实用新型名称
钢筋混凝土带暗支撑简体

摘要
本实用新型涉及一种用在高层建筑中的钢筋混凝土简体，特别涉及到一种带暗支撑的简体。简状的每一面墙体由带暗支撑混凝土剪力墙构成，其中所述的暗支撑剪力墙中配置两排分别由横向和纵向分布钢筋组成的钢筋网，两排钢筋网之间加配有一斜向钢筋束构成的钢筋斜支撑（10），钢筋斜支撑（10）用箍筋约束，在钢筋网之间用拉接钢筋拉接，其特征在于：每两面剪力墙由共用的边框架（1）连接，钢筋斜支撑（10）钢筋网中呈空间螺旋形，在剪力墙连接的转角处是相连的，从而可显著提高简体的抗震转能力。每面剪力墙中的钢筋斜支撑呈 X 形。本实用新型显著提高了简体的抗震能力，特别是抗震能力，当建筑物遭遇强烈地震时，可减轻其震动，防止其倒塌。
1. 钢筋混凝土带暗支撑筒体，呈空间筒状，其每一面墙体由带混凝土暗支撑剪力墙连接呈封闭状，其中所述的带混凝土暗支撑剪力墙中配置两排分别由横向和纵向分布钢筋组成的钢筋网，在两排分布钢筋网之间加配有斜向钢筋束构成的钢筋斜支撑（10），钢筋斜支撑（10）用箍筋约束，在钢筋网之间用拉接钢筋拉接，其特征在于：每两面剪力墙之间由共用的边框柱（1）连接，钢筋斜支撑（10）在筒体中呈空间螺旋上升形，剪力墙（a）中的一段钢筋斜支撑（1-2）、与剪力墙（a）相邻的剪力墙（b）中的一段钢筋斜支撑（2-3）、与剪力墙（b）相邻的剪力墙（c）中的一段钢筋斜支撑（3-4）、与剪力墙（c）相邻的剪力墙（d）中的一段钢筋斜支撑（4-5）为连续的钢筋束。

2. 按照权利要求1所述的钢筋混凝土带暗支撑筒体，其特征在于：筒体中的每面剪力墙板中在楼层高度内分别固装着的两个钢筋斜支撑（10）呈X形，暗支撑空间呈螺旋上升状，斜支撑的上端从上框架梁的中部伸入边框锚固，其下端从下边框架的端部伸入边框锚固。
钢筋混凝土带暗支撑简体

技术领域

本实用新型涉及一种用在高层建筑中的钢筋混凝土简体，特别涉及到一种带暗支撑的简体。

背景技术

现有的钢筋混凝土简体是由封闭的剪力墙组成，其受力特点为空间受力结构部件，与平面受力构件剪力墙的受力特点有较大差异，但是剪力墙的延性较差的缺点在一定程度上影响着简体抗震性能的充分发挥。现有的构成钢筋混凝土简体的剪力墙的配筋为两排由横向和纵向分布钢筋组成的钢筋网，其刚度、承载力和延性等不足导致剪切破坏及受压墙肢底部混凝土压碎等破坏现象发生，从而使结构整体破坏；墙底底部的塑性铰区域小，抗震耗能能力较低；构成简体的剪力墙出现剪切斜裂缝后，易致使简体的承载力快速降低。

本实用新型的发明人为达到延缓并限制抗震墙剪切破坏，提出了一种“内藏钢筋砼支撑设暗半通缝带边框抗震墙”，并于 1998 年 12 月 4 日获专利权，专利号为 ZL97244563.3。该专利技术的斜向暗支撑为由纵筋及相应箍筋形成混凝土核心束，它与混凝土剪力墙为同一种材料，它们之间的共同工作性能良好，显著地提高了剪力墙的抗震能力。
发明内容

本实用新型所要解决的技术问题是显著提高钢筋混凝土筒体抗震能力的问题，原来存在的主要问题有：（1）构成钢筋混凝土筒体的剪力墙刚度、承载力和延性等不足导致受压墙肢底部混凝土压碎，从而使结构破坏。（2）墙底底部的塑性铰区域小，抗震耗能能力较低。（3）构成筒体的剪力墙出现剪切斜裂缝后，易致使筒体的承载力快速降低。为了解决上述问题，本实用新型提出了一种钢筋混凝土带暗支撑筒体，钢筋混凝土带暗支撑筒体是一种空间受力构件，具有很大的强度和抗侧力刚度，在高层建筑中，可用来作为主要的抗侧力构件，承担绝大部分的水平地震作用。简体的受力特点为空间受力结构部件，与平面受力构件剪力墙的受力特点有较大差异，比如暗支撑在筒体中类似有由下至上的螺旋箍（将筒体看成一个竖悬臂空心构件）的作用，可以有抗扭转作用，而平面剪力墙中的暗支撑就没有这种作用。

