

1567 230

(21) Application No. 44278/77 (22) Filed 25 Oct. 1977
 (31) Convention Application No. 2 648 569
 (32) Filed 27 Oct. 1976 in
 (33) Fed. Rep. of Germany (DE)
 (44) Complete Specification published 14 May 1980
 (51) INT. CL.³ F16C 3/03
 (52) Index at acceptance

(19)

F2U 13E 503 510 532 534 541

(54) IMPROVEMENTS IN OR RELATING TO TRANSMISSION ASSEMBLIES

(71) We, LOHR & BROMKAMP G.m.b.H.,
 a Company organised and existing under
 the laws of the Federal German Republic,
 of 6050 Offenbach/Main 1, Germany, do
 5 hereby declare the invention, for which we
 pray that a patent may be granted to us,
 and the method by which it is to be per-
 formed, to be particularly described in and
 by the following statement:—

10 This invention concerns an assembly
 (hereinafter called of the kind specified),
 particularly for transmission of drive from
 a power source to a machine, comprising a
 transmission shaft and a pair of constant
 15 velocity ratio universal joints with the trans-
 mission shaft therebetween and wherein each
 of said constant velocity ratio universal
 joints comprises an outer and an inner joint
 member with torque transmitting or like ele-
 20 ments guided into the homokinetic plane.

German Patent No. 1,914,275 discloses a
 transmission shaft which is associated with
 a pair of plunging constant velocity ratio
 universal joints. However, this arrangement
 25 has the drawback that if a shaft of this kind
 is to be used for auxiliary drives, e.g. as
 applied to weaving looms and other textile
 machinery, locally prevailing conditions may
 require the shaft to be cut down to the right
 30 length on site, with the result that either
 the shaft must have a longitudinal profile
 which is adapted drivingly to receive a joint
 member, or a drive pin must be welded to
 the shaft.

35 Other prior proposals include cardanshafts
 associated with a pair of universal joints of
 the cruciform or cardan type, and separate
 means for longitudinal compensation
 40 through splined engagement. Such longitudi-
 nal compensation is necessary to take up
 length variations between the two joints arising
 from the kinetics of the assembly. Inter-
 mediate shafts of different length between
 45 the two joints are required however for dif-
 ferent lengths between the assemblies to be
 drivingly connected. Such arrangements pre-
 sent the same disadvantage, namely that the
 connecting shaft has to be trimmed on the
 site. Moreover, transmissions of this kind

have the further drawback that the connector flanges must be in precise parallel alignment failing which there can be no constant velocity ratio output. Such shaft alignment is an extremely laborious and time-taking operation. Length compensation is obtained by splined engagement. This, however, gives rise to considerable thrust forces and correspondingly heavy wear. Also, in normal service such cruciform joint bearings require regular lubrication.

50 It is an object of the present invention to
 provide a new or improved transmission
 assembly of the kind specified which is read-
 55 ily adaptable to varying lengths between
 apparatus to be drivingly connected and,
 on the other hand is capable of taking up
 small amounts of relative axial movement
 during service.

55 According to the present invention we
 provide an assembly of the kind specified
 wherein the transmission shaft comprises a
 pair of shaft parts telescopically slidably en-
 gaged to permit of relative axial adjustment
 60 and positively to prevent relative rotation
 and the constant velocity ratio universal
 joints are constructed to provide plunging
 movement of the inner joint member within
 the outer joint member.

70 The assembly has the advantage that no
 additional work whatsoever will be required
 for the connecting of a machine to a power
 source in any given location because the
 assembly has to be screwed or bolted in
 75 place between connector flanges, associated
 with the power source and machines respec-
 tively.

80 Any inaccuracies with regard to length
 adjustment occurring during positioning of
 the assembly are fully taken up by relative
 axial positioning between the shaft parts.
 The relative positions of the two connector
 85 flanges are no longer critical because the
 constant velocity ratio universal joints pre-
 clude uneven running. Another very favour-
 able aspect of the assembly is that of dy-
 namic length compensation, that is to say,
 90 length variations of the assembly due to re-
 lative movement of the two joints or arising

from an association with either vibrating, oscillating or floatingly mounted machinery, will be fully absorbed by the plunging of the constant velocity ratio universal joints.

One preferred embodiment of the invention will now be described by way of example only with reference to the accompanying drawing wherein:—

10 FIGURE 1 is a section of a transmission shaft of the kind specified with two sliding joints, and

FIGURE 2 is a section through the connecting shaft.

15 The transmission arrangement represented in Figure 1 consists of a pair of slidable constant velocity ratio joints 1, 2 and a connecting shaft comprising a pair of end portions 3 and 4, and a pair of relatively telescopically 20 slidable hollow sections 5 and 6.

