeding. The unique needs for nursing a baby are not met by traditional bras. Traditional bras are difficult to maneuver to expose a single breast at a time for breastfeeding or other methods of breastfeeding expression. Thus, nursing bras were created to permit a woman to breastfeed a baby without having to remove her bra entirely. This is accomplished either through a specialized opening in a bra cup to expose part of the breast, or through bras with cups that have clasps above them that can be detached to pull down one or more cups of the bra to expose the breast underneath.

[0005] Despite some of these advances, there still exists a need for a garment that is more comfortable, provides adequate support, and is easier to manipulate for nursing than having to unhook a clasp.

SUMMARY OF THE INVENTION

[0006] In various embodiments the invention includes a maternity and nursing garment made from a seamless circular knit tube, and the method of manufacturing the garment. The method of manufacture, in one form, includes providing a seamless double layer circular knit tube, the double layer circular knit tube comprising an outer layer of fabric and an inner layer of fabric. Fabric is removed from portions of the outer layer and inner layer such that an opening is created for the woman’s arms and neck. A top portion of the double layer circular knit tube is then sewn together to create two shoulder straps. The outer layer and an inner layer of the brassiere may be manufactured such that they lay diagonally across a woman’s chest in substantially opposing directions when worn by the woman.

[0007] The garment may be formed from flexible, stretchable material and comprises an inner layer of fabric placed diagonally across the chest of the woman, an outer layer of fabric placed diagonally across the chest of the woman in the opposite direction, and a knitted band that fits snugly around the woman’s torso under the breasts. In various embodiments, the outer and inner layers of the garment may be composed of at least two different knit structures, to provide added support and structure to strategic points of the garment.

[0008] In some embodiments, the garment may be a camisole further comprising a midsection portion that extends below the knitted band to also cover a woman’s midsection or lower torso area.

[0009] The garment may comfortably provide support and shape to the woman’s breasts, along with convenience for nursing. To nurse a baby, the wearer of the garment simply slides a front portion of a brassiere cup down and around a breast to expose it so that the baby can access the breast for nursing. The woman may slide down and around either the inner layer or the outer layer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1A is a front view of an exemplary embodiment of a crossover maternity and nursing brassiere.

[0011] FIG. 1B is a back view of an exemplary embodiment of a crossover maternity and nursing brassiere.

[0012] FIG. 2A is a front view of another exemplary embodiment of a crossover maternity and nursing brassiere.

[0013] FIG. 2B is a back view of the exemplary embodiment of the crossover maternity and nursing brassiere.

[0014] FIG. 2C is a front view of an exemplary embodiment of a crossover maternity and nursing camisole.

[0015] FIG. 2D is a back view of an exemplary embodiment of a crossover maternity and nursing camisole.

[0016] FIG. 3A is a front view of a woman wearing an exemplary crossover maternity and nursing brassiere.

[0017] FIG. 3B is a front view of a woman wearing another exemplary crossover maternity and nursing brassiere.

[0018] FIG. 4 is a back view of a woman wearing an exemplary crossover maternity and nursing brassiere.

[0019] FIG. 5A is a front view of a woman wearing an exemplary crossover maternity and nursing brassiere and preparing for nursing.

[0020] FIG. 5B is a front view of a woman wearing another exemplary crossover maternity and nursing brassiere and preparing for nursing.

[0021] FIG. 6 is an operational flow diagram illustrating the steps for manufacturing an exemplary crossover maternity and nursing brassiere.

DETAILED DESCRIPTION

[0022] The presently disclosed maternity and nursing garment may be manufactured from a seamless double layer circular knit tube. The double layer tube has an outer layer and an inner layer. Each layer is shaped such that it covers one of the woman’s breasts, shoulder, and corresponding side of her body, while wrapping around and covering a smaller portion of the opposite side of her body. The two layers are configured as mirror images of each other such that they cover substantially opposite sides of the woman’s body. The two
layers also cross over each other in the middle of the front and back sides of the woman’s body. For example, the inner layer may completely cover a woman’s right breast, right shoulder, right half of her back, and a small portion of the woman’s left half of her chest and back area. The outer layer similarly may be manufactured such that it covers the opposite part of the woman’s body as the inner layer. For example, the outer layer may completely cover a woman’s left breast, left shoulder, left half of her back, and a small portion of the woman’s right half of her chest and area. In this way, the two layers form a crossover pattern in the middle of the front and back of the woman’s chest area. In exemplary embodiments, the two layers meet at the bottom of the garment in a band that encircles around the woman’s torso just under the breasts. The outer and inner layers may be manufactured such that they can cover either side of the woman’s chest area (i.e. the outer layer may cover substantially the left side and the inner layer covers substantially the right side, or vice versa).

