€ -

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(81) International Patent Classification 6 : (11) International Publication Number: WO 96/35988
GOGF 9/02, 13/20, 13/10, 13/36, 13/40, - | Al . o
13/42, 15/16, 15/163, 15/173 (43) International Publication Date: 14 November 1996 (14.11.96)
(21) International Application Number: PCT/US96/06562 | (81) Designated States: AU, CA, GB, JP, KR, European patent

(22) International Filing Date: 9 May 1996 (09.05.96)

(30) Priority Data: .
08/438,87 10 May 1995 (10.05.95) Us
08/599,473 23 January 1996 (23.01.96) US

(71) Applicant: 3COM CORPORATION [US/US]; 5400 Bayfront
Plaza, P.O. Box 58145, Santa Clara, CA 95052-8145 (US).

(72) Inventors: ISFELD, Mark, S.; 1125 Wunderlich Drive, San
Jose, CA 95129 (US). MITCHELL, Bruce, W.; 5493 Tesoro
Court, San Jose, CA 95124 (US). SEAMAN, Michael,
J.; 632 Sylvan Avenue, Mountain View, CA 94041 (US).
MALLORY, Tracy, D.; 4026 Ben Lomond Drive, Palo Alto,
CA 94306 (US). ARUNKUMAR, Nagaraj; 3041 Cedar
Ridge Court, San Jose, CA 95148 (US).

(74) Agents: HAYNES, Mark, A. et al.; Wilson, Sonsini, Goodrich
& Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050
(US).

(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, [E, IT, LU,
MC, NL, PT, SE).

Published
With international search report.

(54) Title: BRIDGE ROUTER FOR HIGH PERFORMANCE SCALABLE NETWORKING

network connectlons
A ' A A AN
10 l |
[y v Y
o)l1op | [1op] [1op] [1op| [mos] {ios| |1om| [1om
T ed TT o TTUe T T Y7 T5i6 T 15 T =14 T(4
1T
12r

(57) Abstract

A high peformance scalable networking bridge/router system (10-20) is based on a backbone communication medium and message
passing process which interconnects a plurality of input/output modules (13-20). The input/output modules vary in complexity from a
simple network interface device having no switching or routing resources on board, to a fully functional bridge/router system. A central
internetworking engine (10) includes a physical layer communication system for transferring control messages and data packets across the
backbone, a logical layer interprocessor messaging system which operates over the physical layer across the backbone for communication
between intelligent input/output modules (13-20), and between such modules in the central internetworking engine, and distributed protocol
modules which are supported on intelligent input/output modules, and communicate using the logical interprocessor messaging system with

the central internetworking resources.

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico |

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of Amenca
Uzbekistan

Viet Nam

WO 96/35988 PCT/US96/06562

BRIDGE ROUTER FOR HIGH PERFORMANCE SCALABLE NETWORKING

5
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to high performance bridge/routers that supply
transparent communication between a variety of types of network interfaces within a
10 single chassis, integrating such local area network standards as Token Ring, Ethernet,

FDDI, and ATM, and also supporting wide area links. More particularly, the present
invention provides an internetworking device providing high performance, scalable

internetworking.

15 Description of Related Art

A router is an internetworking device that chooses between multiple paths
when sending data, particularly when the paths available span a multitude of types of
local area and wide area interfaces. Routers are best used for (1) selecting the most
efficient path between any two locations; (2) automatically re-routing around failures;

20 (3) solving broadcast and security problems; and (4) establishing and administering
organizational domains. One class of router, often called bridge/routers or Brouters,
also implements switching functionality, such as transparent bridging and the like.
One commercially available example of such system is known as NETBuilder II,
provided by 3Com Corporation of Santa Clara, California.

25 Because bridge/routers are designed to interconnect a variety of networks, the
volume of data flow through the router can be very high. The ability to move large
amounts of data, according to a wide variety of networking protocols. makes the
bridge/router a unique class of high performance data processing engines.

One problem with prior art bridge/router architectures is scalability, and

30 another is backward compatibility. When a customer buys a prior art system. and
fills up the available ports on the system, often the customer is required to buy another

copy of the entire system. which may be much more than is necessary. or scrap the old

WO 96/35988 PCT/US96/06562

10

15

20

25

30

system and buying a new system with a larger number of ports. Thus, the prior art
establishes plateaus in system hardware that are very expensive to cross.

The NETBuilder II architecture, which is described in the parent application
from which this is a continuation in part, allows expansion on a port by port basis.
Howevér, there is a limit to the number of ports that can be mounted on the backplane
bus of the NETBuilder II architecture, because this architecture requires that all of the
data frames incoming through the ports get transferred across the backplane bus to a
centrally shared memory and processed there.

An alternative prior art system allows for a number of sophisticated multi-port
router engines to communicate with one another. Thus, the only packets that go
across the link between the routers are those which must be transferred from a port on
one router to a port on another. This architecture, however, requires that expansion of
the system be done by adding an entire new router engine. Thus, the system does not
allow incremental expansion on a port by port basis.

Accordingly, it is desirable to provide a high performance, scalable
networking strategy which allows flexible growth of a switching, routing engine.
Using such strategy, expertise can be brought together quickly to deliver projects or
products efficiently and effectively, without requiring large scale hardware upgrades
which are unsuited to the particular project or product needed. Custom applications
can be developed faster and more cost effectively. The cost of incremental computing
power will drop dramatically with a scalable platform. Further, the investment in
current equipment and technologies is protected, while paving the way for future

technologies.

SUMMARY OF THE INVENTION
The present invention provides a high performance, scalable networking
bridge/router system which overcomes many of the problems discussed above. The
bridge/router architecture according to the present invention is based on a message
passing system which interconnects a plurality of input/output modules. The
input/output modules vary in complexity from a simple network interface device -

having no switching or routing resources on board, to a fully functional bridge/router

-2-

WO 96/35988 PCT/US96/06562

10

15

20

25

30

system. Also, in between these two extremes input/output modules which suppbrt
distributed protocol processing with differing levels of intelligence are included.

The bridge/router architecture according to one aspect of the invention
includes a central internetworking engine, including a shared memory resource
coupled to the high speed backplane bus. Depending on the level of sophistication
supported on the input/output module, the central internetworking engine may
perform all routing decisions for packets received on a particular port, or may support
distributed protocol processing at an input/output module in which certain classes of
packets are routed locally on the input/output module while others are forwarded to
the central engine. The architecture can be characterized as having a number of
components, including a physical layer communication system for transferring control
messages and data packets across the backplane bus; and a logical layer interprocessor
messaging system which operates over the physical layer across the bus supporting
communication between intelligent input/output modules, and between such modules
in the central internetworking engine. Distributed protocol modules are supported on
intelligent input/output modules, which communicate using the logical interprocessor
messaging system with the central internetworking resources, and with other
input/output modules on the system to make routing decisions for a majority of
packets of a particular type received on such systems. As mentioned above, the
central internetworking engine also supports input/output modules which only include
the network interface chip and resources for communicating data across the backplane
bus to the central engine, which acts as a data link layer agent for such systems. The
logical layer can overlay a variety of physicé.l layers, including in addition to a high
speed bus, local area networks such as Ethernet, Token Ring, asynchronous transfer
mode ATM, and others.

The centralized internetworking engine includes central distributed protocol
module servers which manage the distributed protocol modules on the input/output
modules, when the distributed protocol modules only partially support such protocols.
Further, the centralized internetworking engine can support maintenance of
synchronization between distributed protocol modules in the system. Thus,

distributed protocol modules may include protocol address caches to support routing

-3-

WO 96/35988 PCT/US96/06562

10

15

20

25

30

decisions locally on the input/output module for addresses stored in the cache. The
central internetworking engine according to this aspect stores the entire routing table
for the particular protocol, and includes resources for responding to cache update
requests from the input/output modules, and for managing routing data used in the
operatibn of the disﬁibuted protocol modules on a plurality of input/output modules in
the system. In a preferred system, the cache is loosely coupled with the central
routing table, using a cache management protocol which is timer based and requests
updateé for stale entries in response to traffic using the stale entry.

Accordingly, the present invention can be characterized as an apparatus for
interconnecting a plurality of networks. The apparatus comprises a communication
medium having a physical layer protocol. A central routing processor is coupled to
the physical layer. A plurality of input/output modules communicate with the central
routing processor according to the physical layer protocol. The input/output modules
have respective sets of physical network interfaces which support a variety of LAN
and WAN network protocols. An interprocessor messaging system in a logical layer
above the physical layer protocol is executed in the central routing processor and in a
set of one or more intelligent input/output modules within the plurality of input/output
modules. Distributed protocol services are executed over the interprocessor
messaging system, and include a distributed protocol module in at least one of the
plurality of input/output modules which makes routing decisions supported by the
distributed protocol module, and a distributed protocol module server in the central
routing processor which in response to queries from the distributed protocol module
makes routing decisions on behalf of the distributed protocol module. Further, a
particular input/output module in the plurality may include resources for signalliﬁg
the central routing processor about events across the physical layer protocol.
According to this aspect, there are centralized routing resources executed in the
central routing processor over the physical layer protocol in response to such events
for making routing decisions on behalf of such input/output modules.

The distributed protocol services according to the present invention may
include resources for performing transparent bridging, internet protocol routing, or

other routing or switching decisions based on other internetworking protocols. The

-4 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

distributed protocol modules may include a protocol routing table cache and the
distributed protocol module server includes resources for maintaining a central
protocol routing table and supporting the protocol routing table caches.

The present invention provides for more general case data processing, a
system that allows for transferring large amounts of input/output data among a
plurality of processors, such as a network intermediate system or router. The
apparatus includes a bus interconnecting the plurality of processors with a plurality of
bus interface devices connected to the bus and to corresponding processors. The bus
interface device which originates a transfer without obtaining permission from the
destination device, includes a command list storing a list of commands which
characterize transfers of data from local memory across the bus and a packing buffer
which buffers the data subject of the command being executed between local memory
and the bus. A bus interface device which receives a transfer includes a free buffer
list storing pointers to free buffers in local memory into which the data may be loaded
from the bus, a receive list storing pointers to buffers in local memory loaded with
data from the bus, and an inbound data buffer which buffers data subject of a transfer
addressed to the receiving processor between the bus and the free buffers in the local
memory. By eliminating the requirement to obtain permission from the destination
device, such as normally done by a handshake protocol or the like, bus performance is
greatly improved. However, the system must be able to tolerate occasional lost
messages on the bus.

According to one aspect of the invention, the command list includes at least a
first high priority command list and a second lower priority command list so that the
apparatus may manage latency of the higher priority commands according to a latency
class for the command.

According to another aspect of the invention, the commands stored in the
command list identify messages to be transferred across the bus. The bus interface
device of the originating processor includes control logic which manages data transfer
into and out of the packing buffer for messages identified by the commands in the
command list to compose message transfér cells for the messages, and to drive the

message transfer cells on the bus in a burst mode. The bus interface which receives

-5-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

the transfer includes control logic which manages data transfer into and out of the
inbound buffer, including receiving burst transfers of message transfer cells from the
bus, loading free buffers in local memory from the inbound buffer with message
transfer cells, and updating the receive list.

The present invention can also be characterized as providing a connectionless
communication protocol, which enhances the reliability and control over latency of
the processing of messages based on classifying messages according to latency and
reliability classes. Thus, according to the present invention, the transmission of
messages among processing nodes in an interprocessor system is managed to control
transmit latency, that is the amount of time between the posting of a message to be
transmitted at a source processor, and actual transmission of that message on the
communication link; transmit reliability, that is the desired level of reliability required
for a source processor that a command to transmit a message will actually be
executed; receive reliability, that is the desired level of reliability required for a
destination processor to actually receive a message transmitted from a source
processor; and receive latency, that is the amount of time between actually receiving a
message, and processing such message at the destination processor.

Thus, according to one aspect of the invention, it can be characterized as a
method of transferring data on a communication medium from a source processor to a
destination processor, wherein the data includes messages of a first transmit latency
class and messages of a second transmit latency class. According to this aspect,
messages of a first transmit latency class are queued at the source processor in a first
transmit queue, and messages of the second transmit latency class are queued at the
source processor in a second transmit queue. The first and second transmit queues
operate to send messages on the communication link according to respective priority
rules, such as a first-in first-out rules. According to this invention, a particular
message selected from the first and second transmit queues in the source processor is
sent on a communication link according to a queue priority rule to the destination
processor without establishing connection with the destination processor for the
particular message in advance. The queue priority rule provides, in one embodiment

of the invention, for sending messages in the second transmit queue prior to sending

-6-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

any message in the first transmit queue, so long as a message resides in the second
transmit queue. Other queue priority rules may be implemented, to ensure fairness or
other parameters of a particular system. Thus, a source processor is able to classify
messages according to a transmit latency class, to ensure that certain classes of
messageé are transmitted quickly onto the communication link, while other classes of
messages are handled in a best efforts type process. |

According to another aspect of the invention, the step of queuing messages
involves storing commands in either the first or second transmit queue. The
commands identify the messages to be transferred across the communication medium.
In order to send a message, the commands are created by the source processor.
Further, the messages may include one or more fragments of data, such as an
encapsulation header and an encapsulated frame. The commands are created by the
source processor in a manner such that one command is stored for each fragment of
the message to be transmitted. Furthermore, the commands will include pointers to,
or otherwise be associated with, memory locations in the source processor where the
messages or fragments to be transferred are stored. Optionally, the commands
indicate the destination addresses for messages to be transferred. The fragments of a
message are gathered for transmission in response to the commands, and may be
segmented into cells for transmission, the cells having a data length which is specified
according to characteristics of the communication medium in the preferred system.

An additional level of reliability queuing is provided according to another
aspect of the invention by "quality of service" thresholds in the first or second
transmit queues. According to the quality of service thresholds, the commands are
classified according to command types. When storing commands into the first or
second transmit queue, commands having a first type are dropped or returned to the
sender, if a first threshold number of entries in the transmit queue data structure has
been exceeded. Commands of a second type are written into the transmit queue if any
entries are available. This way, software in the source processor is able to provide an
additional level of reliability for certain classes of messages.

According to another aspect of the invention, a code in the messages (or cells

making up the messages) being transmitted is provided at the source processor which

-7-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

indicates one of a first and second reliability classes for the message. Preferably, a
third reliability class is utilized as well. As the messages are received to destination
processor, the reliability class of the message is determined. Messages are stored in
the destination processor memory according to a received priority rule which provides
for storiﬂg messages of the first reliability class if a first threshold amount of storage
is available in the destination processor for such messages, and storing messages of
the second reliability class if a second threshold amount of storage is available in the
destination processor memory. The use of these receive priority rules act to preserve
buffer space in destination processors for receiving high reliability messages.
According to yet another aspect of the invention, a code in messages being
transmitted on the communication medium is provided to indicate one of first and
second receive latency classes. As the messages are received at the destination
processor, the receive latency class is determined, and the message is queued in one of
the first and second receive queues according to the receive latency class. The
messages are processed at the destination processor from the first and second receive
queues according to a receive queue priority rule. For instance, all messages of a first
receive latency class in the first receive queue will be processed prior to processing
messages in the second receive queue which have the second receive latency class.
According to one approach to management of destination processor memory, a
plurality of receive buffers is maintained in the destination processor memory. In
addition, a list of free receive buffers is kept by the destination processor. The step of
storing received messages involves loading the data of a received message into a free
receive buffer which is identified by the list of free receive buffers. According to this
aspect of the invention, the receive priority rule provides for dropping messages in the
first reliability class if the list of free receive buffers indicates that less than the first
threshold amount of storage is available in the receive buffers. Messages of the
second reliability class are dropped if the list of free receive buffers indicates that less
than the second threshold amount of storage is available. The receive priority rule
preferably includes a rule for dropping messages of a third reliability class if no

receive buffers are available in the destination processor memory.

10

15

20

25

30

WO 96/35988) PCT/US96/06562

Thus, a source processor is able to classify messages to be transmitted on the
connectionless communication link according to transmit latency classifications,
receive reliability classifications, and receive latency classifications. This greatly
improves the control over message throughput in a communication backbone, along
with reliability and latency of messages.

According to another aspect of the invention, the communication process
based on latency and reliability classes discussed above is applied to a bridge/router
system with multiple processors connected by a backbone communication link. As
frames of data are received at the bridge/router from connected networks, they are
processed in the receiving processor, and transmitted across the communication link
based on classifications as discussed above. The communication link can be any type
of connectionless protocol system, such as a high speed parallel or serial bus which
executes a connectionless protocol, a local area network link, or even an internet
protocol cloud. Also, the communication link may comprise a LAN or WAN protocol
link used as a backplane bus within a single chassis, executing for example,
asynchronous transfer mode ATM, high speed Ethernet, or fiber optic based protocols
like FDDL.

The protocol of the present invention provides, for internetworking systems,
an interprocessor messaging system including resources for transferring control
messages and network packets in transit among a central routing processor and the
input/output modules in the set of intelligent input/output modules. This allows the
input/output modules to be developed with a logical layer communication system in
mind for access to the centralized intemetworking engine. This enables tremendous
flexibility in the design and expansion of bridge/routers according to the present
invention. Further, because the centralized internetworking engine supports
communication across the backplane with input/output modules without higher layer
protocol processing, backward compatibility is ensured, as well as the ability to
incrementally expand an existing system with one network interface at a time growth.

The system further provides tremendous flexibility in utilization of the
backplane. Thus, the interprocessing messaging system, as well as the physical layer

protocol support communication among the central routing processor and the plurality

-9.

