METHODS AND KITS FOR TOPICAL APPLICATION, REMOVAL, AND INACTIVATION OF THERAPEUTIC OR COSMETIC TOXIN COMPOSITIONS

This invention relates to methods and kits for safely removing and inactivating topical therapeutic or cosmetic compositions. The methods and kits according to the invention are particularly well suited for removing and inactivating highly toxic substances.
METHODS AND KITS FOR TOPICAL APPLICATION, REMOVAL, AND INACTIVATION OF THERAPEUTIC OR COSMETIC TOXIN COMPOSITIONS

RELATED PATENT APPLICATION

FIELD OF THE INVENTION

[0002] This invention relates to methods and kits for safely applying, removing, and inactivating topical therapeutic or cosmetic toxin compositions.

BACKGROUND OF THE INVENTION

[0003] Botulinum toxin (also known as botulin toxin or botulinum neurotoxin) is one of the most potent naturally occurring neurotoxins known to man. It produces paralysis of muscles by preventing synaptic transmission or release of acetylcholine across the neuromuscular junction, and is thought to act in other ways as well. Botulinum toxin essentially blocks signals that normally would cause muscle spasms or contractions, resulting in paralysis.

[0004] Despite its toxicity, botulinum toxin has found numerous therapeutic and cosmetic uses. For example, botulinum toxin has been used to treat a variety of conditions, including hemifacial spasm, adult onset spasmodic torticollis, anal fissure, blepharospasm, cerebral palsy, cervical dystonia, migraine headaches, strabismus, temporomandibular joint disorder, and various types of muscle cramping and spasms. In addition, the muscle-paralyzing effects of botulinum toxin have been used in therapeutic and cosmetic facial applications such as treatment of wrinkles, frown lines, and other results of spasms or contractions of facial muscles.

[0005] Conventionally, botulinum toxin is administered via injection to the area in need of treatment. Administration of botulinum toxin by injection typically involves reconstituting a previously lyophilized sample of botulinum toxin using saline or some other pharmaceutically acceptable diluent. The reconstituted botulinum toxin solution is then drawn into a syringe, where it remains until injection into the patient. The sequence of steps required for preparation and subsequent administration of the botulinum toxin is relatively safe for the clinician, as the reconstituted botulinum toxin solution is contained in either the
syringe or a vial until administration. Furthermore, the doses of botulinum toxin used in the injectable formulation are also relatively low. For example, current injectable botulinum toxin formulations for treating wrinkles contain approximately 100 U of toxin per dose.

[0006] More recent advances have allowed for topical administration of botulinum toxin. See e.g., U.S. Patent Application 11/072,026, which is hereby incorporated by reference in its entirety. However, the use of topical botulinum toxin formulations introduces new and unforeseen challenges for the clinician, particularly with respect to the safe application, handling and disposal of botulinum toxin. Accordingly, safe and effective means for applying, removing and inactivating excess botulinum toxin is needed.

SUMMARY OF THE INVENTION

[0007] One aspect of this invention is the recognition that topical toxin formulations, such as, for example, topical botulinum toxin formulations, must be handled and disposed of using different procedures compared to conventional injectable formulations containing the same toxins. In particular, the invention recognizes that undesirable contamination can occur without proper care and safe handling procedures, since topical toxin formulations can be inadvertently spread to other surfaces via casual contact or spillage.

[0008] Another aspect of the invention is the recognition that the toxin content in topical botulinum formulations may, in many instances, be significantly higher than that of injectable botulinum toxin formulations. Without wishing to be bound by theory, it is believed that a higher botulinum toxin content in topical formulations is necessary to achieve therapeutic or cosmetic effects, owing to the difficulty of transporting botulinum toxin through skin, even with carriers or skin-penetration enhancers, as described herein. For instance, a single dose of a topical botulinum toxin type A formulation may comprise more than 1000-7000 U of toxin, whereas an injectable formulation typically contains only about 100 U. Thus, the invention recognizes, for the first time, that significant amounts of botulinum toxin may remain on the skin surface after administration of a topical composition, thereby posing a potential hazard to patient and clinician alike and creating potential environmental issues.

[0009] Accordingly, one aspect of this invention is to provide methods and kits for safely applying, removing and inactivating excess toxin, (e.g., botulinum toxin), used in topical therapeutic or cosmetic compositions.

[0010] In one embodiment, the invention provides a method for topically applying a toxin formulation. The method comprises topically applying the toxin formulation onto an area to
be treated, removing excess toxin with a removal agent, and inactivating the excess toxin
with an inactivation agent.

[0011] In another embodiment, the invention provides a method for removing toxin from
the surface of a patient. The method comprises removing toxin from the area with a removal
agent, and inactivating the removed toxin with an inactivation agent.

[0012] In yet another embodiment, the invention provides a kit for topically applying a
toxin. The kit includes a composition comprising a toxin and an applicator for topically
applying the composition to an area in need of treatment. Optionally, the toxin composition
may contain a dye. The kit also includes a removal agent for removing excess toxin from a
treated area, and an inactivation agent for inactivating the excess toxin after it has been
removed from the treated area.

[0013] In another embodiment, the invention provides a kit for the disposal of a topically
applied toxin. The kit comprises a removal agent for removing excess toxin topically applied
to an area in need of treatment, and an inactivation agent for inactivating the excess toxin
after it has been removed from the treated area.

[0014] In another embodiment, the invention provides a composition comprising a toxin
and an indicator that allows for easier visual identification of the composition. In certain
preferred embodiments, the toxin is a botulinum toxin may be any of botulinum toxin
serotypes A, B, Ci, D, E, F, or G. In one particularly preferred embodiment, the botulinum
toxin is purified botulinum toxin type A. In certain embodiments, the indicator may be a
detectable dye, such as a visible dye or a fluorescent dye. In preferred embodiments, such
detectable dyes, when used in the composition, do not react with the botulinum toxin. Other
indicators are also contemplated by this invention, as described herein.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This invention provides methods and kits for safely removing and inactivating
topical toxin compositions. As used herein, the terms "inactivate", "inactivating",
"inactivation", or variants thereof, when used in connection with a toxin, refers to treating the
toxin to render it without neurotoxicity.

[0016] Methods of the invention include methods for applying, removing and
inactivating topical toxin compositions as well as methods for solely removing and
inactivating topical toxin compositions. The methods disclosed herein may be used in
connection with a treatment regimen \(\text{e.g.} \) instances where the composition is deliberately
applied) or as a decontamination measure (e.g. to remove toxin compositions in instances where the toxin composition is unintentionally or undesirably present on a surface). The invention also contemplates kits for both applying, removing and inactivating topical toxin compositions as well as kits for solely removing and inactivating topical toxin compositions. The invention also encompasses compositions comprising dyes and methods of use therein.

[0017] The topical toxin compositions that are applied according to the invention are not particularly limited, and may comprise any toxin capable of producing a therapeutic or cosmetic benefit after being topically applied to a surface area of a subject's body. In certain preferred embodiments, the topical toxin composition comprises a toxin that acts a paralytic agent. Generally speaking, a paralytic agent may be any agent that can interrupt nerve impulse transmission across a neuromuscular or neuroglandular junction, block or reduce neuronal exocytosis of a neurotransmitter or alter the action potential at a sodium channel voltage gate of a neuron. Non-limiting examples of paralytic substances contemplated by the invention include botulinum toxins (including serotypes A, B, Ci, D, E, F, and G), tetanus toxins, saxitoxins, and tetrodotoxin, as well as combinations thereof.