[0023] In the drawings, FIG. 1A shows an exemplary crossover maternity and nursing garment 100 (also referred to herein as garment 100). In one embodiment, the garment 100 is manufactured from a flexible, stretchable material capable of being expanded and stretched to provide support to a woman’s breasts while also being comfortable to wear. The garment 100 may range from about 9 inches to 13 inches in height when measured from the bottom of the band 103 to the top of the shoulder strap 107, as shown by marker 104 in FIG. 1A.

[0024] In the embodiment depicted in FIG. 1A, the inner layer 102 of the garment covers mainly the right half of the woman’s chest area, while the outer layer 101 covers mainly the left half of the woman’s chest area. Both layers seamlessly encircle the entire circumference of the wearer of the garment. The inner and outer layers may also be manufactured such that the inner layer 102 covers mainly the left half of the woman’s chest area, and the outer layer 101 covers mainly the right half. The inner and outer layers cross over each other in the front of the woman at the middle of the woman’s breasts. In the embodiment depicted in FIG. 1A, the inner layer 102 may range from about 3 to 5 inches in height on the longer side (right side of the woman’s body), as shown by marker 105 in FIG. 1A, and 1 to 3 inches in height on the shorter side (left side of the woman’s body), as shown by marker 106 in FIG. 1A. The outer layer 101 may also range from about 3 to 5 inches in height on the longer side (left side of the woman’s body), and 1 to 3 inches in height on the shorter side (right side of the woman’s body). The garment may also be manufactured such that the longer side of the inner layer 102 may be on the left side of the woman’s body, and the longer side of the outer layer 101 may be on the right side of the woman’s body.

[0025] The seamless manufacture of the garment makes it more accommodating and supportive of a woman’s breasts during pregnancy and throughout the phase of nursing. Additionally, the seamless manufacture allows the garment to be stretchable and flexible in all directions. Seamed garments need to be of the proper size for the wearer, otherwise the stitching on the seam of the garment may split if the garment is too tight. This may cause the garment to fall apart and no longer function for its intended purpose. In contrast, the seamless garment of the present disclosure allows for the material to be flexible and stretchable in all directions, so the garment can adapt to the woman’s changing shape, as well as the constant stretch and pull on the fabric from being pulled down to expose a breast for nursing a baby many times a day.

[0026] The garment 100 may be manufactured from a single piece of circularly knit fabric that is folded over to create inner and outer layers, or from two pieces of circularly knit fabric tubes that are placed inside one another to create inner and outer layers. In one embodiment, the garment 100 is manufactured using an electronic circular knitting machine or electronic warp knitting machine for seamless products, such as the single jersey, double jersey, or warp seamless machines produced by Santoni S.p.A. of Brescia, Italy. Knitting machines made by other manufacturers may also be used, such as machines made by Sangiacomo, Maeyer & Cie, Terrot, Futakami, Pilotelli and Jumbera, among others. The knitting machine may have a cylinder having various shapes and properties. The knitting machine, for example, may have a cylinder size ranging from about 12 inches to 18 inches. The cylinder may also allow the use of different fabrics, yarn types, needles, and knitting structures.

[0027] In exemplary embodiments, the garment 100 is manufactured from one seamless double layer circular knit fabric tube. This circular tube structure of flexible material allows for the garment to continuously pull inwards which provides the woman’s breasts with additional support and also provides compression and lift from the side, thus increasing the aesthetic appearance of the woman’s breasts. The additional support and lift become increasingly important for a woman with swollen breasts due to pregnancy or breastmilk production.