10

15

20

25

30

WO 96/35988 PCT/US96/06562

of input/output modules with messages in a plurality of latency classes, and in a
plurality of reliability classes. Thus, certain control messages can be delivered across
a system with very high reliability. Data packets in transit can be transferred across
the system with lower reliability but higher throughput. A dropped data packet from
time to time does not affect overall system performance significantly because network
protocols are able to recover from such lost packets. The critical parameter for
transferring data in transit is minimizing system overhead and maximizing
throughpﬁt.

In sum, the present invention provides a high performance scalable
internetworking platform based on an interprocessor messaging system which
provides a logical layer for communicating among input/output modules, allowing
diverse input/output modules. The diverse input/output modules may include
distributed protocol modules which communicate with a distributed protocol module
server on a centralized resource. This allows a large amount of routing decisions to be
made in the distributed protocol modules without requiring transfer of data in transit
from the port to the centralized processor. Rather, these packets are transferred
directly from port to port in the systerﬂ, maximizing efficiency of the data paths in the
device. The centralized internetworking engine allows synchronization of
internetworking functions, and provides for handling of exception packets in the host,
which occur rarely and need not be supported in the distributed modules.

Other aspects and advantages of the present invention can be seen upon review

of the figures, the detailed description, and the claims which follow.

BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 provides a system block diagram for a scalable network intermediate
system according to the present invention.
Fig. 2 provides a block diagram of a basic input/output module (IOM) which
may be used in the system of Fig.1.
Fig. 3 provides a block diagram of a semi-intelligent I/O module (IOS) such as

used in the system of Fig. 1.

-10 -

WO 96/35988 PCT/US96/06562

Fig. 4 provides a block diagram of an input/output module with an enhanced
function processor (IOP) such as used in the system of Fig. 1.
Fig. 5 provides a block diagram of the central internetworking processor (COX)
used for providing a shared resource for the other processors coupled to the buses in the
5 system of Fig, 1.
Fig. 6 is a heuristic diagram providing an example of message transmission for
the system of Fig, 1.
Fig. 7 illustrates message flow scenarios for a system such as that shown in
Fig.1.
10 Fig. 8 provides a diagram of the dual queue structure and message paths for the
bus interfaces in the system of Fig, 1.
Fig. 9 1s a table setting forth the data transfer types in the system of Fig. 1.
. Figs. 10A and 10B illustrate the data alignment and packing for messages
transferred on the bus.
15 Fig. 11 illustrates the receive data structure layout for the bus interfaces.
Figs. 12A and 12B provide a receive queue example for the bus interface
according to the present invention.
Fig. 13 illustrates the data flow from the high and normal priority command
lists to the high and normal priority receive lists according to the present invention.
20 Fig. 14 illustrates the message transmit data path in the bus interface.
Fig. 15 illustrates the message transmit address path in the bus interface.
Fig. 16 illustrates the message receive logic in the message passing controller.
Fig. 17 illustrates the command list data transfer logic within the message
passing controller.
25 Fig. 18 illustrates the free list structure and its associated registers in the MPC
and the free buffers in the SDRAM.
Fig. 19 illustrates the command list bit definition for a message type transfer.
Fig. 20 illustrates the command list bit definition for a non-message type
transfer.
30 Fig. 21 illustrates the message address field for a message transferred on the

bus.

-11-
RECTIFIED SHEET (RULE 91)

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Fig. 22 is an overview of the major components in the centralized
internetworking engine and the intelligent input/output modules according to the
present invention.

Fig. 23 provides an overview of the interprocessor communication
components for use in the system described in Fig. 22.

Fig. 24 provides a perspective of the data paths in the intelligent input/output
modules for the system of Fig. 22.

Fig. 25 is a table showing the interprocessor messaging system message types
and their priorities according to one implementation of the present invention.

Figs. 26 through 29 illustrate the message formats supported by the
interprocessor messaging system according to one embodiment of the present
invention.

Fig. 30 shows the functional operation for the interprocessor messaging
system buffer data type message transfers.

Fig. 31 shows the interprocessor messaging system logical layer processing for
data transfers from the central engine to the input/output modules.

Fig. 32 shows the interprocessor messaging system logical layer processing for
data transfers from an input/output module to central internetworking engine.

Fig. 33 illustrates the components of distributed internet protocol (IP)
processing according to the present invention.

Fig. 34 illustrates the components of distributed transparent bridging
processing according to the present invention.

Fig. 35 illustrates application of the scalable architecture across a LAN or

WAN backbone.

DETAILED DESCRIPTION
A detailed description of an embodiment of the present invention is provided
with reference to the figures. Figs. 1-5 illustrate a basic hardware environment for the
system applied as a network intermediate system. Figs. 6-21 illustrate the message
transfer hardware and techniques applied according to the present invention in the

environment of Fig. 1.

-12-

10

15

20

25

30

‘WO 96/35988 PCT/US96/06562

Figs. 22 through 32 illustrate the processing resources and the logical layéred
interprocessor messaging system used over the physical layer.

Fig. 33 shows an internet protocol (IP) distributed protocol module and
distributed protocol module server; and Fig. 34 shows distributed protocol resources
for transparent bridging according to the present invention. Fig. 35 shows use of the
scalable architecture with a LAN or WAN backbone.

L SYSTEM DESCRIPTION

Fig. 1 provides a board level block diagram of a scalable bridge/router
illustrating the present invention. The bridge/router includes a central control card
COX 10 coupled to a first high speed parallel bus 11 and a second high speed parallel
bus 12. A plurality of input/output (I/O) modules are coupled to the bus 11 to provide
input/output functions for connected networks. The plurality of I/O modules includes
in the embodiment described a first relatively passive type interface device IOM 13
and 14, an intermediate level semi-intelligent processing device IOS 15 and 16, and a
more powerful processing system IOP 17, 18, 19, and 20. The IOP boxes 17-20
include interfaces to both high speed buses 11 and 12.

Each of the plurality of processors has at least one associated network
connection. Thus, the IOM boxes 13 and 14 include two network connections each,
which might be coupled to, for instance, Ethernet or token ring local area networks.
The IOS boxes 15 and 16 include five connections each, coupling to local area
networks (LANS), such as Ethernet, FDDI, token ring, or the like and/or wide area
networks (WAN) links. The IOP boxes 17-20 have eight network connections each
and handle much higher throughputs.

The basic IOM box 13 is illustrated in Fig.2. It includes at least one network
connector 30 which is coupled to a transceiver 31 and a network/DMA MAC chip 32,
such as commercially available for a given type of network. This chip is coupled to a
bus interface chip 33 with associated configuration data 34, and through the interface
chip 33 to a backplane bus connection 35. The IOM box shown in Fig. 2 relies
primarily on the central control box COX 10 for the management of data transfer and

control functions.

-13 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

The bus interface chip 33 is described in detail in our co-pending U.S. patent
application entitled INPUT/OUTPUT BUS ARCHITECTURE WITH PARALLEL
ARBITRATION, Application No. 08/033,008, filed February 26, 1993, invented by
Mark Isfeld, et al. Such application is incorporated by reference as if fully set forth
herein to ‘fully provide a detailed description of the bus architecture in the preferred

system. However, this particular bus architecture is not intended to be limiting. The

. preferred system uses a 32 bit (or greater) wide bus with a least a 25 MHz clock and

preferably a 50 MHz clock, for a nominal data rate of 800 MBPS (megabits per
second) or 1600
MBPS. Even higher data rates can be achieved with state of the art high speed
parallel bus architecture, or other data transfer techniques. Also, the backplane may
be implemented using a variety of local area network technologies as discussed below
with reference to Fig. 35.

| The semi-intelligent I/O processor 10S, 15 and 16, is illustrated in Fig. 3. As
can be seen, this system is connected to the bus 11 through the bus interface chip 40.
A non-volatile memory device 41, such as an EEPROM, stores configuration data and
the like for the bus interface 40. A data interface to an intermediate bus 42 is
provided through latches 43. Also, a local memory 44 and a DMA control module 45
are coupled to the intermediate bus 42 and the local memory 44. An intelligent
microprocessor 46, such as the Am29030 manufactured by Advanced Micro Devices,
Inc., is coupled to the intermediate bus 42. A flash programmable read only memory
47 provides storage for programs executed by the processor 46. A console port 48 is
provided through a UART interface 49 to the bus 42. A plurality of network
connections, generally 50, are coupled to the bus 42 through respective physical
interfaces 51-1 through 51-N, and medium access control MAC devices 52-1 through
52-N. The box may include status light emitting diodes 53 connected and controlled
as desired by the particular user.

Fig. 4 illustrates the block diagram of the higher performance input/output

processor IOP of Fig. 1. This system is coupled to the first bus 11 and the second bus
12 through respective bus connectors 60 and 61. The bus connectors 60 and 61 are

coupled to message passing controller ASICs 62 and 63, respectively, which are, in

-14 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

turn, connected to an intermediate bus 64. The intermediate bus (also called internal
bus herein) is coupled to a shared memory controller 65 which controls access to a
shared memory resource 66. The intermediate bus 64 is coupled through a peripheral
bus interface 67 to a network data bus 68. On the network data bus, there are a
plurality of network connections, generally 69, made through respective MAC devices
70-1 through 70-N and physical interfaces 71-1 through 71-N. The shared memory
controller 65 is also coupled to a control bus 72, which is connected to a high speed
processor 73, flash programmable read only memory 74 storing programs, non-
volatile EEPROM memory 75 storing parameters and static code, and a console port
76 through a UART interface 77.

The central control box is illustrated in Fig. 5. This box is basically similar to
the box of Fig. 4. Thus, the box includes a first bus connector 80 and a second bus
connector 81 for the first and second buses, respectively. Message passing controllers
82 and 83 are coupled to the bus connectors 80 and 81, and to an intermediate bus 84.
A peripheral bus transfer ASIC 85 is connected between the intermediate bus and a
peripheral bus 86. An Ethernet controller 87, an Ethernet controller 88, and a wide
area network (WAN) controller 89 are coupled to the peripheral bus 86 and to the
respective networks through physical connections 90, 91, and 92.

The intermediate bus 84 is also connected to a shared memory controller 93,
and through the shared memory controller 93 to a shared memory resource 94. A
second shared memory resource may also be connected directly to the MPC ASIC 82
or 83. The shared memory controller 93 is also connected to a processor bus 95
which interconnects a processor 96, working memory 97 for the processor, flash
memory 98 for processor code, EEPROM memory 99 for static code and parameters,
a PCMCIA interface 100 for accepting flash memory cards for upgrade purposes and
the like, a floppy disk controller 101 for driving a floppy disk, an SCSI interface for
connection to a hard disk 102, an interface 103 for connection to a front panel
providing a user interface, and a dual UART device 104 which provides for
connection to a console 105 and a debug port 106. In addition, read only memory 107
may be connected to the processor bus 95. The native PCMCIA interface is provided

for enabling a redundant reliable boot mechanism.

-15 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

The software processing for a high performance router breaks fairly cleanly
into two major pieces: the data forwarding functions and the control/management
functions. The data forwarding functions include device drivers and link-layer
protocols such as HDLC-LAPD in addition to the per-packet processing involved with
recognizing, validating, updating, and routing packets between physical interfaces.
The control and management software functions include routing protocols and
network control protocols in addition to all configuration and management functions.

Ih general, the data forwarding functions are optimized for maximum
performance with near real-time constraints, whereas the control and management
functions simply run to completion on a time available basis, with some exceptions.
When system performance is measured, it is primarily the forwarding capacity of the
router in terms of bandwidth, packets-per-second, and fan-out that is considered, with
an implicit assumption that the control and management functions will be sufficient.
The control and management software comprises the vast majority of the code and can
use large amounts of data space, but most of the data space consumed by these
functions need not be shared with the forwarding software.

In the system of Fig. 1, the forwarding function is replicated in distributed
protocol modules in the semi-intelligent and full function processors IOS and IOP,
with distributed protocol module servers along with the full function routing and other
centralized functions running on the single central processor COX. Thus, the
forwarding functions where possible run on processors near the physical interfaces,
and mechanisms, including hardware supported message passing, tie the distributed
processing modules to each other and to the central control functions. This
architecture allows some forwarding functions to be distributed, while others are
centralized on the central control box. The message passing architecture enables
significant flexibility in the management of the location of software in the router

architecture. Further, backward compatibility and system scalability are preserved.

II. MESSAGE PASSING STRUCTURES AND PROCESSOR

The basic message passing technique is illustrated with respect to Fig. 6. In

Fig. 6, the process of receiving a packet on interface 2 on card 4 is illustrated. Thus,

-16 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

the packet is received and proceeds along arrow 100 into a buffer 101 in the card.
While it is in the buffer, the processor parses the packet, looks up the destination for
the packet, and processes it according to the routing code. Next, a software header
102 is added to the packet. Then, a command or set of commands to transmit a
message which carries the packet is added to a queue 103 for message transmission.
The hardware 104 in the card sends the message or messages in a segmented state,
which includes a first message cell 105, which has a start identifier, a channel
identiﬁer; and a destination slot identifier (in this case, slot 5, channel 3). The first
cell includes the software header which identifies the destination interface as interface
3 in processor 5, the length of the packet, etc. Cell 105 includes the first part of the
packet data. The next cell 106 of the message includes a header indicating the
destination slot and its channel as well as packet data. The final cell 107 includes the
destination and its channel, and an indicator that it is the last cell or "end" in the
message. Finally, this last cell 107 is filled with the balance of the message data.
These three cells of the message are transferred across the high speed bus 108 to the
destination slot 5. In slot 5, the hardware 109 receives the cells, reassembles then in
the next free buffer 110, and queues the message to software in the queue 111. The
software and hardware in the IOP at slot 5 transmit the packet carried by the message
out interface 3 in card 5 across the arrow 112, in this example.

Thus, in this application, the term "packet" refers to a data structure which is
received from a LAN or WAN link coupled to the router which executes the message
passing process. A message is a data structure, which may comprise one or more
fragments, specified by one or more commands in the transmit queue for transmission
by the message passing system. A cell is a data structure which is created by
segmenting a message for transmission across a particular backplane bus to the
destination. The cells are then reassembled at the destination into messages. Packets
for transmission out of the routing system can be recreated from messages or
generated in response to messages. Thus, in this application, the use of the words
"packet", "message", "fragment", and "cell", are intended to have the meanings
implied by this paragraph, unless another meaning is clear from the context in which

the term is used.

-17 -

10

15

20

25

30

WO 96/35988 ‘ PCT/US96/06562

This message passing protocol is a "push" paradigm, which has the effect of
using the bus more like a LAN than a normal memory bus. This has several important
features:

Receiver allocates/manages buffering independent of transmitter.

Single "address" used for all data sent in one message.

Bus addressing is per-card, port-level addressing in software header.

Bus used in write-only mode.

Nb shared memory usage.

Reliability not guaranteed (must be supplied at a higher level, if needed).

Messages are sent as a stream of cells, interleaved with other message
transmissions.

The paradigm provides the following benefits:

Improved protection/robustness.

Reduced driver overhead.

Reduced complexity, per-destination queues not required, etc.

Improved bus utilization (about 3x previous).

Bus is not monopolized by one device during a message transmission. Other
slots can interleave cells on the bus, so they do not have to wait for a long message
from another slot.

In Fig. 6, IOP4 receives a packet, and sends it to IOP5. Note that the input
card simply sends the message to the output card. The sender does not need to
allocate buffers or get permission from the receiver. A hardware address specifies the
slot that should receive the message. A software message header specifies the
message type (control, data, etc.), its actual length, output port number, etc. The
output card is responsible for dropping messages if there is too much traffic.

Fig. 7 is an example of how messages will flow in the system of Fig. 1 in order
to forward a network packet. In this example, the path that a packet follows to a
destination unknown by the receiver card IOP1 is shown.

Packet enters from network attached to IOP1 (transition 1). The local
processor looks up the destination (whether it be bridged, or routed by various

protocols), and finds it does not know what to do with this packet. It generates a high

-18 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

priority cache lookup request and sends it to the COX. The COX looks up the
destination network in its database, and sends back the answer to IOP1(3). IOP1 adds
the destination to its cache, and finds the held packet. It then directly forwards it to
IOP2(4) as a message complete with instructions on what to do with the packet. IOP2
examines the message header and determines it should transmit the packet out port
X(5). 10P2 DID NOT examine the actual packet in any way. It simply looked at a
simple message header, and decoded the command to transmit the enclosed packet to
port X. |
If the packet originated from an IOM, then the IOM puts the packet in COX

memory. The COX does the same functions as outlined above, for the IOM based
packet. Packets destined for an IOM are sent to the COX which queues them for
transmission. In other words, existing IOMs are just ports on the COX as far as the
message passing paradigm goes.

* Also notice that if IOP1 has the destination already stored in the local cache

(normal case), then messages 2 and 3 are eliminated. In either case the packet data

only travels across the bus once.

This system uses a layered architecture for communication between
processors, with a common set of message passing services supporting both control
and data paths. It utilizes the bus for the physical layer and either shared-memory
DMA-based software or hardware-supported card-to-card transmissions to provide
required services for various classes of messages. The three major classes of message
are:

Internal control messages: low latency (<10ms), high reliability, low volume.

Network control messages: medium latency (<250ms), high reliability, low
volume.

Normal data packets: best effort latency, average (best effort) reliability, high
volume.

Note that the system is designed to require only loose synchronization between
processors. There are no critical real-time constraints on any control messages
between processors that would cause the system to break if they were not met. All

inter-processor control functions must tolerate lost messages. Some data loss will be

-19-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

acceptable. For instance, a route cache update or a port down message could be lost,
as long as the system continues to run smoothly.

