

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
16 April 2009 (16.04.2009)

PCT

(10) International Publication Number  
WO 2009/046928 A1(51) International Patent Classification:  
C23C 14/50 (2006.01) FI1H 21/14 (2006.01)  
C23C 16/458 (2006.01)

(74) Agent: WAGNER, Wolfgang, H.; Zimmerli, Wagner &amp; Partner AG, Löwenstrasse 19, P.O. Box, CH-8021 Zürich (CH).

(21) International Application Number:  
PCT/EP2008/008349

(22) International Filing Date: 2 October 2008 (02.10.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
07405302.6 8 October 2007 (08.10.2007) EP

(71) Applicant (for all designated States except US): OERLIKON TRADING AG, TRÜBBACH [CH/CH]; Hauptstrasse, CH-9477 Trübbach (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ESSER, Stefan [DE/DE]; Richtericher Strasse 80, 52072 Aachen (DE). ZÄCH, Martin [CH/LI]; Unterm Schloss 71, FL-9496 Balzers (LI).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: WORKPIECE CARRIER DEVICE

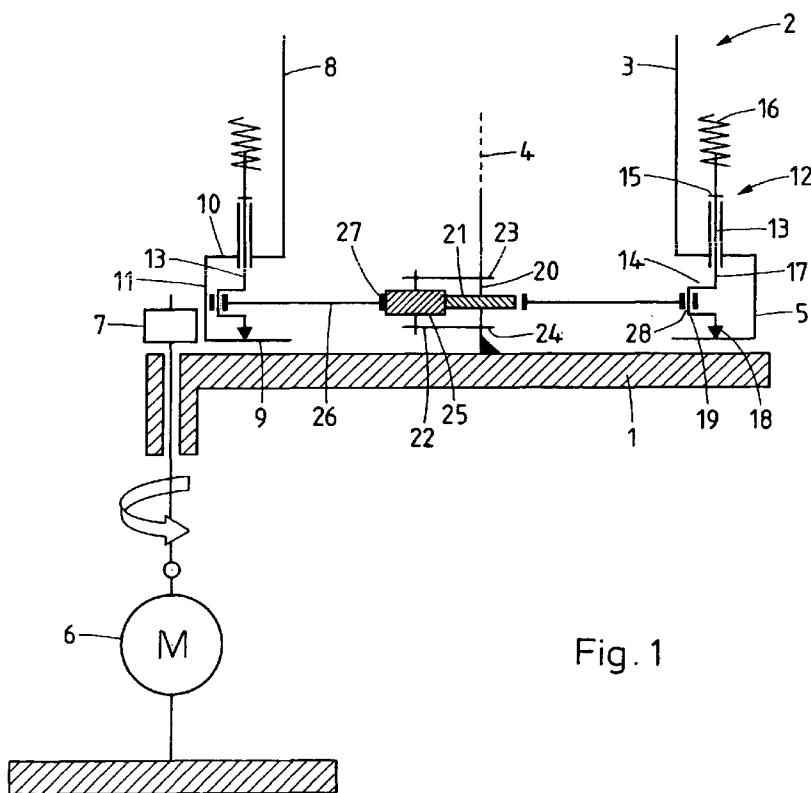



Fig. 1

(57) Abstract: A workpiece carrier (2) comprises a rotary frame (3) and a driving part (22), both of which are rotatable about a driving axle (4). The rotary frame (3) can be driven by a motor (6), and carries a plurality of workpiece holders (13) which are distributed around the driving axle (4) so as to be rotatable about holder axes. Mounted in the driving part (22) on a mount is a pinion (25) which engages with a stationary central wheel (21) and a ring gear (27) of a transmission part (26), at the centre of which lies an output point (29) which is at a distance of an eccentricity from the driving axle (4). Driving apertures (28) on the transmission part (26), through which driving pins (19) of the workpiece holders (13) project, are also at the distance of the eccentricity from the holder axes. On rotation of the rotary frame (3), the driving part (22) revolves about the driving axle (4) and additionally imposes on the transmission part (26), which rotates concomitantly with the rotary frame (3), an eccentric motion such that the output point (29) circles round the driving axle (4), as a result

WO 2009/046928 A1

of which corresponding rotation of the workpiece holders (13) is effected.

**Published:**

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

**D E S C R I P T I O N****WORKPIECE CARRIER DEVICE****Field of the invention**

The invention relates to a workpiece carrier device  
5 according to the preamble of claim 1. Such devices are used  
for the processing of workpieces, especially in vacuum  
appliances, and in particular for coating said workpieces.