[0028] The garment 100 is made from stretchable material, and can be designed such that one size fits most users, although different sizes may also be provided if desired, for different sized women. Sizes may be designated by numbers, letters, or the traditional bra sizing structure using a combination of numbers and letters.

[0029] In various embodiments, the garment 100 is composed of nylon and spandex, in basic colors typical of brassieres, such as black, nude, grey, and white. The garment 100 can also be made from various patterns, colors, or design prints if desired. The garment 100 may also be textured or adorned with any decoration known in the art such as lace, beads, or decorative stitching.

[0030] The knit fabric may be any knit fabric known in the art such as double knit fabric, single knit fabric, baby rib knit, interlock knit, pique knit, jersey knit, or textured novelty knit. In one embodiment, the knit fabric is jersey fabric. The garment may be seamless and of a stretchable, knit nylon/spandex (elastane) blend. The knit fabric nylon/spandex blend may include 79-97% nylon and an inverse amount of spandex (3-21%). For example, the nylon/spandex blend may include 89% nylon and 11% spandex, 92% nylon and 8% spandex, or any other combination in the range. In another embodiment, the garment 100 may be made of a knit fabric such as a cotton spandex blend or an organic cotton spandex blend. The knit fabric cotton blend may range from 92-95% cotton, and an inverse amount of spandex (5-8%). The organic cotton blend may also range from 92-95% organic cotton, and an inverse amount of spandex (5-8%). In other embodiments, the garment 100 may be made of other suitable fabrics known in the art such as polyester, lycocel, nylon, polyamide, or viscose, among others, in combination with or instead of the above listed fabrics.

[0031] The flexible, stretchable material of the garment 100 may have a fabric density (also sometimes referred to as
weight) ranging from 210 grams/square meter to 400 grams/square meter (gm/m²). Optionally, garment 100 has finishing around the edges of the crossover portion, such as along the neckline, armholes, and/or any other portion where fabric was removed from the seamless circular knit tube. The finishing may include elastic binding of varying sizes, such as 0.25 inch foldover elastic binding.

[0032] A band 103 connects the inner and outer layers and encircles the woman’s torso, just under the breasts. The band may range from about 21 inches to 31 inches in circumference to accommodate women of different sizes. The band 103 may have ribbing for extra support, or may have other knit structures. The ribbing may be of a 2x2, 1x1, 2x1, or 1x2 knit structures. The band 103 may also have a higher percentage of spandex than the remainder of the garment for additional strength and recovery tension. The band 103 may range in height from 0.5 to 1.5 inches. In exemplary embodiments, the band 103 is 1 inch or 1.25 inches in height.

[0033] The garment 100 may also be used by a woman to provide support and comfort while she is sleeping. A woman may use the garment 100 while she is pregnant to provide support for her growing breasts, or while she is nursing. Additionally, women of all shapes and sizes may use the garment 100 at any other time, regardless of pregnancy, for the comfortable support provided by the seamless manufacture of the garment.

[0034] FIG. 1B depicts the back side of the exemplary garment 100. In the exemplary embodiment depicted, the outer layer 101 covers the left shoulder and mainly the left side of the woman’s backside, while the inner layer 102 covers the right shoulder and remaining portion of the woman’s backside. As noted above, the inner and outer layers may be switched such that they cover the opposite side of the woman’s body. For example, the outer layer 101 may cover the right shoulder and mainly the right side of the woman’s backside, while the inner layer 102 covers the left shoulder and mainly the left side of the woman’s backside.

[0035] FIG. 2A depicts another exemplary embodiment of a crossover maternity and nursing garment 100. In this embodiment, a different knit structure is used at a shoulder portion 108 of the shoulder strap area of both the inner layer 101 and the outer layer 102, from the rest of the inner and outer layers. The knit structure at the shoulder portion of the garment in the curved shape prevents the fabric from puckering. The knit structure at the shoulder portion 108 can be any knit structure that is tighter than the knit structure over the breast. For example, the knit structure of shoulder portion 108 may be any type of pique knit stitching, such as single pique, double pique, honeycomb pique knit. The pique stitching may be only on the front portion of the garment 100 with a curved shape around the chest. The knit structure at the shoulder portion 108 may also be any form of jersey, rib, baby rib, or other suitable knit structure that is tighter than the knit structure at the breast. In an exemplary embodiment, the inner layer 102 and outer layer 101 are made substantially of jersey knit, and the shoulder portion 108 on the front of the garment 101 is made of a different knit structure, such as pique knit. Other knit structures may also be used.