[0018] The term "botulinum toxin" as used herein is meant to refer to any of the known types of botulinum toxin, whether produced by the bacterium or by recombinant techniques, as well as any such types that may be subsequently discovered including engineered variants or fusion proteins. The botulinum toxin may be obtained from any of the known serotypes of C. botulinum (e.g., serotypes A, B, Ci, D, E, F, or G). In certain preferred embodiments, the botulinum toxin is present as an isolated botulinum toxin molecule (e.g., molecules of botulinum toxin types A, B, Ci, D, E, F, or G without the stabilizing proteins expressed by C. botulinum). In such embodiments, the isolated botulinum toxin molecule is preferably stabilized by exogenous stabilizers. See, e.g., U.S. Provisional Application No. 61/220,433 entitled "Albumin Free Botulinum Toxin Formulations," which is hereby incorporated by reference in its entirety. Alternatively, the botulinum toxin may be present in a complexed form, stabilized, at least in part, by one or more of the non-toxin, non-hemagglutinin proteins and non-toxin, hemagglutinin proteins that are normally expressed along with the botulinum toxin by the C. Botulinum bacteria. In certain embodiments, the botulinum toxin is stabilized by exogenous stabilizers, such as albumin. The invention also specifically contemplates the use of commercially available botulinum toxin formulations, non-limiting examples of which include BOTOX® Dysport® and Xeomin®
The botulinum toxin used in the invention can alternatively be a botulinum toxin derivative, that is, a compound that has botulinum toxin activity but contains one or more chemical or functional alterations on any part or on any chain relative to naturally occurring or recombinant native botulinum toxins. For instance, the botulinum toxin may be a modified neurotoxin (e.g., a neurotoxin which has at least one of its amino acids deleted, modified or replaced, as compared to a native, or a recombinantly produced neurotoxin or a derivative or fragment thereof). For instance, the botulinum toxin may be one that has been modified in a way that, for instance, enhances its properties or decreases undesirable side effects, but that still retains the desired botulinum toxin activity. The botulinum toxin may be any of the botulinum toxin complexes produced by the bacterium, as described above. Alternatively, the botulinum toxin may be a toxin prepared using recombinant or synthetic chemical techniques (e.g. a recombinant peptide, a fusion protein, or a hybrid neurotoxin, as prepared from subunits or domains of different botulinum toxin serotypes (see U.S. Pat. No. 6,444,209, for instance)). The botulinum toxin may also be a portion of the overall molecule that has been shown to possess the necessary botulinum toxin activity, and in such case may be used per se or as part of a combination or conjugate molecule, for instance a fusion protein. Additionally, the botulinum toxin may be in the form of a botulinum toxin precursor, which may itself be non-toxic, for instance a nontoxic zinc protease that becomes toxic on proteolytic cleavage.

Generally speaking, the methods and kits provided herein for safely removing and inactivating topical therapeutic or cosmetic toxin compositions (e.g., botulinum toxin compositions) are suitable for use with any mode of topical administration of a therapeutic or cosmetic toxin composition, as discussed herein. The topical administration may be to any area of the body in need thereof. In certain preferred embodiments, the area of the body to be treated is selected from the group consisting of the face, the axilla, the palms of the hands, the hands, the feet, the lower back, the neck, the leg, the groin, the arm, the elbow, the knee, the pelvis, the buttocks and the torso.

In some embodiments, the topical toxin composition is administered to produce a cosmetic effect. For instance, botulinum toxin type A neurotoxin may be applied to the face to reduce the appearance of wrinkles, including marionette lines, nasolabial lines, crows feet, brow furrows, glabellar lines, and combinations thereof.

In other embodiments, the topical toxin composition is administered to provide a therapeutic effect to a subject. For instance, the topical toxin composition may attenuate
cholinergic nerve impulses, thereby suppressing output from a gland. In certain non-limiting embodiments, the topical toxin composition comprises botulinum toxin that is administered to reduce hypersecretion of sweat glands or sebaceous glands, in order to treat hyperhidrosis or acne, respectively. More generally, this invention also contemplates the administration of topical botulinum toxin compositions to treat any indication for which botulinum toxin is known to provide an improvement in condition. Non-limiting examples of such indications include hemifacial spasm, adult onset spasmodic torticollis, anal fissure, blepharospasm, cerebral palsy, cervical dystonia, migraine headaches, strabismus, temporomandibular joint disorder, and various types of muscle cramping and spasms.

[0023] In preferred embodiments, the compositions of the invention are applied so as to administer an effective amount of the toxin. The terms "effective amount" used herein refers an amount of a toxin (e.g., botulinum toxin) that is sufficient to produce the desired muscular paralysis or other biological or aesthetic effect, but that implicitly is a safe amount, i.e. one that is low enough to avoid serious side effects. Desired effects include the relaxation of certain muscles with the aim of, for instance, decreasing the appearance of fine lines and/or wrinkles, especially in the face, or adjusting facial appearance in other ways such as widening the eyes, lifting the corners of the mouth, or smoothing lines that fan out from the upper lip, or the general relief of muscular tension. The last-mentioned effect, general relief of muscular tension, can be effected in the face or elsewhere. In some embodiments, the compositions of the invention may contain an appropriate effective amount of the botulinum toxin for application as a single-dose treatment, or may be more concentrated, either for dilution at the place of administration or for use in multiple applications. The botulinum toxin is administered topically for transdermal delivery to muscles or to other skin-associated structures. The administration may be made, for example, to the legs, shoulders, back (including lower back), axilla, palms, feet, neck, groin, dorsa of the hands or feet, elbows, upper arms, knees, upper legs, buttocks, torso, pelvis, or any other part of the body where administration of the botulinum toxin is desired.

[0024] In certain embodiments, the dose of botulinum toxin for the topical toxin compositions of the invention is in the range of 100 U to 7000 U, more preferably from 500 U to 6000 U, more preferably 1000 U to 5000 U, and even more preferably from 2000 to 4000 U. In embodiments, the botulinum toxin dose is in the range of 1000 to 7000 U, although the invention specifically contemplates that the lower and/or upper limits of this
range may be increased or decreased, respectively, by intervals of 50 U, with each sub-range
considered to be an embodiment of the invention.

[0025] The topical toxin composition may further include an indicator that permits a clinician to see the topical toxin composition more easily. Thus, for example, in embodiments wherein the clinician manually applies the topical botulinum toxin formulation directly to the area to be treated, the indicator may aid the clinician in determining which areas of skin already have been treated. In addition, the indicator may allow the clinician to easily spot areas that have been contaminated by the topical toxin composition. Generally speaking, the indicator is inert with respect to the toxin and may be safely applied to the surface of the skin at the concentration used. In certain preferred embodiments, the indicator is a detectable dye. The dye may be a visible or fluorescent dye that is produced from natural sources or produced artificially. Dyes from natural sources may include, but are not limited to, natural food dyes. Non-limiting examples of visible dyes include, but are not limited to, FD&C Blue No. 1, FD&C Blue No. 2, FD&C Green No. 3, FD&C Red No. 40, FD&C Red No. 3, FD&C Yellow No. 5, and FD&C Red No. 6, caramel coloring, annatto, cochineal, betanin, turmeric, saffron, paprika, pandan, and butterfly pea. Non-limiting examples of fluorescent dyes include, but are not limited to, fluorescein sodium, rhodamine B, Acridine Orange, green fluorescent protein, curcumin, and zinc sulfide. In preferred embodiments, the dye does not affect the efficacy or bioavailability of the toxin in the topical toxin composition.

