a2 United States Patent
Allen-Ware et al.

US009933836B2

US 9,933,836 B2
*Apr. 3,2018

(10) Patent No.:
45) Date of Patent:

(54) MANAGEMENT OF CORE POWER STATE
TRANSITION IN A MICROPROCESSOR

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Inventors: Malcolm S. Allen-Ware, Austin, TX
(US); Charles R. Lefurgy, Austin, TX
(US); Karthick Rajamani, Austin, TX
(US); Todd J. Rosedahl, Zumbrota,
MN (US); Guillermo J. Silva, Austin,
TX (US); Gregory S. Still, Raleigh,
NC (US); Victor Zyuban, Yorktown
Heights, NY (US)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 14/833,335
(22) Filed: Aug. 24, 2015
(65) Prior Publication Data
US 2017/0031418 Al Feb. 2, 2017
Related U.S. Application Data
(63) Continuation of application No. 14/814,901, filed on
Jul. 31, 2015.
(51) Imt. ClL
GO6F 1/32 (2006.01)
(52) US. CL

CPC GO6F 1/3243 (2013.01); GOG6F 1/324

(2013.01); GO6F 1/3234 (2013.01);

(58) Field of Classification Search
CPC GOG6F 1/3234; GO6F 1/324; GO6F 1/3243;
GO6F 1/3287; GOGF 1/3296;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

6,823,516 Bl
7,650,518 B2

11/2004 Cooper
1/2010 Allarey et al.

(Continued)

OTHER PUBLICATIONS

International Business Machines Corporation, “List of IBM Patents
or Patent Applications Treated as Related,” Sep. 21, 2015, 2 pages.

(Continued)

Primary Examiner — Abdelmoniem Elamin
(74) Attorney, Agent, or Firm — Patterson + Sheridan,
LLP

57 ABSTRACT

A method for adjusting a frequency of a processor is
disclosed herein. In one embodiment, the method includes
inhibiting one or more processor cores from exiting an idle
state. The method further includes determining a number of
processor cores requesting exit from the idle state and a
number of non-idle processor cores. The method also
includes selecting a maximum frequency for the inhibited
and non-idle processor cores based on the number of inhib-
ited processor cores requesting exit from the idle state and
the number of non-idle processor cores. The method
includes setting the maximum frequency for both the inhib-
ited and the non-idle processor cores, and then uninhibiting
the processor cores requesting exit from the idle state.

(Continued) 9 Claims, 4 Drawing Sheets
A0S
MEMORY y 10
VPD 108
110
}CORE1 ICOREZ es | COREN
ONE OR MORE
104 102, 102, 102y CLOCK
14, 116 , SOURCES
VOLTAGE
REGULATOR ; HCR 1 ‘ ' occ1 I ™
Lenp 7
} * 118 ONE OR MORE
; TEMPERATURE
T oceM SENSORS
118
FIRMWARE
MODULE

120

US 9,933,836 B2
Page 2

(52) US. CL
CPC GO6F 1/3287 (2013.01); GOGF 1/3296
(2013.01); Y02B 60/1217 (2013.01); YO2B
60/1239 (2013.01); Y02B 60/1282 (2013.01);
Y02B 60/1285 (2013.01)
(58) Field of Classification Search
CPC YO02B 60/1217; YO2B 60/1239; Y02B
60/1282; Y02B 60/1285
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,900,069 B2 3/2011 Allarey

8,024,590 B2 9/2011 Song et al.

8,245,070 B2 8/2012 Finkelstein et al.
8,510,582 B2 8/2013 Naffziger et al.
8,560,869 B2 10/2013 Allarey

8,769,316 B2 7/2014 Ananthakrishnan et al.
8,775,833 B2 7/2014 Ananthakrishnan et al.
8,779,846 B2 7/2014 Allen-Ware et al.
8,869,152 Bl 10/2014 Abrishami et al.
8,892,931 B2 11/2014 Kruglick

8,943,340 B2 1/2015 Ananthakrishnan et al.
8,959,369 B2 2/2015 de Cesare et al.

9,223,383 B2* 12/2015 Mannec.......... GO6F 1/324

9,280,172 B2 3/2016 Allarey et al.