[0036] The secondary knit structure on the shoulder portion 108 adds structure to the garment 100, which enables supportive features of the brassiere while still maintaining comfort for the woman wearing the garment 100, and providing the elasticity functionality for ease of removal for nursing or other methods of breastmilk expression. Additionally, with the dual knit structures, the garment 100 can maintain its shape while still being seamless for comfort, an important consideration for garments worn close to the body.

[0037] Moreover, some garment properties, such as thermal properties, and breathability of inner garments, are influenced by both raw material type and knitted structure parameters. For example, wicking ability of a garment may be influenced to a greater extent by the knitted structure, while the drying ability of a garment may be primarily determined by the raw material from which the garment is constructed. Thus, specific knit structures for manufacture of a garment are an important tool in the design of a product tailored to be worn close to the body while also being functional for a specific purpose. In this case, the garment 100 needs to be snug enough to support a woman’s swollen breasts, while also being comfortable for all day wear and be made of material with sufficient elasticity to be easily stretched and moved to expose a breast for nursing multiple times a day with the ability to bounce back and maintain its shape despite the constant stretching.

[0038] The exemplary garment 100 depicted in FIG. 2A may have the same dimensions as the exemplary garment 100 depicted in FIG. 1A, i.e. it may range from about 9 inches to 13 inches in height when measured from the bottom of the band 103 to the top of the shoulder strap 107, as shown by marker 104 in FIG. 2A.

[0039] In the embodiment depicted in FIG. 2A, the inner layer 102 of the garment covers mainly the left half of the woman’s chest area, while the outer layer 101 covers mainly the right half of the woman’s chest area. Both layers seamlessly encircle the entire circumference of the wearer of the garment. The inner and outer layers may also be manufactured such that they cover the opposite sides of the woman’s chest. The inner and outer layers cross over each other in the front of the woman at the middle of the woman’s breasts. In the embodiment depicted in FIG. 2A, the outer layer 101 may range from about 3 to 5 inches in height on the longer side (right side of the woman’s body), as shown by marker 105 in FIG. 2A, and 1 to 3 inches in height on the shorter side (left side of the woman’s body), as shown by marker 106 in FIG. 2A. The inner layer 102 may also range from about 3 to 5 inches in height on the longer side (left side of the woman’s body), and 1 to 3 inches in height on the shorter side (right side of the woman’s body). As discussed above, the garment may also be manufactured such that the longer side of the inner layer 102 may be on the right side of the woman’s body, and the longer side of the outer layer 101 may be on the left side of the woman’s body.

[0040] The garment 100 of FIG. 2A may be manufactured substantially as the exemplary garment 100 described in connection with FIG. 1A. For example, it may be manufactured from a seamless double layer circular knit fabric tube, of a material that is flexible and stretchable in all directions to adapt to the woman’s changing shape and the specific needs of a nursing woman. The garment 100 may come in different sizes, colors, or patterns, and may also have additional adornments or embellishments. The knit fabric may be as described above, and be made from a blend of nylon, spandex, cotton, and/or other suitable fabrics known in the art.

[0041] FIG. 2B depicts the back side of a second embodiment of exemplary garment 100. The back side of the embodiment of FIG. 2B is substantially the same as the back side of the embodiment depicted in FIG. 1B. The outer layer 101 and
inner layer 102 on the back may be made using the same knit structure, for example, jersey knit. Fig. 2C depicts an exemplary embodiment of the front of a crossover maternity and nursing camisole 200 (also referred to herein as camisole 200). The crossover portion of the camisole 200 is of a crossover design similar to the crossover maternity and nursing garment 100 described earlier. The crossover portion has an inner layer 202, outer layer 201, and a band 203 encircling the torso of the woman. There is further a midsection portion 204 that covers the woman’s midsection or lower torso area (i.e. the area from the hip or below the chest to the woman’s hip). In various embodiments, there may also be an optional hem 205 near the bottom edge of the camisole 200.