本实用新型所采用的技术方案参见图1、图2、图3、图4，所提供的钢筋混凝土带暗支撑筒体，呈空间筒状，其每一面墙体由带暗支撑混凝土剪力墙板构成，其中所述的带暗支撑混凝土剪力墙中配置两排分别由横向和纵向分布钢筋组成的钢筋网，在两排分布钢筋网之间加配有斜向钢筋束构成的钢筋斜支撑10，钢筋斜支撑10用箍筋约束，在钢筋网之间用拉接钢筋拉接，其特征在于：每两面剪力墙之间由共用的边框柱1连接，钢筋斜支撑10在筒体中呈空间螺旋上升形，剪力墙a中的一段钢筋斜支撑2-3与剪力墙a相邻的剪力墙b的正上方单元空间的剪力墙c中的一段钢筋斜支撑3-4和剪力墙a相邻
的另一面剪力墙 d 的正下方单元空间的剪力墙 e 中的一段钢筋斜支撑 1-2 为相连为一体的钢筋束。

所述的钢筋混凝土带暗支撑筒体，其特征在于：筒体中的每面剪力墙板中固装着的两个钢筋斜支撑（10）呈 X 形，暗支撑空间呈螺旋上升状，斜支撑的上端从上框架梁的中部伸入边框锚固，其下端从下边框架的端部伸入边框锚固。

钢筋混凝土带暗支撑筒体与普通钢筋混凝土简体相比，可以显著提高简体的抗震能力，由于剪力墙简体是建筑结构的核心抗侧力部件，提高了简体的抗震能力，也就提高了结构整体的抗震能力，当建筑物遭遇强烈地震时，可减轻其震害，防止其倒塌。

附图说明

图 1 是简体的一片剪力墙中的暗支撑呈空间螺旋形上升的示意图，其中 1-6-11-12-14-13-2-7、7-2-13-14-8-3-15-16、16-15-3-8-4-9-17-18、18-17-9-4-20-19-10-5 分别代表简体的一个结构单元。1-2-3-4-5-6、6-7-8-9-10 为呈空间螺旋形上升的两个暗支撑。

图 2 是本实用新型钢筋混凝土带暗支撑筒体的一个结构单元中一片剪力墙结构配筋示意图，其它三个侧面的配筋示意图与图 2 相同。

图 3 是图 1 中 A—A 剖面放大示意图；

图 4 是图 1 中 B—B 剖面放大示意图；
具体实施方式

下面结合附图对本实用新型实施例作进一步详述：

钢筋混凝土带暗支撑简体的一个结构单元中一片剪力墙结构配筋示意图如图 2、图 3 和图 4 所示，它是由钢筋混凝土边框和带混凝土暗支撑剪力墙板构成。其正四边形截面边框柱 1 的配筋是，每边有四根钢筋 2，沿柱纵向均匀地绑扎着四边形箍筋 3 和正八边形箍筋 4，其箍筋分布贯通至梁与柱相接的节点内区域；其矩形截面框架梁 5 的配筋是，每边有的等距离地三根纵向 6，沿梁纵向均匀地绑扎着矩形钢筋 7 和拉接筋 15，框架梁的箍筋均匀分布至梁端；剪力墙的配筋是，在两侧沿横向及竖向分别均匀的布置剪力墙板钢筋 8 和 9，并在交叉点绑扎固定，形成两片钢筋网，钢筋 8 和 9 的两端分别插入边框柱和边框梁中，并使其分别满足锚固长度的要求。斜支撑的配筋是，在剪力墙板两片钢筋网上分别对称地固定着呈 X 形的由钢筋斜支撑 10 构成的混凝土暗支撑。钢筋斜支撑 10 的上端从上框架梁的中部伸入边框锚固，其下端从下边框梁的端部伸入边框锚固，并使其分别满足锚固长度的要求。斜支撑纵筋 10 的两根钢筋之间均匀地固定着箍筋 11，纵筋 10 与均布的箍筋连接构成混凝土暗支撑骨架，浇捣混凝土后，形成混凝土暗支撑。其它构造配筋有，斜支撑纵筋与边框相交的节点处分别固定着拉接筋 12。在斜支撑纵筋和剪力墙两片钢筋网之间用均匀的拉接筋 13 相连，抗震墙两片钢筋网之间也用间距小于或等于 600mm 的拉接筋 14 相连。每两片剪切墙共用一个边框柱，使伸入边框的钢筋满足锚固长度，斜支撑纵筋 10 在简体中为呈空间螺旋形的钢筋束，可采用焊接、或搭接的方式将钢筋束连为一体。最后将边框及剪力墙板整体一次浇捣混凝土成型，即构成钢筋混凝土带暗支撑简体。
图 1
图 2