9,335,813 B2 5/2016 Buins et al.

9,360,918 B2* 6/2016 Manne GOGF 1/3234
9,372,803 B2* 6/2016 Manne GOGF 12/0891
9,568,982 Bl 2/2017 Allen-Ware et al.

9,588,823 B2 3/2017 Rajappa et al.

2005/0046400 Al
2006/0047987 Al
2008/0005592 Al
2008/0104425 Al
2008/0189569 Al
2011/0320835 Al

3/2005 Rotem
3/2006 Prabhakaran et al.
1/2008 Allarey et al.
5/2008 Gunther et al.
8/2008 Chu

12/2011 Browning

2012/0072746 Al
2012/0144215 Al
2012/0254643 Al
2013/0111226 Al
2013/0286026 Al
2014/0181413 Al*

3/2012 Sotomayor

6/2012 Naffziger et al.
10/2012 Fetzer et al.

5/2013 Ananthakrishnan et al.
10/2013 Kaburlasos et al.

6/2014 Manne GO6F 12/0891

711/135

2014/0181537 Al
2014/0237272 Al
2015/0355705 Al

6/2014 Manne et al.
8/2014 Sadowski
12/2015 Weissmann et al.

OTHER PUBLICATIONS

U.S. Application entitled “Management of Core State Transition in
a Microprocessor”, filed Jul. 31, 2015.

U.S. Application entitled “Deterministic Current Based Frequency
Optimization of Processor Chip”, filed Jul. 31, 2015.

U.S. Application entitled “Deterministic Current Based Frequency
Optimization of Processor Chip”, filed Aug. 24, 2015.

U.S. Appl. No. 14/814,901, entitled Management of Core Power
State Transition in a Microprocessor, filed Jul. 31, 2015.

IBM “List of IBM Patents or Patent Applications Treated As
Related”.

De Gelas, J., “Intel Xeon ES Version 3: Up to 18 Haswell EP Cores”,
AnandTech, http://www.anandtech.com/print/8423/intel-xeon-eS-
version-3-up-to-18-haswell-ep-cores, Sep. 8, 2014, 43 pages.
Jahagirdar, S., et al., “Power Management of the Third Generation
Intel Core Micro Architecture formerly codenamed Ivy Bridge”,
Intel, Ivy Bridge—Hot Chips, 2012, 49 pages.

Rotem, E., et al., “Power management architecture of the 2nd
generation Intel® Core TM microarchitecture, formerly codenamed
Sandy Bridge”, Intel, Sandy Bridge—Hot Chips, Aug. 2011, 33
pages.

U.S. Application entitled “Management of Core Power State Tran-
sition in a Microprocessor”, filed Aug. 24, 2015.

Woligroski. D . “AM D’s Kabini: Jaguar and GCN Come Together
in a 15 W APU”, May 23, 2013, 24 pages.

* cited by examiner

US 9,933,836 B2

Sheet 1 of 4

Apr. 3,2018

U.S. Patent

G I

e
mwws;/
FINGOW
TV of HOH
gL~ dppy
SHOSNIS W O00
TMNLYHIANEL T Z HOH
THOW HO INO . 7
: pil
A
L 900 L HOH
SAVUNOS bor b g
HIOTD NzoL ~ 7o b oL
THOW HO 3NO . - -
NIHOO *ee | 2300 | | L 3HOD
oL~
801 dA
001 — AHOWEN
901~