The crossover portion and band 203 may be of the same composition and dimensions as described above with respect to FIGS. 1A and 2A. The midsection portion 204 may be made from the same material as the crossover portion, or a different material. The hem 205 may be of varying sizes, such as 0.5 inch to 1.5 inches. In exemplary embodiments, the hem 205 is 1 inch in height. The finishing along the edges of the crossover portion may be made from binding of varying materials and sizes. For example, the finishing may be 0.25 inch foldover elastic binding. The crossover portion may further have a secondary knit structure 208 on the front. As discussed above with respect to FIG. 2A, the secondary knit structure may be a different knit structure than the other portions of the inner layer 102 and the outer layer 101. In exemplary embodiments, the secondary knit structure 208 is a pique knit structure.

Fig. 2D depicts an exemplary embodiment of the back of a crossover maternity and nursing camisole 200. The crossover portion of the camisole 200 is of a crossover design similar to the crossover maternity and nursing garment 100 described earlier with respect to FIGS. 1B and 2B.

Fig. 3A depicts a front view of a woman wearing the garment 100 of FIG. 1A. The figure shows the point where the inner layer 102 and outer layer 101 overlap and the outer layer 101 crosses over the inner layer 102 in between the woman’s breasts. The band 103 is shown just under the breasts. Fig. 4 depicts a back view of a woman wearing the garment 100. The inner layer 102 and outer layer 101 overlap in approximately the middle of the woman’s back. The band 103 encircles the woman’s torso.

Fig. 3B depicts a front view of a woman wearing the second embodiment of the garment 100 of FIG. 2A. The figure shows the point where the inner layer 102 and outer layer 101 overlap and the outer layer 101 crosses over the inner layer 102 in between the woman’s breasts. The band 103 is shown just under the breasts. The secondary knit structure 108 is also shown on the shoulder strap area of the garment 100, on both the inner and outer layers.

Fig. 4 depicts a back view of a woman wearing the garment 100. The inner layer 102 and outer layer 101 overlap in approximately the middle of the woman’s back. The band 103 encircles the woman’s torso.

Fig. 5A depicts a woman wearing the garment 100 of FIG. 1A and preparing to nurse a baby. In the embodiment depicted in the figure, the outer layer 101 is pulled down in the front to expose one breast, while the inner layer 102 of the garment 100 continues to support the other breast. In this way, the woman can easily and quickly prepare for nursing a baby without having to remove the entire brassiere, or adjust any mechanisms on the brassiere. While the figure shows the outer layer 101 pulled down, the wearer may also choose to pull down the inner layer 102 instead for nursing. Either layer may be removed to expose a breast for nursing or other methods of breastmilk expression.

Fig. 5B depicts another embodiment woman wearing the garment 100 of FIG. 2A and preparing to nurse a baby. In the embodiment depicted in the figure, the outer layer 101 is pulled down in the front to expose one breast, while the inner layer 102 of the garment 100 continues to support the other breast. In this way, the woman can easily and quickly prepare for nursing a baby without having to remove the entire brassiere, or adjust any mechanisms on the brassiere. While the figure shows the outer layer 101 pulled down, the woman may also choose to pull down the inner layer 102 instead for nursing. Either layer may be removed to expose a breast for nursing or other methods of breastmilk expression. The secondary knit structure 108 is also shown on the shoulder strap area of the garment 100, on both the inner and outer layers.

