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HUMAN BODY POSE ESTMATION 

STATEMENT OF PRIORITY 

The present application is a continuation-in-part of and 
claims priority to U.S. patent application Ser. No. 12/454, 
628, titled “Human Body Pose Estimation” filed on May 20, 
2009, which in turn claims priority to U.S. provisional patent 
application 61/174,878, titled “Human Body Pose Estima 
tion' filed May 1, 2009. The contents of these applications are 
incorporated herein in their entirety. 

BACKGROUND 

In a typical computing environment, a user has an input 
device such as a keyboard, a mouse, a joystick or the like, 
which may be connected to the computing environment by a 
cable, wire, wireless connection or the like. If control of a 
computing environment were to be shifted from a connected 
controller to gesture or pose based control, the system will 
need effective techniques to be able to determine what poses 
orgestures a person is making. Interpreting gestures or poses 
in a tracking and processing system without knowing the pose 
of a user's body may cause the system to misinterpret com 
mands, or to miss them all together. 

Further, a user of a tracking and processing system may 
stand at one of various different possible angles with respect 
to a capture device, and the user's gesture may appear differ 
ently to the capture device depending upon the particular 
angle of the user with respect to the capture device. For 
example, if the capture device is unaware that the user is not 
directly facing the capture device, then the user extending his 
arm directly forward could possibly be misinterpreted by the 
capture device as the user extending his arm partially to the 
left or the right. Thus, the system may not work properly 
without body pose estimation. Further, if the estimation tech 
nique used is not fine-grained enough, Smaller gestures Such 
as finger movements may not be detected. 

SUMMARY 

Techniques for human body pose estimation are disclosed 
herein. Depth map images from a depth camera may be pro 
cessed to calculate a probability that each pixel of the depth 
map is associated with one or more segments or body parts of 
a body. In some implementations, silhouette images or Volu 
metric images may be used in place of the depth map images. 
Body parts may then be constructed of the pixels and pro 
cessed to definejoints or nodes of those body parts. The nodes 
or joints may be provided to a system which may construct a 
model of the body from the various nodes or joints. 

In other implementations, rather than calculating prob 
abilities that the pixels are associated with segments of the 
body, the techniques may instead involve determining, for 
each pixel, a three-dimensional representation that is associ 
ated with a location on a canonical body. For example, a 
three-dimensional coordinate and variance associated with a 
specific location on a canonical body (e.g., a location on the 
left hand) may be determined for a given pixel. The three 
dimensional representations and the image are then utilized to 
construct a posed model of the body. 

In an embodiment, a first pixel of a depth map may be 
associated with one or more body parts of one or more users. 
Association with a body part may mean that there is a high 
probability that the first pixel is located within the body part. 
This probability may be determined by measuring the back 
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ground depth, the depth of the first pixel, and the depth of 
various other pixels around the first pixel. 
The location and angle at which various other pixels 

around the first pixel may be measured for depth may be 
determined by a feature test training program. In one embodi 
ment, each time the depth at a pixel is measured, a determi 
nation of whether the pixel is within the depth range of the 
body is made. Based on the determination, the distance and 
angle for the next test pixel may be provided. Selecting the 
test pixels in Such a way may increase the efficiency and 
robustness of the system. 
Body poses, which may include pointing, XyZ coordinates, 

joints, rotation, area, and any other aspects of one or more 
body parts of user may be estimated for multiple users. In an 
embodiment, this may be accomplished by assuming a user 
segmentation. For example, values may be assigned to an 
image Such that a value 0 represents background, value 1 
represents user 1, value 2 represents user 2, etc. Given this 
player segmentation image, it is possible to classify all user 1 
pixels and do a three dimensional centroid finding, and then 
repeat this process for Subsequent users. In another embodi 
ment, background Subtraction may be performed and the 
remaining foreground pixels (belonging to the multiple users) 
may then be classified as associated with one or more body 
parts. In a further embodiment, the background may be con 
sidered another body part and every pixel in the frame may 
be considered and associated with one or more body parts, 
including the background. When computing centroids, it may 
be ensured that each centroid is spatially localized, so that a 
respective body part is present for each user. The centroids 
may then be combined into coherent models by, for example, 
connecting neighboring body parts throughout each user's 
body. 

In an embodiment, after one or more initial body part 
probabilities are calculated for each pixel, the initial prob 
abilities for each pixel may be compared with the initial 
probabilities of one or more offset adjacent pixels to further 
refine the probability calculations. For example, if the initial 
probabilities suggest that adjacent pixels are in the same or 
adjacent body parts (i.e., head and neck), then this would 
increase the probabilities of the initial calculations. By con 
trast, if the initial probabilities Suggest that adjacent pixels are 
in non-adjacent body parts (i.e., head and foot), then this 
would decrease the probabilities of the initial calculations. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The systems, methods, and computer readable media for 
body pose estimation inaccordance with this specification are 
further described with reference to the accompanying draw 
ings in which: 

FIGS. 1A, 1B, 1C, and 1D illustrate an example embodi 
ment of a tracking and processing system with a user playing 
a game. 

FIG. 2 illustrates an example embodiment of a capture 
device that may be used in a tracking and processing system. 
FIG.3 depicts an example embodiment of a depth image. 
FIG. 4 depicts an example embodiment of a silhouette 

image. 
FIG. 5 depicts an example embodiment of a volumetric 

image. 
FIG. 6 illustrates an example embodiment of a computing 

environment that may be used to interpret one or more poses 
orgestures in a body pose estimation system. 

FIG. 7 illustrates another example embodiment of a com 
puting environment that may be used to interpret one or more 
poses or gestures in a body pose estimation system. 
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FIG. 8 depicts a flow diagram of an example method for 
body pose estimation. 

FIG.9 depicts a flow diagram of an example depth feature 
teSt. 

FIG. 10 depicts an example embodiment of pixels mea 
sured in a depth feature/probability test. 

FIG. 11 depicts a flow diagram of an example embodiment 
of a depth feature/probability test tree. 

FIG. 12 depicts an example embodiment of a segmented 
body used in body pose estimation. 

FIG. 13 depicts example embodiments of poses of a user 
and corresponding segmented images which may be used in a 
training program to create feature tests. 

FIG. 14 depicts an example embodiment of assigning prob 
abilities associated with body parts using multiple feature 
testS. 

FIG. 15 depicts an example embodiment of centroids/ 
joints/nodes of body parts in body pose estimation. 

FIG. 16 depicts a flow diagram of an example method for 
body pose estimation using a silhouette image. 

FIG. 17 depicts a flow diagram of an example method for 
body pose estimation using a Volumetric image. 

FIG. 18 depicts a flow diagram of an example method for 
determining three-dimensional representations for pixels or 
Voxels in an image that may be used along with the image to 
estimate a body pose. 

FIG. 19 depicts an example embodiment of a model body 
having a canonical pose, shape, and/or size for use in body 
pose estimation. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

As will be described herein, a tracking and processing 
system may determine body pose estimation. When a user 
makes a gesture or pose, a tracking and processing system 
may receive the gesture or pose and associate one or more 
commands with the user. In order to determine what response 
to provide the user of a computing environment, the system 
may need to be able to determine the body pose of the user. 
Body poses may also be used to determine skeletal models, 
determine the location of particular body parts and the like. 

In an example embodiment, a tracking and processing sys 
tem is provided with one or more capture devices, such as 2D 
cameras, 3D cameras, and/or depth cameras. The camera or 
cameras may capture one or more images of an image scene, 
Such as depth map images or 2D, RGB images. In some 
implementations, these images may be used to construct sil 
houette images or Volumetric images. The computing envi 
ronment may perform one or more processes on the image to 
assign pixels or Voxels on the image to 2D segments or 3D 
volumes (the 2D segments and 3D volumes hereinafter 
referred to as “segments') of the users body. From these 
assigned body parts, the computing environment may obtain 
nodes, centroids or joint positions of the body parts, and may 
provide the nodes, joints or centroids to one or more pro 
cesses to create a 3D model of the body pose. In one aspect, 
the body pose is the three dimensional location of the set of 
body parts associated with a user. In another aspect, pose 
includes the three dimensional location of the body part, as 
well as the direction it is pointing, the rotation of the body 
segment or joint as well as any other aspects of the body part 
or Segment. 

In another example embodiment, a tracking and processing 
system may determine 3D representations for pixels or voxels 
that reference locations on a model body having a canonical 
pose, shape, and/or size. These 3D representations may be 
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determined in place of assigning pixels or Voxels to segments 
ofa body. The 3D representations determined for the pixels or 
Voxels and the image to which the pixels or Voxels belong 
may then be utilized by the system to determine the body pose 
captured by the image. 

FIGS. 1A, 1B, and 1C illustrate an example embodiment of 
a configuration of a tracking and processing system 10 utiliz 
ing body pose estimation with a user 18 playing a boxing 
game. In an example embodiment, the tracking and process 
ing system 10 may be used to, among other things, determine 
body pose, bind, recognize, analyze, track, associate to a 
human target, provide feedback, interpret poses or gestures, 
and/or adapt to aspects of the human target such as the user 
18. 
As shown in FIG. 1A, the tracking and processing system 

10 may include a computing environment 12. The computing 
environment 12 may be a computer, a gaming system or 
console, or the like. According to an example embodiment, 
the computing environment 12 may include hardware com 
ponents and/or software components such that the computing 
environment 12 may be used to execute applications such as 
gaming applications, non-gaming applications, or the like. 
As shown in FIG. 1A, the tracking and processing system 

10 may further include a capture device 20. The capture 
device 20 may be, for example, a detector that may be used to 
monitor one or more users, such as the user 18, Such that poses 
performed by the one or more users may be captured, ana 
lyzed, processed, and tracked to perform one or more controls 
or actions within an application, as will be described in more 
detail below. 