**Prior art**

WO 2007/025 397 A1 discloses a workpiece carrier device of  
10 the generic type, in which the transmission part is realized  
as a driving disc which is eccentrically joined to a  
rotational axle which is closely surrounded by a  
corresponding recess on the transmission part. It is  
possible to influence the transmission ratio between the  
15 rotation of the workpieces and that of the rotary frame only  
via an auxiliary gear set which directly controls the motion  
of the driving disc.

A further workpiece carrier device is known from  
EP 1 153 155 A1. In this case, the workpiece holders  
20 rotatably mounted on rotary frames are rotated in that in  
each case a toothed wheel on the workpiece holder engages  
with a ring gear which coaxially surrounds the driving axle  
of the rotary frame and is torsionally rigid in relation to  
the base frame. This known workpiece carrier device is of a  
25 relatively complex structure. The transmission ratio is  
selectable only within fairly narrow limits.

In the case of one of the workpiece carrier devices disclosed by DE 198 03 278 A1, the rotation of the workpiece holders is effected by drivers which are anchored to the base frame and engage temporarily with said workpiece 5 holders. In this case, the rotation is intermittent, which is usually disadvantageous per se and can impair the quality of the workpieces, especially when a coating consisting of a plurality of very thin layers is being applied.

DE 103 08 471 A1 discloses a workpiece carrier device in 10 which workpiece carriers are disposed on a rotary frame in a plurality of concentric rings. Each workpiece carrier of a ring is made to rotate by an intermediate gear set engaging with a stationary central wheel on the rotary frame. The workpiece carriers pertaining to a ring are operatively 15 connected to one another in such a way that this rotation is transmitted to the remaining workpiece carriers.

#### **Summary of the invention**

The invention is based on the object of disclosing a workpiece carrier device of the generic type, which is of a 20 simple structure and reliable and allows the transmission ratio to be adjusted in a simple manner. This object is achieved by the features in the characterizing portion of claim 1.

The advantages achieved by the invention are that, in 25 particular, the driving of the workpiece holders is very simple and nevertheless allows the transmission ratio to be selected from a comparatively wide range.

**Brief description of the drawings**

The invention is explained more fully in the following with reference to figures which represent merely exemplary embodiments, and wherein:

5 Fig. 1 shows, in schematic form, an axial section through a workpiece carrier device of the invention, according to a first embodiment,

Fig. 2 shows a detail from Fig. 1,

10 Fig. 3 shows a top view of the detail according to Fig. 2,

Fig. 4 shows, in partial section, a portion of the workpiece carrier device of the invention, in a perspective view and

15 Fig. 5 shows an enlarged top view of a portion of the workpiece carrier device of the invention.

**Description of the preferred embodiments**

According to a preferred embodiment of a workpiece carrier device (Fig. 1) of the invention, there is disposed on a stationary base frame 1 a workpiece carrier 2, having a 20 rotary frame 3 which is mounted on the base frame 1 so as to be rotatable about vertical driving axle 4 and, at the lower end, carries on its exterior a ring gear 5 with which there engages a toothed wheel 7 driven by a motor 6. The rotary frame 3 is realized as a closed housing which is 25 approximately rotationally symmetrical about the driving axle 4 and has central tubular portions 8 between which are

located, along the driving axle 4, successive projections (only the lowest is shown in Fig. 1, see also Fig. 4), each constituted by a bottom part 9, a cover 10 and an outer ring 11 that is concentric relative to the tubular portions 8, 5 said outer ring 11 being joined to the outer edge of the bottom part 9 and projecting somewhat over the outer edge of the cover 10.

The rotary frame 3 carries, on each of the said projections, a group 12 of workpiece holders 13, respectively distributed 10 at the same level and in a uniform manner over a circle surrounding the driving axle 4. Each workpiece holder 13 is rotatable about a holder axis that is parallel to the driving axle 4, and comprises a base 14, which is located partly within a projection of the rotary frame 3, and a 15 mount 15 for securing a workpiece 16, said mount 15 being joined to the base 14 via an axle pin 17 which is brought through the cover 10. The base 14 furthermore comprises a bearing pin 18 having a downwardly facing conical tip, the axis of which, as in the case of the axle pin 17, is 20 coincident with the holder axis and is rotatably mounted in the bottom part 9, where the tip engages in a corresponding recess. The bearing pin 18 and the axle pin 17 are respectively joined by a crank-type intermediate portion comprising a driving pin 19 which is parallel to, but at a 25 distance from, the holder axis. The base 14 is a simple bent part of substantially uniform cross-section. The fitted-on mount 15 has a cylindrical recess, open at the top, into which the workpiece 16, e.g. a milling head, is inserted.