Fig. 6 depicts an operational flow diagram 600 for the manufacture of the garment 100. While the steps are listed in a specific chronological order, they may be performed in varying orders. In step 601, a seamless double layer circular knit tube is provided with a knitted band around a circumference of the circular knit tube. As discussed above, the band may be ribbed, or be of any other knit structure. From this tube, fabric is removed from one portion of the outer layer and the inner layer to create openings at the edges for the woman’s arms in step 602 (also referred to herein as armholes). Fabric is also removed from a middle portion of the tube from the outer layer and inner layer in opposite directions such that the cups and neckline of the brassiere are formed in step 603. The shoulder straps 107 of the brassiere are then sewn together in step 604. Optionally, finishing can also be added to the raw edges of the garment in step 605. The raw edges may comprise the armholes, edges near the neckline, and any other portion along the perimeter of the garment 100 from which fabric was removed. The secondary knit structure on a shoulder strap portion of the front of the inner and outer layers may be provided on the circular knit tube, or may be added to the garment at later stages. The flow diagram 600 may also be used for the manufacture of the crossover portion of the camisole 200, and then attached to the midsection portion 204.

The above described embodiments are intended to illustrate the principles of the invention, but not to limit its scope. Other embodiments and variations to these embodiments will be apparent to those skilled in the art and may be made without departing from the spirit and scope of the invention as defined in the following claims. It will be further understood that the methods of the invention are not necessarily limited to the discrete steps or the order of the steps described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.

What is claimed is:

1. A method for manufacturing a maternity and nursing crossover brassiere, comprising:
 - providing a seamless double layer circular knit tube, the double layer circular knit tube comprising an outer layer of fabric with at least two knit structures, an inner layer of fabric with at least two knit structures, and a knitted
ribbed band encircling the circumference of the seamless double layer circular knit tube;
removing fabric from one portion of the outer layer of fabric and from one portion of the inner layer of fabric such that an opening for the woman’s arms is created on either side of the brassiere;
removing fabric from a middle portion of the outer layer of fabric and an opposite portion from the inner layer of fabric such that the outer layer of fabric and inner layer of fabric form separate cups of the brassiere; and
sewing a top portion of the double layer circular knit tube together to create shoulder straps of the brassiere.
2. The method of claim 1, wherein the double layer circular knit tube is made from a flexible, stretchable material that pulls in the breasts closer to the woman’s body to provide support and lift of the breasts.
3. The method of claim 1, further comprising:
binding the edges of the brassiere at the portions where fabric was removed.
4. A maternity and nursing crossover garment, comprising:
an inner layer of fabric composed of at least two knit structures that is configured to be placed diagonally across a chest of a woman, the inner layer covering approximately a first half of the woman’s chest and back;
an outer layer of fabric composed of at least two knit structures that is configured to be placed diagonally across the chest of the woman, the outer layer covering approximately a second half of the woman’s chest and back; and
a knitted band connecting the inner and outer layers of fabric, configured to fit snugly under the breasts and around the circumference of the body of the woman, wherein the inner layer of fabric and outer layer of fabric are formed from a single seamless double layer circular knit tube formed from a flexible, stretchable material.
5. The garment of claim 4, wherein the flexible, stretchable material is a knit fabric.
6. The garment of claim 5, wherein the knit fabric is a blend including 79-97% nylon and an inversely corresponding percentage of spandex.
7. The garment of claim 5, wherein the knit fabric is a blend including 89% nylon and 11% spandex.
8. The garment of claim 4, wherein the seamless double layer circular knit tube is formed using an electronic circular knitting machine having a cylinder size ranging from 12 inches to 18 inches.
9. The garment of claim 4, wherein the band is made using a ribbed knit structure.
10. The garment of claim 4, wherein the fabric density is 210-400 gm/m².
11. The garment of claim 4, wherein the band has a circumference of 21 inches to 31 inches.
12. The garment of claim 4, wherein the height ranges from 9 inches to 13 inches.
13. The garment of claim 5, wherein the knit fabric is a blend including 92-95% cotton and an inversely corresponding percentage of spandex.
14. The garment of claim 5, wherein the knit fabric is a blend including 92-95% organic cotton and an inversely corresponding percentage of spandex.
15. The garment of claim 4, wherein one of the at least two knit structures is a pique knit structure.
16. The garment of claim 4, wherein one of the at least two knit structures is a jersey knit structure.
17. The garment of claim 4 further comprising a midsection portion extending downward from the knitted band and covering a midsection area of the woman, the midsection portion made from a seamless circular knit tube of a flexible and stretchable material.
18. The garment of claim 17, wherein the seamless circular knit tube of the bottom portion is a double layer.