At the lowest layer above the actual data movement function is a dual-queue
structure, as illustrated in Fig. 8, which supports these message classes according to
their pﬁrﬁary service requirements. These queues may be supported in software, in
hardware, or in a combination of the two. One queue is designed to provide high
reliability and low latency with relatively low throughput, and is used for the first two
classes of messages -- internal and network control messages. The second queue is
optimized for high throughput and supports the majority of the data traffic.

Both control messages and data packets are encapsulated with a standard
header which conveys the message type, destination addressing (output port, control
interface, etc.), and other control information associated with the message. For
internal control messages this additional information might include sequence
numbers, event handles, etc., while data packets might have MAC encapsulation type,
transmission priority, etc.

Fig. 8 illustrates the basic dual queue structure used in the messaging paths. In
this structure, the card will include a plurality of physical interfaces, generally 150.
Inbound data from the physical interfaces is placed in an inbound multiplexing packet
processing queue 151, generally implemented by software. This packet processing
queue does the basic data transport processes as described above. From this queue
151, the messages which encapsulate the packets are transferred to a high throughput
queue 152 implemented at either hardware or software. From the high throughput
queue, messages are transferred out onto the bus transmission path 153.

Alternatively, communications which must be reliable are passed through a reliable
receive and transmit block 154 where they are tagged for preferential handling at the
receive end, and manually passed to a high priority, low latency queue (HRQ 155) and
out through the bus transmit function 153. Similarly, cells of data received from a bus
receive path 156 is passed either through a high reliability queue 157 or a high
throughput queue 158. The high reliability queue is passed to the reliable receive and
transmit block 154 into the outbound demultiplexing packet processing queue 159.

Alternatively, control and management functions 160 receive data through the reliable

-20 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

path. The outbound software queue 159 sends appropriate packets to the physical
interfaces 150. There may also be a path between the inbound and outbound software
queues 151 and 159.

As illustrated in the figure, preferably the lower level queues 152, 155, 157,
and 158 are implemented in the hardware assisted eﬁvironment while the higher level
queues 151 and 159 are software executed by a local processor on the board.
However, in the central processor unit, the lower level queues may be implemented in
software which serves the IOM blocks described above with respect to Fig. 2, and
interface processors may be implemented in the particular application with these
queues in software.

Fig. 9 provides a table of the various data transfers supported by the system of
the preferred embodiment. The table indicates the transfer type across the top row,
including a message transmit, a shared memory write, a shared memory access read, a
shared memory read, a memory move, a cell transmit, a message receive, a bus
input/output and bus memory write, a bus read, and a promiscuous receive transfer.
The table summarizes the source of the source address, the source of the destination
address, the direction of the transfer, the origin of the cycle, the receive activity, the
data buffering, and the alignment and packing functions for each of the different
transfers.

Thus, the system includes a number of hardware and software system buffer
structures and control and management modules. Generally, data fragments are
gathered and byte-wise aligned to form cells which move across the bus. At the
receiving end, cells may be placed into a receive buffer as allocated by the receiving
processor.

The basic structures include a command list, a free list, and a receive list.

The command list is a managed string of four word entries through which
software instructs hardware to perform certain data transfers, generally across the bus.
The blocks of memory to be moved may be thought of as buffers, or as data
fragments. There is no hardware requirement for these chunks of data to be aligned or
sized in any specific way. Implicit in the source and destination address along with

the command list entries control field is the type of data transfer. The command list is

221 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

built in synchronous dynamic RAM (SDRAM) and may be FIFOed (or cached) within
the message passing controller hardware. Software writes entries into the command
list, while hardware reads and executes those commands. The command list is
managed via command head and command tail pointers.

The free list is a series of single word entries pointing to available or "free"
receive buffers which may be allocated by hardware for buffering inbound bus data.
The free list is maintained in SDRAM and may be FIFOed or cached within the
message passing controller hardware. Software places free receive buffers into the free
list so that hardware may then allocate a free buffer to a given receive channel, as
required by incoming data. Once the buffer is actually filled, hardware places the buffer
pointer into one of two receive lists. Only software writes entries to the free list, and
those entries are known to be valid by the contents of the software based free tail
pointer. Hardware may read entries from the list, and the only indication of what has
been read is the value of the hardware-owned free head pointer.

The receive list is a series of two word entries pointing to full receive buffers
which need the attention of software. The list itself is SDRAM resident and the list
entries point to receive buffers which also reside in SDRAM. In addition to the
physical address of the filled buffer, the receive list entry includes a flag and count
field.

Figs. 10A and 10B show the data flow beginning with a command list and
eventually showing up on a normal priority receive list.

As can be seen in Figs. 10A and 10B, a command list 200 includes a sequence
of four word entries. For example, the four entries 201, 202, 203, and 204 characterize
a transfer from a network interface in one processor across the bus to a network
interface in a different processor. The first entry is recognized as the beginning of a
message, includes a pointer 204 to a source buffer, a destination address 205 indicating
the destination slot (and bus if plural busses are used) of the message, and a data length
field 206. The next entry 202 includes flag indicating that it is a middle fragment,

a pointer 207 to a source buffer, and a data length field. The third entry in the list
203 includes a control parameter indicating that it is a middle fragment, a pointer

208 to a source buffer, and a data length field. The final entry 204 includes a

-22 -

RECTIFIED SHEET (RULE 91)

10

15

20

25

30

WO 96/35988 : PCT/US96/06562

header indicating that it is the end of the message, a pointer 209 to the source buffer
and a length field.

The transmit buffers pointed to by the pointers 204, 207, 208, and 209 contain
the data of the message. They are concatenated according to the protocol and data
length information in the first buffer pointed to by the pointer 204. The message
packing buffers are used to generate a first bus cell generally 210 which includes a
destination slot address, an indicator that it is the first cell in a message, and a count.
The first cell in this example includes the contents of the buffer from pointer 204, the
buffer from pointer 207, and a portion of the buffer at pointer 208.

The balance of the buffer at pointer 208 and the first portion of the buffer at
pointer 209 are combined into the second cell 211. The balance of the buffer at
pointer 109 is placed into the last cell 212.

The outbound path in the receiving processor loads the incoming data into the
receive buffers 213 and creates an entry in the normal priority receive queue for the
receive buffer.

The receive data structure is illustrated in Fig. 11. Basically, an incoming data
stream is allocated to receive buffers using the free list 220, the channel status SRAM
221, the free list FIFO 222, and the high and low priority receive queues 223 and 224.

The hardware keeps state information for 32 receive channels. Each channel
allows one message to be assembled into a cohesive message in memory. The
channel keeps pointers to the next place to store the cell as well as a count and status
information associated with the message. In one embodiment, receive channels are
allocated to particular slots. Thus, slot zero on the bus will be given channel zero, for
every processor on the bus; slot one will be given channel one; and so on.

The free list 220 is managed with a free head pointer 225 and a free tail pointer
226. Basically, buffers between the hardware owned free head pointer 225 and the
software owned free tail pointer 226 are available for the hardware. Buffers pointed
to by pointers above the free head pointer are either invalid because they contain data
from previously received messages yet to be processed, are in use by a particular
channel, or have been taken over by the hardware and loaded into the free list FIFO

222. In the example illustrated in Fig. 11, the invalid pointer N and invalid pointer O

-23-

10

15,

20

25

30

WO 96/35988 PCT/US96/06562

represent pointers to buffers which have been processed, and would be available for
hardware when the free tail pointer is moved by the software.

Figs. 12A and 12B provide a receive queue example. The receive queue 230 is
managed using a receive queue head pointer 231 and a receive queue tail pointer 232.
Each entry in the receive queue includes flags, count, and a buffer pointer for a specific
buffer. Thus, those entries between the head 231 and the tail 232 contain pointers to
buffers in use. Thus, an entry 233 includes a flag indicating that it is both the first and
the last cell in a particular message, a length value; and a channel identifier. Entry 233
also includes a buffer pointer to the end of buffer 234. In an alternative embodiment,
the buffer pointer points to the beginning of the buffer, as can be seen, this is a pointer
to a buffer in channel three of length 80.

The next entry 235 is the first buffer in a 256 byte transfer in channel three with
a pointer to buffer 236. The next buffer in this message is characterized by entry 237.
It includes a pointer to buffer 237 and a parameter indicating that it is the middle
transfer in the message. The last cell in this message is characterized by entry 239,
which includes a pointer to buffer 240. The other examples shown in Figs. 12A and
12B include transfers that are characterized through a second channel, channel two, as
described in the figure.

Hardware calculates the difference between the free head and the free tail
pointers and uses that value to decide when to drop buffers in the receive queue to free
up space to accept additional messages. This mechanism provides higher reliability to
high reliability queue, and a lower reliability to high throughput transfer queue which
are found in the receive list. Hardware will provide a number of watermarks that can be
used to determine whether to accept new high throughput queue messages, or whether
to drop them. The high throughput messages will be dropped so that the free list will
not become depleted and high reliability queue messages can always be received. The
source of the high reliability queue messages either has to have exclusive permission to
send X number of frames, or get new permission occasionally through a handshake
protocol, or the sender can rate limit requests to some number/second that the receiver

must be configured to handle.

-24 .-

RECTIFIED SHEET (RULE 91)

10

15

20

25

30

WO 96/35988 PCT/US96/06562

This mechanism will also be used to provide several levels of priority to
provide some level of fairness among the high throughput traffic. The concept is to
mark a small number of packets per second as high priority, and the rest as normal
priority. The receive hardware will start dropping normal priority messages first, and
this should guarantee that each slot can get data through, even in the case of another
sender trying to hog the bandwidth.

Fig. 13 illustrates transmit list and receive list processes according to one
embodimént of the present invention. As can be seen in the figure, the transmit side
includes a high priority command list 250 and a normal priority command list 251. In
the message passing process, a command transmit function 252 is included which is
coupled with both the high priority command list 250 and the normal priority
command list 251. This transmit function 252 transmits commands across the
backplane bus 253, or other communication media such as a LAN, to a receive
filtering process 254 at the receiving end of the message transfer. Receive filtering
process 254 also includes dispatch logic which dispatches the messages to either a
high priority receive list 255 or a normal priority receive list 256.

In operation, these functions are managed by software according to latency,

throughput, and reliability of the messages being transmitted. For example, software

~may write commands for messages that require low latency into the high priority

command list 250, while writing the majority of commands which require high
throughput into the normal priority command list. According to this approach, the
command transmit function 252 can select commands for transmission according to a
simple priority rule: any high priority message goes ahead of any normal priority
message. More complex priority schemes, including fairness concepts and avoiding
lockouts could be utilized as suits a certain implementation. Messages transmitted
across the backplane 253 are accepted by the receive filtering function 254. The
filtering function drops the cells in a message according to the available buffers as
measured against watermarks based on reliability tags in the message header, and
routes the received messages to either the high priority receive list 255 or the normal
priority receive list 256, based on a control bit in the message header. For example, in

a system with two receive buffer watermarks, there will be three levels of reliability

-25-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

(or cell loss priority) established. All those cells making up a message in a first cfass
will be dropped if the number of available receive buffers falls below a first
watermark before all cells of a message are received. Cells of messages in a second
class will be dropped when the number of available buffers falls below a second
watermark. Cells of messages in the final class are dropped only if there are no
receive buffers left to receive incoming cells of the message. Both the Wétermark
class, which establishes the reliability of transfer, and the destination receive queue to
which the’ message is dispatched, are specified in the message address, as control bits
in a preferred embodiment. Thus, from the hardware point of view, the receive lists
255 and 256 are identical in behavior. Software manages the processing of messages
listed in the high priority receive list and the normal priority receive list as desired in a
particular implementation. For example, the software may process all high priority
receive list messages first, so that so called low latency messages can achieve lowest
latency available. High throughput messages will be routed into the normal priority'
receive list, and managed as quickly as possible by the receiving processor.

Figs. 14 and 15 illustrate the data paths and address paths for message passing
controller hardware. The message transmit data path is illustrated in Fig. 14. The
possible sources of the data include a processor write data on line 260, data from the
local synchronous DRAM (SDRAM) on line 261, and data from the bus on line 262.
The path on line 260 which provides processor write path is not used in one
embodiment of the invention. Data is directed to the bus on line 263, to the local
synchronous DRAM on line 264, or to the local processor directly during a processor
read operation on line 265. The processor write data is supplied through a bus write
buffer 266 to an output multiplexer 267. Data from the SDRAM on line 261 is
supplied through multiplexer 268 across line 269 to a packing cell buffer 270. The
output of the packing cell buffer 270 is supplied on line 271 to the output multiplexer
267. It is also supplied in feedback to the inbound multiplexer 272.

Data from the bus on line 262 is supplied to a receive cell buffer 273, the
output of which is supplied as a second multiplexer 272. Also, data from the bus is

supplied as a second input to the multiplexer 268 which supplies input to the packing

=26 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

cell buffer 270. Further, data from the bus is supplied on line 265 directly to the
processor read path.

As can be seen in the figure, the message transmit data path is sourced from
the SDRAM on line 261, and selected through multiplexer 268 into the packing cell
buffer 270. From the packing cell buffer 270, it is supplied through multiplexer 267
out onto the bus.

Fig. 15 illustrates the address path structures, and the message transmit address
path. As can be seen, the addresses are generated in response to the command lists
300, and from the bus address in line 301. Addresses from the command list drive a
source address generation block 302, and a destination address generation block 303.
The output of the source address generation block is supplied through multiplexer 304
to the address out multiplexer 305. The output of the destination address generation
block 303 is supplied through the message address generator 306 to the bus address
output multiplexer 305, and to the multiplexer 307 in the inbound path. Also, the
destination address generation output is supplied as a second input to multiplexer 304
in the output path, and as an input to multiplexer 308 in the input path. The source
address generation block also sources the synchronous DRAM read address line 309.

Other inputs to the multiplexer 305 include a processor read address directly
from the local processor on line 310, and a tag address on line 311.

The bus address register 312 is driven by the address in on line 301. The
output of the register 312 is supplied through multiplexer 307 to the message address
register 313. This address register identifies the channel for the message which is
used to access the channel status RAM 314. The channel status RAM supplies a
receive buffer address as an input to multiplexer 308. The mechanism also includes a
promiscuous receive address generator 315 which supplies a third input to the
multiplexer 308. The output of the multiplexer 308 is the synchronous DRAM write
address counter 316, which drives the synchronous DRAM write address on line 317.

As can be seen, the message transmit address path originates with the
command list 300. The command list drives the source address generation block 302
to supply a synchronous DRAM read address on line 309. Also, the command list

drives the destination address generation block 303 to supply a message address

227 -

10

15

20

25

30

WO 96/35988 - PCT/US96/06562

generator 306. This basically supplies the slot number and channel number for the
message to be supplied on the output bus.

Hardware initiates message transmit from a command list maintained in
SDRAM. The message may consist of multiple fragments stored in SDRAM memory
which are then packed into double-buffered outbound cells. The bus transfer address
is really a message control field containing such things as a field identifying the cell
as part of a message, the destination slot and logic channel, first and last cell control
bits, and the cell sequence number within the message.

To transmit a message fragment:

- read command list entry, decode as outbound msg fragment (for addr
generation).

- recognize first, middle, last fragment of a message (for outbound buffer
control purposes).

- request SDRAM read access (and check packing cell buffer availability).

- wait for granting of SDRAM resource.

- if buffer available, begin transferring data bytes/words from SDRAM to cell
buffer. ‘ |

- continue to move data to cell buffers (with data flow control).

- maintain cell buffer byte count and buffer status to implement flow control.

- pack and align data within cells.

- generate message address for bus (including first, last, sequence
information).

- generate bus transfer byte count field (depends on size of buffer flush).

- queue cell for flush (i.e., bus transmit).

- arbitrate for bus interface resource (other functions may request bus
transfer).

- wait until bus interface granted.

- arbitrate for ownership of bus.

- move data words from cell buffer to bus interface (with flow control).

- generate or check outbound data parity.

- complete burst write on bus.

-28-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

log cell transmit status (success/fail).'

free cell buffer for more outbound data.

move more data from SDRAM into cell buffer.

continue this process until fragment move is complete.

update command list pointer (indicates transfer complete).

To transfer a complete message:

- process multiple fragments from command list as detailed above (a message
may be a single fragment).

- pack fragments into continuous cells without gaps.

- flush partial cell buffer when message ends.

- notification of message sent.

Fig. 16 shows the structure of the Message Receive Logic Block 410 of Fig.
35. Aﬁy data transfer bound for SDRAM moves through this logic. Message and
non-message transfers are treated differently: cells which are part of a message
transfer are moved into the SDRAM receive buffer structure, while non-message cells
do not move into receive buffers - they are written to a specific physical SDRAM
address.

Quite a bit of the logic in this section is associated with management of the
receive buffers and bus logical receive channels.

The major functional blocks are summarized as follows:

get free buffs 500
Maintain status of the double-buffered free list buffer FLB. Post ibus read
requests and manage movement of data into the FLB from IBUS. Contains

free_head reg, free_tail reg, free_start_reg, and free_size_reg registers.

buffer alloc 501
Allocate buffers from the FLB to logical receive channels. Read the next
sequential FLB entry and write it into the channel status buffer CSB along with a zero

count field. Maintain the Channel Status validity register. This module is necessarily

-29.