[0026] In other embodiments, the indicator may comprise inert, colored particles that are mixed into the topical toxin composition to allow for easier visual identification of the composition. For example, small particles of titanium dioxide may be added to impart a white color to the topical toxin composition. The use of titanium oxide as an indicator also has the added advantage that the titanium oxide particles may act as an inactivation agent in the presence of UV radiation, as discussed below. However, when titanium dioxide is used as an indicator, care must be taken to avoid exposing the topical toxin composition to UV light prematurely, in order to avoid inadvertently inactivating the toxin via photocatalytic degradation reactions.

[0027] In certain preferred embodiments, the topical toxin composition is permitted to dwell on the skin for a period of time after application to allow the toxin to penetrate the skin. The duration of this dwell time may vary depending on the particular topical toxin composition, the amount of toxin to be delivered, and the area to be treated. Non-limiting
examples of dwell times that may be used in connection with this invention includes, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 1.25 hours, 1.5, hours, 1.75 hours, or 2 hours.

[0028] This invention also provides a removal agent to remove topical toxin compositions from surfaces whenever the presence of the topical toxin compositions on such surfaces is not desired. For instance, the removal agent may be used to remove excess topical toxin composition which has been applied to an area of skin to be treated. Alternatively, the removal agent may be used to remove topical toxin composition that has been inadvertently administered to a area of skin not in need of treatment. The invention also contemplates using the removal agent to remove toxin from the surface of any article that has been contaminated with toxin. For example, examples of articles in a clinical setting that may become contaminated by a topical toxin composition include tabletops, chairs, floors, benches, gloves, glasses, applicators, and the like.

[0029] Generally speaking, the removal agent is any agent that is capable of physically reducing the amount of active toxin on the skin surface. For example, in certain embodiments, the removal agent may adsorb, absorb, or physically scrape off the excess topical toxin composition. In such embodiments, the removal agent may comprise any material/article capable of removing the composition including, but not limited to, synthetic and/or natural polymeric articles, metal articles, ceramic articles, and glass articles. Polymeric articles may comprise cellulose and/or derivatives of cellulose or plastics. Non-limiting examples of removal agents include, but are not limited to, spatulas, materials comprising cotton, materials comprising rayon, paper towels, gauze, swabs, cotton balls, surgical draping, facial tissue, disposable absorbent materials, disposable adsorbent materials, disposable cloths, disposable woven and non-woven fabrics, wet wipes, and dry wipes.

[0030] The step of removing the excess toxin may involve wiping, blotting, scraping or rubbing the surface area with the removal agent. In some embodiments, the removal agent may also be placed directly on a surface for a period of time to allow the topical toxin composition to absorb into or adsorb onto the removal agent. In embodiments where the topical toxin composition comprises an indicator, the removal agent may be repeatedly administered by the clinician until the indicator is no longer visible or present in an amount that is below an acceptable upper limit, thereby indicating that most, if not all, of the topical
toxin composition has been removed. For example, when the indicator is a dye, this threshold limit may be expressed as a percentage of the amount of dye originally present, as an absolute number, or in any other way known to one of skill in the art. Threshold limits of dye contemplated by the invention may be any known to one of skill in the art including, but not limited to, less than 20% of that originally present, less than 10% of that originally present, less than 5% of that originally present, less than 1% of that originally present, less than 0.5% of that originally present, less than 0.1% of that originally present, less than 0.05% of that originally present and 0.01% of that originally present. This invention also contemplates the use of more than one and/or more than one type of removal agent to remove undesired toxin from a surface.

[0031] In certain preferred embodiments of the invention, the removal agent is used in combination with an inactivation agent. The inactivation agent is any agent that inactivates the toxin, thereby rendering the toxin without neurotoxicity. Non-limiting examples of inactivation agents include oxidizers, surfactants, oxidizers, electromagnetic radiation, and basic agents.

[0032] In certain embodiments, the removal agent and the inactivation agent are used concurrently. For example, in one particularly preferred example, a wipe that has been impregnated with hypochlorite bleach may be used to physically remove topical toxin on a surface while inactivating it at the same time. In other embodiments, the removal agent and the inactivation agent are used sequentially. For example, after the removal agent physically removes toxin from a surface, the removal agent may be exposed to an inactivation agent to render harmless the toxin in contact with the removal agent. Alternatively, the removal agent and the inactivation agent may be sequentially applied to a surface to decontaminate the surface from topical toxin present thereon.

[0033] One aspect of the invention is the recognition that certain classes of surfactants inactivate botulinum toxin, while other classes of surfactants do not. Generally speaking, strong ionic detergents are useful as inactivation agents, non-limiting examples of which include sodium dodecyl sulfate, sodium lauroyl lactylate, sodium laureth sulfate, and sodium lauroyl sarcosinate. For example, contact of botulinum toxin type A with Dove Facial Cleaning Cloths, Deep Moisture® was found to inactivate botulinum toxin type A. These cleaning cloths list the following substances as ingredients: water, glycerin, decyl glucoside, sodium lauroyl sarcosinate, cocamidopropyl betaine, silicone quaternium-8, sodium lauroyl lactylate, polyquaternium-10, tocopheryl acetate (vitamin E acetate), retinyl palmitate
(vitamin A palmitate), potassium lactate, lactic acid, cholesterol glycine soja (soybean) sterol, urea sodium Pea, polyquaternium-4, fragrance/parfum, Dmdm hydantoin, and iodopropynyl butylcarbamate. Thus, while strong ionic detergents, such as those listed above, are useful for inactivating botulinum toxin, they are often inappropriate for cleansing the treatment area either before or after administration of botulinum toxin, since they destroy the activity of the botulinum toxin.

[0034] By contrast, non-ionic surfactants (e.g., polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80, Span 20, Span 60, Span 65, Span 80, PEG 4 Laurate, and PEG 6 Caprylic/Capric Glycerides) generally are less useful as inactivation agents, particularly at low concentrations, but may be used advantageously to cleanse an area of skin prior to treatment or as a part of a removal agent to enhance the removal of topical botulinum toxin from a treated area of skin. For example, Neutrogena Makeup Remover Cleansing Towelettes®, which contain non-ionic surfactants, can be used as a post-treatment wipe to clean off excess botulinum toxin on an area of skin after administration of the topical botulinum toxin composition. Neutrogena Makeup Remover Cleansing Towelettes® contain the following ingredients: water, cetyl ethylhexanoate, isostearyl palmitate, pentaerythrityl tetraethylhexanoate, isononyl isononanoate, cyclopentasiloxane hexylene glycol, PEG 4 laurate , PEG 6 caprylic/capric glycerides, sucrose cocoate, carbomer, sodium hydroxide, benzoic acid, dehydroacetate acid, phenoxyethanol, iodopropynyl butylcarbamate, and fragrance. In addition, Neutrogena Makeup Remover Cleansing Towelettes® can be used as a pre-treatment wipe to cleanse the area to be treated, without deleteriously affecting the activity of the subsequently applied topical botulinum toxin composition. In embodiments involving non-ionic surfactants that do not inactivate botulinum toxin, an inactivation agent is preferably used to neutralize excess botulinum toxin. For example, in certain preferred embodiments, the inactivation agent may be solid or solution forms of sodium hypochlorite (e.g., bleach) as described herein. In addition, this invention also contemplates the use of other chemical substances as a removal agent or a part of a removal agent. For example, excess botulinum toxin type A on the surface of a patient’s skin may be removed, without significant inactivation, by wiping with a gauze pad moistened with 70% isopropyl alcohol.