A shaft 20 which is non-rotatably anchored to the base frame 30 1 carries at the level of each of the groups 12 a central wheel 21 which is torsionally rigid in relation to the base frame 1 (see also Fig. 2, 3) with outer toothed. Disposed

in each case at the same level is a driving part 22 comprising a mount which is rotatable about the driving axle 4 and has an upper arm 23 lying above the central wheel 21 and a similar lower arm 24 lying below the central wheel 21 5 and also an intermediate gear set which is attached to the mount and in the example consists merely of a pinion 25 which is mounted between the upper arm 23 and the lower arm 24 and is rotatable about a pinion axis parallel to the driving axle 4 and the toothing of which engages with that 10 of the central wheel 21.

The pinion 25 is joined to the driving pins 19 of the group 12 of workpiece carriers 13 lying at the level of the central wheel 21 and the driving part 22 by a transmission part 26 having a circular central coupling cutout. The edge 15 of said cutout carries an inwardly pointing ring gear 27 which engages with the toothing of the pinion 25. Further outward, the transmission part 26 has for each workpiece holder 13 a driving aperture 28 through which there projects the driving pin 19 of said workpiece holder 13, said driving 20 pin 19 being closely surrounded by the edge of said driving aperture 28. The transmission part 26 is therefore in each case connected in a rotatable manner, but otherwise with little play, to the workpiece holders 13 and is in engagement with the driving part 22, more precisely the 25 pinion 25 thereof.

The centre point of the ring gear 27 on the transmission part 26 constitutes an output point 29 which is at a distance of an eccentricity E from the driving axle 4. The distance of the driving pin 19 of each workpiece holder 13 30 from the respective holder axis likewise corresponds to the eccentricity E.

The transmission part 26, which is represented in schematic form only in Figs. 2, 3, may be realized as a flat stamped part (see Fig. 4 in which a projection is shown but parts of the housing, most workpiece carriers 13 and the shaft 20 are 5 omitted) having an inner ring 30, which surrounds the said coupling cutout, and an outer ring 31, in which there are provided, distributed over the circumference, in this case sixty-six driving apertures 29 for engagement with the same number of workpiece carriers 13. The inner ring 30 and the 10 outer ring 31 are connected through radial spokes 32 which, in the example, are weakened by holes 33, such that they constitute predetermined breaking points which break in the event of an obstruction of one of the workpiece holders 13 of the respective group 12.

15 When the rotary frame 3 is rotated about the driving axle 4 by the motor 6, the transmission part 26 engaging with the workpiece carriers 13 connected to the rotary frame 3 is driven concomitantly via said workpiece carriers 13. As the toothing of the pinion 25 engages with the ring gear 27, 20 said pinion 25 is also made to rotate and runs off on the central wheel 21, as a result of which the driving part 22 is rotated in relation to the transmission part 26 and effects an eccentric motion thereof in which the vector connecting the rotational axle 4 to the output point 29, the 25 length of which vector corresponds to the eccentricity  $E$ , revolves about the rotational axle 4. The eccentric motion is transmitted to the driving pins 19, so that each revolution of the eccentric motion effects a rotation of the workpiece carriers 13, the vector pointing from the holder 30 axis to the corresponding driving pin 19 being in each case parallel at all times to the above-mentioned vector.

If the motions of the transmission part 26 and the driving part 22 are viewed in a coordinate system fixed on the base frame 1 (see in this regard Fig. 3, 5; in the latter the cover 10 is omitted) and if the number of teeth of the 5 central toothing, i.e. the toothing of the central wheel 21, is denoted by  $Z_z$  and that of the transmission toothing, i.e. the toothing of the ring gear 27, by  $Z_u$ , there is obtained on rotation of the driving part 22 about the driving axle 4 in the clockwise direction, corresponding to a revolution 10 during the eccentric motion of the transmission part 26, i.e.  $U_U=1$ , a rotation  $U_D$  thereof and thus of the rotary frame 3 of

$$(1) \quad U_D = 1 + Z_z/Z_u$$

rotations in the clockwise direction. For  $z=Z_z/Z_u$ , the 15 following therefore applies

$$(1') \quad U_D:U_U = 1+z$$

This results from the fact that the transmission part 26 on the one hand rotates concomitantly, i.e. also performs a full rotation in the clockwise direction, and on the other 20 hand is additionally rotated through  $z$  rotations by the pinion 25 running off on the central wheel 21. After  $1+z$  rotations of the rotary frame 3, there is therefore a rotation of the driving part 22. There is thus obtained for the transmission ratio, i.e. the quotient between the rate 25 of rotation of the driving part 22 and thus the eccentric motion of the transmission part 26 on the one hand and the rate of rotation of the rotary frame 3 on the other hand,

$$(2) \quad u = \frac{U_U}{U_D} = \frac{1}{1+z}$$

If therefore for example, as in the exemplary embodiment according to Fig. 4, 5  $Z_z=46$  and  $Z_u=60$ , then  $z$  is approx. 0.77 and  $u$  approx. 0.57. The eccentric motion runs backward in relation to the rotary frame 3. The ratio of the rates of 5 rotation is  $u-1$ , i.e. in the example approx. -0.43.