HOLYINOH
dOYLI0A

POl

US 9,933,836 B2

Sheet 2 of 4

Apr. 3,2018

U.S. Patent

¢ Old

9l
200

11 HOH

Y11 HOH

" Y11 MOH

US 9,933,836 B2

Sheet 3 of 4

Apr. 3,2018

U.S. Patent

¢ Ol

YOO PaUWI-ARIA 'aIp
abieiaaz ‘sse00id 1981 Buibis () ‘alooy ==

YOOT POUUFANYA "oip
sbeiong ‘s58004d 158 BUIBIS ('2I00G = w

Y007 PRUW-NHA BIp
afiesone 's5a00id 1981 RUIBIS ('SI00Q e

YO0Z Pajpu-eA i
sfieigae ‘sseooid 188y swibis o ‘asengy, —

Y002 DEIUI-MA aip
sbeisae ‘sseooid 1se) swbis o ‘a0z —-

OB Deluiasod ‘Bip
sbuieas ‘ssa00id 198 BWBIS ‘sl00p -

MOEL pejiu-iemod "BIp

abeioae ‘sseooid 1se) ewibls o ‘aicoy =~
AAO6L peliu-semod "ol

abeioae '55000id 158) BLIBIS ['BI00Y el
fA06L pelus-iemod ‘aip

sfesae ‘ssaooid 198) swibis ¢ ‘000 —0—
MO6L peyw-emod BIp

afiesane ‘sseooid jse) ewills ¢ ‘auogy, —C—

%05

%08

peindiios 40110 %

%04

%08

%06

%001

-

=4 %0

%S

RO

e

%0

L

e

=

%G}
e v

w\\\a\

o™

%02

W\\D\\\A

o

us%&a@;

L~

%%2

%0E

%SE

%0

8i02-7 1 01 1oadesl Uns) as2a0ul baid

Neasaor!

S

00E -

U.S. Patent Apr. 3, 2018 Sheet 4 of 4 US 9,933,836 B2

INHIBIT ONE OR MORE PROCESSOR CORES FroM 410

EXITING AN IDLE STATE

¥

DETERMINE A NUMBER OF PROCESSOR CORES .. 420
REQUESTING EXIT FROM THE IDLE STATE AND
A NUMBER OF NON-IDLE PROCESSOR CORES

¥

SELECT A MA(IMUM FREQUENCY FOR THE INHIBITED | 430
AND NON-IDLE PROCESSOR CORES BASED ONTHE | ™
NUMBER OF PROCESSO0OR CORES REQUESTING EXIT
FROM THE IDLE STATE AND THE NUMBER OF NON-IDLE

PROCESSOR CORES

¥

SET THE MAXIMUM FREQUENCY FOR BOTH THE . 440
INHIBITED AND NON-IDLE PROCESSOR CORES

¥

UNINHIBIT THE PROCESSOR CORES REQUESTING | 430
EXIT FROM THE IDLE STATE

US 9,933,836 B2

1
MANAGEMENT OF CORE POWER STATE
TRANSITION IN A MICROPROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/814,901, filed Jul. 31, 2015, now U.S. Pat.
No. 9,568,982. The aforementioned related patent applica-
tion is herein incorporated by reference in its entirety.

This application is related to U.S. patent application Ser.
No. 14/814,870, titled ‘“Deterministic Current Based Fre-
quency Optimization of Processor Chip,” filed Jul. 31, 2015,
the contents of which are incorporated herein by reference.

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under
contract number HR0011-13-C-0022 awarded by Defense
Advanced Research Projects Agency (DARPA). The gov-
ernment has certain rights in the invention.

BACKGROUND

The present disclosure relates to a method for operating a
processor, and more specifically, a method for adjusting a
frequency of a processor.

In modern computer systems, an operating system may
control a frequency selection for a processor to achieve
energy savings or a performance boost. The operating sys-
tem may also put cores of a multi-core processor to sleep and
wake up those cores at a later time. The operating system
may wake up a core at a time when the processor is running
a high-power workload. When cores wake up during a
high-power state, the processor may experience an overcur-
rent situation. However, the processor should stay within
acceptable limits for power, operating voltage, temperature,
and current in order to prevent shutdown or damage of
components.

SUMMARY

According to one embodiment, a method for adjusting a
frequency of a processor is disclosed herein. The method
includes inhibiting one or more processor cores from exiting
an idle state. The method further includes determining a
number of processor cores requesting exit from the idle state
and a number of non-idle processor cores. The method also
includes selecting a maximum frequency for the inhibited
and non-idle processor cores based on the number of inhib-
ited processor cores requesting exit from the idle state and
the number of non-idle processor cores. The method
includes setting the maximum frequency for both the inhib-
ited and the non-idle processor cores, and then uninhibiting
the processor cores requesting exit from the idle state.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

So that the manner in which the above recited features of
the present disclosure can be understood in detail, a more
particular description of the disclosure, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this disclosure and are therefore not

10

25

40

45

60

2

to be considered limiting of its scope, for the disclosure may
admit to other equally effective embodiments.