According to one embodiment, the tracking and processing 
system 10 may be connected to an audiovisual device 16 such 
as a television, a monitor, a high-definition television 
(HDTV), or the like that may provide game or application 
visuals and/or audio to the user 18. For example, the comput 
ing environment 12 may include a video adapter Such as a 
graphics card and/or an audio adapter Such as a sound card 
that may provide audiovisual signals associated with the feed 
back about virtual ports and binding, game application, non 
game application, or the like. The audiovisual device 16 may 
receive the audiovisual signals from the computing environ 
ment 12 and may then output the game or application visuals 
and/or audio associated with the audiovisual signals to the 
user 18. According to one embodiment, the audiovisual 
device 16 may be connected to the computing environment 12 
via, for example, an S-Video cable, a coaxial cable, an HDMI 
cable, a DVI cable, a VGA cable, a wireless connection or the 
like. 
As shown in FIGS. 1A and 1B, the tracking and processing 

system 10 may be used to recognize, analyze, process, deter 
mine the pose of and/or track a human target Such as the user 
18. For example, the user 18 may be tracked using the capture 
device 20 such that the position, movements and size of user 
18 may be interpreted as controls that may be used to affect 
the application being executed by computer environment 12. 
Thus, according to one embodiment, the user 18 may move 
his or her body to control the application. 
As shown in FIGS. 1A and 1B, in an example embodiment, 

the application executing on the computing environment 12 
may be a boxing game that the user 18 may be playing. For 
example, the computing environment 12 may use the audio 
visual device 16 to provide a visual representation of a boxing 
opponent 22 to the user 18. The computing environment 12 
may also use the audiovisual device 16 to provide a visual 
representation of a user avatar 24 that the user 18 may control 
with his or her movements on a screen 14. For example, as 
shown in FIG. 1B, the user 18 may throw a punch in physical 
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space to cause the user avatar 24 to throw a punch in game 
space. Thus, according to an example embodiment, the com 
puter environment 12 and the capture device 20 of the track 
ing and processing system 10 may be used to recognize and 
analyze the punch of the user 18 in physical space Such that 
the punch may be interpreted as a game control of the user 
avatar 24 in game space. 
The user 18 may be associated with a virtual port in com 

puting environment 12. Feedback of the state of the virtual 
port may be given to the user 18 in the form of a sound or 
display on audiovisual device 16, a display Such as an LED or 
lightbulb, or a speaker on the computing environment 12, or 
any other means of providing feedback to the user. The feed 
back may be used to inform a user when he is in a capture area 
of capture device 20, if he is bound to the tracking and pro 
cessing system 10, what virtual port he is associated with, and 
when he has control over an avatar Such as avatar 24. Gestures 
and poses by user 18 may change the state of the system, and 
thus the feedback that the user receives from the system. 

Other movements by the user 18 may also be interpreted as 
other controls or actions, such as controls to bob, weave, 
shuffle, block, jab, or throw a variety of different power 
punches. Furthermore, Some movements may be interpreted 
as controls that may correspond to actions other than control 
ling the user avatar 24. For example, the user may use move 
ments to enter, exit, turn system on or off. pause, Volunteer, 
Switch virtual ports, save a game, select a level, profile or 
menu, view high scores, communicate with a friend, etc. 
Additionally, a full range of motion of the user 18 may be 
available, used, and analyzed in any suitable manner to inter 
act with an application. 
As shown in FIG.1C, in an example embodiment, multiple 

capture devices 20 may be used to monitor one or more users, 
such as the user 18, such that poses performed by the one or 
more users may be captured, analyzed, processed, and 
tracked to perform one or more controls or actions within an 
application. In Such an embodiment, the capture devices 20 
may be positioned at different angles with respect to each 
other to enable capture of user poses from multiple perspec 
tives. For example, as shown FIG. 1C, one capture device 20 
may be mounted to audiovisual device 16 and capture a fron 
tal perspective of the user. Another capture device 20 may be 
mounted to a wall 19, the plane of the wall 19 being oblique 
with respect to a plane formed by the surface of the audiovi 
sual device 16. This other capture device 20 may capture a 
side perspective of the user. Also, in a further example, a 
capture device 20 may be mounted to each wall of a room to 
ensure that a user is captured from a plurality of perspectives, 
Such as front, back, left and right. 

In FIG. 1D, the human target such as the user 18 may have 
an object such as racket 21. In Such embodiments, the user of 
an electronic game may be holding the object such that the 
motions of the user and the object may be used to adjust 
and/or control parameters of the game, such as, for example, 
hitting an onscreen ball 23. The motion of a user holding a 
racket 21 may be tracked and utilized for controlling an 
on-screen racket in an electronic sports game. In another 
example embodiment, the motion of a user holding an object 
may be tracked and utilized for controlling an on-screen 
weapon in an electronic combat game. Any other object may 
also be included, such as one or more gloves, balls, bats, 
clubs, guitars, microphones, Sticks, pets, animals, drums and 
the like. 

According to other example embodiments, the tracking 
and processing system 10 may further be used to interpret 
target movements as operating system and/or application 
controls that are outside the realm of games. For example, 
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6 
virtually any controllable aspect of an operating system and/ 
or application may be controlled by movements of the target 
such as the user 18. 
As shown in FIG. 2, according to an example embodiment, 

the image camera component 25 may include an IR light 
component 26, a three-dimensional (3D) camera 27, and/or a 
two-dimensional (2D), RGB camera 28 that may be used to 
capture an image of a scene and, optionally, its depth. For 
example, intime-of-flight analysis, the IR light component 26 
of the capture device 20 may emit an infrared light onto the 
scene and may then use sensors (not shown) to detect the 
backscattered light from the Surface of one or more targets 
and objects in the scene using, for example, the 3D camera 27 
and/or the 2D, RGB camera 28. In some embodiments, pulsed 
infrared light may be used such that the time between an 
outgoing light pulse and a corresponding incoming light 
pulse may be measured and used to determine a physical 
distance from the capture device 20 to a particular location on 
the targets or objects in the scene. Additionally, in other 
example embodiments, the phase of the outgoing light wave 
may be compared to the phase of the incoming light wave to 
determine a phase shift. The phase shift may then be used to 
determine a physical distance from the capture device to a 
particular location on the targets or objects. 

According to another example embodiment, time-of-flight 
analysis may be used to indirectly determine a physical dis 
tance from the capture device 20 to a particular location on the 
targets or objects by analyzing the intensity of the reflected 
beam of light over time via various techniques including, for 
example, shuttered light pulse imaging. 

In another example embodiment, the capture device 20 
may use a structured light to capture depth information. In 
Such an analysis, patterned light (i.e., light displayed as a 
known pattern Such as grid pattern or a stripe pattern) may be 
projected onto the scene Via, for example, the IR light com 
ponent 26. Upon striking the Surface of one or more targets or 
objects in the scene, the pattern may become deformed in 
response. Such a deformation of the pattern may be captured 
by, for example, the 3D camera 27 and/or the 2D, RGB 
camera 28 and may then be analyzed to determine a physical 
distance from the capture device to a particular location on the 
targets or objects. 

In a further example embodiment, the capture device 20 
may utilize a 2D, RGB camera 28 to capture a plurality of 2D, 
RGB images. For example, the 2D, RGB camera 28 may 
capture a background image when the user is not present and 
a further image when the user is present. Alternatively, a 
model of the background may be built up over time based on 
which parts of the image are static and which parts are mov 
ing. Logic associated with the capture device 20 may then 
utilize one or more background Subtraction algorithms or 
other algorithms. Such as the GrabCut algorithm or geodesic 
segmentation, to generate a silhouette image. As used herein, 
a silhouette image is a binary mask image comprised of 
foreground and background portions. The foreground portion 
is comprised of the user's body, and the background portion is 
comprised of the background Surrounding the user. The back 
ground subtraction algorithms may separate the foreground 
from the background by comparing RGB pixel values of the 
images. To determine a depth value for the body/foreground, 
the capture device 20 may employ a low resolution depth 
sensor to determine depth readings of points associated with 
the body/foreground. Logic associated with the capture 
device 20 may then determine an average depth from the 
depth readings and may use that depth average as the depth of 
the body/foreground. In other embodiments, the capture 
device 20 may not have any mechanism for determining a 
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depth, and logic of associated with the capture device 20 may 
assume a default value to be the depth of the body/foreground. 
Assuming a default depth value may involve assuming that 
the RGB camera is calibrated and/or assuming a known, 
default, or averaged height and/or size of a player. In other 
implementations, generating the silhouette image, calculat 
ing an average depth, or using a default depth may be per 
formed by logic associated with the computing environment 
12 rather than logic associated with the capture device 20. 

According to another embodiment, the capture device 20 
may include two or more physically separated cameras that 
may view a scene from different angles, to obtain visual 
Stereo data that may be resolved to generate depth informa 
tion. Depth may also be determined by capturing images 
using one or more detectors that may be monochromatic, 
infrared, RGB or any other type of detector and performing a 
parallax calculation. 

In a further embodiment, where the capture device 20 
includes two or more cameras or where two or more capture 
devices 20 are used (e.g., as shown in FIG. 1C), multiple 
depth images may be captured and may be used to generate a 
Volumetric image of the user and the user's Surroundings. The 
depth images may be generated using any of the components 
and techniques described above. The Volumetric image may 
then be generated by logic associated with one of the capture 
devices 20 or with the computing environment 12. As men 
tioned, when multiple cameras are used, images of the user 
may be captured from multiple perspectives. Once these 
images from multiple perspectives are captured, the logic 
may use any of a number of known algorithms to generate a 
volumetric image from the multiple perspective images. In 
other embodiments, where the capture device 20 includes two 
or more cameras or where two or more capture devices 20 are 
used (e.g., as shown in FIG.1C), the capture device(s) 20 may 
using the multiple cameras to capture and generate multiple 
depth images or multiple silhouette images that may each be 
processed separately rather than combined into a Volumetric 
image. 
The capture device 20 may further include a microphone 