10

15

20

25

30

WO 96/35988 PCT/US96/06562

quite intimate with an icb_flush module 504 which needs to mark CSB entries invalid
as they are flushed to receive buffers and which needs to check for a valid channel

status entry before flushing an ICB message cell to SDRAM.

rcv_buff_ﬂush 502

Manages the queuing and flushing of completed receivé buffers onto the two
receive lists maintained in SDRAM. Buffers and status are moved into the rcv and
hrev list bhffers (RLB and HLB) by the flush_to_ibus function. Then, the
rcv_buff_flush function manages posting requests to the ibus and the associated

flushing of the RLB and HLB.

msg_rcv_and_icb_fill 503
Moves data from bus into the ICBs. Writes the ICB tags. Performs receive
filtering (perhaps).

flush_to_ibus 504

Reads ICB tags and performs ICB flush to IBUS. Updates CSB cell count
field and determines when an entry moves from the CSB to the RLB or HLB. Writes
RLB entries based on CSB and ICB tags. Checks cell sequence and maintains

channel status -may drop ICBs and report error conditions.

gen_icb_flush_addr (within flush_to_ibus 504)

This function takes the bus channel status RAM contents and conditions them
to create an ibus address for flushing one of the ICBs. At the same time, the cell
count associated with the logical bus receive channel is incremented for write back
into the channel status RAM or into the rcv_list buffer RAM. Some registering logic
may be required in this path, since the CSB is being modified as the flush occurs.

The get_free_bufs block 500 generates addresses and requests for management
of the free list buffer 505. Thus, outputs of the block 500 include the free list buffer
read address on line 506, the free list buffer fill request on line 507, and the free list

buffer addresses on line 508. In response to requests from the get_free_bufs block

-30-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

500, the free list buffer data is supplied from the intermediate bus on line 509 to the
free list buffer 505. Data from the free list buffer is supplied on line 510 to the
channel status buffer 511. This process is managed by the buffer allocation block

501 , which maintains the watermark registers and the channel status validity registers.
The channel status buffer outputs are supplied on line 512 to the flush_to_ibus block
504. Also, addresses from the flush to_ibus block 504 are supplied on line 513 to the
channel status buffer for accesses to it.

The rcv_buff flush block 502 manages the high priority receive buffer 514
and the normal priority receive buffer 515. This block manages the receive buffer
validity, and the tail registers for the receive buffers. Outputs of this block include
receive buffer addresses on line 516, the receive list addresses on line 517, receive list
length value on line 518, and a receive list flush request on line 519.

The incoming data path from the system bus is driven across line 520 to the
incoming cell buffers generally 521. Write addresses for the incoming cell buses are
supplied on line 522 from the msg_rcv_and_icb_fill block 503. Block 503 receives
the addresses from the system bus on line 523 and generates the incoming cell buffer
addresses on line 522. Also, the block 503 manages the incoming cell buffer tags 524.

Data from the incoming cell buffers are flushed to the internal bus under
control of the flush to_ibus block 504. This block receives the channel status on line
512 and buffer size information on line 525. It generates the read addresses for the
incoming cell buffers on line 526 and causes a flush of data on line 527 to the local
SDRAM. This block also generates the incoming cell buffer flush request on line
528, the flush address on line 529, an the flush length value on line using two control
signals 530 for management of the flush to the local memory.

Fig. 17 shows the structure of the Command List Data Transfer Logic. The
MPC transfers data according to commands placed by software onto one of two
command lists (NCLB 600, HCLB 601) or onto a high priority one-shot command
buffer (OSCB 602). All data transferred under command list flows through the
packing cell buffers 608 PCBs, and both source and destination (fill and flush) may be
either system bus or internal bus.

The major functions of this block are summarized as follows:

231 -

10

15

20

25

30

‘WO 96/35988 PCT/US96/06562

parse_cmd 604

Read entries from the CLBs 600, 601 and OSCB 602. Determine which
command to next process. Associate multiple CLB entries and handle as a single
message (cause packing to occur). Move address entries to fill_pcb module 606.
Write CLBs invalid once entries are processed. Flush entries for a message that hits

an error condition.

fill_clb 605
Generate ibus request to get next block of CLB entries. Mark CLBs valid as
they are successfully filled.

fill_pcb 606
Generate request to either ibus or bus to read data (through byte_packer) into
PCBs. Flow-control filling of PCBs. Write PCB tags.

flush_pcb 607

Read PCB tags. Generate request to either ibus or system bus to flush PCBs.
Write PCB tags empty once transfer completes.

Data from the system bus comes into the packing cell buffers across line 609
into a byte packing mechanism 610. From the byte packing mechanism, the data is
supplied on line 611 into the packing cell buffers 608. Also, data may be supplied to
the packing cell buffers from the internal bus across line 612 which is coupled to the
byte packer 610 and across line 611 into the packing cell buffers. Data may be
supplied from the packing cell buffers on line 613 either to the system bus or to the
internal bus, as required.

The command list buffers are filled from the internal bus across line 614 at
addresses supplied on line 615 from the fill_clb module 605. The fill_clb module 605
also generates the fill requests on line 616 and the read addresses on line 617 to
support fills and reads of the command list buffers. Also, the fill_clb module 605
manages the clb head register, the clb tail register, the clb start register, and the clb

size registers.

-32-

10

15

WO 96/35988 PCT/US96/06562

Command list data comes out of the command list buffers across line 618 into
the parse_cmd module 604. This module supplies the source and destination
addresses and necessary flags on line 619 to the fill_pcb module 606. The fill pcb
module 606 generates the internal bus fill address on line 620 and the internal bus fill
request online 621. Also, it generates system bus fill addresses on line 622 and fill
requests online 623. Further, it loads the packing cell buffer tags 624 with appropriate
data across line 625. These tags are read by the flush_pcb module 607 which
manages flushing of the packing cell buffers. This module 607 supplies the read
addresses for the packing cell buffers on line 627, and issues the internal bus flush
requests and flush addresses on line 628 and 629, respectively. Also, system bus flush
requests and flush addresses are supplied on lines 630 and 631 from the flush_pcb
module 607.

The message passing controller acts as a channel device on the internal bus
operating according to the protocol of that bus. The types of message passing

controller initiated transfers on the internal bus are detailed in Table 1.

-33-

WO 96/35988

TABLE 1
MPC-initiated IBUS transfer types

PCT/US96/06562

type of transfer expected length priority factors priority
5 read command list(s) always 16-word if cmd list not filled, then we REQ
[there are two or three | (4 entries) cannot transmit full rate on
cmd lists] bus, no real problem
read free list always 16-word free list buffer needs to always HREQ
(16 entries) have valid entries for allocation
to new receive activity
write receive lists min 2-word, needs to flush to make room HREQ
10 [there are two, normal | max 16-word for completed buffers, less
and hp] frequent than cell buff flush
flush inbound cell generally 16-word | critical need to flush cell HREQ
buffer (write to xfers, always 16- buffers to keep available for
SDRAM) word aligned partial | bus receive at full rate (worst
cells at end of case, not sustained)
message
15 fill outbound packing | non-aligned and bus transmit data takes back REQ
cell buffer (read random length seat to receive activity
SDRAM) dependent on
transmit buffers -
large buffers will
mean most transfers
burst full 16 words
event single-word write to | latency of intr/event to REQ
SMC processor is a factor, but there
is no danger of loss or overrun
here
20

Event/interrupt signals from the MPC are supplied to the local processor

through the shared memory controller SMC, according to the internal bus protocol.

-34 -

WO 96/35988 PCT/US96/06562

The conditions set out in Table 2 send an "event" from the MPC to the SMC

(causing a bit-set operation in the SMC's out-of-band event register):

TABLE 2
5 | IBUS out-of-band event codes
event condition synchronous
code : with data xfer
0 no event n/a
10 1 command list entry complete if data write to
(when notification bit set) sdram involved
2 receive list write (new receive tail) yes
3 uart_trap assertion (system bus cycle) no
4 out of receive buffers no
5 system bus error condition no
15 6 dropped hi-cell-priority system bus cell no
7 spare -

The MPC makes efficient use of the SDRAM memory system. This means
20 that the MPC will read up to 16-words across the internal bus and the transfers may
cross 16-word-aligned boundaries. Any number of words up to 16 may be read from
any word-aligned address. The SMC is expected to deal with SDRAM page
crossings, so the MPC need not account for or track that case. If the SMC needs to
put ibus wait-states out to deal with page crossings then the MPC will implement ibus
25 wait-states (as instructed via a wait command code from the SMC chip). In the case
when a long transmit buffer is to be read, the MPC will shorten the first ibus burst
read so that subsequent bursts for that buffer will be 16-word aligned bursts.
The following categories of events and interrupts are implemented in the

MPC:

-35-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

uart_warn _

This is a non-maskable trap signal to the local processor. A bus write to the
MPC's uart__Wam register causes the MPC to assert a wa r n signal directly to the
local processor. The MPC simply sources a signal which, at the board-level, is

connected to the processor. This signal bypasses the IBUS and SMC.

uvart_trap
Used for out-of-band debug, a bus write to the uart_trap register causes the
MPC to send an event to the SMC (via out-of-band event mechanism on the ibus),

which in turn asserts a trap signal to the local processor.

channel device_interrupts

This class of events uses the ibus out-of-band event mechanism including the
event_tag field in the upper nibble of the ibus address. This is used by the MPC to
notify the local processor of command completion, dropped cells, bus error, illegal
command entry, etc. In the SMC, each event may be set as a polled event or summed

intoan 1 nt r signal to the processor.

in-band interrupts and events

This amounts to a register access from a channel device to the SMC (the SMC
sums events and interrupts into registers providing up to 32 bits per channel device).
The MPC does not use this mechanism, but would do so if bus interrupt and event
receives were implemented. |

Registers in the MPC are listed below with detailed description of their
function. The name will be given first, then in parentheses the address offset is stated
in hexadecimal. The size of each register will be given along with a description of the
register's function. Unless stated otherwise, assume that the register is R/W. Unless
stated otherwise, assume that all registers are set to zero when the MPC comes out of

reset.

-36 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

1. System Registers
Slot Number (0000)

This is a 4-bit register providing the encoded slot number, from 0 to 16.

Arbitration and Priority ID (0004)
This 4-bit register provides a device with an encoded arbitration ID. The
priority bit used by the device is determined by adding 16 to the arbitration ID. This

use of priority is enabled by device specific means.

Arbitration Mask (0008)

This 16-bit register is used to mask (AND) arbitration/priority levels on the
bus. Thus, 0's are set in every bit corresponding to non-existent cards, and 1's are set
in every bit corresponding to existing cards. Thus, all devices must drive both

arbitration and priority lines during every arbitration phase.

Revision Register (000C)

This 4-bit read-only register gives a revision number for the Core bus device.

Core Bus Device Type (0010)

This 8-bit register gives a hard coded bus device type. Different core bus
devices will have different register configurations, so software must check the value in
this register before attempting to program the device. The CMC is set to 0, CMPI is
set at 1, and the MPC will be set at 2. |

Backoff Timer (0018)
This 3-bit register indicates how long to wait when a backoff indication is

received.

Parity Error Byte Flags (001C)
This 5-bif register has one or more of its four bits set to indicate which bytes

of the data at the affected address caused a parity error. The appropriate bits in this

-37-

10

20

WO 96/35988 PCT/US96/06562

register are written by a core bus device receiving core bus data with bad parity.
These flags are read only. The lowest 4-bits indicate a data parity error, while the
highest bit indicates an address parity error. The lowest bit is associated with the data

byte on D0-D7, and the fourth lowest with the data on D31-D24.

Address Generating Parity Error (0020)
This 32-bit register holds the address which had parity error problems.

Backoff Counter (002C)
This 4-bit read/write register gives a count of the number of backoffs received
by this chip. An error is generated by the chip when 16 backoffs in a row are

received.

Corebus Device Configuration (0030)
This 5-bit register holds the reset and enable bits shown in Table 3:
TABLE 3

Corebus Device Configuration

Bits Description

4 BRES - This bit is used to reset IOP board (See the "Reset" chapter for additional
detail)

3 SCRES - When this bit is set it initiates a cold reset. A cold reset reinitializes all
values to be identical to power-up except that the error state information is saved.
This bit can also be set as a side effect of the Corebus ERR bit being set more than
24-clock period.

2 SWRES - When this bit is set it initiates a warm reset. A warm reset stops
operation of the device and returns it to a known free and idle state, disabling
operation, but does not reinitialize the values of registers. The SWRES bit can be
set by the ERR signal being asserted more than 12 clock periods.

1 ARBE - This enables the device to drive its arbitration bit on the Corebus. Note
that driving its arbitration bit is not the same as asserting its arbitration bit.

0 CBE - This enables the device to transmit over the Corebus. When disabled the
device may still participate in arbitration.

-38 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Core Bus Error Status (0128)
This 10-bit register provides error bits to guide the software when it receives

an error interrupt as shown in Table 4. Any bit set causes the error interrupt to be

requested.
TABLE 4
Error Status Register
bits Description
0 This bit indicates that a Core bus time out occurred.
1 This bit indicates that a backoff retry sequence was not successful.

7:4 These bits indicate a parity error occurred on data sourced from the Core bus. If
these bits are set it may be in tandem with bit 9 (processor read) or Core bus
agent write.

8 This bit indicates that an address parity error occurred.
9 This bit indicates whether the last cycle that had an error was a write from
another device or a read by this device.

2. List Registers

There are a group of registers which can be described as list registers. There
are registers for the free list, normal priority command list, high priority command
list, normal priority receive list, high priority receive list. Each will have start, size,
head, and tail registers. The start and size registers will be set during initialization by
software. Initially both the head and tail registers will be set to 0. The MPC will be
continually updating the head register. The software will occasionally read the head
register and set the tail register (not necessarily at the same time). From the
perspective of the MPC the head pointer will always be current while the tail pointer
may be stale (being stale does not mean that it cannot be used, it means that the

current tail pointer may be old).

2.a. Free List Registers
The free list registers have a series of pointers associated with it. The start
pointer points to the beginning of the free list. The start + size will point to the

location just below the bottom of the free list. The head pointer indicates the location

-39 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

in memory where the hardware removes the entries from the list. This pointer is set
by the hardware. The software will have to query the hardware to get this
information. The tail pointer points to the next location that software will allocate
new free list pointers. Fig. 18 shows the free list structure and its associated registers

in the MPC and the free buffers in the SDRAM.

Free Head Register (0200)

This is an 11-bit register which holds part of the address of a pointer in the free
buffer list (in SDRAM) which points to the next free recei\}e buffer (in SDRAM) to be
loaded into the free list buffer (in MPC). The bottom 6 bits of the 32 bit address are
not included because the free list entries are transferred in 16-word aligned blocks.
The top 15 MSB's of the address are not included because it will never change and is
specified by the free start register. The value of the free tail register must be 1 or
more higher than the value of the free head register for the MPC to use the entries
specified by the free head register. If they are equal it means that there are no valid
entries available. If the free tail register is smaller than the free head register, it means
that the free tail register must have already wrapped around the bottom of the free
buffer list and started from the top again. This means that it is alright to transfer the
pointers to the free buffers into the MPC's free buffer list. Reads to this register will
behave differently than writes because during writes the entire 32 bits of the address
will be valid. This address is generated by concatenating the bits [31:17] from the
free start register, the merge of bits [16:10] of the start with bits [16:10] of the free
head, the bits [9:6] of the free head register and bits [5:0] are padded with 0's.

Free Tail Register (0204)

This is an 11-bit register which holds a portion of the address of a pointer in
the free buffer list (in SDRAM) which will point to the next free buffer as determined
by software. Like the free head register, the bottom 6 bits of the 32-bit address are not
needed since software will be assigning 16 buffers at a time and the top MSB's of the

address will not e needed since they will always be the same as the free start register.

- 40 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Once again, the reads to this register will behave differently than writes (see the free

head register definition for additional information).

Free Start and Size Register (0208)

This is a 30-bit register which holds the 22 MSB's of the address of the top of
the free buffer list (in SDRAM) and 8 bits of size information. A size value of
00000001 will correspond to the minimum normal priority command list size of 256
entries, 00000010 corresponds to 512...10000000 corresponds to the maximum

normal priority command list size of 32768.

Free Watermark 0 Register (020C)

This 11-bit register stores the count (xi 6) of valid entries in the free list below
which the hardware will have different charactéristics knowing that the number of
entries in the free list is getting low. The MPC will start dropping medium and low
reliability cells when the free buffers are less than the number indicated by this

register.

Free Watermark 1 Register (0210)
This 11-bit register is similar to the free watermark 0 register; just replace "0"
with "1". The MPC will start dropping low reliability cells when the free buffers are

less than the number indicated by this register.

2.b. Command List Registers

The command list registers are very similar to the free list registers. Both need
to get information off a list while keeping track of where to get the next element of the
list and the location of the end of the list. For the command list registers a watermark
register will not be necessary. (Thus generating the difference between the head and
tail register will not be necessary, just an equality check to see if we are out of
commands.) The MPC will assume that the software will update the command lists 4
commands (16 words) at a time. If the software cannot fill the 4 commands, it will

put the null command in the next empty command field.

-4] -

10

15

20

25

WO 96/35988 PCT/US96/06562

Normal Priority Command Head Register (0214)
This 11-bit register is identical to the free head register; just replace "free"

with "normal priority command."

Normal Priority Command Tail Register (0218)
This 11-bit register is identical to the free tail register; just replace "free" with

"normal priority command."

Normal Priority Command Start and Size Register (021C)
This 30-bit register id identical to the free start and size register; just replace

"free" with "normal priority command."

High Priority Command Head Register (0220)
This 11-bit register is identical to the free start and size register; just replace

"free" with "high priority command."

High Priority Command Tail Register (0224)
This 11-bit register is identical to the free start and size register; just replace

"free" with "high priority command."

High Priority Command Start and Size Register (0228)
This 30-bit register is identical to the free start and size register; just replace

"free" with "normal priority command.

Normal and High Priority Command Head Register (022C)

This 22-bit register holds the contents of both the normal priority command
head register and high priority command head register. This is to allow transfers of
the command head registers in one 1-word transfer. This register is a "phantom"

register which points to the two "real" registers which actually holds the information.