FIG. 1 illustrates a block diagram of a computer system,
according to one embodiment disclosed herein.

FIG. 2 illustrates example hardware control registers,
according to one embodiment disclosed herein.

FIG. 3 illustrates an example frequency lookup table,
according to one embodiment disclosed herein.

FIG. 4 illustrates a flowchart of a method for adjusting a
frequency of a processor, according to one embodiment
disclosed herein.

For clarity, identical reference numerals have been used,
where applicable, to designate identical elements that are
common between figures. Additionally, elements of one
embodiment may be adapted for use with other embodi-
ments.

DETAILED DESCRIPTION

In embodiments described herein, one or more cores of a
multi-core processor may be shut down or put into a
low-power state during operation (known as an idle state).
That is, unused cores may be put to sleep or into a low-
power state by an operating system to save power, depend-
ing on the requirements of the workload. In some embodi-
ments, frequency and/or voltage can be increased for the
active cores when the unused cores are shut down. The
operating system may wake up the unused cores at any time,
and those unused cores would then begin operating at the
higher voltage and/or frequency. However, operating at this
higher power could lead to an overcurrent condition that
exceeds the limits of a voltage regulator, or could create too
much heat for the cooling system to handle. Therefore,
embodiments of the present disclosure utilize an interlock to
safely transition to new voltage/frequency states when pro-
cessor cores exit an idle state. The interlock prevents cores
from exiting an idle state until the frequency and/or voltage
have been set to a safe level.

FIG. 1 illustrates a computer system 100 according to one
embodiment. The computer system 100 includes a chip 120
that includes one or more processor cores 102, shown as
Core 1, Core 2, . . ., Core N. Embodiments described herein
may utilize any number N of processor cores. In other
embodiments, components of system 100 shown as on chip
120 may be located off the chip, and components of system
100 shown as off chip 120 may be located on the chip.

Computer system 100 further comprises a voltage regu-
lator 104. Voltage regulator 104 provides power to chip 120.
An input current I, to the voltage regulator 104 may be
measured using any suitable mechanism. In addition, a
current I, from the voltage regulator 104 to the chip 120
may also be measured using any suitable mechanism.

Computer system 100 also comprises memory 106.
Memory 106 may comprise a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. Vital product data
(VPD) 108 may be stored in memory 106. VPD 108 may be
stored on Serial Electrically Erasable Programmable Read
Only Memory (SEEPROM) in one embodiment. VPD 108
is a collection of configurational and informational data
associated with the chip.

Computer system 100 further comprises one or more
clock sources 110 and one or more temperature sensors 112.
Clock sources 110 are used to provide various clock signals
to the chip 120. Temperature sensors 112 provide various

US 9,933,836 B2

3

temperature measurements associated with computer system
100. Any suitable number of temperatures sensors 112 may
be used, and the temperatures sensors 112 may be any
appropriate type of sensor.

Computer system 100 also comprises hardware control
registers (HCR) 114. Embodiments described herein may
utilize any number P of HCRs 114, and each HCR 114 may
be any length. HCRs 114 store bits of information that can
be read out or written. HCRs 114 may be used to store
information about the status of certain components of com-
puter system 100. As one example, an HCR 114 may store
a bit for each processor core 102 that denotes whether each
processor core 102 is currently active or idle. Another HCR
114 may comprise an interlock that stores a wakeup signal
that denotes whether a core has been selected for exiting
from an idle state. Firmware or other logic may be used to
poll the interlock at regular intervals to check for pending
wakeup signals for the idle cores. In other embodiments, an
interrupt may be used to denote that a core has received a
wakeup signal.

Computer system 100 may comprise one or more on-chip
controllers (OCC) 116. Any number M of OCCs may be
utilized. OCCs 116 may run firmware from firmware module
118 to perform various tasks for computer system 100.
Certain steps of the embodiments described herein may be
run or performed by an OCC 116 in conjunction with
firmware from firmware module 118.