30. The microphone 30 may include a transducer or sensor 
that may receive and convert Sound into an electrical signal. 
According to one embodiment, the microphone 30 may be 
used to reduce feedback between the capture device 20 and 
the computing environment 12 in the tracking and processing 
system 10. Additionally, the microphone 30 may be used to 
receive audio signals that may also be provided by the user to 
control applications such as game applications, non-game 
applications, or the like that may be executed by the comput 
ing environment 12. 
The capture device 20 may further include a feedback 

component 31. The feedback component 31 may comprise a 
light such as an LED or a lightbulb, a speaker or the like. The 
feedback device may perform at least one of changing colors, 
turning on or off, increasing or decreasing in brightness, and 
flashing at varying speeds. The feedback component 31 may 
also comprise a speaker which may provide one or more 
Sounds or noises as a feedback of one or more states. The 
feedback component 31 may also work in combination with 
computing environment 12 or processor 32 to provide one or 
more forms of feedback to a user by means of any other 
element of the capture device, the tracking and processing 
system or the like. For example, the feedback component 31 
may be used to indicate when a user is standing at a specified 
distance from the capture device 20. This may be especially 
useful in embodiments where the depth assigned the pixels 
including the user's body is a default depth value. 
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In an example embodiment, the capture device 20 may 

further include a processor 32 that may be in operative com 
munication with the image camera component 25. The pro 
cessor 32 may include a standardized processor, a specialized 
processor, a microprocessor, or the like that may execute 
instructions that may include instructions for receiving the 
depth image, determining whether a Suitable target may be 
included in the depth image, converting the Suitable target 
into a skeletal representation or model of the target, determin 
ing the body pose, or any other Suitable instruction. 
The capture device 20 may further include a memory com 

ponent 34 that may store the instructions that may be executed 
by the processor 32, images or frames of images captured by 
the 3D camera or RGB camera, user profiles or any other 
Suitable information, images, or the like. According to an 
example embodiment, the memory component 34 may 
include random access memory (RAM), read only memory 
(ROM), cache, Flash memory, a hard disk, or any other suit 
able storage component. As shown in FIG. 2, in one embodi 
ment, the memory component 34 may be a separate compo 
nent in communication with the image capture component 25 
and the processor 32. According to another embodiment, the 
memory component 34 may be integrated into the processor 
32 and/or the image capture component 25. 
As shown in FIG. 2, the capture device 20 may be in 

communication with the computing environment 12 via a 
communication link36. The communication link 36 may be 
a wired connection including, for example, a USB connec 
tion, a Firewire connection, an Ethernet cable connection, or 
the like and/or a wireless connection Such as a wireless 
802.11b, g, a, or n connection. According to one embodiment, 
the computing environment 12 may provide a clock to the 
capture device 20 that may be used to determine when to 
capture, for example, a scene via the communication link36. 

Additionally, the capture device 20 may provide the depth 
information and images captured by, for example, the 3D 
camera 27 and/or the 2D, RGB camera 28, and a skeletal 
model that may be generated by the capture device 20 or the 
computing environment to the computing environment 12 via 
the communication link 36. The computing environment 12 
may then use the skeletal model, depth information, and 
captured images to, for example, create a virtual screen, adapt 
the user interface and control an application Such as a game or 
word processor. For example, as shown, in FIG. 2, the com 
puting environment 12 may include a gestures library 190. 
The gestures library 190 may include a collection of gesture 
filters, each comprising information concerning a gesture that 
may be performed by the skeletal model (as the user moves). 
The data captured by the cameras 27, 28 and capture device 
20 in the form of the skeletal model and movements associ 
ated with it may be compared to the gesture filters in the 
gesture library 190 to identify when a user (as represented by 
the skeletal model) has performed one or more gestures. 
Those gestures or poses may be associated with various con 
trols of an application. Thus, the computing environment 12 
may use the gestures library 190 to interpret movements of 
the skeletal model and to control an application based on the 
moVementS. 

FIG.3 illustrates an example embodiment of a depth image 
60 that may be received by the tracking and processing sys 
tem and/or the computing environment. According to an 
example embodiment, the depth image 60 may be an image or 
frame of a scene captured by, for example, the 3D camera 27 
and/or the RGB camera 28 of the capture device 20 described 
above with respect to FIG. 2. As shown in FIG. 3, the depth 
image 60 may include a human target 62 and one or more 
non-human targets 64 Such as a wall, a table, a monitor, or the 
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like in the captured scene. As described above, the depth 
image 60 may include a plurality of observed pixels where 
each observed pixel has an observed depth value associated 
therewith. For example, the depth image 60 may include a 
two-dimensional (2-D) pixel area of the captured scene where 
each pixel in the 2-D pixel area may represent a depth value 
Such as a length or distance in, for example, centimeters, 
millimeters, or the like of a target or object in the captured 
scene from the capture device. 

According to one embodiment, a depth image such as 
depth image 60 or an image on an RGB camera Such as 
camera 28, or an image on any other detector may be pro 
cessed and used to determine the shape and size of a target. In 
another embodiment, the depth image 60 may be used to 
determine the body pose of a user. The body may be divided 
into a series of segments and each pixel of a depth map 60 may 
be assigned a probability that it is associated with each seg 
ment. This information may be provided to one or more 
processes which may determine the location of nodes, joints, 
centroids or the like to determine a skeletal model and inter 
pret the motions of a user 62 for pose or gesture based com 
mand. In a further embodiment, rather than dividing the body 
into segments and assigning probabilities to pixels, the body 
may be defined by a set of 3D representations (e.g., a con 
tinuous set of 3D representations), such as 3D coordinates 
and variances, which reference locations on a model body 
having a canonical pose, shape, and/or size. One or more of 
such 3D representations may be calculated for each pixel of 
the depth image 60 and may be used along with the depth 
image 60 to determine the body pose of the user. These 3D 
representations may have, theoretically speaking, infinite 
resolution. 

Referring back to FIG. 2, in one embodiment, upon receiv 
ing the depth image, the depth image may be downsampled to 
a lower processing resolution Such that the depth image may 
be more easily used and/or more quickly processed with less 
computing overhead. Additionally, one or more high-vari 
ance and/or noisy depth values may be removed and/or 
Smoothed from the depth image; portions of missing and/or 
removed depth information may be filled in and/or recon 
structed; and/or any other Suitable processing may be per 
formed on the received depth information may such that the 
depth information may used to size a virtual screen on a user 
as described above. 

FIG. 4 illustrates an example embodiment of a silhouette 
image 70 that may be generated by the tracking and process 
ing system and/or the computing environment from 2D, RGB 
images. As mention above, these 2D, RGB images may be 
images or frames of a scene captured by, for example, the 2D, 
RGB camera 28 of the capture device 20. The 2D, RGB 
images may be captured at different times, such as before the 
user is present and once the user is present, and may be 
processed using background Subtraction algorithms or other 
algorithms to generate the silhouette image 70. Also, silhou 
ette image 70 may be obtained in other ways, such as using 
Stereo RGB cameras or using green- or blue-screening. As 
shown in FIG. 4, the silhouette image 70 comprises two 
portions: a foreground portion 72 that represents the human 
target (i.e., the body of the user) and a background portion 74 
that represents non-human targets such as a wall, a table, a 
monitor, or the like in the captured scene. Each pixel of the 
silhouette image 70 that belongs to the foreground portion 72 
is associated with a same depth value. Or, as another way of 
putting this, the silhouette image 70 itself is associated with a 
depth value that refers to a depth of the foreground portion 72. 
As mentioned above, this depth value may be a default value 
or may be calculated from depths measured for multiple ones 
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10 
of the pixels belonging to the foreground portion 72. This 
calculated or default depth value may represent a length or 
distance in, for example, centimeters, millimeters, or the like 
of foreground portion 72 from the capture device 20. 

According to one embodiment, the silhouette image 70 
may be used to determine the body pose of a user. The body 
may be divided into a series of segments and each pixel of a 
silhouette image 70 may be assigned a probability that it is 
associated with each segment. This information may be pro 
vided to one or more processes which may determine the 
location of nodes, joints, centroids or the like to determine a 
skeletal model and interpret the motions of a user represented 
by foreground portion 72 for pose or gesture based command. 
In a further embodiment, rather than dividing the body into 
segments and assigning probabilities to pixels, the body may 
be defined by a set of 3D representations, such as 3D coordi 
nates and variances, which reference locations on a model 
body having a canonical pose, shape, and/or size. Such 3D 
representations may be calculated for each pixel of the sil 
houette image 70 and may be used along with the silhouette 
image 70 to determine the body pose of the user. 

Referring back to FIG. 2, in one embodiment, upon receiv 
ing the 2D, RGB images, those images may be downsampled 
to a lower processing resolution Such that the silhouette image 
70 generated from those images may be more easily used 
and/or more quickly processed with less computing over 
head. In another embodiment, the 2D, RGB images are not 
downsampled, but the resulting silhouette image 70 may be 
downsampled to a lower processing resolution. Additionally, 
one or more high-variance and/or noisy depth values may be 
removed and/or smoothed when calculating a depth value for 
the foreground portion 72; portions of missing and/or 
removed depth information may be filled in and/or recon 
structed; and/or any other Suitable processing may be per 
formed on the received depth information may such that the 
depth information may used to size a virtual screen on a user 
as described above. 

FIG. 5 illustrates an example embodiment of a volumetric 
image 80 that may be generated by the tracking and process 
ing system and/or the computing environment from a plural 
ity of depth images, such as depth image 60, from pairs, 
triplets, etc. of stereo RGB images, or from silhouette images 
70. As mentioned above, these images may be images or 
frames of a scene captured by, for example, 3D cameras 27 
and/or RGB cameras 28 of the capture device(s) 20. The 
images may be captured by cameras or capture devices 20 at 
multiple different perspective views of the user. For example, 
the cameras or capture devices 20 may be mounted on differ 
ent walls of a room. In one embodiment, such images may be 
captured Substantially simultaneously. Once captured, a cap 
ture device 20 or computing environment 12 may use the 
multiple images to generate the Volumetric image 80. As 
shown in FIG. 5, the volumetric image 80 may be a 3D image 
comprised of voxels (i.e., 3D pixels). The volumetric image 
80 may include a human target 82 and one or more non 
human targets 84 Such as a wall, a table, a monitor, or the like 
in the captured scene. Each voxel of the volumetric image 80 
may be associated with an occupancy. In some embodiments, 
the occupancy associated with each voxel may be surface 
based (e.g., values of 1 for voxels on or near the surface of 
the body and 0 for all other voxels) or true physical occu 
pancy (e.g., values of 1 for Voxels near the Surface of the 
body, on the surface, or inside the body and 0 for all other 
Voxels). Surface based occupancies may be determined using 
techniques such as simple splatting, where a depth image 
pixel is back projected and added to the volumetric image 80. 



US 8,638,985 B2 
11 

or using other signed distance functions. True physical occu 
pancies may be determined using techniques such as space 
carving or visual hulls. 