-42 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Normal and High Priority Command Tail Register (0230)

This 22-bit register holds the contents of both the normal priority command
tail register and high priority command tail register. This is to allow transfers of the
command tail registers in one 1-word transfer. This register is a "phantom" register

which points to the two "real" registers which actually holds the information.

2.c. Receive List Registers
The receive list registers are similar to the command list registers. Hardware
writes the receive list entries to the location pointed to by the receive tail register. The
receive list register's head register is not needed because software will never give
hardware enough receive list entries for the tail to over-run the head. The receive list
tail register must have a higher resolution than the other list tail registers since there

will no longer be requirement of the 16 word transfers.

Normal Priority Receive Tail Register (0234)

This is an 11-bit register which holds a portion of the address of a pointer in
the normal priority receive list. The toio 15 bits of the 32 bit address are not needed
since they will be the same as the normal priority start register. The bottom 3 bits are
not needed since they will always be 0 since the descriptors to the receive buffers will
always be sent in 2 word increments. This register will wrap around back to 0 when it

has exceeded the size of the list.

Normal Priority Receive Start and Size Register (0238)

This is a 32-bit register which holds the 22 MSBs of the address of the
beginning of the normal priority receive list space (in SDRAM) and 8 bits of size
information. A size value of 00000001 will correspond to the minimum normal
priority command list size of 256 words, 00000010 corresponds to 512...10000000

corresponds to the maximum normal priority command list size of 32768 words.

.43 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

High Priority Receive Tail Register (023C)
This 14-bit register is identical to the normal priority receive tail register; just

replace "normal priority" with "high priority." -

High Prioﬁty Receive Start and Size Register (0240)
This 30-bit register is identical to the normal priority receive start and size

register; just replace "normal priority” with "high priority."

Receive Buffer Size Register (0244)

This 8-bit register (N) holds the information about the size of the receive
buffers in the SDRAM. The size of the buffer will be N*64 bytes except when N=0.
When N=0 the size of the buffer is 16348 bytes. Table 5 provides the encoded values

stored in the register and the corresponding size represented by that encoded value.

TABLE §
Receive Buffer Size Register Decode
Encoded Value Size of Buffer in Bytes
00000001 64
00000010 128
00000011 192
00000100 512
[X N J [N N
11111110 16256
11111111 16320
00000000 16384
3. Miscellaneous Registers

Intermediate Bus Error Status Register (0248)

This 32-bit register holds the error status information.

WO 96/35988 PCT/US96/06562

Miscellaneous Register (024C)

This 7-bit register holds the txe, rxe, pxe, cmd_check enable,
set_cb_reset_reg_, cb_master_reg, and loopback_thru_cb bits having the functions
described in Table 6 below.

5 | TABLE 6

Receive Buffer Size Registers

Bit Name Description

0 loopback_thru-cb 1 means that loopback occurs through the Core bus
interface, 0 means that the Core bus interface is
bypassed.

10 1 cb_master_reg 1 indicates that this MPC is the master of the Core
bus.

2 set_cb_reset_reg If this bit is set, it will source a cb_reset.

3 cmd_check_enable If this bit is set, error checking on the commands
will be enabled.

4 pxe This bit indicates whether the last cycle that had an
error was a write from another device or a read by
this device.

4 rxe This bit is the receive enable. If it is set then the
MPC willing to accept data transfers.

15 4 txe This bit is the transmit enable. If it is set then the
MPC is able to send data transfers

UART Registers
The uvart_register function provides a path for "out-of-band" communication
between cards across the corebus. This feature requires software driver support (call it
20 a remote monitor function, or whatever). Another card may access registers in the
MPC's corebus init space. The local processor also has access to this register set,

facilitating board-level communication.

- 45 -

10

15

20

25

WO 96/35988 PCT/US96/06562

TABLE 7

Error Status Register

bits Description
0 This bit indicates that a Core bus time out occurred.
1 This bit indicates that a backoff retry sequence was not successful.

7:4 | These bits indicate a parity error occurred on data sourced from the Core bus.
If these bits are set in may be in tandem with bit 9 (processor read) or Core bus
agent write.

8 This bit indicates that and address parity error occured
9 This bit indicates whether the last cycle that had and error was a writed from
another device or by a read by this device.

4. Pointer Lists and Address Fields

Pointer lists and memories reside within the MPC. Three types of pointer lists
exist: the command list, the free list, and the receive list. These lists allow software
to communicate to hardware the whereabouts of various buffers within SDRAM.

The SDRAM memories within the MPC, aside from the cached pointer lists,
provide a storage area for inbound and outbound data as well as address buffer
locations.

Each cell transferred over the bus has an address field. The information within
these fields relates to information software supplies to the hardware via the command
list.

The pointer lists and memory structures of the MPC as well as information

contained in a cell address field are outlined below.

4.a. The Pointer Lists
The Command List
The command list consists of an array of four-word entries stored in SDRAM
which contain instructions from the software to the hardware. The instructions may

ask hardware to gather, pack, and move data between SDRAM and COX shared

- 46 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

memory, source an interrupt or event to the bus, or read/write a word of data to bus
I/0 or memory space. A portion of the command list will be cached within the MPC.
The cache spans two groups of 2x16x32 bits.

The possibility exists for three types of command list entries. One type of
command list entry points at data in a message fragment buffer for incorporation into
a message transfer. A cell which is part of a message transfer is prepended with a
message address field. The second type of command list entry points at data in a non-
message fragment buffer for incorporation into a non-message transfer. A non-
message transfer cell uses a non-message address field as its prepended cell header.
The third type of transfer is a type of non-message transfer except in this case there is
no fragment buffer. One word of data is written to the bus memory or I/O space. The
word for writing is actually specified within the command list entry. These transfers
are called embedded-data transfers. Embedded-data transfers, being a type of non-
messagé transfer, use non-message address fields as their prepended cell header.

Table 8 below shows the first six bits in a command list entry given a
particular type of transfer. Fig. 9 gives a short description of each type of transfer.
Tables 9 and 10 state the meaning of the Destination and Source Code bits in Table 6.
These bits indicate whether data is transferred to/from the I-Bus/system bus and
whether the transfer is in memory space or in I/O space. It is intended that CBIO
WRITE and CBMEM WRITE (the embedded-data transfers) move only one word at a
time onto the bus. Therefore, no source address is needed and the data to be written
may be imbedded in the command list in place of the source address. This is
indicated with a source address code of 2'600.

Special care must be taken when a command list entry specifies the movement
of data with a destination address in local SDRAM. Software needs a reliable method
for determining that that type of transfer has actually completed (the data is actually in
local SDRAM). To do this, the MPC hardware will automatically block command list
processing (not bump the head pointer) until data bound for SDRAM via a non-
message transfer has successfully flushed across the ibus. Also, any event associate
with this entry (specified by a command list notify bit; see below) will not be sent

until the write to SDRAM is completed. This allows the software event handler to

-47 -

WO 96/35988 PCT/US96/06562

read head pointers to determine which entries are actually complete once an event is
received (since there could be several entries causing events quite close together, head

pointer management is critical).

TABLE 8
5 | Allowed Command List Transfers
Transfer Type | C | Dest. [Dest. | Src. Sre.
Code | Code | Code | Code
MSG XMIT 1 0 1 0 0 1 msg transfer
SMA READ 1 0 0 1 1 1 msg transfer
SMEM READ 0 0 0 1 1 1 non-msg trans
10 SMEM WRITE 0 0 1 1 0 1 non-msg trans
MEM MOVE 0 0 0 ‘1 0 1 non-msg trans
CELL XMIT 1 1 1 0 0 1 msg-transfer
CBIO READ 0 0 0 1 1 1 non-msg trans
CBIO WRITE 0 0 1 0 0 0 embedded-data
trans
15 CBMEM WRITE 0 |0 1 1 0 0 embedded-data
trans
20 TABLE 9
Source Codes
Source Source Code
Code
25 Word 1=DATA 0 0
I-Bus Memory Space 0 1
CB I/O Space 1 0
CB Memory Space 1 1

30

-48 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

TABLE 10

Destination Codes

Destination Destination

Code Code
Illegal Code 0 0
I-Bus Memory Space 0 : 1
CB I/O Space 1 0
CB Memory Space ' 1 1

Command List Priorities

Two command list caches exist within the MPC. Servicing priorities between
the two lists varies: normal priority (HTQ: high-throughput queue) and high priority
(HRQ: high-reliability queue).

Normal Priority Command List (software: HTQ)

The normal priority command list resides in SDRAM. Thirty-two words from
this list may be cached in SRAM in the MPC ASIC normal priority command list
buffer. Entries written by software to this list receive the lowest priority attention in
regards to hardware processing. This list may contain pointers to both message and
non-message fragment buffer entries as well as hold embedded-data transfer

instructions.

High Priority Command List (software: HRQ)

- As with the normal priority command list, the high priority list also resides in

- SDRAM. Thirty-two words of this list may be cached in SRAM in the MPC ASIC

high priority command list buffer. Entries written by software to this list receive a
higher priority attention by hardware than entries on the normal priority list. This list
may also contain pointers to both message and non-message fragment buffer entries as

well as hold embedded-data transfer instructions.

Command List Entries

-49 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Command List Entry - Message Fragment Buffer

Fig. 19 defines the bits in a command list entry pointing at data which will
become part of a message transfer.

A description of the fields found in Fig. 42 follows:

° The T in bit 31 of Word 0 stands for Type. If Type is set to a one, the
command list entry specifies a message transfer; if type is set to a zero, the command
list entry specifies a non-message transfer.

° The C in bit 30 of Word 0 indicates to hardware that this particular
command list entry specifies a CELL XMIT transfer. Hardware will know not to
change the "Y" bits in Word 2 but to copy them directly to the message address field.

° The D CODE[29:28] of Word 0 indicate to hardware whether a transfer
is destined for the bus of the ibus and whether or not that transfer is in I/O space or
memory space. These bits refer to the address in Word 2, the destination address.

° The S CODE[27:26] of Word 0 indicates to hardware whether the data
transfer is sourced from the system bus or the ibus and whether the address is in I/O
space or memory space. In the case of an embedded-data transfer, these two bits will
indicate that the data to be written is held in Word 1. These bits, then, refer to the
address in Word 1, the Source Address field.

L F stands for First in bit 25 of Word 0. If the memory location to which
this command list entry points is the first buffer in a series of buffers which will
combine to form one data transfer, then F will be set to a one. OtherWise, F will be
zero.

° Likewise, the L in bit 24 of Word 0 stands for Last. If the buffer to
which this command list entry points is the last in a series of buffers which combine
to form one data transfer, then L will be set to a one. Otherwise, L will be zero.

° The V in bit 23 of Word 0 holds the valid bit. This bit indicates that a
command list entry requires hardware processing. (V=1 indicates processing needed,

=0 indicates processing not needed). If a particular command list entry shows a
valid bit of V=0, hardware will assume that the remaining command list entries in the
same cell are alsd invalid. Hardware will resume valid-bit checking at the beginning

of the next cell of command list entries.

-50-

10

15

20

25

30

WO 96/35988 v PCT/US96/06562

° The lower two bytes in Word 0 contain the number of bytes of data in
the buffer to which this command list entry points.

° Word 1 specifies the physical memory address where the data buffer
resides. This address may be either local SDRAM or shared memory on the COX
card.

° The top 28 bits of Word 2 contain fields which are bit-aligned to those
in the message address field. The hardware will append the bottom four bits to this
28-bit ﬁeld thereby creating the message address for all transfers besides the CELL
XMIT. In this case, whatever software specifies in the command list entry will be
directly copied into the message address field. The individual fields in Word 2 are
described in detail with reference to Fig. 44.

° Word 3 will not be processed by the MPC ASIC.

Command List Entry - Non-Message Fragment Transmit Buffer

Fig. 20 defines the bits in a command list entry pointing at data which will
become part of a non-message transfer.

The command list entry for a non-message data transfer resembles that of a
message transfer. Note that the Type bit (Word 0, bit 31) will be set to zero for a non-
message transfer and Word 2 will be a physical memory location in SDRAM or
shared CEC memory. The other fields in Fig. 20 remain the same as those of Fig. 19.

Recall that an embedded-data transfer is really a type of non-message transfer
(meaning that the Type bit -bit 31, Word 0 - is set to 0). An embedded-data transfer
may be distinguished from other types of non-inessage transfers by decoding the S
CODE bits which will be set to 2'b00. With this type of transfer, Word 1 will contain

the data for writing instead of a physical source address.

Command List Transfers
This section summarizes the types of transfers initiated by command list
entries as introduced with reference to Fig. 9 above. The information given below for

each type of transfer refers to fields found in the command list entry as described

-51-

10

15

20

25

30

WO 96/35988 , _ PCT/US96/06562

above. Write and read are in relation to the bus, i.e., one writes to the bus or one reads
from the bus.

Message Transfers

The following transfers are referred to as message transfers because their
destination address is in message format (Word 2 of command list entry). Address
decoding maps bus I/O space addresses 0x(8 or 9)XXXXXXX as message addresses.
The S CODE bits within the command list flags indicate whether to retrieve the

source data from the core bus or from the I-Bus (see Table 16).

MSG XMIT-

A MSG XMIT transfer request on the command list asks for the transfer of
data from the SDRAM of the local IOP to the SDRAM of another IOP. The
command list entry points to a message fragment transmit buffer.

° Word0[31:26]=6'b101001

° Source address (Word 1)=local SDRAM: 0x9XXXXXXX (I-Bus

memory space)

° Destination address (Word 2)=message address: 0x(8 or 9)XXXXXXX

(system bus I/O space) ‘

SMA READ-
This type of transfer moves data from shared memory on the CEC to local
SDRAM on the IOP. Data is massaged by the MPC to resemble a MSG XMIT
transfer, i.e., incoming data is prepended with a message address field so hardware
will utilize the receive list for notifying software of data entry.
° Word0[]31:26]=6'b100111
° Source address (Word 1)=COX shared memory: 0xXXXXXXXX
(system bus memory space; limited by 4MB of addressable memory on
COX)

° Destination address (Word 2)=message address: 0x(8 or 9)XXXXXXX
(system bus /O space)

-52-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

CELL XMIT-

A CELL XMIT data transfer is much like a MSG XMIT except software has
explicit control over the message destination address and may only transmit up to
sixteen words per command list entry (one cell). This implies that hardware will not
alter the bbttom four bits of Word 2 in the message fragment buffer command list
entry when placing them into the message address field. This type of transfer is used
for diagnostic purposes only. Note that bit 30 of Word 0 in the command list entry
will be sef to C=1 as an indication to hardware that the entry is a CELL XMIT entry.

° Word0[31:26]=6'b111001

o Source address (Word 1)=local SDRAM: 0x9XXXXXXX (I-Bus

memory space) .
° Destination address (Word 2)=message address: 0x(8or 9)XXXXXXX
(system bus I/O space)

Non-Message Transfers
The following transfers are referred to as non-message transfers because the
destination address of each command list entry refers to a physical location in either

local SDRAM or COX shared memory.

SMEM WRITE-
This transfer moves data from the SDRAM of the local IOP to shared memory
on the COX.
° Word0[31:26]=6/b001101
° Source address (Word 1)=local SDRAM: 0x9XXXXXXX (I-Bus
memory space) '
° Destination address (Word 2)=shared memory: 0xXXXXXXXX (bus
memory space; limited by 4MB of addressable memory on COX)
SMEM READ-
The SMEM READ data transfer moves data from shared memory on the COX
to local SDRAM on the IOP. Data bypasses receive list mechanism in the MPC and
is written directly to SDRAM.

-53-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

o Word0[31:26]=6'b000111

® Source address (Word 1)=COX shared memory: 0xXXXXXXXX (bus
memory space; limited by 4MB of addressable memory on COX)

° Destination address (Word 2)=local SDRAM: 0x9XXXXXXX (I-Bus

memory space)

MEM MOVE-
This type of transfer moves data out of and back into local SDRAM on the
IOP. Data transfer, therefore, bypasses the bus.
° Word0[31:26]=6'000101
° Source address (Word 1)=local SDRAM: 0x9XXXXXXX (I-Bus
memory space)
L Destination address (Word 2)=local SDRAM: 0x9XXXXXXX (I-Bus

memory space)

CBIO WRITE

This type of non-message transfer is termed an embedded-data transfer since
one word of data is written to the bus memory space by placing this data in Word 1 of
the command list entry.

® Word0[31:26}=6'b001000

° Source address (Word 1)=data for writing (unrestricted)

° Destination address (Word 2)=bus I/O space: 0xXXXXXXXX

CBMEM WRITE
This type of non-message transfer is termed an embedded-data transfer since
one word of data is written to the bus memory space by placing this data in Word 1 of

the command list entry.
[Word0[31:26]=60001100

° Source address (Word 1)=data for writing

-54 -

WO 96/35988 PCT/US96/06562

10

15

20

25

30

o Destination address (Word 2)=COX shared memory: 0xXXXXXXXX
(memory space; limited by 4MB of addressable memory on COX)

The Free List
The MPC must place data entering an IOP into the SDRAM. The software

communicates to the hardware locations in SDRAM where data may be placed.

These locations are called receive buffers. The free list consists of one-word elements

which point to the receive buffers. The length of the receive buffers is fixed at N * 64
bytes where N e (1, 2, ..., 256). Each receive buffer is 64-byte aligned. The specific
length used is latched in a register called receive buffer size.

Thirty-two 26-bit entries reside in the free list in the MPC arranged as two
16x26 bit, dual-ported SRAMs. Entry data are cached from the full free list held in
SDRAM.