FIG. 2 illustrates example hardware control registers
114,, 114,, and 114;, each of length Q. In this example
embodiment, HCR 114, stores the current status of each
processor core 1-N. A zero denotes that the core is in an idle
state, and a one denotes that the core is active. As shown,
cores 2, 3, and 4 are active in this example, and cores 1 and
5 are idle. OCC 116 can read the status of each core from
HCR 114,. OCC can use this status information to retrieve
a count of the current number of active cores, and that count
can be used to determine an operating frequency for the
cores, as explained in further detail below.

HCR 114, comprises an interlock that prevents a core
from exiting an idle state until certain operating conditions
have been met. In this example, a one indicates that the core
is locked and cannot be powered on until firmware confirms
that the operating frequency for the cores is at a safe level.
A zero indicates that the core can exit the idle state. As
shown, all cores are inhibited from changing state until a
safe operating frequency is achieved. When a safe operating
frequency is achieved (as described in further detail below),
the cores are uninhibited and allowed to exit the idle state.
After the cores that have a pending wakeup exit the idle
state, the cores are reinhibited so that they do not exit the idle
state in the future until an appropriate frequency has been
set. Note that in general, when a core transitions from an
active state to an idle state there is no danger of an
overcurrent situation happening, like there is when a core
transitions from an idle state to an active state.

HCR 114, comprises a register that stores pending
wakeup signals for the processor cores. A one indicates a
pending wakeup signal, while a zero indicates no pending
wakeup signal. In this example, the operating system has
sent a signal to wake up core 5. Cores 2, 3, and 4 are already
active, and core 1 has not been selected for wakeup. OCC
116 can poll HCR 114, at regular intervals to determine if
there are any pending wakeup signals. If there are pending
wakeups, OCC 116 and associated firmware can begin the
process of setting the frequency of the cores to a safe level.
The cores pending wakeup will not exit the idle state until
the frequency is at a safe level. In other embodiments, an

20

25

30

40

45

55

4

interrupt may be used to indicate that a core is pending
wakeup, instead of polling a register.

Numerous other hardware control registers may also be
used in certain embodiments. For example, a hardware
control register may be used to set the maximum frequency
of each core. This register sets the frequency of the cores at
a safe level, within the power limits of the chip. Another
hardware control register may store the actual operating
frequency for each core. This register may be read by an
OCC to determine if the frequency has reached a safe level
so that idle cores may exit the idle state.

FIG. 3 illustrates an example frequency lookup table 300
(or frequency uplift table). This figure illustrates how fre-
quency can be increased based on core count. In this
example, a 12-core processor is used as a baseline, with all
cores powered up, running the highest-power thermal design
point (TDP) workload. The X-axis illustrates the switching
current (also known as AC current) percentage, while run-
ning a specific workload, relative to the TDP workload. For
example, the 90% point on the X-axis represents a workload
that is 90% of the power of the TDP workload. The Y-axis
illustrates the frequency boost relative to the nominal mode
point. The nominal mode point corresponds to the 12-core
processor, with all 12 cores running the TDP workload. The
voltage-frequency combination for the nominal mode is
stored in VPD.

Five groups of lines are illustrated in table 300, with each
group corresponding to the number of cores that are pow-
ered on: 12, 10, 8, 6, or 4 cores. For each of the core counts
there are two curves in table 300: one that corresponds to the
unlimited voltage regulator capacity, and one that has an
additional limitation on the frequency uplift imposed by the
voltage regulator current limits.

The reduced core count configurations have a higher
frequency than higher core count configurations, even with
running the TDP workload. This is because the power of the
power gated cores can be used by the running (active) cores,
allowing the running cores to operate at a higher voltage and
frequency. The voltage regulator (VRM) current limited
frequency uplifts are also higher for configurations with
reduced core count. In embodiments described herein, the
power gated cores cannot be powered on without interlock-
ing with the power management firmware. When receiving
a request to power up a core (or multiple cores), the power
management firmware reduces the voltage and frequency
uplift to the levels that correspond to the requested configu-
ration, before powering up the cores. This interlock guar-
antees that the voltage regulator current capacity will not be
exceeded for any workload behavior.

In the example illustrated in FIG. 3, the voltage regulator
has 200 Amps of current capacity. The frequency uplift for
the 12-core configuration is limited to approximately 7.5%
in this example, achieved at 80% of the dynamic power of
the TDP workload. Any further reduction in the workload
does not allow any additional frequency boost, because of
the voltage regulator current limits. If there is a quick change
in the workload, resulting in the maximum current consump-
tion, the current will not exceed the 200 A limit.