According to one embodiment, the Volumetric image 80 
may be used to determine the body pose of a user. The body 
may be divided into a series of segments defined by Surfaces 
or the body or by whole volumes of the body. Each voxel of a 
volumetric image 80 may be assigned a probability that it is 
associated with each segment. This information may be pro 
vided to one or more processes which may determine the 
location of nodes, joints, centroids or the like to determine a 
skeletal model and interpret the motions of a user 82 for pose 
or gesture based command. In a further embodiment, rather 
than dividing the body into segments and assigning probabili 
ties to voxels, the body may be defined by a set of 3D repre 
sentations, such as 3D coordinates and variances, that are 
associated with surfaces of the body or whole volumes of the 
body. These 3D representations reference locations on a 
model body having a canonical pose, shape, and/or size. Such 
3D representations may be calculated for each voxel of the 
volumetric image 80 and may be used along with the volu 
metric image 80 to determine the body pose of the user. 

In one embodiment, upon receiving the depth images 60, 
silhouette images 70, or other images, those images may be 
downsampled to a lower processing resolution Such that the 
Volumetric image 80 generated from those images may be 
more easily used and/or more quickly processed with less 
computing overhead. In another embodiment, the images are 
not downsampled, but the resulting Volumetric image 80 may 
be downsampled to a lower processing resolution. Addition 
ally, one or more high-variance and/or noisy depth values 
may be removed and/or smoothed from the images or from 
the Volumetric image 80; portions of missing and/or removed 
depth information may be filled in and/or reconstructed; and/ 
or any other Suitable processing may be performed on the 
received depth information may such that the depth informa 
tion may used to size a virtual screen on a user as described 
above. 

FIG. 6 illustrates an example embodiment of a computing 
environment that may be used to interpret one or more ges 
tures in a tracking and processing system. The computing 
environment Such as the computing environment 12 
described above with respect to FIGS. 1A-2 may be a multi 
media console 100. Such as a gaming console. As shown in 
FIG. 6, the multimedia console 100 has a central processing 
unit (CPU) 101 having a level 1 cache 102, a level 2 cache 
104, and a flash ROM (Read Only Memory) 106. The level 1 
cache 102 and a level 2 cache 104 temporarily store data and 
hence reduce the number of memory access cycles, thereby 
improving processing speed and throughput. The CPU 101 
may be provided having more than one core, and thus, addi 
tional level 1 and level 2 caches 102 and 104. The flash ROM 
106 may store executable code that is loaded during an initial 
phase of a boot process when the multimedia console 100 is 
powered ON. 
A graphics processing unit (GPU) 108 and a video 

encoder/video codec (coder/decoder) 114 form a video pro 
cessing pipeline for high speed and high resolution graphics 
processing. Data is carried from the graphics processing unit 
108 to the video encoder/video codec 114 via abus as well as 
to the CPU. The video processing pipeline outputs data to an 
AN (audio/video) port 140 for transmission to a television or 
other display. A memory controller 110 is connected to the 
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12 
The multimedia console 100 includes an I/O controller 

120, a system management controller 122, an audio process 
ing unit 123, a network interface controller 124, a first USB 
host controller 126, a second USB controller 128 and a front 
panel I/O subassembly 130 that are preferably implemented 
on a module 118. The USB controllers 126 and 128 serve as 
hosts for peripheral controllers 142(1)-142(2), a wireless 
adapter 148, and an external memory device 146 (e.g., flash 
memory, external CD/DVD ROM drive, removable media, 
etc.). The network interface 124 and/or wireless adapter 148 
provide access to a network (e.g., the Internet, home network, 
etc.) and may be any of a wide variety of various wired or 
wireless adapter components including an Ethernet card, a 
modem, a Bluetooth module, a cable modem, and the like. 

System memory 143 is provided to store application data 
that is loaded during the boot process. A media drive 144 is 
provided and may comprise a DVD/CD drive, hard drive, or 
other removable media drive, etc. The media drive 144 may 
be internal or external to the multimedia console 100. Appli 
cation data may be accessed via the media drive 144 for 
execution, playback, etc. by the multimedia console 100. The 
media drive 144 is connected to the I/O controller 120 via a 
bus, Such as a Serial ATA bus or other high speed connection 
(e.g., IEEE 1394). 
The system management controller 122 provides a variety 

of service functions related to assuring availability of the 
multimedia console 100. The audio processing unit 123 and 
an audio codec 132 form a corresponding audio processing 
pipeline with high fidelity and stereo processing. Audio data 
is carried between the audio processing unit 123 and the audio 
codec 132 via a communication link. The audio processing 
pipeline outputs data to the AN port 140 for reproduction by 
an external audio player or device having audio capabilities. 
The front panel I/O subassembly 130 supports the func 

tionality of the power button 150 and the eject button 152, as 
well as any LEDs (light emitting diodes) or other indicators 
exposed on the outer surface of the multimedia console 100. 
A system power supply module 136 provides power to the 
components of the multimedia console 100. A fan 138 cools 
the circuitry within the multimedia console 100. 
The front panel I/O subassembly 130 may include LEDs, a 

visual display Screen, light bulbs, a speaker or any other 
means that may provide audio or visual feedback of the state 
of control of the multimedia control 100 to a user 18. For 
example, if the system is in a state where no users are detected 
by capture device 20, such a state may be reflected on front 
panel I/O subassembly 130. If the state of the system changes, 
for example, a user becomes bound to the system, the feed 
back state may be updated on the front panel I/O subassembly 
to reflect the change in states. 
The CPU 101, GPU 108, memory controller 110, and 

various other components within the multimedia console 100 
are interconnected via one or more buses, including serial and 
parallel buses, a memory bus, a peripheral bus, and a proces 
sor or local bus using any of a variety of bus architectures. By 
way of example, Such architectures can include a Peripheral 
Component Interconnects (PCI) bus, PCI-Express bus, etc. 
When the multimedia console 100 is powered ON, appli 

cation data may be loaded from the system memory 143 into 
memory 112 and/or caches 102,104 and executed on the CPU 
101. The application may present a graphical user interface 
that provides a consistent user experience when navigating to 
different media types available on the multimedia console 
100. In operation, applications and/or other media contained 
within the media drive 144 may be launched or played from 
the media drive 144 to provide additional functionalities to 
the multimedia console 100. 
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The multimedia console 100 may be operated as a standa 
lone system by simply connecting the system to a television 
or other display. In this standalone mode, the multimedia 
console 100 allows one or more users to interact with the 
system, watch movies, or listen to music. However, with the 
integration of broadband connectivity made available 
through the network interface 124 or the wireless adapter 148, 
the multimedia console 100 may further be operated as a 
participant in a larger network community. 
When the multimedia console 100 is powered ON, a set 

amount of hardware resources are reserved for system use by 
the multimedia console operating system. These resources 
may include a reservation of memory (e.g., 16 MB), CPU and 
GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 kbs), 
etc. Because these resources are reserved at System boot time, 
the reserved resources do not exist from the applications 
view. 

In particular, the memory reservation preferably is large 
enough to contain the launch kernel, concurrent system appli 
cations and drivers. The CPU reservation is preferably con 
stant such that if the reserved CPU usage is not used by the 
system applications, an idle thread will consume any unused 
cycles. 

With regard to the GPU reservation, lightweight messages 
generated by the system applications (e.g., popups) are dis 
played by using a GPU interrupt to schedule code to render 
popup into an overlay. The amount of memory required for an 
overlay depends on the overlay area size and the overlay 
preferably scales with screen resolution. Where a full user 
interface is used by the concurrent system application, it is 
preferable to use a resolution independent of application reso 
lution. A scaler may be used to set this resolution such that the 
need to change frequency and cause a TV resynch is elimi 
nated. 

After the multimedia console 100 boots and system 
resources are reserved, concurrent system applications 
execute to provide system functionalities. The system func 
tionalities are encapsulated in a set of system applications that 
execute within the reserved system resources described 
above. The operating system kernel identifies threads that are 
system application threads versus gaming application 
threads. The system applications are preferably scheduled to 
run on the CPU 101 at predetermined times and intervals in 
order to provide a consistent system resource view to the 
application. The scheduling is to minimize cache disruption 
for the gaming application running on the console. 
When a concurrent system application requires audio, 

audio processing is scheduled asynchronously to the gaming 
application due to time sensitivity. A multimedia console 
application manager (described below) controls the gaming 
application audio level (e.g., mute, attenuate) when system 
applications are active. 

Input devices (e.g., controllers 142(1) and 142(2)) are 
shared by gaming applications and system applications. The 
input devices are not reserved resources, but are to be 
Switched between system applications and the gaming appli 
cation such that each will have a focus of the device. The 
application manager preferably controls the Switching of 
input stream, without knowledge the gaming application’s 
knowledge and a driver maintains state information regarding 
focus switches. The cameras 27, 28 and capture device 20 
may define additional input devices for the console 100. 

FIG. 7 illustrates another example embodiment of a com 
puting environment that may be the computing environment 
12 shown in FIGS. 1A-2 used to interpret one or more poses 
orgestures in a tracking and processing system. The comput 
ing system environment of FIG. 7 is only one example of a 
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Suitable computing environment and is not intended to Sug 
gest any limitation as to the Scope of use or functionality of the 
presently disclosed subject matter. Neither should the com 
puting environment 12 be interpreted as having any depen 
dency or requirement relating to any one or combination of 
components illustrated in the exemplary operating environ 
ment of FIG. 7. In some embodiments the various depicted 
computing elements may include circuitry configured to 
instantiate specific aspects of the present disclosure. For 
example, the term circuitry used in the disclosure can include 
specialized hardware components configured to perform 
function(s) by firmware or switches. In other examples 
embodiments the term circuitry can include a general purpose 
processing unit, memory, etc., configured by Software 
instructions that embody logic operable to perform function 
(s). In example embodiments where circuitry includes a com 
bination of hardware and Software, an implementer may write 
Source code embodying logic and the Source code can be 
compiled into machine readable code that can be processed 
by the general purpose processing unit. Since one skilled in 
the art can appreciate that the state of the art has evolved to a 
point where there is little difference between hardware, soft 
ware, or a combination of hardware/software, the selection of 
hardware versus software to effectuate specific functions is a 
design choice left to an implementer. More specifically, one 
of skill in the art can appreciate that a Software process can be 
transformed into an equivalent hardware structure, and a 
hardware structure can itself be transformed into an equiva 
lent software process. Thus, the selection of a hardware 
implementation versus a software implementation is one of 
design choice and left to the implementer. 