The transmission ratio depends only on  $z$  and can easily be changed, for example by exchanging the shaft 20 with the central wheels 21 and the driving parts 22. Thus, for example, a different shaft with smaller central wheels can 10 be used and  $z$  thus reduced and the transmission ratio  $u$  increased accordingly (2). The engagement with the ring gear of the transmission part then demands larger pinions, although these do not influence the transmission ratio  $u$ . If necessary, the transmission parts can additionally be 15 exchanged, although this is more costly.

It is however easily possible to use, instead of a pinion, a more complex intermediate gear set with a plurality of toothed wheels which are mounted on the mount of the driving part and operatively connected to one another and of which 20 one engages with the central toothed wheel and one with the transmission toothed wheel. The transmission ratio  $u$  can also be set differently for various groups of workpiece carriers by using a shaft with different intermediate gear sets and/or central wheels.

25 The configuration of the described exemplary embodiment can also be modified differently without departing from the scope of the invention. Thus, the central toothed wheel does not need to be non-rotatably joined to the base frame. It is for example possible to join the shaft carrying the central 30 wheels to the base frame via an auxiliary gear set driven by the motion of the rotary frame, so that the central toothed

performs in each case a rotary motion. An auxiliary gear set of this type can be configured and installed, for example as described in WO 2007/025 397 A1. In this case too, the transmission ratio can easily be changed by exchanging the 5 shaft with the central wheels and driving parts as described above. An embodiment such as is illustrated in Fig. 10 of the aforementioned document, in which a plurality of workpiece carriers, corresponding to that described in connection with the exemplary embodiment, are disposed 10 around a main axle about which the base frame can be rotated by a motor, while the ring gears of their rotary frames engage with a stationary toothed wheel, is also possible.

**List of reference symbols**

|       |                   |
|-------|-------------------|
| 1     | Base frame        |
| 15 2  | Workpiece carrier |
| 3     | Rotary frame      |
| 4     | Driving axle      |
| 5     | Ring gear         |
| 6     | Motor             |
| 20 7  | Toothed wheel     |
| 8     | Tubular portion   |
| 9     | Bottom part       |
| 10    | Cover             |
| 11    | Outer ring        |
| 25 12 | Group             |
| 13    | Workpiece holder  |
| 14    | Base              |
| 15    | Mount             |
| 16    | Workpiece         |
| 30 17 | Axle pin          |
| 18    | Bearing pin       |
| 19    | Driving pin       |

- 20 Shaft
- 21 Central wheel
- 22 Driving part
- 23 Upper arm
- 5 24 Lower arm
- 25 Pinion
- 26 Transmission part
- 27 Ring gear
- 28 Driving aperture
- 10 29 Output point
- 30 Inner ring
- 31 Outer ring
- 32 Spoke
- 33 Hole

## P A T E N T C L A I M S

1. A workpiece carrier device having at least one workpiece carrier (2) which comprises a rotary frame (3), mounted on a base frame (1) so as to be rotatable about a driving axle (4), and a driving part (22) which is likewise rotatable about the driving axle (4) in relation to the rotary frame (3), as well as a plurality of workpiece holders (13) which are at a distance from the driving axle (4) and are mounted on the rotary frame (3) so as to be rotatable about holder axes that are parallel to said driving axle (4), and also with at least one rigid transmission part (26) for the purpose of rotating the workpiece holders (13) in relation to the rotary frame (3), which transmission part (26) engages rotatably with, on the one hand, the driving part (22) about an output point (29) which is at a distance of an eccentricity (E) from the driving axle (4), and, on the other hand, at least two workpiece holders (13) each about a drive point at a distance of an equal eccentricity (E) from the holder axis, **characterized in that** said device comprises central toothing which is mounted on the base frame (1) and surrounds the driving axle (4), and the transmission part (26) has transmission toothing surrounding the output point (29), whereas the driving part (22) comprises a mount which is rotatable about the driving axle (4) and also an intermediate gear set which is disposed on said mount and engages with the central toothing and with the transmission toothing.
- 30 2. The workpiece carrier device according to claim 1, **characterized in that** the intermediate gear set is

realized as a pinion (25) which engages both with the central toothing and with the transmission toothing.