[0035] In certain preferred embodiments, the inactivation agent is an oxidizer. For example, suitable oxidizers include any chemical substance capable of oxidizing the toxin to render it harmless. Non-limiting examples of suitable oxidizers include ozone gas, ozonated water, peroxides, and hypochlorites. In certain preferred embodiments, the oxidizer is a
hypochlorite salts, which may be used alone or in combination with other inactivation agents. Suitable hypochlorite salts include, but are not limited to, sodium hypochlorite and calcium hypochlorite. The hypochlorite salt may be in any form and/or concentration known to be useful for inactivating the composition. Non-limiting examples of forms of hypochlorite salts include, liquid, powder, crystalline salt, and mist. In some instances, sodium hypochlorite used as an inactivation agent is referred to as bleach. The concentration of hypochlorite salt may be, but is not limited to, at least 0.1%, approximately 0.1% to 50%, 0.1% to 12%, 0.3% to 10%, or 0.5% to 10%. In preferred embodiments, the hypochlorite salt is sodium hypochlorite at a concentration between approximately 0.1% to 6%.

[0036] Electromagnetic radiation may be used as an inactivation agent, alone or in combination with other inactivation agents. The electromagnetic radiation suitable for use as an inactivation agent includes any radiation of any wavelength that is capable of degrading the toxin so as to render in non-toxic. In certain preferred embodiments, the inactivation agent may include, but is not limited to, gamma rays, x-rays, and ultraviolet radiation. The electromagnetic radiation may be generated naturally or artificially. In preferred embodiments, the electromagnetic radiation includes wavelengths between approximately 10 nm to 400 nm. In instances where the electromagnetic radiation is ultraviolet radiation (UV), any source of UV known to one of skill in the art may be used. This may include, but is not limited to, solar-related sources, "black lights" or Wood's light, UV fluorescent lamps, UV light-emitting diodes (UV LEDs), UV lasers, and gas-discharge lamps. In certain embodiments, inactivation agents comprising electromagnetic radiation further comprise titanium dioxide. While not intending to be bound to any theory, titanium dioxide may act as a photocatalyst to improve the inactivation agent's ability to degrade the composition.

[0037] Agents that alter the pH may be used as inactivation agents, alone or in combination with other inactivation agents. Any substance that alters the pH to a value that causes degradation of the toxin may be used as a pH-altering inactivation agent. Non-limiting examples pH-altering inactivation agents suitable for the invention include, potassium hydroxide (KOH), barium hydroxide (Ba(OH)₂), caesium hydroxide (CsOH), sodium hydroxide (NaOH), strontium hydroxide (Sr(OH)₂), calcium hydroxide (Ca(OH)₂), lithium hydroxide (LiOH), and rubidium hydroxide (RbOH).

[0038] Heat may be used as an inactivation agent, alone or in combination with other inactivation agents. In instances where the composition is a toxin and particularly a botulinum toxin, heating the composition to temperatures greater than 85 °C for at least 5
minutes will inactivate the toxin. In certain preferred embodiments, the toxin is inactivated by heating it to greater than 70 °C, approximately 70 to 100 °C, 70 to 80 °C, 80 to 90 °C, 85 to 90 °C, 86 to 90 °C, 87 to 90 °C, 88 to 90 °C, 89 to 90 °C, 86 °C, 87 °C, 88 °C, 89 °C, 90 °C, 90 to 100 °C, 100 to 110 °C, 110 to 120 °C, 120 to 130 °C, greater than 130 °C but less than a temperature that would damage the article being decontaminated. The heat source used may be any of those known to one of skill in the art including, but not limited to, resistive heating elements, laboratory heat blocks, heated water baths, autoclaves, ovens, and microwave ovens.

[0039] In certain embodiments, antitoxin may be used as an inactivation agent, alone or in combination with other inactivation agents. The antitoxin may be derived from any source known to one of skill in the art including, but not limited to, equine, murine, porcine, canine, human, and the like. The antitoxin may comprise whole antibodies, partial antibodies, and/or non-antibody components. In certain preferred embodiments, the antitoxin is equine trivalent botulinum antitoxin. In other preferred embodiments, the antitoxin is equine heptavalent botulinum antitoxin.

[0040] The inactivation agent may degrade the composition by any means possible including, but not limited to, via thermal, chemical, photochemical, and pH fluctuating processes. Any method known to one of skill in the art to inactive the composition may be used.

[0041] Kits for applying topical therapeutic or cosmetic compositions are also encompassed by this invention. The kit comprises a composition for topical application to an area in need of treatment. The kit may also comprise an indicator to allow for monitoring the location and presence of the composition. In certain embodiments, the kit includes a composition comprising a toxin, and optionally, an indicator such as a detectable dye. In preferred embodiments, the toxin is botulinum toxin and more preferably, purified botulinum toxin type A. The kit further comprises an applicator for topically applying the composition to an area in need of treatment. The applicator may comprise any component required for administration of the composition, including a custom applicator, a glove, or a syringe. In preferred embodiments, such a kit also includes a removal agent. This removal agent is used to remove unwanted topical toxin composition on any surface. In preferred embodiments, the removal agent is a cellulose-based polymeric article, for example, a paper towel, gauze, a swab, or a cotton ball. The kit further comprises an inactivation agent that is used to inactivate the excess composition upon removal from the treated area. The inactivation agent
may comprise any component known to inactivate the removed composition. In certain embodiments, the inactivation agent includes surfactants, sodium hypochlorite, ultraviolet radiation, acidic or basic agents, and resistive heating elements. The kit may also, in certain embodiments, include instructions for use of the components contained therein.

[0042] Kits for disposal of topically applied therapeutic or cosmetic compositions are also encompassed by this invention. In certain preferred embodiments, the composition comprises a toxin such as botulinum toxin type A, optionally in isolated form with exogenous stabilizers. The kit comprises a removal agent for removing excess composition topically applied to an area in need of treatment. The removal agent may include any component known to remove excess composition from the treatment area and in preferred embodiments, the removal agent is a cellulose-based polymeric article, for example, a paper towel, gauze, a swab, or a cotton ball. The kit further comprises an inactivation agent that is used to inactivate the excess composition upon removal from the treated area. The inactivation agent may comprise any component known to inactivate the removed excess composition. In certain embodiments, the inactivation agent includes surfactants, sodium hypochlorite, ultraviolet radiation, acidic or basic agents, and resistive heating elements. The kit may also, in certain embodiments, include instructions for use of the components contained therein.

[0043] Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims, along with the full scope of the equivalents to which such claims are entitled.

EXAMPLES

Example 1: Topical Toxin Compositions Suitable for Use with the Methods and Kits of Removing and Inactivating Toxin

[0044] As described herein, the methods and kits for removing and inactivating topical toxin compositions are not particularly limited. Generally, they may be used with any delivery system in which toxin is applied topically to the skin. For example, in certain embodiments, the methods and kits of the invention are suitable for use with transdermal patches that deliver toxin to the skin. In certain other embodiments, the delivery system may involve manually applying the topical toxin formulation directly onto the area to be treated. When the topical toxin composition is manually applied in this manner, it may be spread
about using a custom applicator or with by hand, provided that the hand is protected by a
glove made of a suitable material (e.g., nitrile).