In FIG. 7, the computing environment comprises a com 
puter 241, which typically includes a variety of computer 
readable media. Computer readable media can be any avail 
able media that can be accessed by computer 241 and includes 
both volatile and nonvolatile media, removable and non-re 
movable media. The system memory 222 includes computer 
storage media in the form of volatile and/or nonvolatile 
memory such as read only memory (ROM) 223 and random 
access memory (RAM) 260. A basic input/output system 224 
(BIOS), containing the basic routines that help to transfer 
information between elements within computer 241. Such as 
during start-up, is typically stored in ROM 223. RAM 260 
typically contains data and/or program modules that are 
immediately accessible to and/or presently being operated on 
by processing unit 259. By way of example, and not limita 
tion, FIG. 7 illustrates operating system 225, application pro 
grams 226, other program modules 227, and program data 
228. 
The computer 241 may also include other removable/non 

removable, Volatile/nonvolatile computer storage media. By 
way of example only, FIG. 7 illustrates a hard disk drive 238 
that reads from or writes to non-removable, nonvolatile mag 
netic media, a magnetic disk drive 239 that reads from or 
writes to a removable, nonvolatile magnetic disk 254, and an 
optical disk drive 240 that reads from or writes to a remov 
able, nonvolatile optical disk 253 such as a CD ROM or other 
optical media. Other removable/non-removable, volatile/ 
nonvolatile computer storage media that can be used in the 
exemplary operating environment include, but are not limited 
to, magnetic tape cassettes, flash memory cards, digital ver 
satile disks, digital video tape, solid state RAM, solid state 
ROM, and the like. The hard disk drive 238 is typically 
connected to the system bus 221 through a non-removable 
memory interface Such as interface 234, and magnetic disk 
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drive 239 and optical disk drive 240 are typically connected to 
the system bus 221 by a removable memory interface, such as 
interface 235. 
The drives and their associated computer storage media 

discussed above and illustrated in FIG. 7, provide storage of 5 
computer readable instructions, data structures, program 
modules and other data for the computer 241. In FIG. 7, for 
example, hard disk drive 238 is illustrated as storing operating 
system 258, application programs 257, other program mod 
ules 256, and program data 255. Note that these components 
can either be the same as or different from operating system 
225, application programs 226, other program modules 227. 
and program data 228. Operating system 258, application 
programs 257, other program modules 256, and program data 
255 are given different numbers here to illustrate that, at a 
minimum, they are different copies. A user may enter com 
mands and information into the computer 241 through input 
devices such as a keyboard 251 and pointing device 252, 
commonly referred to as a mouse, trackball or touch pad. 
Other input devices (not shown) may include a microphone, 
joystick, game pad, satellite dish, Scanner, or the like. These 
and other input devices are often connected to the processing 
unit 259 through a user input interface 236 that is coupled to 
the system bus, but may be connected by other interface and 
bus structures, such as a parallel port, game port or a universal 
serial bus (USB). The cameras 27, 28 and capture device 20 
may define additional input devices for the console 100. A 
monitor 242 or other type of display device is also connected 
to the system bus 221 via an interface, such as a video inter 
face 232. In addition to the monitor, computers may also 
include other peripheral output devices such as speakers 244 
and printer 243, which may be connected through a output 
peripheral interface 233. 
The computer 241 may operate in a networked environ 

ment using logical connections to one or more remote com 
puters, such as a remote computer 246. The remote computer 
246 may be a personal computer, a server, a router, a network 
PC, a peer device or other common network node, and typi 
cally includes many or all of the elements described above 
relative to the computer 241, although only a memory storage 
device 247 has been illustrated in FIG. 7. The logical connec 
tions depicted in FIG. 7 include a local area network (LAN) 
245 and a wide area network (WAN) 249, but may also 
include other networks. Such networking environments are 
commonplace in offices, enterprise-wide computer networks, 
intranets and the Internet. 
When used in a LAN networking environment, the com 

puter 241 is connected to the LAN 245 through a network 
interface or adapter 237. When used in a WAN networking 
environment, the computer 241 typically includes a modem 
250 or other means for establishing communications over the 
WAN 249, such as the Internet. The modem 250, which may 
be internal or external, may be connected to the system bus 
221 via the user input interface 236, or other appropriate 
mechanism. In a networked environment, program modules 
depicted relative to the computer 241, or portions thereof, 
may be stored in the remote memory storage device. By way 
of example, and not limitation, FIG. 7 illustrates remote 
application programs 248 as residing on memory device 247. 
It will be appreciated that the network connections shown are 
exemplary and other means of establishing a communications 
link between the computers may be used. 

FIG. 8 depicts a block diagram 300 whereby body pose 
estimation may be performed. In one embodiment, at 302, a 
depth map such as depth map 60 may be received by the 
tracking and processing system. Probabilities associated with 
one or more virtual body parts may be assigned to pixels on a 
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depth map at 304. A centroid may be calculated for sets of 
associated pixels associated with a virtual body part, which 
may be a node, joint or centroid at 306. Centroids may be 
representations of joints or nodes of a body, and may be 
calculated using any mathematical algorithm, including, for 
example, averaging the coordinates of every pixel in a depth 
map having a threshold probability that it is associated with a 
body part, or, as another example, a linear regression tech 
nique. At 308, the various nodes, joints or centroids associ 
ated with the body parts may be combined into a model, 
which may be provided to one or more programs in a tracking 
and processing system. The model may include not only the 
location in three dimensions of the joints or body parts, but 
may also include the rotation of a joint or any other informa 
tion about the pointing of the body part. 
Body poses may be estimated for multiple users. In an 

embodiment, this may be accomplished by assuming a user 
segmentation. For example, values may be assigned to an 
image Such that a value 0 represents background, value 1 
represents user 1, value 2 represents user 2, etc. Given this 
player segmentation image, it is possible to classify all user 1 
pixels and do a centroid finding, and then repeat this process 
for Subsequent users. In another embodiment, background 
Subtraction may be performed and the remaining foreground 
pixels (belonging to the multiple users) may then be classi 
fied. When computing centroids, it may be ensured that each 
centroid is spatially localized, so that a respective body part is 
present for each user. The centroids may then be combined 
into coherent models by, for example, connecting neighbor 
ing body parts throughout each user's body. 
FIG.9 depicts a sample flow chart for assigning probabili 

ties associated with virtual body parts to a depth map. In an 
example embodiment, the process of FIG. 9 may be per 
formed at 304 of FIG. 8. Process 350 may employ a depth 
map received at 302 to assign probabilities associated with 
virtual body parts at 304. One or more background depths on 
a depth map may be established at 352. For example, one 
background depth may correspond to a wall in the back of a 
room, other background depths may correspond to other 
humans or objects in the room. These background depths may 
be used later in flowchart of FIG.9 to determine if a pixel on 
the depth map is part of aparticular user's body or whether the 
pixel may be associated with the background. 
At 353, a first location may be selected in the depth map. 

The depth of the first location may be determined at 354. At 
356, the depth of the first location may be compared with one 
or more background depths. If the first location depth is at the 
same or within a specified threshold range of a background 
depth, then, at 358, the first location is determined to be part 
of the background and not part of any body parts. If the first 
location is not at or within a specified threshold range of a 
background depth, an offset location, referenced with respect 
to the first location, may be selected at 360. At 362, the depth 
of the offset location may be determined and a depth test may 
be performed to determine if the offset location is back 
ground. At 364, it is determined whether any additional offset 
locations are desired. 
The determination of whether or not to select additional 

offset locations, as well as the angle and distance of the 
additional offset locations from the first location, may be 
made based in part on the depth of the previous offset location 
(s) with respect to the first location and/or the background. 
These determinations may also be made based on additional 
factors such as the training module described below. In one 
embodiment, the offsets will scale with depth. For example, if 
a user is very close to a detector in a capture area, depth may 
be measured at large offset distances from the first pixel. If the 
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user were to move twice as far from a detector, then the offset 
distances may decrease by a factor of two. In one embodi 
ment, this scaling causes the depth offset tests to be invariant. 
Any number of offset locations may be selected and depth 
tested, after which a probability that the first location is asso 
ciated with one or more body parts is calculated at 366. This 
calculation may be based in part on the depth of the first 
location and the offset locations with respect to the one or 
more background depths. This calculation may also be made 
based on additional factors such as the training module 
described below. 

In another embodiment, 352 may not be performed. In this 
embodiment, each pixel in a depth map is examined for depth 
at 354, and then the method proceeds directly to choosing 
offset locations at 360. In such an example, every pixel in a 
depth map may be examined for depth or for the probability 
that it is associated with one or more body parts and/or back 
ground. From the determinations made at the first pixel and 
the offset locations, probabilities may be associated with one 
or more pixels. 

FIG. 10 depicts an instance of the flow chart referenced in 
FIG.9. In the flow chart of FIG.9, a series of feature tests may 
be used to determine the probability that a pixel in a depth 
map is associated with one or more body parts. A first location 
pixel is selected at 480. A first offset pixel is examined at 482, 
and a second offset pixel is examined at 484. As more pixels 
are examined for depth, the probability that a particular pixel 
is associated with a part of the body may decrease or increase. 
This probability may be provided to other processes in a 
tracking and processing System. 

In another example depicted by FIG. 10, a first location 
pixel of a depth map is selected at 480, wherein the depth map 
has probabilities that each pixel in the depth map is associated 
with one or more body parts already assigned to each pixel. A 
second offset pixel is examined for its associated probability 
at 484. As more pixels are examined for their associated 
probabilities, a second pass at the probability associated with 
the first pixel may provide a more accurate determination of 
the body part associated with the pixel. This probability may 
be provided to other processes in a tracking and processing 
system. 

FIG. 11 depicts a flow chart of another example implemen 
tation of feature testing in body pose estimation. A depth map 
is received and a first pixel location is selected at 502. This 
may be the pixel depicted at FIG.10 as the first location. If the 
first pixel is at the background depth, then probabilities asso 
ciated with each body part may be zero. If, however, the first 
pixel is not at the background depth, an angle and distance to 
a second pixel may be selected at 504. 

In another embodiment, a background depth is not deter 
mined, instead depth tests and the Surrounding offset depth 
tree tests may be performed at each pixel, regardless of its 
depth. 