The constant velocity ratio joints 1 and 2 are basically identical and for the sake of simplicity, only one of these will be herein-after described. It comprises an outer joint

25 member 7, with grooves 8 formed in the surface of an interior cavity thereof for the accommodation of torque-transmitting elements which comprise balls 9. The said interior cavity also receive the end portion

30 3 or 4 of an associated shaft part which carries an inner joint member 10. The outer circumferential surface of the inner joint member 10 is provided with grooves 11 which correspond to, and through the

35 balls 9 cooperate with, the grooves 8 provided in the outer joint member 7. In each case, one groove 8 of the inner joint member 10 crosses or intersects with one groove 11 of the outer joint member 7 and between each of these pair of grooves is a

40 torque-transmitting ball 9. The grooves are of a design such as to allow for plunging movement of the joint. Each of the balls 9 is guided by and supported in the associated

45 windows of a cage 12 arranged between the inner joint member 10 and outer joint member 7. In the case of this particular joint, the cage 12 is supported by virtue of contact engagement between its

50 inner spherical surface and the outer spherical surface of the inner joint member 10, whilst its exterior surface is axially slidable in contact with the inner surface of the cavity of the outer joint member 7. The end

55 portion 3 is provided with a tapered profile at the end thereof nearest the joint and

is engaged, for example, through cooperative splines in a corresponding bore provided in the inner joint member 10. A concertina boot 13 is provided at one end of the joint, and an end cap 14 at the other end, to prevent ingress of dirt, dust or water.

The mutually facing ends of the shaft end portions 3 and 4 are each provided with a weld nipple. The exterior diameters of these nipples correspond to the internal diameters of the hollow sections 5 and 6 of the shaft parts at the ends thereof nearest the nipples. The hollow sections 5, 6 are telescopically slidably engaged with each other and have either a cross-sectional form as shown in Figure 2 or any other suitable, non-circular cross-sectional form effective to establish the transmission of driving torque. Moreover, the outer diameter of the hollow section 5 and the internal diameter of the cooperating hollow section 6 are such that the former fits slidably in the latter.

70 After initial assembly of the joints as such, each end portion 3 or 4 is associated with the corresponding hollow section 5 or 6 to form the two shaft parts and is rigidly joined thereto by welding or similar method.

The resulting assembly may then be fitted 75 on site between the machine to be driven and the driving unit, simply by trimming the hollow sections 5 or 6 to the required length. It is not necessary for the axes of the outer joint members 7 to be in precise

parallel alignment, because the parallel, or constant velocity universal joints automatically give a constant velocity drive output. Relative length variations between the two joints during service will be taken up by

80 plunging between the inner and outer members of the individual joints. Likewise, if certain parts of the grooves forming the ball tracks become worn, it is merely necessary to make a relative axial adjustment in the

85 positions of the hollow sections 5 and 6 by 90 effecting sliding of one relatively to the other so that the balls may then work in, as yet, unworn regions of the grooves, thereby 95 providing a longer overall service life.

100 It will be appreciated that it is of course also possible to fit constant velocity ratio universal joints of a different construction to those shown in the accompanying drawings.

110

WHAT WE CLAIM IS:—

1. An assembly of the kind specified

wherein the transmission shaft comprises a pair of shaft parts telescopically slidably engaged to permit of relative axial adjustment and positively to prevent relative rotation and the constant velocity ratio universal joints are each constructed to provide plunging movement of the inner joint member with the outer joint member.

5 2. An assembly of transmission shaft and constant velocity universal joints substantially as hereinbefore described with reference to and as shown in the accompanying drawing.

10

FORRESTER, KETLEY & CO.,
Chartered Patent Agents,
Rutland House,
148 Edmund Street,
Birmingham B3 2LD,
and also at
Forrester House,
52 Bounds Green Road,
London N11 2EY,
Scottish Provident Building,
29, St. Vincent Place,
Glasgow G1 2DT.
Agents for the Applicants.

Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon), Ltd.—1980.
Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY,
from which copies may be obtained.

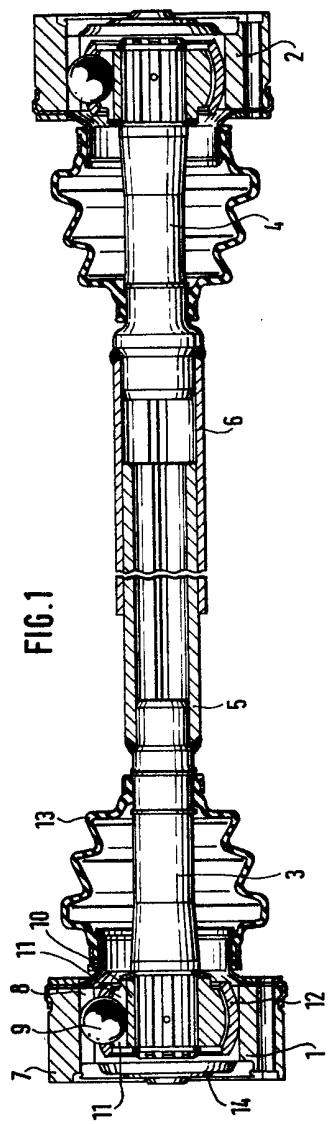


FIG. 1

FIG. 2