[0045] In general, the methods and kits described herein are suitable for removing and
inactivating the toxin in a wide variety of different topical toxin compositions. For instance,
the methods and kits are suitable for use with topical toxin compositions in which the toxin is
delivered by means of a carrier or a skin-penetration enhancer. Non-limiting examples of
carriers include positively charged polymeric carriers and micelles (e.g., phospholipid
micelles such as sphingosine and cerebrosides). Non-limiting examples of skin-penetration
enhancers include DMSO, d-limonene, allantoin, fulvic acid, myrrh, hydroquinone glyquin,
quillaja saponaria, and acanthophyllum squarrusom.

[0046] In certain preferred embodiments, the topical compositions used with the methods
and kits of the invention comprise a positively charged carrier that promotes transdermal
transport of the toxin. See, e.g., U.S. Publication No. 2005/0196414 entitled "Compositions
and Methods for Topical Application and Transdermal Delivery of Botulinum Toxin" which
is hereby incorporated by reference in its entirety. For example, the carrier may be a
positively charged carrier molecule with positively charged efficiency groups attached
thereeto. In certain preferred embodiments, the topical transport is enhanced by the carrier
without covalent modification of the therapeutic or cosmetic active agent to be delivered.

[0047] By "positively charged" is meant that the carrier has a positive charge under at
least some solution-phase conditions, more preferably under at least some physiologically
compatible conditions. Generally, the positively-charged carrier comprises a "positively
charged backbone," which is typically a linear chain of atoms, either with groups in the chain
carrying a positive charge at physiological pH, or with groups carrying a positive charge
attached to side chains extending from the backbone. Preferably, the positively charged
backbone itself will not have a defined enzymatic or therapeutic biologic activity. The linear
backbone is a hydrocarbon backbone which is, in some embodiments, interrupted by
heteroatoms selected from nitrogen, oxygen, sulfur, silicon and phosphorus. The majority of
backbone chain atoms are usually carbon. Additionally, the backbone will often be a
polymer of repeating units (e.g., amino acids, poly(ethyleneoxy), poly(propyleneamine),
polyalkyleneimine, and the like) but can be a heteropolymer. In one group of embodiments,
the positively charged backbone is a polypropyleneamine wherein a number of the amine
nitrogen atoms are present as ammonium groups (tetra-substituted) carrying a positive
charge. In another embodiment, the positively charged backbone is a nonpeptidyl polymer,
which may be a hetero- or homo-polymer such as a polyaalkyleneimine, for example a polyethyleneimine or polypropyleneimine, having a molecular weight of from about 10,000 to about 2,500,000, preferably from about 100,000 to about 1,800,000, and most preferably from about 500,000 to about 1,400,000. In another group of embodiments, the backbone has attached a plurality of side-chain moieties that include positively charged groups (e.g., ammonium groups, pyridinium groups, phosphonium groups, sulfonium groups, guanidinium groups, or amidinium groups). The sidechain moieties in this group of embodiments can be placed at spacings along the backbone that are consistent in separations or variable. Additionally, the length of the sidechains can be similar or dissimilar. For example, in one group of embodiments, the sidechains can be linear or branched hydrocarbon chains having from one to twenty carbon atoms and terminating at the distal end (away from the backbone) in one of the above-noted positively charged groups. In all aspects of the present invention, the association between the carrier and the therapeutic or cosmetic active agent is by non-covalent interaction, non-limiting examples of which include ionic interactions, hydrogen bonding, van der Waals forces, or combinations thereof.

[0048] In one group of embodiments, the positively charged backbone is a polypeptide having multiple positively charged sidechain groups (e.g., lysine, arginine, ornithine, homoarginine, and the like). Preferably, the polypeptide has a molecular weight of from about 10,000 to about 1,500,000, more preferably from about 25,000 to about 1,200,000, most preferably from about 100,000 to about 1,000,000. One of skill in the art will appreciate that when amino acids are used in this portion of the invention, the sidechains can have either the D- or L-form (R or S configuration) at the center of attachment. Alternatively, the backbone can be an analog of a polypeptide such as a peptoid. See, for example, Kessler, Angew. Chem. Int. Ed. Engl. 32:543 (1993); Zuckermann et al. Chemtracts-Macromol. Chem. 4:80 (1992); and Simon et al. Proc. Nat'l. Acad. Sci. USA 89:9367 (1992)). Briefly, a peptoid is a polyglycine in which the sidechain is attached to the backbone nitrogen atoms rather than the a-carbon atoms. As above, a portion of the sidechains will typically terminate in a positively charged group to provide a positively charged backbone component. Synthesis of peptoids is described in, for example, U.S. Pat. No. 5,877,278, which is hereby incorporated by reference in its entirety. As the term is used herein, positively charged backbones that have a peptoid backbone construction are considered "non-peptide" as they are not composed of amino acids having naturally occurring sidechains at the a-carbon locations.
A variety of other backbones can be used employing, for example, steric or electronic mimics of polypeptides wherein the amide linkages of the peptide are replaced with surrogates such as ester linkages, thioamides (−CSNH—), reversed thioamide (−NHCS—), aminomethylene (−NHCH_2—) or the reversed methyleneamino (−CH_2NH—) groups, ketomethylene (−COCH_2—) groups, phosphinate (−PO_2RCH_2—), phosphonamidate and phosphonamidate ester (−PO_2RNH—), reverse peptide (−NHCO—), trans-alkene (−CR=CH—), fluoroalkene (−CF=CH—), dimethylene (−CH_2CH_2—), thioether (−CH_2S—), hydroxyethylene (−CH(OH)CH_2—), methylenoxy (−CH_2O—), tetrazole (CN_4), sulfonamido (−SO_2NH—), methylenesulfonamido (−CHRSO_2NH—), reversed sulfonamide (−NHSO_2—), and backbones with malonate and/or gem-diamino-alkyl subunits, for example, as reviewed by Fletcher et al. ((1998) Chem. Rev. 98:763) and detailed by references cited therein. Many of the foregoing substitutions result in approximately isosteric polymer backbones relative to backbones formed from a-amino acids.

In each of the backbones provided above, sidechain groups can be appended that carry a positively charged group. For example, the sulfonamide-linked backbones (−SO_2NH— and −NHSO_2—) can have sidechain groups attached to the nitrogen atoms. Similarly, the hydroxyethylene (−CH(OH)CH_2—) linkage can bear a sidechain group attached to the hydroxy substituent. One of skill in the art can readily adapt the other linkage chemistries to provide positively charged sidechain groups using standard synthetic methods.

In one embodiment, the positively charged backbone is a polypeptide having efficiency groups. As used herein, an efficiency group is any agent that has the effect of promoting the translocation of the positively charged backbone through a tissue or cell membrane. Non-limiting examples of efficiency groups include -(gly)_n-i-(arg)_n, HIV-TAT or fragments thereof, or the protein transduction domain of Antennapedia, or a fragment thereof, in which the subscript n1 is an integer of from 0 to 20, more preferably 0 to 8, still more preferably 2 to 5, and the subscript n2 is independently an odd integer of from about 5 to 25, more preferably about 7 to about 17, most preferably about 7 to about 13. Still further preferred are those embodiments in which the HIV-TAT fragment has the formula (gly)_p-RGRDDRRQRRR-(gly)_q, (gly)_p-YGRKRRRQRRR-(gly)_q or (gly)_p-RKKRRQRRR-(gly)_q wherein the subscripts p and q are each independently an integer of from 0 to 20 and the fragment is attached to the backbone via either the C-terminus or the N-terminus of the fragment. Preferred HIV-TAT fragments are those in which the subscripts p and q are each
independently integers of from 0 to 8, more preferably 2 to 5. In some embodiments, the carrier has the amino acid sequence RKKRRQRRR-G-(K)₁₅-G-RKKRRQRRR.