In another embodiment, the depth map received at 502 
already has the probability that each pixel is associated with 
one or more body parts assigned to each pixel. Accordingly, 
instead of testing depthat the first pixel and at offset locations, 
the probabilities may be tested. 
A depth/probability test may be performed on the second 

pixel at 506. If the second pixel fails the depth/probability test 
(i.e. it is at the background depth/probability, the depth/prob 
ability of a second user, not within the range of a users body 
or the like) then location F-1 is selected at 510. If, however, 
the second pixel passes the depth/probability test (i.e. it is 
within a threshold of the body depth/probability), then loca 
tion P-1 is selected at 508. Depth/probability tests will then be 
performed on third pixels at 508 or 510, and based on whether 
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the third pixels pass or fail the depth/probability test, other 
pixel locations will be selected at one of 512,514,516 or 518. 
While these locations may, in Some cases, be the same, they 
may also vary widely in location based on the results of the 
depth/probability tests. 

In an example embodiment, depth/probability tests on any 
number of pixels may be performed with reference to a single 
pixel. For example, 16 tests may be performed, where each 
depth/probability test is at a different pixel. By performing 
some quantity of depth/probability tests, the probability that a 
pixel is associated with each body part may be assigned to 
each pixel. As another example, only one test may need to be 
performed on a particular pixel in order to determine the 
probability that it is associated with one or more body parts. 

FIG. 12 depicts an example image that may come from a 
capture device, such as capture device 20, a graphics package, 
or other 3D rendering along with a segmented body image of 
the example image. Original image 550 may be may be a 
depth map or other image from the capture device. In an 
example embodiment, the image of a body may be segmented 
into many parts as in segmented image 552, and each pixel in 
a depth map may be associated with a probability for each of 
the segments in FIG. 12. This probability may be determined 
using the methods, processes and systems described with 
respect to FIGS. 9, 10, and 11. 

FIG. 13 depicts a series of images of poses from one or 
more users. For each pose, an image that may be received 
from a capture device Such as capture device 20 is shown 
adjacent to an image of the pose that has been segmented into 
parts. 

In a first embodiment, the tracking and processing system 
may receive the non-segmented images 602, 606, 610, and 
614, and use the processes described at FIGS. 9, 10, and 11 to 
determine the probability that each pixel in the image is 
associated with each of the segmented body parts. The pur 
pose of the processes described in FIGS. 9, 10, and 11 may be 
to segment the body into each of the parts shown at 604, 608, 
612 and 616. These segmented parts may be used by one or 
more computer processes to determine the body pose of the 
USC. 

In a second embodiment, these images may be used in a 
feature test training module to determine the feature test of 
FIGS. 9, 10, and 11. Recall from FIGS. 9, 10, and 11 that a 
depth test may be performed on a pixel, and it either passes or 
fails, and based on the pass or fail, a next location will be 
selected. In one embodiment, the next location selected is not 
arbitrary, but is selected based on a training module. A train 
ing module may involve inputting a Volume of thousands, 
hundreds of thousands, millions or any number of segmented 
poses such as those shown in FIG. 13 into a program. The 
program may perform one or more operations on the Volume 
of poses to determine optimal feature tests for each pass or fail 
for the full volume, or some selection of poses. This opti 
mized series of feature tests may be known as feature test 
treeS. 

A Volume of poses input into a feature test training module 
may not contain every possible pose by a user. Further, it may 
increase the efficiency of the program to create several feature 
test training modules, each of which are based on a separate 
Volume of body poses. Accordingly, the feature tests at each 
step of a feature test tree may be different and the final 
probabilities associated with each segment of a body at the 
conclusion of a test tree may also be different. In one embodi 
ment, several feature test trees are provided for each pixel and 
the probabilities output from each test tree may be averaged 
or otherwise combined to provide a segmented image of a 
body pose. 
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FIG. 14 depicts an example flow chart to determine body 
segment probabilities associated with each pixel in human 
body pose estimation. At 650 a depth map such as the depth 
map shown in FIG.3 may be received from a capture device 
20. This depth map may be provided to a series of feature test 
trees at 652. In FIG. 14, three feature test trees, each having 
been trained on a different volume of body poses, test each 
pixel of a depth map. The probability that each pixel is asso 
ciated with each segment of the body is determined at 654 as 
the soft body parts. In an example embodiment, the process 
stops here and these probabilities may be used to obtain the 
joints/nodes/centroids of FIG. 8 at 306. 

In another embodiment, at 656, the depth map may again 
be provided to a series offeature test trees, each of which may 
have been created using a different volume of body pose 
images. In FIG. 14, this second series of feature tests contains 
three trees, each of which may output a probability for each 
pixel of the depth map associated with each segment of a 
body. At 658, the probabilities from the second set of feature 
test trees 656 and the soft body parts from 654 may be com 
bined by averaging or Some other method to determine the 
second pass of the body parts. FIG. 14 shows two sets of three 
feature test trees, however, the number of feature test trees is 
not limited by the number three, nor are the number of passes 
limited by FIG. 14. There may be any number of feature test 
trees and any number of passes. 

In another embodiment, at 656, the depth map provided to 
the series of feature test trees may have the probability that 
each pixel of a depth map is associated with one or more body 
parts already associated with each pixel. For example, the 
probability maps determined by the feature test trees at 652 
may be provided to the feature test trees at 656. In such a 
circumstance, instead of depth test training programs and 
trees, the system instead utilizes probability test training pro 
grams and trees. The number of trees and passes is not limited 
in any way, and the trees may be any combination of depth and 
probability feature tests. 

FIG. 15 depicts a segmented body pose image wherein 
each segment contains a nodefioint/centroid, such as those 
described at 306 with reference to FIG.8. These joints/nodes/ 
centroids may be determined by taking the centroid of all of 
the pixels associated with a body part segment after perform 
ing the feature tests of FIGS. 9, 10, 11, and 14. Other methods 
may also be used to determine the location of the nodes/ 
centroidsfjoints. For example, a filtering process may remove 
outlying pixels or the like, after which a process may take 
place to determine the location of the joints/nodes/centroids. 
The joints/nodes/centroids of FIG. 15 may be used to con 

struction a skeletal model, or otherwise represent the body 
pose of a user. This model may be used by the tracking and 
processing system in any way, including determining the 
commands of one or more users, identifying one or more 
users and the like. 

FIG. 16 depicts a block diagram 700 whereby body pose 
estimation may be performed. In one embodiment, at 702, the 
tracking and processing system may obtain a background 
image. As described above, the background image may be 
captured by a 2D, RGB camera 28 of a capture device 20 at a 
time when the user is not present before the capture device 20. 
Such a time might be, for example, when the computing 
environment 12 is inactive. Inactivity of the computing envi 
ronment 12 may indicate that the user is not playing a game 
and thus not present in the field of view to be captured by the 
2D, RGB camera 28. In another example, the capture device 
20 or computing environment 12 may employ a motion sen 
sor and may capture the background image if no motion is 
detected for a threshold amount of time. The background 
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image obtained at 702 may be a 2D, RGB image comprised of 
a 2D pixel area. In other embodiments, the background image 
may be captured by a different camera or device or may be 
received from another source. In further embodiments, the 
background image may be generated by averaging over time 
static parts of images captured of a scene. 
At block 704, the tracking and processing system may 

obtain an image that includes at least part of the body of the 
user. As described above, this image may also be captured by 
a 2D, RGB camera 28 of a capture device 20. The image may 
be captured at a time when the user is present before the 
capture device 20. Such a time or times may be determined 
based on, for example, whether the computing environment 
12 is active or whether a motion sensor detects movement. 
The image including the user may also be a 2D, RGB image 
comprised of a 2D pixel area. In other embodiments, the 
image obtained at 704 may be captured by a different camera 
or device or may be received from another source. 
At block 706, the tracking and processing system may 

generate a silhouette image. Such as the silhouette image 70. 
As described above, the silhouette image may be generated 
from a background image and an image including the user 
using background subtraction algorithms, GrabCut algo 
rithms, geodesic segmentation, or other techniques. Such 
background subtraction algorithms may compare RGB pixel 
values of pixel pairs and determine the degree of difference.If 
the degree of difference exceeds a threshold, the pixel of the 
image including the user is determined to belong to the fore 
ground. If the difference does not exceed the threshold, the 
pixel of the image including the user is determined to belong 
to the background. The results of these determinations may be 
used to construct a binary mask image as the silhouette image. 
This silhouette image may comprise the image including the 
user with background pixels removed or may comprise the 
entire image including the user along with an index mapping 
pixels of that image to the foreground or background. In other 
embodiments, only a single image including the user is cap 
tured, and other image analysis techniques are utilized to 
distinguish the user from the background and form the sil 
houette image. 
At block 708, the tracking and processing system may 

determine the depth of the user body in the silhouette image. 
As described above, the depth may be calculated based on 
observed depth values associated with the pixels of the fore 
ground portion of the silhouette. These depth values may, for 
example, be captured using a low resolution depth sensor or 
Some other mechanism. These depth values for foreground 
pixels may then be used in some sort of calculation to arrive 
at a single depth value for the foreground portion. For 
example, the depth values may be averaged to arrive at an 
average depth value. Such an average could be a weighted 
average or an unweighted average. In other embodiments, a 
default depth value is assigned to the foreground portion of 
the silhouette image. Such a default depth value could be 
associated with a distance from the capture device 20 that the 
user is instructed to stand. 
At block 710, the tracking and processing system may 

assign probabilities associated with virtual body parts to pix 
els of the silhouette image. This assigning may involve a 
number of the operations described above with respect to 
assigning probabilities to a depth map, shown at 304 in FIG. 
8. As mentioned, block 304 is illustrated in further detail in 
FIG.9, which illustrates a process for performing the assign 
ing of the probabilities. Blocks 352-358 of FIG. 9 show the 
determining of whether a selected test pixel of the depth map 
is part of the background by comparing a background depth to 
the pixel depth. If the pixel is not part of the background, an 
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offset pixel location is selected at block 360 based on one or 
more decision trees, such as the tree illustrated in FIG.11. The 
depth of the offset pixel location is then tested at block 362 to 
determine if that pixel is at the background depth. Blocks 360 
and 362 may then be repeated for other offset locations, 
depending on the one or more decision trees, and the results of 
these tests may be used to determine a probability distribution 
for the selected test pixel at block 366. The operations of 
blocks 360-366 may then be repeated for each pixel of the 
depth image or carried out concurrently for each pixel. In 
Some implementations, first probabilities may be known for 
the pixels and these first probabilities rather than depth values 
may be used in determining second probabilities for the pix 
els. The use of first probabilities in determining second prob 
abilities is described above with regard to FIG. 11. 