Powering down two of the twelve cores allows the
frequency to be boosted between 8% to 18%, depending on
the workload activity. Powering down four of the twelve
cores increases the frequency boosting opportunity to 18%
for the most power-intensive workload. With the reduction
in processor workload AC, the frequency boost potential for
the 8-core configuration increases to 28%. For the 8-core
configuration, the limited voltage regulator capacity only
limits the frequency boost potential by 2% (as seen along the

US 9,933,836 B2

5

right edge of the graph). For the six and four-core configu-
rations the limited voltage capacity does not have any
impact on the frequency boosting opportunity. For the
four-core configuration, a nearly maximum frequency boost
is achieved even for the power-heavy workload. Any reduc-
tion in the utilization of the running cores allows for only 1%
of additional frequency boosting in this example.

The frequency boosting for any of the scenarios is limited
to about 38% in this example, because of the limitations on
maximum voltage (V,,,+). For configurations running into
the V,,, limitation, the processor voltage is set at V,,,
and the frequency is set accordingly. Any further reduction
of the workload activity or the core count is inconsequential
to the frequency.

As seen in FIG. 3, significant frequency boosts can be
obtained when cores are powered down. These frequency
boosts illustrate the usefulness of the interlock, to safely
transition the cores to a lower frequency as cores exit the idle
state.

FIG. 4 is a flowchart of'a method for adjusting a frequency
of a processor. Although the method steps are described in
conjunction with the systems of FIGS. 1-3, persons skilled
in the art will understand that any system configured to
perform the method steps, in any order, falls within the
scope of the present invention. In various embodiments, the
hardware and/or software elements described above in
FIGS. 1-3 can be configured to perform the method steps of
FIG. 4. In some embodiments, an OCC 116 illustrated in
FIG. 1 can perform some or all of the steps in FIG. 4 by
executing logic embodied in firmware.

As shown, a method 400 begins at step 410 where one or
more processor cores are inhibited from exiting an idle state.
An interlock may be used to inhibit the cores. As one
example described above with respect to FIG. 2, a bit may
be set in a control register to denote that a core is inhibited
from exiting the idle state until certain operating conditions
are met.

At step 420, the number of processor cores requesting exit
from the idle state is determined, along with a count of the
number of non-idle processor cores. Hardware control reg-
isters may also be used in this step. An OCC may operate
firmware that polls a register at regular intervals to deter-
mine if any cores are requesting exit from an idle state, and
if so, how many. The firmware may also read a register to
determine the number of non-idle (active) processor cores.
The sum of these two numbers provides a maximum count
of cores that will be active when the idle cores exit the idle
state. It is possible that the active core count will actually be
lower than this maximum count after the idle cores exit the
idle state, if an active core is shut down before the idle exit
occurs.

In other embodiments, a state of the idle cores can also be
determined. The state of the idle cores may be used to more
finely tune the frequency adjustment. That is, different cores
may be in different idle states, and different idle states may
have different levels of power consumption. For example,
some idle states may be power-gated and some idle states
may be non-power-gated. As another example, some idle
states may have more or less cache memory powered off
than other idle states. Knowledge of how many cores are in
each of the different idle states can allow for more precise
selection of a maximum frequency for the cores. One
example technique for doing so is to use different frequency
lookup tables based on the states of the idle cores.

At step 430, a maximum frequency is selected for the
inhibited and non-idle processor cores based on the number
of inhibited processor cores requesting exit from the idle

30

40

45

55

6

state and the number of non-idle processor cores. The
maximum frequency is selected to be a safe frequency for
the number of cores that will be active after the idle cores
exit the idle state. Any suitable method may be used to select
this maximum frequency. For example, a lookup table may
be used to select the frequency based on the core count
and/or other parameters. As discussed above, a lower fre-
quency is needed when the core count goes up to prevent
overcurrent situations. As also discussed above, in other
embodiments the state of the idle cores may also be used for
a more precise selection of a maximum frequency.