[0052] In another preferred embodiment the positively charged efficiency group is the Antennapedia (Antp) protein transduction domain (PTD), or a fragment thereof that retains activity. (See, e.g., Console et al, J. Biol. Chem. 278:35109 (2003), the contents of which are incorporated by reference in their entirety.) Preferably the positively charged carrier includes side-chain positively charged efficiency groups in an amount of at least about 0.05%, as a percentage of the total carrier weight, preferably from about 0.05 to about 45 weight %, and most preferably from about 0.1 to about 30 weight %. For positively charged efficiency groups having the formula -(gly)ₓi-(arg)n₂, the most preferred amount is from about 0.1 to about 25%.

[0053] In another embodiment, the backbone portion is a polylysine and positively charged efficiency groups are attached to the lysine sidechain amino groups. In some embodiments, the polylysine may have a molecular weight that ranges from about 1,000 to about 1,500,000, preferably from about 25,000 to about 1,200,000, and most preferably from about 100,000 to about 1,000,000. In other embodiments, the polylysine may have a molecular weight that ranges from about 500 to about 5000, about 1000 to about 4000, about 1500 to about 3500, or about 2000 to about 3000. The polylysine may be any of the commercially available (Sigma Chemical Company, St. Louis, Mo., USA) polylysines such as, for example, polylysine having MW>70,000, polylysine having MW of 70,000 to 150,000, polylysine having MW 150,000 to 300,000 and polylysine having MW>300,000. The selection of an appropriate polylysine will depend on the remaining components of the composition and will be sufficient to provide an overall net positive charge to the composition and, in some embodiments, provide a length that is preferably from one to four times the combined length of the negatively charged components. Preferred positively charged efficiency groups or efficiency groups include, for example, -gly-gly-gly-arg-arg-arg-arg-arg-arg-arg (Gly₃Arg⁷) or HIV-TAT. In another preferred embodiment the positively charged backbone is a long chain polyalkyleneimine such as a polyethyleneimine, for example, one having a molecular weight of about 1,000,000.

[0054] In another embodiment, the carrier is a polylysine with positively charged branching groups attached to the lysine side-chain amino groups. The polylysine used in this particularly embodiment can be any of the commercially available (Sigma Chemical Company, St. Louis, Mo., USA, e.g.) polylysines such as, for example, polylysine having
MW>70,000, polylysine having MW of 70,000 to 150,000, polylysine having MW 150,000 to 300,000 and polylysine having MW>300,000. However, preferably the polylysine has MW of at least about 10,000. Preferred positively charged branching groups or efficiency groups include, for example, -gly-gly-gly-arg-arg-arg-arg-arg-arg (-Gly$_3$Arg$_7$), HIV-TAT or fragments of it, and Antennapedia PTD or fragments thereof.

[0055] In other embodiments of this invention, the carrier is a relatively short polylysine or polyethyleneimine (PEI) backbone (which may be linear or branched) and which has positively charged branching groups. Such carriers are useful for minimizing uncontrolled aggregation of the backbones and botulinum toxin in a therapeutic composition, which causes the transport efficiency to decrease dramatically. When the carrier is a relatively short linear polylysine or PEI backbone, the backbone will have a molecular weight of less than 75,000, more preferably less than 30,000, and most preferably, less than 25,000. When the carrier is a relatively short branched polylysine or PEI backbone, however, the backbone will have a molecular weight less than 60,000, more preferably less than 55,000, and most preferably less than 50,000.

Example 2: Application, Removal and Inactivation of Botulinum Toxin A From Skin.

[0056] A person with undesired glabellar lines visits a clinician to have them treated. The clinician initially cleanses the area to be treated by wiping it with a cotton ball that has been moistened with deionized water. The clinician then prepares a topical toxin composition by reconstituting a lyophilized formulation containing isolated botulinum toxin type A neurotoxin, and a positively charged carrier as described in Example 2. The clinician applies the topical toxin composition onto the intended treatment area and then spreads it using her nitrile-gloved finger.

[0057] The clinician then wipes the contaminated glove with a moist wipe that has been impregnated by sodium hypochlorite (i.e., a bleach wipe). The bleach wipe physically removes the topical toxin composition and chemically inactivates the botulinum toxin. The clinician then places the used bleach wipe in a hermetic container containing sodium hypochlorite liquid to help ensure that any residual botulinum toxin is inactivated.

[0058] After the topical toxin composition is given time to penetrate the treated area of skin, the clinician removes the excess topical toxin composition by blotting the treated areas with a paper towel. The clinician then places the used paper towel and nitrile gloves in the hermetic container for safe disposal.
Example 3: Application, Removal and Inactivation of a Topical Botulinum Composition Containing an Indicator

[0059] A person suffering from hyperhidrosis visits a doctor for treatment. The doctor initially cleanses the underarm area of the patient by wiping it with cotton balls that have been moistened with deionized water. Prior to treatment, the doctor dries the area to be treated. The doctor then prepares a topical toxin composition by reconstituting a lyophilized formulation containing isolated botulinum toxin type A neurotoxin, a positively charged carrier as described in Example 2, and an indicator comprising fine titanium dioxide particles. The doctor applies the topical toxin composition onto the intended treatment area, and then spreads it by rubbing her nitrile-gloved finger on the area to be treated. The presence of the titanium dioxide in the reconstituted formulation renders the formulation white, allowing the doctor to see more easily which areas of the underarm skin have already been treated.

[0060] After the topical toxin composition is given time to penetrate the treated area of skin, the doctor removes the excess topical toxin composition by blotting the treated areas with a paper towel. The doctor then places the contaminated paper towel and nitrile gloves in a decontamination chamber that is equipped with a UV light source. By turning on the UV light source, the doctor initiates photocatalytic reactions involving the titanium dioxide particles that degrade the botulinum toxin, thereby rendering the toxin harmless.

[0061] Between patients, the doctor turns on a UV light in the treatment room, in order to photocatalytically degrade any toxin that may have been inadvertently applied to a surface in the treatment room.

Example 4: Application, Removal and Inactivation of a Topical Botulinum Composition Using a Surfactant

[0062] A person with undesired glabellar lines visits a clinician to have them treated. The clinician initially cleanses the area to be treated by wiping it with a cotton ball that is moistened with deionized water. The clinician then prepares a topical toxin composition by reconstituting a lyophilized formulation containing isolated botulinum toxin type A neurotoxin, and a positively charged carrier as described in Example 2. The clinician applies the topical toxin composition onto the intended treatment area, and then spreads it with her nitrile-gloved finger.
The clinician then wipes the contaminated glove with a moist wipe that has been impregnated by sodium hypochlorite (i.e., a bleach wipe). The bleach wipe physically removes the topical toxin composition and chemically inactivates the botulinum toxin. The clinician then places the used bleach wipe in a hermetic container containing sodium hypochlorite liquid to help ensure that an residual botulinum toxin is inactivated.

After the topical toxin composition is given time to penetrate the treated area of skin, the clinician removes the excess topical toxin composition by blotting the treated areas with a paper towel. The clinician then swabs the treated areas with a cotton swab that has been previously dipped in a surfactant. The surfactant removes the excess toxin at the surface of the treated areas, without affecting the toxin that has already penetrated the skin.

The clinician then places the used paper towel, swab, and nitrile gloves in the hermetic container for safe disposal.