The Receive List
Standard Receive Mode (RXE=1; PXE=0)

After hardware finishes loading incoming data into receive buffers as allocated
by the free list, the data becomes ready for processing by software. The hardware
informs the software that a receive buffer needs attention by placing a pointer to that
receiver buffer, as well as other information, onto one of two receive lists. One
receive list indicates data needing normal-priority attention and the other receive list
indicates data needing high-priority attention. As with the command list and the free

list, the entire receive list resides in SDRAM. The MPC buffers receive-list data in

- four, dual-ported, 16x32 bit SRAMs. Two of these SRAM:s are dedicated to normal-

priority entries and two are dedicated to high-priority entries.

The following describes the entries shown in the receive list bit definition:

° If the start bit (Word 0, bit 31) equals one, then the particular buffer
pointed to by this receive list entry is the first buffer in a series of
buffers which form a message.

° Likewise, if the end bit (Word 0, bit 30) equals one, then the particular

buffer pointed to by this receive list entry is the last buffer in a series of

- 55-

10

15

20

25

30

WO 96/35988

PCT/US96/06562

buffers which form a message. Note that this implies that if neither bit
31 or bit 30 is set to one, then the buffer pointed to by the receive list
entry is a middle buffer. If both bits 31 and 30 are set to one, then the
message is one buffer in length.

Bits 16 through 23 contain the count field indicating how many cells
are stored in a particular receive buffer.

Bits 10 through 15 determine the channel over which the IOP received
the message. Each incoming message is granted a channel number
unique during its transmission time. ‘

Bits 6 through 9 relate to error checking. Bit 0 will be set to one by
hardware if any type of error occurs during the transmission of the
message. Bit 1, labeled seq, equals one if the error which occurred
during transmission is a cell sequence error, i.e., cells were lost,
duplicated, or rearranged. Likewise, bit 2 corresponds to a parity error
and bit 3 is currently reserved for a future error status indicator.

Word 1 points to the location in SDRAM corresponding to the first
byte of the receive buffér. Note that since all receive buffers in
SDRAM are 64-byte aligned, only 26 bits are required to specify the

receive buffer address.

Promiscuous Receive Mode (RXE=X; PXE=1)

During promiscuous receive mode all bus cycles are captured by the MPC.

Via the receive list, hardware will convey to software the bus address, the bus byte

count, the MEM/IO bit, an error bit, and the location of the receive buffer in SDRAM.

The bits in this entry are defined as follows:

Word 0 holds the address read off the bus during the address phase of
the bus cycle.

Word1[31:6] holds the top twenty-six bits of the receive buffer location
in SDRAM where the data associated with this bus cycle has been
written. Note that receive buffers are 64-byte aligned in SDRAM

therefore the bottom six bits of the address are zero.

- 56 -

10

15

20

25

30

WO 96/35988

PCT/US96/06562

Word1[5:3] indicates the byte count read off the bus.

Bit 2 of Word 1 is the memory bit from the bus indicating whether data
transfer is in either bus memory space; (mem=1) or bus 1/O space
(mem=0).

Bit 0 of Word 1 will be set to one if an error occurs during the bus

cycle.

4b. The Cell Address Field

Since the command list dictates the formation of cells traversing the bus, the

address field associated with each cell is intimately related to information found on

the command list. The address field on a cell destined for the bus varies with the type
of data transfer. MSG XMIT, SMA READ, and CELL XMIT use message address
fields. SMEM WRITE, SMEM READ, MEM MOVE, CBIO READ, CBIO WRITE,
and CBMEM WRITE use non-message address fields.

The Message Address Field

Fig. 21 defines the bits found in the one-word message address field, as

explained below.

° Any cell which has the upper nibble of its header set to 8 (1000) or 9
(1001) will be identified as a cell which is part of a message.

o The R in bit 28 indicates to which receive list the cell should be
directed. A value of "1" indicates the high-priority receive list (HRQ)
and a "0" indicates the low-prioﬁty receive list (HTQ).

° Bits 24 through 27 define the destination slot. The cell routes to this
physical slot in the chassis.

o Bits 20 through 23 indicate the bus over which the message will be
routed.

° Bits 16 through 19 define the source slot. The cell originates from this
physical slot in the chassis.

L Bits 12 through 15 indicate the bus over which the message originated.

-57-

10

15

20

25

30

WO 96/35988

PCT/US96/06562

° Bits 10 and 11 show cell reliability. The cell reliability bits work

against two watermark registers, implementing three levels of

reliability for bus messaging as shown in Table 11.

TABLE 11

MSG address cell_reliability bit definition

cell reliability[1:0] reliability . loss condition
00 hi no free buffers
01 medium free buffers less than watermark 0
10 low free buffers less than watermark 1
11 rsvd no receive activity
o Bits 4 through 9 determine the channel over which an IOP is receiving

amessage. Each incoming message is granted a channel number

unique during its transmission time.

° A one in bit 3 indicates that this is the first cell in a message.
° A one in bit 2 indicates that this is the last cell in a message.
° Bits 0 and 1 allow room for a sequence number applied to each cell in

amessage. Cell sequencing takes place module 4.

The Non-Message Address Field

Cells which combine to form a non-message data transfer use physical

memory locations in SDRAM or COX shared memory for their address fields.

I1. INTERPROCESSOR MESSAGING SYSTEM (IMS)

The system description and message passing controller technique described

above supports a very flexible and scalable architecture for the router, with the

distributed protocol modules on intelligent I/O modules, centralized resources shared

by all the /O modules, and the ability to provide data link layer processing for basic

-58 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

input/output modules on the system. This ensures backward compatibility as well as
flexibility and scalability for the system.

Fig. 22 provides highlights of major functional components of the software
according to one embodiment of the present invention as distributed on the centralized
processor.COX and the intelligentb input/output system I0S, which communicate at a
logical layer by means of an interprocessor messaging system IMS 715.

In Fig. 22, flow within each processor, either the COX or the IOS/IOP can be
considered vertical in the figure, while communication between the units is primarily
horizontal and peer-to-peer. Thus, on the central networking resource COX, software
for upper layer protocols is illustrated in block 700. The routed protocols are
represented by block 701, with other network layer protocols 702 supported as
necessary. Below the routed protocols 701, are the source routing resources 703,
transparent bridging resources 704, and the SNL support 705.

The SNL is the sub-network layer which handles parsing of headers to
determine the next layer of protocol, dispatching of packets to appropriate higher layer
protocol handles, protocol dependent transmit routines to add/update and replace sub-
network layer headers including MAC headers for LAN ports, and headers for serial
ports according to such protocols as PPP, FR, X.25, and SMDS.

Below the SNL support 705, transparent bridging 704 and source routing 703
are found the inbound receive demultiplexing resources 706. These resources direct
the packets received from the lower layers into the appropriate upper layer modules.
On the COX, the data link layer servers for the IOM input/output modules without
remote intelligence are provided. Also, data link layer agents for the intelligent I/O
modules are supported (block 707). Also, a link management function module LMF
708 provides queuing services for serial interfaces. The I/O drivers which support
network events on the basic input/output modules, and the 1/O driver agents which
provide services to the I/0 drivers on the intelligent input/output modules such as the
IOS and IOP are also included on the centralized processor in block 709. A port and
path manager PPM 710 is included, which handles mapping between logical ports and
physical paths. These modules communicate with resources distributed across the

interprocessor messaging system IMS 715 to components located on the input/output

-59 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

modules. For the IOS or IOP modules with intelligent resources located on card, they
communicate with the modules illustrated in Fig. 22. Thus, in the upper layer
distributed protocol modules 716 are found, which include transparent bridging,
source routing and routed protocol support, and also pass through resources so that
packets not supported locally can be passed through the IMS 715 to the centralized
processor. A SNL remote driver 717 is also included on the IOS/IOP. The distributed
protocol module 716, and the SNL remote driver 717 receive data through the
inbound demultiplexer 718. The data link layer resources 719 which are executed on
the remote devices supply the inbound receive demultiplexer 718. An outbound
queue manager 720 is used for managing transfers out of the local card. 1/0 drivers
721 drive the input/output devices coupled to the IOS/IOP card. A port and path
manager PPM 722 for the remote device is also included on the remote card.

‘.The interprocessor messaging system (IMS) 715 provides a logical platform
which allows communication between the central resource COX and a wide variety of
remote resources across the common logical layer interface. Thus, the intelligence of
the cards within the routing system can be varied and flexible as suits the need of
particular installation.

Fig. 23 breaks down the interprocessor messaging system into additional
components which are centered across the core backplane bus represented by dotted
line 750. A generic interprocessor communication service 751 for the central module,
and a generic interprocessor communication service 752 for the remote module are
provided. This service provides an interface to all other processor modules in the
system. The generic IPC interfaces with one or more bus drivers 753 on the central
side and one or more bus drivers 754 on the remote side. This way, communication
between specific modules can be handled in the system. Also, the IPC interface
751/752 interfaces with one or more special services, such as the IMS logical layer
755 on the central side, and IMS logical layer 756 on the remote side. A debugging
service 757 is found on the central side and 758 on the remote side. A board manager
759 on the central side provides centralized management of the remote modules.

The interprocessor messaging system logical layer module 755/756 is a

significant part of the IPC services available. The IMS provides a message based

-60 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

interface between processor modules. An IMS subsystem on each processor module
is composed of a logical layer that interfaces with client components, the physical
layer that interfaces with external processor modules and a generic IPC layer between
the two.

F 1g 24 illustrates data paths on a remote input/output module such as an I0S
or JOP. InFig. 24, the remote system includes a basic kernel module 800 and an
interconnect manager 801. A monitor module 802 and a debug task 803 may be
provided for system management. The system includes a plurality of network
dependent drivers 805, a plurality of distributed protocol modules 806, and a
messaging driver 807. Also, a network management agent 808 may be included. The
network dependent drivers 805 include physical network drivers (IOPI) 810, data link
layer drivers 811, an inbound receive demultiplexer 812, and an outbound transmit
queue manager 813.

The distributed protocol modules include the basic Brouter distributed
protocol module 814, a bridge DPM 815, and internet protocol (IP) distributed
protocol module 816, and other DPMs 817 as suits the particular implementation.
The distributed protocol modules are coupled with the messaging driver 807 which
includes an outbound receive demultiplexer 820, and an inbound transmit queue
manager 821. Core bus drivers 822 are also included, coupled with the outbound and
inbound paths for driving one or more core busses to which the device is connected.
The messaging driver 807 implements the IMS layer modules as discussed above
under the control of the interconnect manager 801.

The interprocessor messaging system is specifically designed to meet the
needs of control and data-in-transit traffic patterns in the scalable, flexible distributed
router system according to the present invention. For each message type, based on the
traffic pattern anticipated for the system, an IMS message queue for high throughput
or high reliability and IMS drop priority are assigned. The table shown in Fig. 25 is a
summary of the various IMS message types according to one embodiment of the
invention, their service requirements and ‘;he quality of service assigned to them as a
result. Note that the drop priorities and other parameters associated with these

messages can be modified to suit the needs of a particular environment.

-61 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

In Fig. 25, HRQ stands for high reliability queue, and HTQ stand for high
throughput queue.

Thus, the IMS offers three types of transport services - (1) high throughput
service using the HTQ, (2) high reliability, low latency service using the HRQ, and
(3) guaranteed delivery service also using the HRQ. For a given queue, the IMS
gﬁarantecs that packets will be delivered on the recipient processor module in the
same order in which they were supplied to the IMS. Messages in the HRQ are given
priority oﬁer messages in the HTQ for transmit as well as receive processing.
However, the volume of traffic on the HRQ is supposed to be substantially smaller
than that on the HTQ. Hence, messages on the HRQ are processed in small numbers
and messages on the HTQ are processed in large batches for better throughput.

On the transmit side, the IMS provides quality of service registration based on
transmit list fullness thresholds in software to ensure fairness and protection against
overloading by any one message type. Each IMS message type is assigned a drop
priority. A message of a certain priority will be dropped from being added to transmit
list if the count of empty command list entries is below an eligibility threshold (or
watermark) set for that message priority. In other words, the quality of service is a
transmit side drop mechanism to assure fair queuing. A message with the highest
drop priority (lowest reliability class) will have high threshold for free transmit list
entries and hence the highest probability of being dropped. A message with a lower
drop priority. (higher reliability class) will have a lower threshold for free transmit list
entries and hence the lowest probability of being dropped. Quality of service
registration is not required for message types ﬁsing "guaranteed" service, because the
message will not be dropped if any free entries are available in the transmit list.

On the receive side, the IMS demultiplexes a large batch of IMS messages into
smaller batches by IMS message type and has a receive function invoked for each
message type received. The IMS is responsible for converting buffer data type
messages into buffer data and data areas, and collecting message cells and putting
them together as a single chain of buffers and batching these buffer chains together by
their message type. The IMS provides a variety of receive function registration

services based on IMS message header type and IMS message type.

-62 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Each client provides a receive function that must be invoked for a specific
message identification. When two clients register for the same message identification,
with two different receive functions, the last registration takes effect. In order to
ensure that no two clients assign the same values for two different message type
symbols, all message type symbols must be centrally located in the header file in the
IMS logical layer component. The reception of messages, whether on high
throughput queue or high reliability queue, is transparent to clients. Registered
receive flinction is invoked no matter which queue a message came in on. It is
expected that a message is always sent on the same type of message queue.

The high throughput service and high reliability/low latency service are
intended primarily for transport of buffer data, that is Buffer Data (BD) descriptors,
and data pointed to by BD descriptors. The IMS message header type 0 is used to
transport buffer data. Buffer data can be just a single buffer, a chain of buffers or a
batch of chained buffers. IMS subsystem on the local processor will convert these
buffers into messages and transfer the messages over to remote processors through the
IMS. The data messages may be selectively dropped from, or refused entry in, the
transmit queue based on quality of service assigned to the message type. The IMS
maintains statistics of messages transmitted, discarded, and failed.

Guaranteed message service is provided on top of high reliability, low latency
IMS message service using the HRQ. Messages that could not be queued for sending
will be queued internally for retrying at a later time instead of dropping. IMS
guarantees that data supplied to local IMS subsystems will be delivered by the
recipient IMS in exactly the same order in which is was supplied and without
replication. In one preferred implementation, the retry attempts are made at a
minimum rate of every 100 milliseconds.

The IMS message type header 02 is used for transport of kernel messages and
header type 04 is used for transport of frame driver type messages. However, header
types used by the IMS are not limited to these and may grow as suits the needs of a
particular installation.

Figs. 26 through 29 illustrate the IMS message and header formats. Each IMS

message shown in Fig. 26 has a header, generally 900, which includes an IMS header

-63 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

901 and header data 902. The header data 902 includes, for example, portions of a
buffer descriptor for a frame in transit which sets out status information about the
frame. A pad 903 may be used to fill in an area between the beginning of the packet
and a buffer data offset. Buffer data is carried in the region 904 and may be padded
with a trailing pad 905.

In one system, the IMS may support three categories of messages as shown in
Figs. 27, 28, and 29. Each of these messages have IMS headers with fields indicating
the headér type, the header length in words, the message length in bytes, and the
buffer data offset in bytes at a minimum. In Fig. 27, the BD message header format
includes a trace bit 908, a header type field 909, and a header length field 910. The
buffer data offset is stored in field 911. A message length is specified in field 912. A
message type is specified in field 913. The last segment is unused.

The IMS kernel message header format shown in Fig. 28 begins with a trace
field 915, includes the header type field 916, and a header length 917. The buffer data
offset is stored in field 918. The message length is stored in field 919. The next word
must be all zeroes, followed by a sequence number field 920 and a receive sequence
number 921. The next field identifies the user message type 922, and the last field
provides a remote mailbox identification 923 for kernel messages.

Fig. 29 illustrates the IMS frame driver message header format. Again, this
format begins with a trace field 925 and includes the header type field 926 and the
header length field 927. The buffer data offset is provided at field 928. The message
length is provided in field 929. The message type is set out in field 930. The last two
fields provide the send sequence number, field 93 1, and the receive sequence number,
field 932.

Fig. 30 summarizes the interprocessor messaging system using the two types
of queues for buffer descriptor type messages. Thus, on the centralized processor, or
another intelligent processor, illustrated at block 1000, a high throughput queue htqtx
1001 and a high reliability queue hrqtx 1002 for transmitting commands are provided.
Also, a high throughput receive list queue htqrx 1003 and a high reliability receive list
queue hrgrx 1004 are included. The send Buffer descriptor command from the logical

layer system for the interprocessor messaging system stores a command in the

- 64 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

appropriate list. The high throughput queue sends the IMS message to the high
throughput receive list 1005 on the destination input/output module 1006. Also, high
reliability commands are transferred to the high reliability queue receive list 1007 on
the remote device. A similar path exists from the high reliability command list 1008
and the high throughput command list 1009 on the remote device 1006. These
messages are transferred to the high reliability and high throughput receive lists on the
central processor, or another input/output processor depending on the destination of
the packet.

Figs. 31 through 32 provide an example of the interprocessor messaging
system logical layer processing for transfers from the central resource to a remote
processor, and from the remote processor to the central resource respectively.
Assuming that message buffers on the centralized resource are 512 bytes long and that
buffers on the remote systems are 256 bytes long, the examples will operate as
described. The sample message type is IMS data, the packet is 700 bytes long, and
when transmitted through the interprocessor messaging system, a header of 8 bytes
(assuming for this example that there is no header data (902 of Fig. 26)) is prepended
without any additional padding to the message, thus the message size become 708
bytes. Thus, a message of size of 708 bytes is transferred over the high throughout
queue from the central processor to the remote input/output module in Fig. 31, and
from the remote input/output module to the central processor in Fig. 32.