At step 440, the firmware sets the maximum frequency for
both the inhibited and the non-idle processor cores. This
frequency may be set in a hardware control register or by
using any other suitable method. As one example, setting a
maximum frequency could be done by setting a value in a
core frequency register at or below the maximum frequency.
The core frequency register sets the frequency for a core.
The core frequency register may be a hardware control
register in some embodiments. Another technique for setting
a maximum frequency is to use a frequency clipping register.
This register may also be a hardware control register. The
frequency clipping register can be used to override the core
frequency register, by setting a maximum frequency clip
value. Frequencies of cores are reduced to a value below the
maximum frequency clip value if the frequency exceeds the
maximum frequency clip value stored in the frequency
clipping register.

In some embodiments, a voltage can also be adjusted or
set for the inhibited and non-idle cores along with the
frequency in this step. A lookup table may be used to
determine a voltage-frequency pair for safe operation. Sepa-
rate tables may be utilized that provide voltage and fre-
quency values for each number of active cores. These tables
can be stored in firmware or any suitable storage. Interpo-
lation may be used between values stored in the tables to
determine appropriate frequency and/or voltage values. If
frequency is being raised, voltage may be raised to support
that frequency. If frequency is being lowered, the voltage
may also be lowered to save power. If the frequency of a
core does not change because it is already below the
maximum frequency, the voltage could be adjusted to save
energy. Methods other than a lookup table could also be used
for determining a voltage-frequency pair.

At step 450, the processor cores requesting exit from the
idle state are uninhibited and begin active operation. The
frequency should now be at a safe level that prevents
overcurrent situations. In some embodiments, firmware can
wait to uninhibit the cores until it is determined that the
frequency limit has been enforced. That is, the firmware can
read a control register that stores the actual frequency of
active processor cores and wait until that actual frequency is
below the maximum frequency before uninhibiting the pro-
cessor cores. This provides a check that the maximum
frequency is being enforced before proceeding with wakeup.
If the voltage was also adjusted, the firmware can also check
that the voltage limits are being enforced before proceeding
with wakeup.

After the idle cores exit the idle state, the interlock can be
reinhibited for all the cores. Bits can be set in the hardware
control register that functions as the interlock to inhibit idle
exit once again. At that point, the system is ready to perform
the method again when another core requests idle exit.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and

US 9,933,836 B2

7

variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application, or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the

10

15

20

25

30

35

40

45

50

55

60

65

8

latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers, and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be

US 9,933,836 B2

9

connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,

20

25

40

45

55

10

depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A method for adjusting a frequency of a multi-core
processor, comprising:

inhibiting one or more processor cores from exiting an

idle state;

determining, with a controller, a number of processor

cores requesting exit from the idle state and a number
of non-idle processor cores;

selecting a maximum frequency for the inhibited and

non-idle processor cores based on the number of inhib-
ited processor cores requesting exit from the idle state
and the number of non-idle processor cores;

setting, with the controller, the maximum frequency for

both the inhibited and the non-idle processor cores; and
uninhibiting the processor cores requesting exit from the
idle state.

2. The method of claim 1, wherein inhibiting one or more
processor cores from exiting an idle state further comprises
setting a status in a control register.

3. The method of claim 1, wherein determining a number
of processor cores requesting exit from the idle state and a
number of non-idle processor cores further comprises
inspecting a status for each processor core in a control
register.

4. The method of claim 1, further comprising, before
uninhibiting the processor cores, adjusting a voltage for each
of the processor cores.

5. The method of claim 4, wherein adjusting the voltage
is based at least in part on the frequency and the total number
of inhibited processor cores requesting exit from the idle
state plus the number of non-idle processor cores.

6. The method of claim 1, further comprising, before
uninhibiting the processor cores requesting exit from the idle
state, determining that the frequency for each of the non-idle
processor cores is at or below the maximum frequency.

7. The method of claim 1, further comprising, after
uninhibiting the processor cores, re-inhibiting one or more
idle processor cores from exiting an idle state.

8. The method of claim 1, wherein setting the maximum
frequency further comprises setting a frequency clipping
register that sets the maximum frequency for one or more
cores.

9. The method of claim 1, wherein selecting a maximum
frequency for the inhibited and non-idle processor cores is
further based on a state of one or more of the inhibited
processor cores.