Example 5: Application, Removal, and Inactivation of a Topical Botulinum Toxin Composition for Treating Lateral Canthal Lines

A patient with undesired lateral canthal lines was treated with a topical botulinum toxin composition. Prior to administration of a topical botulinum toxin composition, the lateral canthal areas were cleansed with gauze pads moistened with water. The topical botulinum toxin composition, which comprised purified botulinum toxin molecules and a positively charged backbone carrier with attached HIV-TAT efficiency groups, was applied in droplets on one of the lateral canthal areas of the patient using a syringe with a blunt needle. The topical botulinum toxin composition was massaged into the lateral canthal area using a gloved finger. Topical botulinum toxin composition was applied in a similar manner to the other lateral canthal area of the patient. Subsequently, both lateral canthal areas were covered with an occlusive dressing. The subject was allowed to rest for a rest period of 30 ±5 minutes. After the rest period, the lateral canthal areas were gently swabbed with a series of gauze pads moistened with water.

The used materials (e.g., syringes, occlusive material, gloves, and gauze) were disposed of in a biohazard bag. To inactivate the botulinum toxin, the used materials were heated at about 120 °C for about 60 minutes. A noticeable reduction in the appearance of lateral canthal lines was observed after 5 days. After two weeks, a substantial reduction in the appearance of lateral canthal lines was observed. The greatest reduction in the
appearance of lateral canthal lines (i.e., the peak effect) occurred at about 28 days after administration of the topical botulinum toxin composition.
CLAIMS

What is claimed is:

1. A method for administering a toxin, the method comprising:
 topically applying a composition comprising the toxin to an area in need thereof;
 removing excess toxin from the area with a removal agent; and
 inactivating the removed excess toxin with an inactivation agent.

2. The method according to claim 1, wherein the toxin is selected from the group consisting of botulinum toxin, tetanus toxin, saxitoxin, and tetrodotoxin.

3. The method according to claim 2, wherein the toxin is botulinum toxin.

4. The method according to claim 3, wherein the botulinum toxin is selected from the group consisting of botulinum toxin serotype A, B, C, D, E, F, and G.

5. The method according to claim 4, wherein the botulinum toxin is a purified botulinum toxin molecule.

6. The method according to claim 1, wherein the step of removing excess toxin comprises wiping off the toxin.

7. The method according to claim 1, wherein step of inactivating the excess toxin comprises combining the excess toxin with a composition comprising an oxidizer.

8. The method according to claim 7, wherein the oxidizer is biodegradable.

9. The method according to claim 7, wherein the oxidizer comprises sodium hypochlorite.

10. The method according to claim 9, wherein the sodium hypochlorite is in powder form.

11. The method according to claim 1, wherein the step of inactivating the removed excess toxin comprises exposing the removed excess toxin to electromagnetic radiation.

12. The method according to claim 1, wherein the electromagnetic radiation comprises ultraviolet radiation.

13. The method according to claim 1, wherein the step of inactivating the removed excess toxin comprises exposing the removed excess toxin to a basic agent.

14. The method according to claim 13, wherein the basic agent has a pH greater than 13.
15. The method according to claim 1, wherein the removal agent adsorbs the excess toxin.
16. The method according to claim 1, wherein the removal agent absorbs the excess toxin.
17. The method according to claim 1, wherein the removal agent comprises a polymeric article.
18. The method according to claim 17, wherein the polymeric article comprises cellulose.
19. The method according to claim 18, wherein the polymeric article is a paper towel.
20. The method according to claim 17, wherein the polymeric article comprises cotton.
21. The method according to claim 20, wherein the removal agent is selected from the group consisting of a gauze, a swab, and a cotton ball.
22. The method according to claim 1, wherein the inactivation agent comprises an oxidizer.
23. The method according to claim 22, wherein the oxidizer is biodegradable.
24. The method according to claim 22, wherein the oxidizer agent comprises sodium hypochlorite.
25. The method according to claim 24, wherein the sodium hypochlorite is in powder form.
26. The method according to claim 1, wherein the inactivation agent comprises a source of electromagnetic radiation for photochemically degrading the toxin.
27. The method according to claim 26, wherein the electromagnetic radiation comprises ultraviolet radiation.
28. The method according to claim 27, wherein the inactivation agent further comprises titanium dioxide.
29. The method according to claim 1, wherein the inactivation agent comprises a heat source for thermally degrading the removed excess toxin.
30. The method according to claim 29, wherein the heat source comprises a resistive heating element.
31. The method according to claim 1, wherein the inactivation agent is a basic agent.
32. The method according to claim 31, wherein the basic agent has a pH greater than 13.
33. The method according to claim 1, wherein the toxin is administered in a composition comprising a detectable dye.

34. The method according to claim 33, wherein the step of removing excess toxin is repeated until the amount of detectable dye present on the treated area is below a predetermined threshold.

35. A method for removing toxin from a surface on a patient, the method comprising:
 - removing toxin from the area with a removal agent; and
 - inactivating the removed toxin with an inactivation agent.

36. The method according to claim 35, wherein the toxin is selected from the group consisting of botulinum toxin, tetanus toxin, saxitoxin, and tetrodotoxin.

37. The method according to claim 36, wherein the toxin is botulinum toxin.

38. The method according to claim 37, wherein the botulinum toxin is selected from the group consisting of botulinum toxin serotype A, B, CI, D, E, F, and G.

39. The method according to claim 38, wherein the botulinum toxin is a purified botulinum toxin molecule.

40. The method according to claim 35, wherein the step of removing botulinum toxin comprises wiping off the botulinum toxin.

41. The method according to claim 35, wherein the step of inactivating the removed toxin comprises combining the removed toxin with a composition comprising an oxidizer.

42. The method according to claim 41, wherein the oxidizer is biodegradable.

43. The method according to claim 41, wherein the step of inactivating the removed toxin comprises combining the removed toxin with a composition comprising sodium hypochlorite.

44. The method according to claim 43, wherein the composition comprising sodium hypochlorite is in powder form.

45. The method according to claim 35, wherein the step of inactivating the removed toxin comprises exposing the removed toxin to electromagnetic radiation.

46. The method according to claim 45, wherein the electromagnetic radiation comprises ultraviolet radiation.
47. The method according to claim 46, wherein the step of exposing the removed toxin to electromagnetic radiation comprises photochemically degrading the removed toxin.

48. The method according to claim 35, wherein the inactivation agent comprises a heat source for thermally degrading the removed excess toxin.

49. The method according to claim 48, wherein the heat source comprises a resistive heating element.

50. The method according to claim 35, wherein the step of inactivating the removed toxin comprises exposing the removed toxin to a basic agent.

51. The method according to claim 50, wherein the basic agent has a pH greater than 13.

52. The method according to claim 35, wherein the removal agent adsorbs the toxin.

53. The method according to claim 35, wherein the removal agent absorbs the toxin.

54. The method according to claim 35, wherein the removal agent comprises a polymeric article.

55. The method according to claim 54, wherein the polymeric article comprises cellulose.

56. The method according to claim 55, wherein the polymeric article is a paper towel.

57. The method according to claim 54, wherein the polymeric article comprises cotton.

58. The method according to claim 57, wherein the removal agent is selected from the group consisting of a gauze, a swab, and a cotton ball.

59. The method according to claim 35, wherein the inactivation agent comprises an oxidizer.

60. The method according to claim 61, wherein the oxidizer is biodegradable.

61. The method according to claim 60, wherein the oxidizer comprises sodium hypochlorite.

62. The method according to claim 61, wherein the sodium hypochlorite is in powder form.

63. The method according to claim 35, wherein the inactivation agent comprises a source of electromagnetic radiation for photochemically degrading the toxin.