Thus, in Fig. 31, a logical layer issues a command (e.g. 1020) to send to the
buffer descriptor beginning with buffer descriptor BD-A, with an IMS data message
type to a destination slot 00. Thus, the buffer descriptor BD-A is accessed and
includes the fields as shown at block 1021. The first line in the buffer descriptor BD-
A is a pointer to the next buffer descriptor, buffer descriptor BD-B which includes the
fields shown at block 1022. The 708 byte message thus includes a fragment in a
buffer of length 512 bytes, and a fragment in a buffer of length 188 bytes. The
address for the buffer data is stored in the descriptors as shown.

For all the fragments in a message, the message header is prepended preceding
the data buffer of'the first fragment at the desired data offset, and the address of the
start of the IMS message header is set. Thus, the message type is IMS data, the

- 65 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

message header size is 8 bytes, the data offset within the message is 8 bytes, and the
message length is 708 bytes. Next, the logical layer determines the transmit list drop
threshold, based on drop priority or quality of service of the IMS message type. Next,
the algorithm determines which interprocessor controller transmit service to use ,
either the high throughput or high reliability queues. Finally, the appropriate
interprocessor communication transmit function for the destination slot based on the
transmit service required is invoked. In this example, the command for transferring
IMS data fo the high throughput queue is called for the destination slot beginning with
buffer descriptor BD-A with a quality of service threshold specified. The IOS driver
located on the source processor, that is the central processor in this example, executes
the transfer using its high throughput command list when the header for the command
list reaches the appropriate entry in the command list.

On the receive side, the logical layer demultiplexes a batch of receive
messages into sub-batches by individual IMS message type. A client receive function
is called for the batch of received messages beginning with the buffer descriptor of the
first buffer for the batch. In this case, it is buffer descriptor BD_P. Thus, a first
buffer in the receiving device is loaded with 256 bytes, the first 8 bytes of which are
the header, which can be discarded. Thus, the buffer descriptor includes a pointer to
the next buffer BD-Q, a buffer length field and a buffer data address with an 8 byte
offset to discard the header at address P + 8. A buffer descriptor BD-Q points to the
next buffer descriptor BD-R, stores the full 256 bytes at address Q. Buffer descriptor
BD-R indicates that it is the last buffer in the batch by a null next field, has the
balance of the data in it, beginning at buffer data address R. The demultiplexing
occurs in response to the high throughput queue receive list, when the header for that
list reaches the appropriate entry.

The 10S driver on the central processor adds entries to the transmit queue and
updates the transmit tail pointer. Then it issues an event to the remote I0S which is to
receive the data transfer. When the transmit head pointer is updated later on, the IOS
driver frees up the transmit buffers from the last transmit head until the new transmit
head pointer. On the receiving device, the central device driver queues up a DMA

control block (DCB) which contains the source address, target address, length of the

- 66 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

data to be copied, the data transfer type, and the status of the DMA transfer. The
significant transfer bit is set in the DCB. The DCB is used to fetch the set up of the
transfer from the central processor. When the DCB is complete, the transmit cache
tail is updated to match the transmit tail pointer in the set up. Then one or more DCBs
is queued .up to copy newer entries in the transmit list to the end of the transmit cache
list. When the transmit cache list in the central device driver on the rexhote processor
is complete, the transmit cache tail pointer is updated. Next, a batch of transmit cache
entries is processed to transfer data into receive buffers. A DCB is then queued for
each contiguous data transfer. For each receive buffer, when the last DCB using an
address from that buffer is enqueued, receive buffer and flag fields are sent to the
receive list. Then, the transmit cache head pointer is updated to the next entry for
processing. When the process completes, the transmit cache head pointer in the
shared memory for the central processor is updated to match the transmit head in the
cache on the local device. Next, a DCB is queued up to transmit the set up data from
the IOS to shared memory, in the central processor.

Fig. 32 illustrates the process in reverse from the remote intelligent processor
to the central processor. This system receives an IMS send buffer data command at
the logical layer identifying the first buffer descriptor for the batch which makes up
the message, the message type, and the destination. Thus, for all fragments in a batch,
the message header is prepended, preceding the data buffer of the first segment at a
desired data offset, and the buffer data address at the start of the IMS message header.
This header indicates the message type as IMS data, and that the message header size
is 8 bytes, the data offset within the message id 8 bytes, and the message length is 708
bytes. Next, the logical layer determines the transmit list drop threshold, based on
drop priority or quality of service of the IMS message type. Finally, the transmit
service to use is determined based on the message type, either high throughput or high
reliability. Finally, the appropriate IPC transmit function is invoked for the
destination slot based on the required transmit service. This results in a command
indicating a high throughput transmit function indicating the destination, the source
buffer, and the quality of service threshold. This message is added to the high

throughput command list as shown with a first entry for buffer descriptor BD-P, a

-67 -

10

15

20

25

30

WO 96/35988 : PCT/US96/06562

second entry for buffer descriptor BD-Q, and a third entry for buffer descriptor BD-R.
On the receive side, the receive buffers are loaded by the hardware, and the logical
layer demultiplexes a batch of received messages into sub-batches by individual IMS
message type. The client receive function is invoked for each IMS message type
received, and executed when the receive list head reaches the appropriate entry. Thus,
the client receive function writes the incoming batches to buffer descriptor BD-A
indicates that the next buffer descriptor buffer descriptor BD-B, and the buffer data
length and the offset. Again, for 512 byte buffer the first 8 bytes are header which
may be discarded. Thus, the buffer data address is 8 bytes past the beginning of
buffer BD-A as indicated in the figure. Buffer descriptor BD-A points to buffer
descriptor BD-B which stores the balance of the data at the address at the beginning at
point B.

In the central device driver on the remote processor, a DCB is queued up with
a bit set indicating a transfer across the IMS to the central system. The shared
memory set up is fetched from the central system using this DCB. When this is
completed, the receive cache tail in shared memory, and the receive status cache tail
in shared memory pointers in the receive manager are set to manage the receive buffer
tail pointer which was retrieved from the central processor. A DCB is queued up to
copy newer entries in the receive buffer list in the central processor to the end of the
receive buffer cache list in the remote processor. When the list has been updated, the
receive buffer cache tail and receive status cache tail are updated. Then a batch of
transmit entries are processed to transfer into the receive buffers listed in the receive
buffer cache. A DCB is queued up for each cdntiguous data transfer. For each
receive buffer, when the last DCB using an address from that buffer is en queued,
status for the buffer is set in the receive status cache. Next, the receive status cache
entry at the head pointer is triggered, and the next receive status cache entry is
updated. Once the trigger DCB is completed, a DCB is queued up to copy the newer
status cache entries to the central processor. Also the receive buffer cache pointers are
updated to their trigger pointers, and the corresponding structures in shared memory

4

are updated.

- 68 -

10

15

20

25

30

WO 96/35988 : PCT/US96/06562

IV. DISTRIBUTED PROTOCOL PROCESSING

As mentioned above, the flexible architecture supported by the interprocessor
messaging system, the high speed buses, and the variety of architectures which may
be connected using this system support distributed protocol processing. According to
the presenf invention, the general distributed protocol module (DPM) model operates
with a cache of recently accessed addresses maintained in each of the intelligent
input/output modules. The cache contains a subset of the information contained ina
routing table maintained in the central processor. Packets received in the DPM for
destinations which are in the local cache are forwarded directly without consulting the
DPM server on the central processor. Packets received for destinations which are not
in the cache result in a query from the DPM to the central DPM server to determine an
appropriate destination.

The scalable high performance system according to the present invention
provides the interprocessor messaging system interconnecting intelligent input/output
modules known as IOPs aﬁd I0Ss in communication with the central internetwork
processor, and with other IOPs and IOSs, and through the central processor to IOMs.
Interprocessor messages may be up to 64K bytes long according to one embodiment.
They convey data packets, state information, and control information between data
processing functions or process instances on different cards in the system. Messages
to and from IOPs/IOSs and the central processor are passed through data structures in
the central processors shared memory. IOP/IOS to IOP/IOS messages are passed
directly from memory of one IOP to that in another IOP/IOS message passing
controller. Distributed protocol modules according to the present invention are clients
of the interprocessor messaging system. Figs. 32 and 33 are used to describe two
representative distributed protocol processing systems relying on the interprocessor
messaging system. It will be understood that any logical layer processor messaging
system can be utilized for the distributed processing model discussed. However, the
high throughput and flexibility according to the IMS described above is used in the
preferred system.

Fig. 33 illustrates a distributed internet protocol (IP) process with a distributed

protocol module, generally 1100 on an IOS card. and a central IP process, generally

- 69 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

1101, on the central processor. As mentioned above, an IMS driver 1102 on the
remote card and an IMS driver 1103 on the central card are utilized for
communicating. Basic components of the distributed protocol module 1100 include
the receive protocol dependent processing module 1104, a protocol address cache
1105, and a packet disposition process 1106. The data coming in on the I/O ports
1107 for the remote card are coupled to the receive protocol dependent processor
1104. This processor utilizes the protocol address cache 1105 to attempt to route the
packet. The packet is passed through the packet disposition process 1106 if possible,
for communication either back out the ports 1107 or across the IMS to the appropriate
destination. If the receive protocol dependent processor 1104 cannot route the packet,
then it uses the IMS service 1102 to request an update to its protocol address cache
1105. The IMS module 1103 on the IOS routes a packet to the distributed protocol
module server 1108 in the central processor. Using protocol address cache support
sewicés 1109, data to update the protocol address cache 1105 of the remote processes
is taken from the complete protocol routing tables 1110 in the central processor and
forwarded to the cache 1105 across the IMS system.

If the receive protocol dependent processing 1104 determines that it has
received a type of packet which cannot be routed using the distributed protocol
service, then it is passed through the IMS 1102, 1103 to the complete protocol
processing services 1111 in the central processor. These services rely on the complete
protocol routing tables 1110, and forward the routed packet to packet disposition
services 1112 which utilizes the IMS to route the packets to appropriate destination if
possible. If the destination is an IOM module without IMS services, then local drivers
for the IOM ports 1113 are utilized by the packet disposition system 1112 to drive the
packet out the appropriate port in the IOM module. Packets incoming from the IOM
module are supplied to the complete protocol processing resources 1111. A central
DPM server which emulates the DPM interface for the protocol routing processing
1111 can be utilized for the IOM ports as illustrated at block 1114. Also, the central
processor can execute remote DPM configuration services 1115 utilizing the IMS

messaging system through the DPM server 1108 if desired.

-70 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Thus, a distributed protocol module provides protocol specific processing on
an intelligent I/O card. In the present architecture, all packet processing is done in the
centralized code residing in the central processor, unless DPMs are located on the
receiving processor. With DPMs, protocol processing is distributed to the intelligent
1/O cards, which rely on the central resource for many functions. The basic goal is to
perform packet forwarding computations for the majority of packets on the intelligent
1/0O card, rather than sending all the packets to a full function routing processor. This
can be achieved by implementing some or all of the packet forwarding fast path on
intelligent cards while keeping .the control functions including higher protocol layers
centralized on the central processor. Intelligent I/0 cards will maintain routing caches
for a distributed protocol. The DPM will try and make the switching decision locally.
This is done by looking up in the local cache for a destination address. In the case
there is no cache entry, then the packet will be queued in a local memory, and a
protocol cache query (PCQ) is sent to the central processor. The code in the central
processor will reply with a protocol cache reply (PCR) or may not respond at all.
Based on the PCR, or the lack of one, the DPM will either route the packet to the
destination port, send it to the central ﬁrocessor for routing there, or discard it. In the
case the DPM cannot process the inbound packet because processing is required
which is not supported by the DPM, the packet is sent to the central processor to be
processed in the normal data path. For IP routing in the scalable platform of the
present invention the following cases illustrate data flow.

Case 1: Unicast, known or unknown destination, received and sent on
the same input/output module the IOM style. In this case there
are no distributed protocol modules involved. The packet is
always sent to the central processor for processing, even if the
destination port is on the same 1/0 card.

Case 2: A unicast packet, destination not in cache, received and sent on
the same intelligent I/O module. The DPM on the intelligent
1/0 module will route the packet locally. A PCQ/PCR exchange
will take place with the central processor to determine the route

for the packet. The data packet will never cross the bus.

=71 -

10

15

20

25

30

WO 96/35988

Case 3:

Case 4:

Case 5:

Case 6:

PCT/US96/06562

A unicast packet, destination in cache, received and sent on the
same intelligent I/O card. The packet contains information that
the DPM cannot process (for example options in the header).
The packet will be forwarded to the central processor for
processing by the normal path.

A unicast packet, destination in cache, from one intelligent I/O
card to another intelligent I/O card. The distributed protocol
module on the receiving intelligent 1/0 card will take the
routing decision to route the packet to a remote intelligent /O
card. The IP code in the central processor is not involved.

A unicast packet, known destination from an I/O module to an
intelligent I/0 card. The IOM card receives the packet and
sends it to the central processor. The routing decision is made
in the central processor. The packet is sent to the intelligent I/O
card for transmission. In this case, there is no distributed
protocol module involved.

A unicast packet, with the destination in the cache is sent from
an intelligent I/o card to an IOM card. The packet is received
on the intelligent I/O card. The DPM makes a routing decision
and send the packet to the central processor. The protocol code
on the central processor is not involved. The packet is place
directly in the output queue in the central processor for the

destination port.

There are several logical components involved in supporting routing when

distributed protocol modules are involved. In the intelligent I/O cards, there is an IP

distributed protocol module. This receives inbound packets from the ports. It is

responsible for routing the packets to the destination or forwarding them to the central

processor for further processing. On the central processor there is an internet protocol

module which provides the IP normal path and quick path, and routing table

maintenance for all the configuration functionality. The "normal" path, sometimes

called slow path, processes with more complexity. The "quick" path, sometimes

-T2

10

15

20

25

30

WO 96/35988 PCT/US96/06562

called fast path, is optimized for the majority of packets which do not need complex
routines that handle several exceptions and special cases, like the slow path. Also,
since there is no DPM on the central processor, a component is involved in the data
path for packets routed by the IP DPM in one intelligent I/O card to a port on a IOM
card. Furi:her, a DPM server is located in the central processor which serves as a
central server for the various DPMs in the system. Its primary fesponsibility isto
process cache related messages to and from the DPM.

The inbound receive protocol dependent processing server 1104 in the DPM
performs basic header validatiqn based on versions, check sums, links, et cetera. In
one emhodiment, fast switching for the IP DPM will only apply to IP version for
packets with no options. All other packets are forwarded to the central processor for
the routing decision. Of course the DPM may be enhanced to provide services for
other kinds of packets if desired.

The inbound receive protocol dependent processing also determines whether
local routing or a transfer to the central processor must be made by the DPM. Also
the inbound receive protocol dependent processing does routing lookups in the cache
and does next hop determinations for the packet. Thus the local cache will be
searched to find the next hop for the packet. If not entry is found, the packet will be
queued and a protocol cache query will be sent to the central processor. Based on the
response, or the lack of one, the packet will either be forwarded to central processor,
routed to a destination port, or discarded. Finally, the inbound receive protocol
dependent processing performs the full IP filtering functionality. This involves
maintaining multiple copies of the IP filtering ¢onﬁguration, one on the central
processor and one on each of the intelligent I/O cards which has an active IP DPM.
Filtering will be applied in the DPM only if it has been determined that the DPM can
route the packet. That is if the packet has to be sent to the central processor for
protocol processing, then no filtering action is taken by the DPM.

After it has been determined that the packet needs to be routed, the following
actions may be performed in module 1104. The TTL and check sum fields of the
packet can be updated in the header. The IP DPM can perform all necessary MAC

header conversions. For example, if the encapsulation of the inbound packet is

-73-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Ethernet and the destination encapsulation is SNAP, it is the responsibility of the IP
DPM to format the header before the packet is forwarded. For instance, one
implementation of an IP DPM will support conversion to the following MAC headers:
any LAN type, such as Ethernet, Token Ring, FDDI, et cetera and the point-to-point
protocol PPP wide area link. For all other cases the packet is forwarded to the central
processor for processing by the main path. Of course, other DPMs can support

additional MAC layer header conversions.
Packet disposition is handled as follows:

A. The incoming receive packet will be disposed of in one of the

following ways.

L. Discarded
The incoming packet can be discarded. This can happen for the following
reasons:
a. No response was received from the Protocol
Cache Query for the requested route. This does not indicate
that there is not route to the destination. It means that either the
PCQ or PCR was dropped somewhere in the system.
b. Filtering. The filtering database contained a matching
condition with the action of discarding the packet.
2. Forwarded to central IP resources
Since the IP DPM contains a subset of the complete IP routing functionality,
the DPM may not be able to fully process the packet. For such cases, the packet will
be forwarded to the central processor for processing. The packet may be sent to the

central processor for processing by the IP normal path or the IP quick path.

B. The packet may be forwarded to the central processor IP normal path

are for the following reasons.

-74 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

L. Packet destination IP address is unicast and is the router itself. These
are end system packets and are usually handed off to the upper layers. Packet is

forwarded using the IMS high reliability queue HRQ.

2. Packet destination IP address is broadcast/multicast. These are usually
network control packets. Packet is forwarded using the IMS high throughput queue
HRQ.

3. IP Security Options processing is enabled. Packet is forwarded using
the IMS HTQ.

4. Packet contains IP options. Packet is forwarded using the IMS HTQ.

5. Packet requires fragmentation. Packet is forwarded using the IMS
HTQ.

6. Bridge Source Routing is enabled.

7. The PCR indicates that the destination interface is a type which is
currently not supported in the DPM routing path. Packet is forwarded using the IMS
HTQ. |

8. The PCR indicates that no route exists to the destination IP address.
The packet must be sent to the central processor for processing. The central processor
IP needs to maintain statistics and a ICMP message may need to be generated. Packet
is forwarded using the IMS HTQ.