In assigning probabilities to the pixels of the silhouette 
image, however, it may not be necessary to determine if the 
selected test pixels are background pixels. Because the sil 
houette image separates background pixels from foreground 
pixels, the operations shown at blocks 360-366 of FIG.9 may 
be performed for selected test pixels belonging to the fore 
ground of the silhouette image without first having to perform 
the operations shown at blocks 352-358 of FIG. 9. In some 
embodiments, where a default depth value is used for the 
foreground of the silhouette image, the offset used for each 
test defined by the decision trees may be invariant, remaining 
constant and not adapting according to the user. In other 
embodiments, where the depth is calculated, the offset for 
each test defined by the decision trees may be scaled based, 
for example, on the amount of the silhouette image occupied 
by the foreground and/or on a known height of the player. 
Also, in performing tests for pixels of the silhouette image, 
one or more decision trees trained with silhouette image 
training data may be used. In embodiments where a default 
depth value is used for the foreground, the decision trees may 
be trained with data that expects a greater variance from the 
poses and their associated depth. The results of the assigning 
performed at block 710 are probability distributions for fore 
ground image pixels. Further, in some embodiments, the 
operations shown in blocks 702-710 may be performed to 
determine probabilities for the pixels of multiple images. In 
Such embodiments, the multiple images may be captured by 
multiple cameras and probabilities of the pixels from the 
generated silhouette images may be averaged together. 
As shown in FIG.16, after assigning probabilities to pixels 

of the silhouette image, the tracking and processing system 
may obtain coordinates for nodes/joints/centroids at block 
306 and join joints/nodes/centroids into a model at block 308. 
Blocks 306 and 308 are described above and shown in FIG. 8. 
This model may correspond to the image of the user body 
captured in the foreground of the silhouette image, having the 
same pose as that user body. Thus, the pose of the model may 
be used to determine the captured pose of the user and may be 
used as pose input to a game or other application or activity of 
the user. 

FIG. 17 depicts a block diagram 800 whereby body pose 
estimation may be performed. In one embodiment, at 802, the 
tracking and processing system may generate a plurality of 
depth images, silhouette images, Stereo RGB images, mono 
chrome images, or other images. As described above, gener 
ating the plurality of images may involve capturing a plurality 
of images with a plurality of cameras placed at different 
locations, such as on different walls of a user's room. In one 
embodiment, a camera may be placed on each wall of a room, 
allowing the user's body to be captured from multiple pos 
sible perspectives, such as front, back, left, and right. The 
cameras may capture the images Substantially simultaneously 
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to ensure that the images include a same body pose. In other 
embodiments, a single camera may be used to capture a 
plurality of images of a body pose of a rotating user, the user's 
rotation enabling the body pose to be captured from multiple 
views. 
At block 804, the tracking and processing system generates 

a volumetric image of the user's body from the multiple 
images. As mentioned above, any of a number of known 
techniques may be used for generating the Volumetric image 
from the images. The resulting Volumetric image may be a 
complete 3D image of the user's body. 

In some embodiments, occupancies may be calculated for 
each Voxel of a Volumetric image using known techniques, 
such as the above described surface based and true physical 
occupancy techniques. These occupancy values may distin 
guish voxels near or on the surface of the user's body from 
other Voxels and, optionally also distinguish Voxels inside the 
user's body from other voxels. 
At block 806, the tracking and processing system may 

assign probabilities associated with virtual body parts to the 
voxels of the volumetric image associated with the user's 
body. This assigning may involve a number of the operations 
described above with respect to assigning probabilities to a 
depth map, shown at 304 in FIG. 8. In place of the depth 
values used in FIG. 8, however, occupancy values are used in 
assigning probabilities to voxels. Block 304 is illustrated in 
further detail in FIG.9, and blocks 360-366 of FIG.9 may be 
applicable to the assigning of probabilities to voxels of the 
volumetric image. At block 360, an offset voxel location is 
selected based on one or more decision trees, such as the tree 
illustrated in FIG. 11. The occupancy or another attribute of 
the offset voxel location is then tested at block 362 using 
feature tests specified nodes of by the decision trees. Example 
feature tests may include determining whether an offset voxel 
location is inside or outside of the body or determining how 
far the offset voxel location is from the surface of the body, the 
distance calculated using, for example, a distance transform. 
In one embodiment, the feature tests could be made orienta 
tion invariant by, for example, using the Surface normal of the 
nearest point on the body's surface. Alternatively if the ori 
entation angle of the user's facing direction is known, the 
feature tests can be explicitly rotated to give the classifier 
rotation invariance. Alternatively, the invariance is learned 
based on training data. The feature tests of the nodes of the 
decision trees may have been trained with sets of training 
data, each tree being trained with a different set of training 
data. These sets of training data may comprise sets of Volu 
metric image training data. The Volumetric image training 
data may be built directly from 3D computer graphics models 
of people or from rendering multiple views of the user and 
then using 3D reconstruction algorithms. Alternatively, the 
Volumetric image training data could be real data captured of 
many users from multiple cameras. Blocks 360 and 362 may 
then be repeated for other offset voxel locations, and the 
results of these feature tests may be used to determine a 
probability distribution for a voxel being tested at block 366. 
The operations of blocks 360-366 may then be repeated for 
each voxel or may be carried out concurrently for each voxel. 
In some implementations, first probabilities may be known 
for the voxels and these first probabilities rather than occu 
pancies may be used in determining second probabilities for 
the voxels. The use of first probabilities in determining sec 
ond probabilities is described above with regard to FIG. 11. 
Further, in some embodiments, the operations shown in 
blocks 802-806 may be performed to determine probabilities 
for the voxels of multiple volumetric images. In such embodi 
ments, the multiple Volumetric images may be captured and 
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probabilities of the voxels from the multiple volumetric 
images may be averaged together. 
As shown in FIG.16, after assigning probabilities to voxels 

of the Volumetric image, the tracking and processing system 
may obtain coordinates for nodes/joints/centroids at block 
306 and join joints/nodes/centroids into a model at block 308. 
Blocks 306 and 308 are described above and shown in FIG. 8. 
This model may correspond to the image of the user body 
captured in the Volumetric image, having the same pose as 
that user body. Thus, the pose of the model may be used to 
determine the captured pose of the user and may be used as 
pose input to a game or other application or activity of the 
USC. 

FIG. 18 depicts a block diagram 900 of an example method 
for determining three-dimensional representations for pixels 
or Voxels in an image that may be used along with the image 
to estimate a body pose. This method may be used as an 
alternative to the probability determination and segmentation 
techniques described above or in addition to those techniques, 
as a post-processing step. As shown at block 902, a tracking 
and processing system may receive an image. The received 
image may be any of the depth images, silhouette images, 
Stereo RGB images, monochrome images, or Volumetric 
images described above. In some implementations, the 
received image may be generated from 2D, RGB images or 
depth images. The receiving and generating may be per 
formed entirely or partially at one or both of the capture 
device(s) 20 or the computing environment 12. 

At block 904, the tracking and processing system may 
identify pixels or Voxels in the image. The identifying may 
involve selecting each pixel or Voxel of the image as a test 
pixel or voxel for analysis using one or more decision trees. In 
one embodiment, only pixels or voxels that have been deter 
mined to be associated with the user's body are selected as 
test pixels or voxels. Test pixels or voxels may be selected and 
analyzed in parallel or serially. The identifying may also 
involve selecting one or more other pixels or voxels at offsets 
from the test pixel or voxel for use in feature tests specified at 
nodes of one or more decision trees. In various embodiments, 
the locations and number of offset pixels or voxels identified 
for each test pixel or voxel may be determined by the decision 
trees. As discussed above, these decision trees may be trained 
on sets of training data and the locations and number of the 
offset pixels or voxels may be determined by the decision 
trees based on their respective sets of training data. As also 
mentioned above, the offsets may be invariant or scaled. 

At block 906, the tracking or processing system may per 
form feature tests using the decision trees. In some embodi 
ments, at a root node of a decision tree, a binary feature test 
associated with the root node is performed on the test pixel or 
voxel. If the test pixel or voxel passes the feature test, a second 
pixel or voxel at a first offset location is selected and another 
feature test of a second node is performed on the second pixel 
or voxel. If the test pixel or voxel fails the feature test, a third 
pixel or Voxel at a second offset location is selected and 
another feature test of a third node is performed on the third 
pixel or voxel. This selecting of different offset pixels or 
Voxels and different nodes of a decision tree based on passing 
or failing feature tests may be performed recursively such 
that, when an offset pixel or Voxel passes or fails a feature test, 
a further offset pixel or voxel at is selected and subject to a 
further feature test. An example decision tree is shown in FIG. 
11 and is described above. The recursion oriteration through 
the decision tree may terminate at a leaf node of the decision 
tree. Each leaf node of the decision tree may be associated 
with a 3D representation, such as a 3D coordinate and vari 
ance. The 3D representation of the terminus leaf node is then 
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determined as the 3D representation for the test pixel or voxel. 
In this way, using each pixel or Voxel of the received image as 
a test pixel or voxel, 3D representations may be determined 
for each pixel or Voxel of the image. 

In some embodiments, the 3D representations each refer to 
a location on a model body having a canonical pose, shape, 
and or size. The use of the 3D representations and model 
bodies allows for the user's body pose to be specified in 
greater detail. The use of segments described above only 
allows a pixel or voxel to be associated with an entire body 
segment, such as a hand or forearm. Thus, pixels or Voxels 
belonging to a same body segment are not distinguished for 
purposes of determining the user's pose. By using the 3D 
representations rather than body segments, multiple pixels or 
Voxels that would be associated with a same segment are 
distinguished from each other and associated with different 
3D representations. Also, in various embodiments, the 3D 
representation for a specific location on the user's body cap 
tured in the image is the same regardless of where within the 
image the specific location is found and regardless of the 
user's shape, size, and/or pose. Further, in some embodi 
ments, the operations shown in blocks 902-906 may be per 
formed to determine 3D representations for the pixels or 
Voxels of multiple images. In Such embodiments, the multiple 
images may be captured and 3D representations of the pixels 
or Voxels from the multiple images may be averaged together, 
aggregated, or synthesized in some manner. 
At block 908, the tracking and processing system or 

another system may generate the one or more decision trees 
used at blocks 904 and 906. As shown, this generation is 
performed prior to the use of the decision trees. Each decision 
tree is comprise of nodes, each node associated with a binary 
feature test and having two child nodes. Each child node may 
also be associated with a feature test and further descendant 
nodes or may be a leaf node associated with a 3D represen 
tation. Also, each child node that is associated with a feature 
test may also be associated with an offset pixel or voxel 
location that is subject to its feature test. In some embodi 
ments, the operations shown at block 902-906 may be 
repeated multiple times for an image using different sets of 
decision trees. The 3D representations of a pixel or voxel for 
these repeated passes may then be averaged, aggregated, or 
synthesized in Some fashion to generate a single 3D repre 
sentation for each pixel or Voxel. Such as a synthesized/aver 
aged or lowest variance 3D representation for each pixel or 
voxel. 