64. The method according to claim 63, wherein the electromagnetic radiation comprises ultraviolet radiation.
65. The method according to claim 64, wherein the inactivation agent further comprises titanium dioxide.

66. The method according to claim 35, wherein the inactivation agent is a basic agent.

67. The method according to claim 66, wherein the basic agent has a pH greater than 13.

68. The method according to claim 35, wherein the toxin is administered in a composition comprising a detectable dye.

69. The method according to claim 68, wherein the step of removing toxin is repeated until the amount of detectable dye present on the treated area is below a predetermined threshold.

70. A kit for topically applying a toxin, the kit comprising:
 a composition comprising a toxin and a dye;
 an applicator for topically applying the composition to an area in need of treatment;
 a removal agent for removing excess toxin from the treated area; and
 an inactivation agent for inactivating the excess toxin after it has been removed from the treated area.

71. The kit according to claim 70, wherein the toxin is selected from the group consisting of botulinum toxin, tetanus toxin, saxitoxin, and tetrodotoxin.

72. The kit according to claim 71, wherein the toxin is botulinum toxin.

73. The kit according to claim 72, wherein the botulinum toxin is selected from the group consisting of botulinum toxin serotype A, B, C1, D, E, F, and G.

74. The kit according to claim 73, wherein the botulinum toxin is a purified botulinum toxin molecule.

75. The kit according to claim 70, wherein the applicator comprises a glove.

76. The kit according to claim 70, wherein the applicator comprises a syringe.

77. The kit according to claim 70, wherein the removal agent absorbs the excess toxin.

78. The kit according to claim 70, wherein the removal agent adsorbs the excess toxin.
79. The kit according to claim 70, wherein the removal agent comprises a polymeric article.
80. The kit according to claim 79, wherein the polymeric article comprises cellulose.
81. The kit according to claim 80, wherein the polymeric article is a paper towel.
82. The kit according to claim 80, wherein the polymeric article comprises cotton.
83. The kit according to claim 82, wherein the removal agent is selected from the group consisting of a gauze, a swab, and a cotton ball.
84. The kit according to claim 70, wherein the inactivation agent comprises an oxidizer.
85. The kit according to claim 84, wherein the oxidizer is biodegradable.
86. The kit according to claim 84, wherein the inactivation agent comprises sodium hypochlorite.
87. The kit according to claim 86, wherein the sodium hypochlorite is in powder form.
88. The kit according to claim 70, wherein the inactivation agent comprises a source of electromagnetic radiation for photochemically degrading the toxin.
89. The kit according to claim 88, wherein the electromagnetic radiation comprises ultraviolet radiation.
90. The kit according to claim 89, wherein the inactivation agent further comprises titanium dioxide.
91. The kit according to claim 70, wherein inactivation agent is a basic agent.
92. The kit according to claim 91, wherein the basic agent has a pH greater than 7.0.
93. A kit for the disposal of a topically applied toxin, the kit comprising:

 a removal agent for removing excess toxin topically applied to an area in need of treatment; and

 an inactivation agent for inactivating the excess toxin after it has been removed from the treated area.

94. The kit according to claim 93, wherein the removal agent adsorbs the excess toxin.
95. The kit according to claim 93, wherein the removal agent absorbs the excess toxin.
96. The kit according to claim 93, wherein the removal agent comprises a polymeric article.

97. The kit according to claim 96, wherein the polymeric article comprises cellulose.

98. The kit according to claim 97, wherein the polymeric article is a paper towel.

99. The kit according to claim 97, wherein the polymeric article comprises cotton.

100. The kit according to claim 99, wherein the removal agent is selected from the group consisting of a gauze, a swab, and a cotton ball.

101. The kit according to claim 93, wherein the inactivation agent comprises an oxidizer.

102. The kit according to claim 101, wherein the oxidizer is biodegradable.

103. The kit according to claim 101, wherein the inactivation agent comprises sodium hypochlorite.

104. The kit according to claim 103, wherein the sodium hypochlorite is in powder form.

105. The kit according to claim 93, wherein the inactivation agent comprises a source of electromagnetic radiation for photochemically degrading the toxin.

106. The kit according to claim 105, wherein the electromagnetic radiation comprises ultraviolet radiation.

107. The kit according to claim 106, wherein the inactivation agent further comprises titanium dioxide.

108. The kit according to claim 93, wherein the inactivation agent is a basic agent.

109. The kit according to claim 108, wherein the basic agent has a pH greater than 13.

110. A composition comprising a botulinum toxin and a dye.

111. The composition according to claim 110, wherein the dye is a visible dye.

112. The composition according to claim 110, wherein the dye is a fluorescent dye.

113. The composition according to claim 111, wherein the botulinum toxin is selected from the group consisting of botulinum toxin serotypes A, B, C1, D, E, F, and G.

114. The composition according to claim 112, wherein the botulinum toxin is selected from the group consisting of botulinum toxin serotypes A, B, C1, D, E, F, and G.
115. The composition according to claims 113, wherein the botulinum toxin is a purified botulinum toxin molecule.

116. The composition according to claim 114, wherein the botulinum toxin is a purified botulinum toxin molecule.

117. The composition according to claim 111, wherein the visible dye is an artificial dye.

118. The composition according to claim 117, wherein the visible dye selected from the group consisting of FD&C Blue No. 1, FD&C Blue No. 2, FD&C Green No. 3, FD&C Red No. 40, FD&C Red No. 3, FD&C Yellow No. 5, and FD&C Red No. 6.

119. The composition according to claim 111, wherein the visible dye is a natural food dye.

120. The composition according to claim 119, wherein the visible dye is selected from the group consisting of caramel coloring, annatto, cochineal, betanin, turmeric, saffron, paprika, pandan, and butterfly pea.

121. The composition according to claim 120, wherein the fluorescent dye is selected from the group consisting of fluorescein sodium, rhodamine B, Acridine Orange, green fluorescent protein, curcumin, and zinc sulfide.

122. The method according to claim 9, wherein the sodium hypochlorite is in solution form.

123. The kit according to claim 86, wherein the sodium hypochlorite is in solution form.

124. The kit according to claim 86, wherein the sodium hypochlorite is in powder form.

125. The kit according to claim 103, wherein the sodium hypochlorite is in solution form.

126. The kit according to claim 103, wherein the sodium hypochlorite is in powder form.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/66728

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61 K 39/02; A61 Q 19/00 (201 2.01)

USPC - 424/236.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. DOCUMENTS SEARCHED TO BE RELEVANT

Minimum documentation searched (classification system followed by classification symbols)

USPC- 424/236.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC- 424/236.1, 239.1; 510/130; 514/974,975

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)
PUBWEST, Google, Google Scholar, WIPO .Neurotoxin, toxin, botulinum, dye, colorant, imaging agent, topical, transdermal, cosmetic, kit, tetanus, saxitoxin, remove, wipe, scrape, sodium hypochlorite, kit, guaze, cotton, swab, UV radiation, thermal degradation, fluorescent dyes

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2008/0107690 A1 (Dake et al.) 08 May 2008 (08.05.2008) entire document esp. para [0008] [0013], [0030], [0043], [0047], [0057], [0056], [0062]:[0063], [0102], [0117], [0122]</td>
<td>110, 111, 113, 115, 117, 1-109, 112, 114, 116, 118-126</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **S** document member of the same patent family

Date of the actual completion of the international search
10 April 2012 (10.04.2012)

Date of mailing of the international search report
30 APR 2012

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer: Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>