3. The workpiece carrier device according to either of claims 1 or 2, **characterized in that** the central toothing points outward and the transmission toothing is realized as an inwardly pointing ring gear (27) disposed on the transmission part (26).
4. The workpiece carrier device according to any one of claims 1 to 3, **characterized in that** the central toothing is connected in a torsionally rigid manner to the base frame (1).
5. The workpiece carrier device according to any one of claims 1 to 4, **characterized in that** it comprises a central wheel (21) with outer toothing which constitutes the central toothing.
6. The workpiece carrier device according to any one of claims 1 to 5, **characterized in that** each workpiece holder (13) comprises a driving pin (19), of round cross-section, which is parallel to the holder axis and which engages with a corresponding driving aperture (28) on the transmission part (26).
7. The workpiece carrier device according to any one of claims 1 to 6, **characterized in that** the rotary frame (3) is realized as a closed housing which surrounds each driving part (22) and each transmission part (26), and also in each case the portion of each of the workpiece holders (13) at which the drive point is located, whilst an axle pin (17) of the workpiece

holder which carries a mount (15) for securing the workpiece (16) is brought outwards through the housing.

8. The workpiece carrier device according to any one of claims 1 to 7, **characterized in that** the workpiece carrier (2) comprises a group (12) of workpiece holders (13) which are disposed at the same level around the driving axle (4), as well as a transmission part (26) which engages with all workpiece holders (13) of the group (12).  
5
9. The workpiece carrier device according to claim 8, **characterized in that** the workpiece holders (13) of the group (12) are distributed uniformly over a circle surrounding the driving axle (4), and the transmission part (26) comprises a ring with driving apertures (28) distributed in a corresponding manner over the same.  
10 15
10. The workpiece carrier device according to either of claims 8 or 9, **characterized in that** the workpiece carrier (2) comprises a plurality of groups (12) of workpiece holders (13) distributed along the driving axle (4).  
20