In some embodiments, a decision tree may be generated 
based on a minimization function that seeks to minimize the 
variance between pixels or voxels for the training data that 
reaches a given node. For example, at the root node, all pixels 
or voxels of the training data may have their 3D representa 
tion averaged and may all reach the root node. At the root 
node, a feature test is performed such that the pixels or voxels 
of the training data are divided into Subsets that pass and fail, 
each subset associated with a child node. The feature selected 
for the feature test in each node may be the feature that 
minimizes the average variance of the pixels or Voxels reach 
ing the node for each Subset. The average variance may also 
be weighted by the proportion of pixels or voxels that passed 
or failed the test. For example, the variance for the root node 
may be a value such as 100. Using a first feature for the feature 
test at the root node results in subsets having variances of 50 
and 70, and thus in an average variance of 60. Using a second 
feature for the feature test at the root node results in subsets 
having variances of 50 and 60, and thus in an average variance 
of 55. In this example, then, the second feature would be 
selected as the feature to use for the root node. This technique 
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of minimizing the average variance of the Subsets reaching 
each child node may be used at each node of the decision tree 
having a feature test to determine the feature used at that node. 
Also, as mentioned above, each decision tree may be gener 
ated using a different set of training data. The training data 
may comprise images of users in various poses where each 
pixel or Voxel has a known 3D representation. In some 
embodiments, the 3D representations can be varied according 
to application to bias towards reduction in variance. For 
example, if disambiguating the left from right hand is priori 
tized, the 3D representation may be stretched along the axis of 
the arms of the model body. This would bias the variance 
reduction calculation to give more emphasis to splitting up 
the left/right hands. Similarly, if disambiguating fingers is 
prioritized, the fingers of model body may be stretched apart 
to bias the variance measure. 

At block 910, the tracking or processing system may fit a 
model body onto the pixels or voxels of the image and their 
3D representations, deforming the model body so that, for 
example, a 3D representation associated with a hand in the 
model body aligns with a same 3D representation determined 
for a pixel or voxel of an image. The result of such a fit 
operation may be a model body bent to the user's pose. In 
other embodiments, other techniques may be practiced to 
generate some sort of skeleton or model in the user's pose. 

At block912, the tracking or processing system may utilize 
the 3D representations and the image to determine an action 
or input associated with the user's pose. The posed model or 
skeleton may be compared to a library of gestures or poses 
that are each associated with Some action or input. Upon 
determining a match, the action or input associated with the 
user's pose is carried out, thereby enabling a user to issue 
commands to a game or application by making different 
gestures or poses. 

FIG. 19 depicts an example embodiment of a model body 
having a canonical pose, shape, and/or size for use in body 
pose estimation. As shown at 920, the model body may 
include a first location 922 having a first 3D representation, a 
second location 924 having a second 3D representation, and a 
third location 926 having a third 3D representation. These 
locations 922–926 may be perceived by someone viewing the 
model body as being associated with the head, the torso, and 
a leg, respectively, or the model body. The feet and legs of the 
model body may generally point downwards along a y-axis, 
the hands and arms may point obliquely away from the torso 
along an X-axis, and a Z-axis may point through the user, from 
the front to the back of the torso. In some embodiments, such 
an arrangement of limbs may comprise the canonical pose. 
The canonical shape and size may be a function of an average 
user height and weight, among other factors and may be 
shared between many or all users regardless of varying char 
acteristics of the users, such as differing weights, etc. Also, in 
Some embodiments, the 3D representations constituting the 
model body can be quantized at a specific levels of detail into 
body parts, such as the above described segment. 

It should be understood that the configurations and/or 
approaches described hereinare exemplary in nature, and that 
these specific embodiments or examples are not to be consid 
ered limiting. The specific routines or methods described 
herein may represent one or more of any number of process 
ing strategies. As such, various acts illustrated may be per 
formed in the sequence illustrated, in other sequences, in 
parallel, or the like. Likewise, the order of the above-de 
scribed processes may be changed. 

Additionally, the subject matter of the present disclosure 
includes combinations and Subcombinations of the various 
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processes, systems and configurations, and other features, 
functions, acts, and/or properties disclosed herein, as well as 
equivalents thereof. 

What is claimed: 
1. A method for determining a position of a body using a set 

of one or more segments, each segment being associated with 
a portion of the body, the method comprising: 

receiving a silhouette image; 
identifying a set of one or more pixels in the silhouette 

image that are associated with at least part of the body, 
wherein the silhouette image is identified in place of a 
depth image; and 

for each pixel in the set of pixels, assigning to the pixel a 
probability that the pixel is within each segment in the 
set of segments. 

2. The method of claim 1, wherein the silhouette image 
distinguishes between pixels belonging to the at least part of 
the body and pixels belonging to a background. 

3. The method of claim 2, further comprising generating 
the silhouette image from a two-dimensional image or a 
three-dimensional image using a background Subtraction 
algorithm, a GrabCut algorithm, or geodesic segmentation. 

4. The method of claim 1, further comprising determining 
a depth of the pixels in the set of pixels. 

5. The method of claim 4, wherein the depth is an average 
measured depth of the at least part of the body or a default 
depth. 

6. The method of claim 1, wherein the probability is a first 
probability, and wherein assigning to the pixel the first prob 
ability that the pixel is within each segment comprises: 

determining at least one of depth or second probability at 
the pixel; 

selecting at least one other pixel each at Some angle and 
distance from the pixel; 

determining at least one of depth or a second probability at 
each of the at least one other pixels; and 

performing the assigning of the first probability based at 
least in part on a relationship between the depth or the 
second probability at the pixel and the depth or the 
second probability at each of the at least one other pixels. 

7. The method of claim 6, further comprising determining 
the distance and the angle of each other pixel from the pixel 
based at least in part on one or more decision trees, each tree 
being generated based at least in part on a different set of body 
pose data. 

8. The method of claim 1, further comprising: 
using the assigned probabilities to determine a centroid 

pixel within each of the segments; and 
determining a location of one or more joints based at least 

in part on the centroid pixels. 
9. A system for determining a position of a body using a set 

of one or more segments, each segment being associated with 
a portion of the body, the system comprising: 

a plurality of cameras for generating a plurality of images, 
at least one of the cameras being placed at a different 
angle with respect to another of the cameras; 

a processor that executes instructions to perform opera 
tions comprising: 
generating a Volumetric image from the plurality of 

images in place of a depth map image: 
identifying a set of one or more Voxels in a Volumetric 

image that are associated with at least part of the body; 
and 

for each Voxel in the set of voxels, assigning to the Voxel 
a probability that the voxel is within each segment in 
the set of segments. 
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10. The system of claim 9, wherein the probability is a first 
probability, and wherein assigning to the voxel the first prob 
ability that the voxel is within each segment comprises: 

determining at least one of an occupancy or a second prob 
ability at the voxel; 

Selecting at least one other voxel each at some angle and 
distance from the voxel; 

determining at least one of an occupancy or the second 
probability at each of the at least one other voxels; and 

performing the assigning of the first probability based at 
least in part on a relationship between the occupancy or 
the second probability at the voxel and the occupancy or 
the second probability at each of the at least one other 
Voxels. 

11. The system of claim 10, wherein the distance and the 
angle of each other voxel from the voxel is determined based 
at least in part on one or more decision trees, each tree being 
generated based at least in part on a different set of body pose 
data. 

12. The system of claim 11, wherein sets of the body pose 
data comprise Volumetric representations of body poses. 

13. The system of claim 9, wherein the operations further 
comprise: 

using the assigned probabilities to determine a centroid 
voxel within each of the segments; and 

determining a location of one or more joints based at least 
in part on the centroid voxels. 

14. One or more computer storage devices having recorded 
thereon computer executable instructions for associating 
locations on a body captured in an image with locations on a 
model body having a canonical pose, the instructions when 
executed causing a computing device to perform operations 
comprising: 

identifying a set of one or more pixels or voxels in the 
image that includes at least part of the body; and 

for each pixel or voxel in the set of pixels or voxels, deter 
mining a three-dimensional representation that is asso 
ciated with a location on the model body such that mul 
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tiple pixels or voxels associated with a same body 
segment are distinguished from one another, wherein the 
determining comprises performing feature tests at nodes 
of one or more decision trees. 

15. The one or more computer storage devices of claim 14, 
wherein the image is a depth image, a silhouette image, or a 
Volumetric image. 

16. The one or more computer storage devices of claim 14, 
wherein the operations further comprise utilizing the deter 
mined three-dimensional representations and the image to 
ascertain a pose of the body captured in the image. 

17. The one or more computer storage devices of claim 14, 
wherein the three-dimensional representation comprises a 
three-dimensional coordinate and a variance. 

18. The one or more computer storage devices of claim 14. 
wherein the three-dimensional representation for a specific 
location on or in the body captured in the image is the same 
regardless of where within the image the specific location is 
found and regardless of a shape, a size, or a pose of the body. 

19. The one or more computer storage devices of claim 14, 
wherein at least one of the one or more decision trees being 
generated based at least in part on a different set of body pose 
data that describes body poses using three-dimensional rep 
resentations associated with locations on the model body. 

20. The one or more computer storage devices of claim 19, 
wherein the operations further comprise generating the one or 
more decision trees, the generating including selecting a fea 
ture for a node of a decision tree based at least in part on an 
minimization function that minimizes spacial variance 
among examples that have a same result with respect to a 
binary test associated with the feature. 

21. The one or more computer storage devices of claim 14, 
wherein the operations further comprise fitting a model per 
Son onto the pixels or voxels based at least in part on the 
three-dimensional representations determined for those pix 
els or Voxels to estimate a user pose captured in the image. 
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