1 / 4

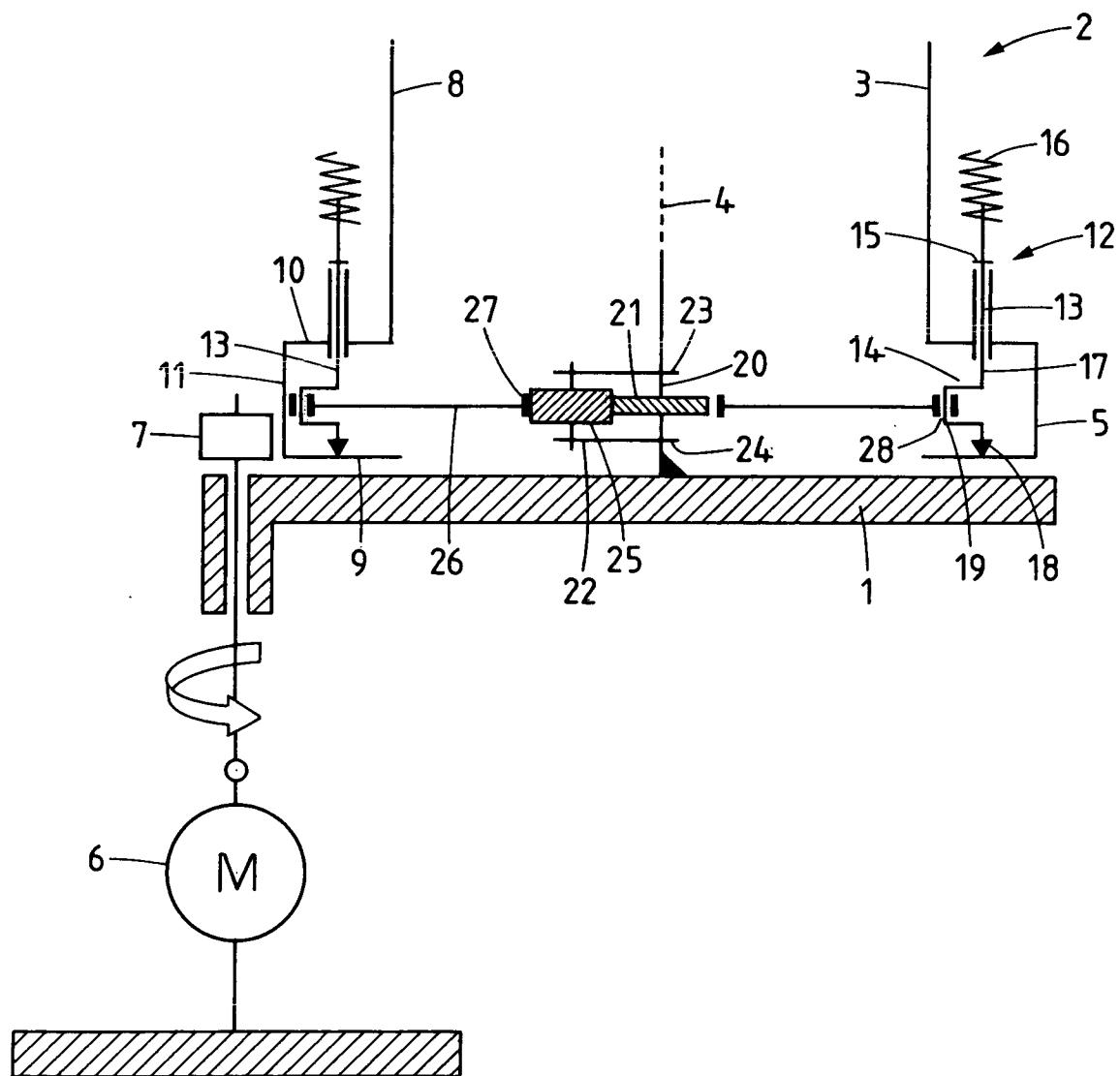



Fig. 1

2/4

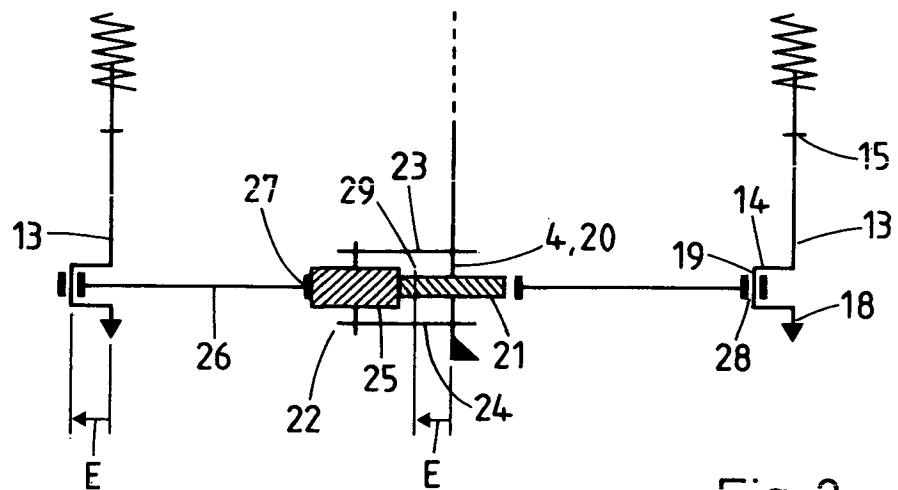



Fig. 2

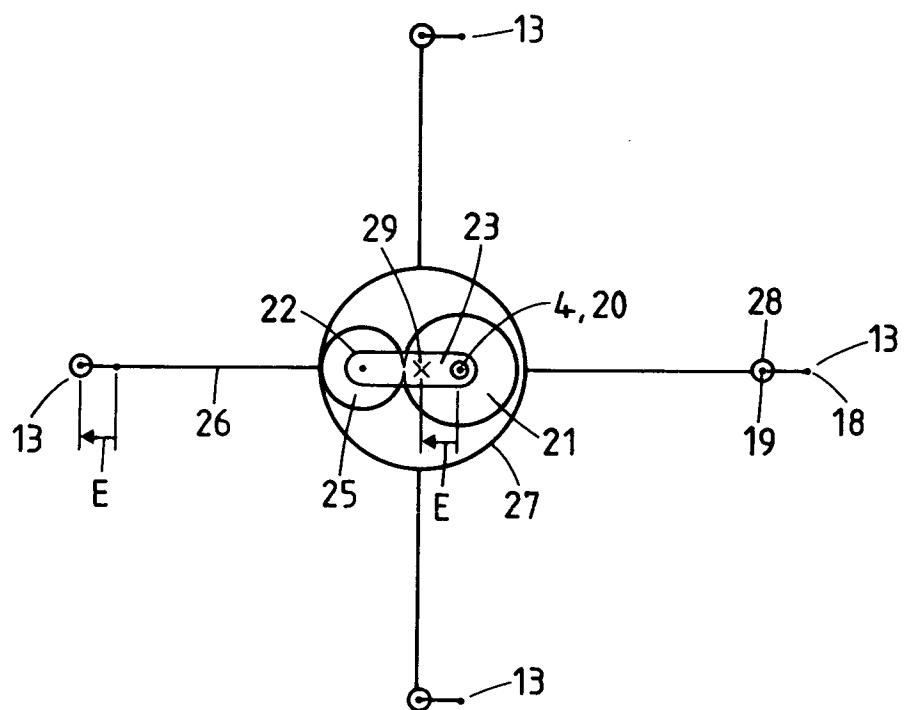



Fig. 3

3/4

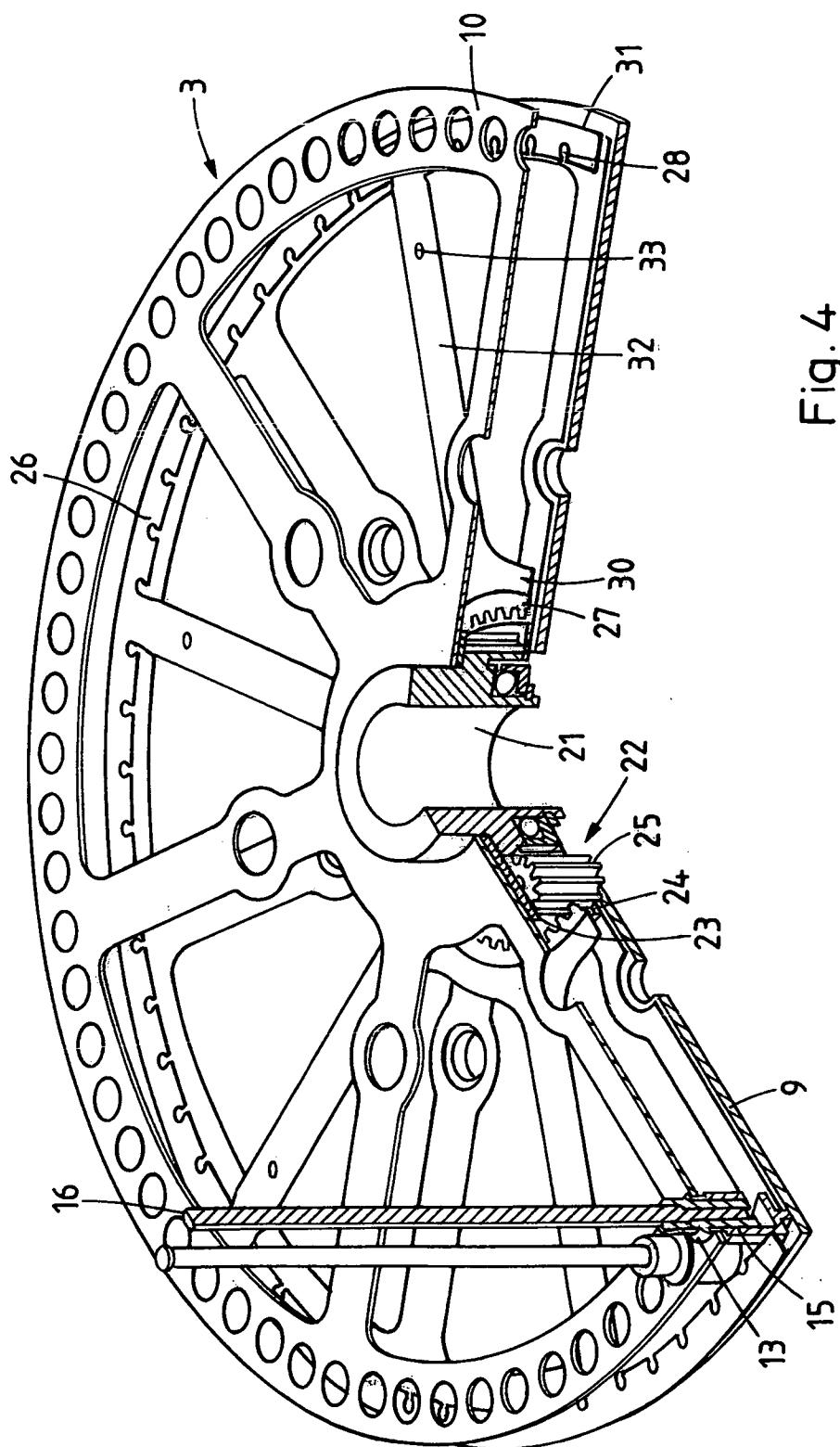



Fig. 4

4/4

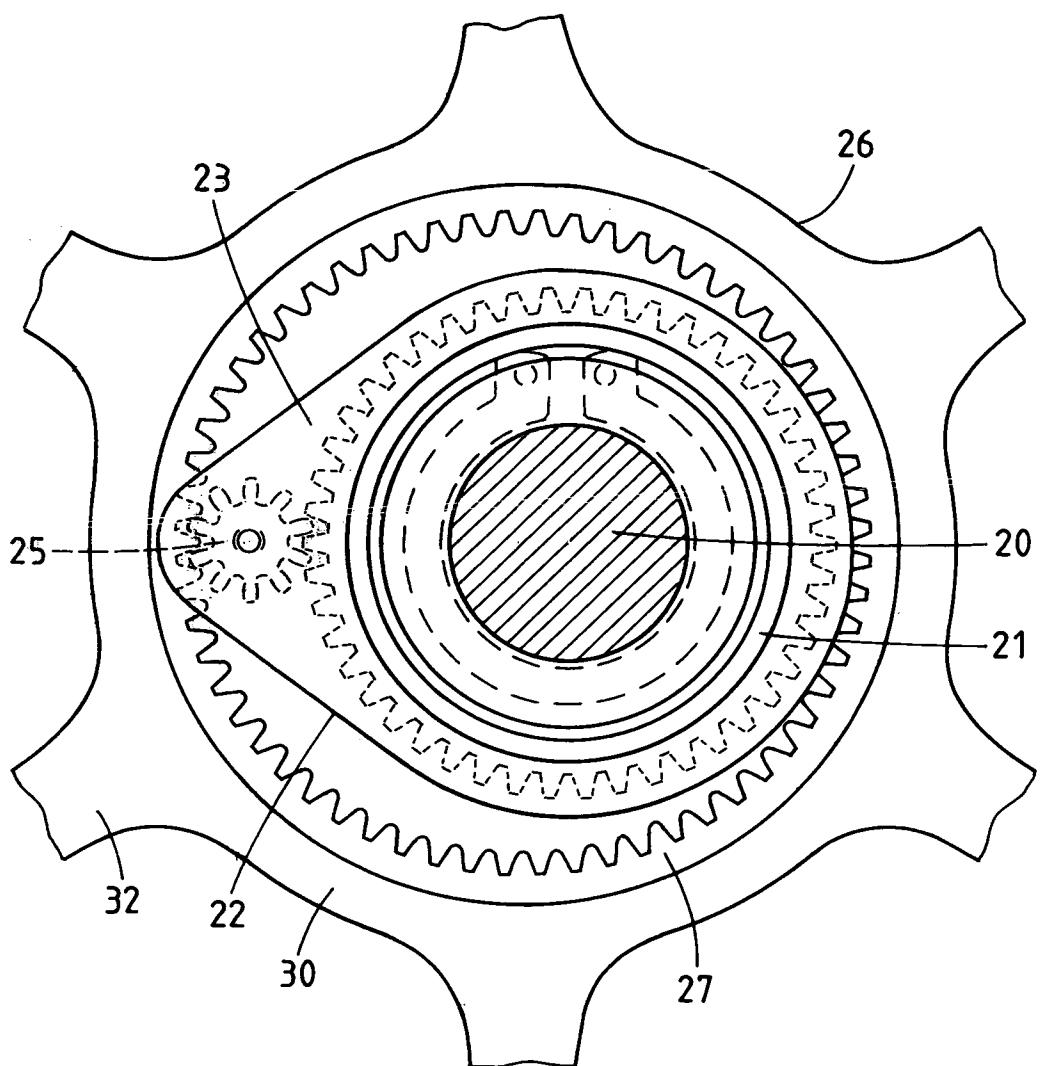



Fig. 5

# INTERNATIONAL SEARCH REPORT

International application No  
PCT/EP2008/008349

**A. CLASSIFICATION OF SUBJECT MATTER**  
INV. C23C14/50 C23C16/458  
ADD. F16H21/14

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
C23C F16H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                  | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A         | WO 2007/025397 A (OERLIKON TRADING AG<br>TRUEBBACH [CH]; ESSER STEFAN [DE])<br>8 March 2007 (2007-03-08)<br>cited in the application<br>the whole document<br>----- | 1                     |
| A         | DE 103 08 471 A1 (HENSOOLDT & SOEHNE OPTIK<br>[DE]) 16 September 2004 (2004-09-16)<br>cited in the application<br>paragraphs [0025] - [0028]; figure 2<br>-----     | 1                     |

Further documents are listed in the continuation of Box C.

See patent family annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

\*&\* document member of the same patent family

|                                                                                                                                                                      |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Date of the actual completion of the international search                                                                                                            | Date of mailing of the international search report |
| 10 March 2009                                                                                                                                                        | 17/03/2009                                         |
| Name and mailing address of the ISA/<br>European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040,<br>Fax: (+31-70) 340-3016 | Authorized officer<br><br>Schuhmacher, Jörg        |

**INTERNATIONAL SEARCH REPORT**

## Information on patent family members

International application No  
PCT/EP2008/008349

| Patent document cited in search report | Publication date | Patent family member(s)                                                                   | Publication date                                                   |
|----------------------------------------|------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| WO 2007025397                          | A 08-03-2007     | CA 2620417 A1<br>EP 1917380 A1<br>JP 2009506214 T<br>KR 20080038185 A<br>US 2007057138 A1 | 08-03-2007<br>07-05-2008<br>12-02-2009<br>02-05-2008<br>15-03-2007 |
| DE 10308471                            | A1 16-09-2004    | NONE                                                                                      |                                                                    |