9. The PCR indicates that the packet destination port is the same port it
was received on. Packet must be sent to the central processor for processing. The
central processor IP needs to maintain statistics and a ICMP redirect message may

need to be generated. Packet is forwarded using the IMS HTQ.

-5 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

C. The packet may be forwarded to the central processor IP quick path for

the following reasons.

1. Debug controls indicate packet should be forwarded to the central
processor; In this case all packets will be forwarded to the central processor for

processing by the IP quick path. Packet is forwarded using the‘ IMS HTQ.

2. | The protocol address cache PAC has reached the maximum limit of the
entries it can have. An additional PACE entry cannot be created. The packet is

forwarded to the central processor for processing by the quick path.

D. The packet may be routed to destination interface directly in the

following cases.

1. If a valid entry for the destination is found, or there is a successful PCR
which indicates that the packet should be routed and the PCR contains the valid

routing information, the packet will be forwarded to the destination interface.

2. If the destination interface is on a remote slot, the packet will be sent in
an IMS HTQ message to the destination slot peer DPM or the IP CDPM on the central

processor.

3. If the destination interface is on a local port, the packet will be directly

put on the output queue for that port.

The Protocol Address Cache PAC 1105 is managed as next described.

The DPM will maintain a local routing cache. Routing will be performed by
looking up the destination addresses in the local cache. A query/response system will
be used between the DPM and IP DPMs on server (DOMSS) 1108 on the central
processor to obtain new routing information for insertion into the cache.

The PAC can be a state machine and be event driven.

-76 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

Protocol Address cache entries PACE are created as follows.

A PACE will be created when a packet is to be routed and no PACE entry
exists for the destination IP address. In this case a PACE is created, the packet is
queued to the PACE and a PCQ is sent to the DPMS to determine the route. All
subsequeht packets for the same destination are queued until a PCR is received.

If a PCR is received, the PACE is updated and based on the PCR information
the queued packets are either routed to the destination port or forwarded to the central
processor for processing.

If no PCR is received and a set time expires, the PACE is deleted and all
queued packets are discarded. |

If the PAC has reached the maximum entry limit, an additional PACE will not
be created. All packets which require an additional PACE to be created will be
forwarded to the central processor for processing by the quick path.

Protocol Address Cache maintenance is handled as follows.

The maintenance is purely timer based. A PACE will become stale after
period of time and will need to be refreshed by issuing a PCQ to the DPMS.

A PACE can be deleted if the age timer expires indicating that the entry is not
longer valid.

The complete PAC can be flushed via command, or by the DPMS when the
routing table or the address table in the central processor is flushed.

Cache maintenance will be the core of the DPM functionality. It will include:

1. queuing of packets for destinations not in cache.

2. dispatching of Protocol Cache Queries to the IP DPMS on the central
processor for unknown routes.

3. updating of local cache entries from Protocol Cache Reply messages

from the [P DPMS on the central processor.

4. supporting a rate limiting mechanism for PCQs.
5. cache maintenance including aging, refresh, re-use.
6. forwarding or dropping of queued packets based on successful

response or aging.

7. supporting general controls including enable, disable, flush, display.

-77 -

10

15

20

25

WO 96/35988 PCT/US96/06562

Per-port statistics will be maintained. The following counts will be
maintained:

1. packets received from network.

2 packets discarded.

3 packets routed to port on local II/O card.
4. packets routed to remote II/O card.
5

packets sent to CEC for exception processing.

Additional counts of the cache and data flow statistics are available under
debug. These statistics will be available to the central processor for display via the
user interface.

The IP DPM will be supported on the central processor by the following
logical components - IP CEC, IP DPMS and IP CDPM.

IP CEC
This component is not directly involved in the data path of packets routed by

the IP DPM. This component provides:

1. complete IP protocol processing. This includes maintaining the IP

routing tables, processing configuration information, et cetera.
2. IP "quick" path packet switching for packets received from I/O cards
which do not have a DPM, or from intelligent I/O cards where the DPM has been

disabled.

3. IP "normal" path processing for any packet received from any

interface. This includes processing of exception packets from a DPM.

IP DPM Server (IP DPMS)

-78 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

This component provides IP DPM cache support. The IP CEC will maintain
the master IP routing tables. The DPMs on the I/10 cards maintain local Protocol
Address Caches. The IP DPMS will be responsible for:

1. receiving Protocol Cache Queries form a DPM and

responding to them with the appropriate Protocol Cache Reply.

2. flushing DPM Protocol Address Caches when
appropriate. This will be done when large scale changes are made to the central IP
routing databases. For example, when the routing table is flushed, a port comes up

or goes down, et cetera.

The IP CEC also provides IP DPM receive function registration. The IP
DPMS will indicate the set of unicast/broadcast functions that should be used by the
IBD to forward packets to the IP DPM. This will be done through the
snl_register dpm_tag function call.

The IP CEC is also used for IP configuration. The central processor IP
maintains the master user configuration for the IP protocol. IP DPMS is responsible
for communicating the appropriate configuration to the DPMs. Configuration
information is distributed to the DPM on notification that a DPM needs intializing
(via the receipt of the ICM_PROCESS_UP message), or whenever the relevant
configuration changes.

The configuration information that needs to be communicated includes:

1. status of the IP routing functionality: whether the DPM

should process packets locally or forward all packets to the central
processor for forwarding. In certain configurations (for example when
IP security is enabled) all packets must be forwarded to the central

processor for processing.

-79-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

2. keeping to IP filtering databases in synchronization. C

copy of the IP filtering database will be maintained on the central
processor and the II/0 cards by the DPM. At initialization, and
whenever there is a change in the filtering database, the configuration
will be downloaded to the DPMs.

The IP CDPM component is involved in the data path of packets switched by a
DPM. Thé packet flow model for routing with DPMs advocate that the data flow
should be from a DPM to a peer DPM. That is, a routed packet should be sent from
the DPM on the card it was received to the DPM on the destination slot. It is the
responsibility of the DPM on the destination slot to place the packet on the
appropriate output queue.

Since the central processor has no DPM component, the IP CDPM provides
the subset of the DPM functionality necessary for receiving and forwarding routed
packets.

IP CDPM will register the necessary functions to receive packets routed by a
DPM for transmission to an IOM port. This function will gather statistical
information before sending the packets to be placed on the outbound transmit queues.

The IP specific messages used in the distributed processing include the
following:

1. PCQ message to look up a route in the central routing table. This is
transferred in the high reliability queue with a priority of one from the distributed
protocol module to the distributed protocol server in the central system.

2. A PCR message in response to a PCQ. This can contain the valid next
hop information or an indication to send the data packets to the central processor.
This message is transferred on the high reliability queue with a priority of one from
the DPM server in the central processor to the remote IPDPM.

3. Packets routed by a DPM to a remote intelligent card or to an IOM
card without intelligence. This packet is transferred in the high throughput queue with
a standard priority, either from an IP distributed protocol module to a second IP

distributed protocol module in the destination intelligent I/O card, or from the I/P

-80-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

distributed protocol module to the IP central distributed protocol module on the
central processor for routing to the IOM card.

4. Exception control packets (broadcast or unicast) or if the destination IP
address is the local address, are sent to the central processor for processing in the IP
normal path. These packets are sent by the higher reliability queue with standard
priority from the distributed protocol module to the central routing resources.

5. Exception data (unicast) packets sent to the central processor for
processing by the IP normal path. These are transferred in the high throughput queue
with standard priority from the distributed protocol module to the central processors.

6. Packets sent to the central processor for processing by the IP fast path
used for debugging purposes or when the local protocol address cache has reached the
maximum number of entries. These packets are sent in high throughput queue by
standard priority from the IP distributed protocol module to the central IP resources.

7. Packets used to convey commands from the central unit are transferred
to the kernel with guaranteed delivery from the distributed protocol module server to
the distributed protocol module.

8. Configuration information is downloaded to the DPMs from the central
processor with guaranteed delivery from the distributed protocol module server to the
distributed protocol module.

9. The DPM control with guaranteed service for enable, disable, and flush
commands are sent with guaranteed priority from the server to the distributed protocol
modules.

Fig. 34 illustrates the components of a distributed transparent bridging TB
process using the distributed protocol module system according to the present
invention. Thus, a distributed protocol module for the bridge process includes the
components illustrated at generally 1300. The central processor includes the bridge
process 1301 shown in the figure. Thus, the distributed protocol module includes the

receive bridging dependent processing 1302 which includes a source address learning

- resource 1303, a bridge address cache 1304. and spanning tree support 1305. The

bridging dependent processing 1302 communicates with the packet disposition

module 1306, and with the IMS resource on the local card 1307. Packets are received

-81-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

on the I/O ports on the processor executing the distributed protocol module 1308 is
the I/O ports. Also, the packet disposition resources 1306 can route packets directly
back to the I/O ports.

The central bridge process includes a transparent bridging DPM server module
1310 which includes a remote DPM configuration service 1311, and bridge cache
support 1312. The complete bridge processing resources 1313 are included in the
central processor. Also, the central bridge routing tables 1314 are maintained here.

Thé complete bridge processing resources 1313 communicate with the packet
disposition services 1315 and with the IOM ports 1317 served by the central
processor. Also a CDPM resource 1318 on the central processor is utilized for
facilitating the interface between the DPMs and the IOM ports 1317. Ina
simpler version of the Bridge DPM, most transparent bridging features are
implemented directly by the Bridge DPM running on the intelligent I/O (II/O) cards
(such as an IOP or IOS). However, some features are not directly implemented by the
Bridge DPMs. Bridged data packets are forwarded to the central processor for
processing as exception packets when a required feature is not directly implemented
within the Bridge DPM. The transparent bridging features not implemented within
the Bridge DPM as described below can be migrated from the central processor to the
bridge DPM on the II/O card.

The following transparent bridging features are implemented directly within
the Bridge DPM:

1. dynamic learning of MAC addresses.

2 aging of inactive MAC addresses.
3. firewall support.
4

broadcast limiting support.

The following transparent bridging features are not implemented directly

within the Bridge DPM this version and require exception processing by the central

processor:
1. translation bridging.
2. mnemonic filtering.

-82-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

3. source and destination address-based security.

The Bridge DPM Cache 1304 is maintained on the II/O cards. The Bridge
DPM on the II/0 maintains a cache of recently encountered MAC addresses which is
referred to as the Bridge DPM Protocol Address information Cache (PAC). Each
PAC entry (PACE) contains information related to a single MAC address. The PAC
is used to determine how inbound packets are processed by looking up the destination
MAC addfess in PAC. The PAC is also accessed during the source address SA
learning and refresh process. |
PAC entries are created when:
L. An inbound packet is received for a unicast destination address
not currently in the PAC. This results in a query from the Bridge DPM
to the Bridge DPM Server to determine the appropriate destination
port. The Bridge DPM issues a PCQ message and the Bridge DPM
Server responds with a PCR message. A FIFO queue is maintained for
the PACE to queue the original packet and any additional packets (up

to a limit) received for same destination while waiting for the PCR.

2. The Bridge DPM Server distributes local MAC addresses to the
Bridge DPM by issuing CONFIG messages. Local MAC addresses are
distributed during Bridge DPM initialization and updated whenever a
local MAC address is added or deleted during operation. PAC entries
for local addresses are not subj ect to aging and remain in the PAC until

explicitly deleted.

3. An inbound packet is received with a SA not already in the

PAC and PCU is posted to the central engine controller CEC.
PAC entries are deleted when:

1. An inactive address is aged out by the Bridge DPM

maintenance function.

-83-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

2. The Bridge DPM Server issues a CONFIG message when a

local address is deleted.

3. The Bridge DPM Server issues a CONFIG message to flush
entries in the PAC in response to a user request or as a result of

topology change detected by STP.

Eniries in the PAC are refreshed by periodically issuing queries (PCQs) to the
central bridge routing table on the CEC. A PACE is refreshed (updated) when a PCR
is posted to the Bridge DPM by the Bridge DPM Server on the CEC in response to a
PCQ.

Source Address SA learning and refresh are handled in the system as follows.

Source address learning occurs in the Bridge DPM when new SAs are
encountered in received inbound packets. Refresh is used to prevent previously
learned active (i.e. transmitting) stations from aging out of the Bridge DPM cache and
the central bridge routing table on the central processor. Source address learning and
refresh is not applied to outbound packéts.

SA learning and refresh for inbound packets is performed by looking up the
SA in the PAC. SA refresh is performed if an entry already exists in the PAC for the
SA. It involves updating the age flag in the PACE for the SA. '

SA learning is performed if no PAC entry exists for the SA. It involves
sending a PCU message from the Bridge DPM to the central processor indicating the
location (port) of the SA. A PCU message is not generated for each new SA
encountered. Instead, the new SA is added to a PCU message buffer. The PCU is
sent to the central processor asynchronously by a maintenance function when a timer
expires. This allows batches of SAs to be placed in a single PCU message.

A check is also made to determine if the packet was tagged as
BDPM_LEARN_SA (in a driver level filter function described below). If so, the
packet is discarded since it is a local traffic packet that was forwarded to the Bridge

DPM solely for the purpose of SA learning.

-84 -

10

IS5

20

25

30

WO 96/35988 PCT/US96/06562

The protocol address cache maintains entries in three states, including a fresh
state, a stale state, and a time out state. A timer based protocol cache management
system is implemented, in which a fresh entry in the cache remains fresh as long as it
is being used. Ifit is not used for an interval, such as 4 or 5 seconds, then it
transitions to the stale state. If an entry in the stale state remains unused for 20
seconds, it is marked invalid. After 20 seconds of unuse in the stale state, then the
entry is marked invalid. If an access occurs which relies on a stale cache entry, the
access will utilize the stale entry, and then the cache management system will forward
arequest to the central processor to refresh the entry. If the refresh is received, then
the cache entry is moved back to the fresh state. The time intervals utilized for a
given protocol address cache vary depending on the traffic in a particular system
having the cache. Thus, for some protocol types, longer or shorter intervals may be
utilized for the transition from fresh to stale, or from stale to invalid. These intervals
should be optimized for a particular implementation.

A rate limiting mechanism is used to limit the rate at which PCU messages are
posted to the central processor. The rate limiting mechanism is needed to prevent the
central processor from being flooded out with PCUs from the Bridge DPMs following
some LAN topology transition.

A PACE is created for each new SA encountered. The PACE state is set to
indicate that a PCU has been posted to the central processor. This state is used to
prevent additional PCUs for the same address from being posted to the central
processor. The PACE is not used to forward data packets until a PCQ/PCR exchange
between the II/O and central processor complet.es. New SA PACE:s are not created
while PCU generation is inhibited by the PCU rate limiting mechanism.

A driver-level packet filter function is implemented as follows.

The Bridge DPM driver-level packet filter function, bdpm_drvr_filter. is
called by the II/O interface driver for each received packet. The bdpm_drvr_filter
function will be called by the Ethernet (or other) LAN Driver.

The bdpm_dvr_filter function is invoked by BEMD for each received packet
as soon as the packet's destination address DA and SA have been ready from the

controller receive FIFO. Its primary purpose is to perform driver-level bridge filtering

-85 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

by returning a filter or forward indication to driver. This allows the driver to filter
local traffic packets by issuing a flush command to the controller without reading the
entire packet from the FIFO.

For packets to be forwarded to DLL Demusx, a value is returned which is used
by driver to tag the received packet. This value is used later by the DLL demux to
determine how received packets should be processed and in sorhe cases it contains the
destination port number for packets to be bridged. The appropriate return value is
determined by looking up the DA in the Bridge DPM PAC.

The bdpm_dvr_filter function also performs bridge age refreshing for local
traffic packets which are filtered by driver. It is necessary to do bridge age refreshing
within bdpm_dvr_filter for local traffic packets to prevent aging out PAC entries for
stations that only generate local traffic for extended periods. Bridge age refreshing is
performed by setting an "active" bit in PACE for the SA and incrementing a per-port
filtered packet counter.

SA learning and bridge age refreshing for packets which are forwarded by
driver are not performed within bdpm_dvr_filter. Instead, it is deferred until the
packets are received by the Bridge DPM. This approach require that some local
traffic packets are "leaked" (forwarded) to the Bridge DPM solely for the purpose of
SA learning. These are the local traffic packets containing an SA which needs to be
learned (no PACE exists for the SA).

The rationale or deferring SA learning until packets reach the Bridge DPM is:

1. It results in only learning SAs from bridged packets and not from
routed packets. |
2. Optimum performance is not required while learning new SAs so the

additional overhead in leaking some local traffic for SA learning is insignificant.

3. Optimizations can be realized by performing learning and bridge age
refresh based on batches of packets.

4. Overhead incurred within the bdpm_dvr_filter function should be
mim'rrﬁzed since it runs in an interrupts context (SA learning requires creating new
PAC entries and sending PCU (Protocol Cache Update) messages to the central

processor).

- 86 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

All bdpm_drvr_filter function return values are listed below:

1. BDPM _FILTER
Local traffic packet to be filtered by BEMD.

2. BDPM_LOCAL_HOST
Unicast packets with a DA containing one of the bridge/router's local AMC
addresses (packets addressed to the bridge/router itself). These are either packets to

be routed or end system packets directed to the bridge/router.

3. <bridge dest port>

<bridge_dest_port> is returned for packets to be bridged when the DA is in the
PAC. It contains the actual destination port number the packet should be forwarded
to. This allows the Bridge DPM to forward the packet without looking up the
destination in the PAC.

4. BDPM_MULTICAST
All packets with the multicast address bit set in the DA. This includes both

multicast and broadcast packets.

5. BDPM_UNKNOWN_DA

Unicast packets containing a DA which is not in the PAC or a DA which is in
the PAC but does not have a valid port associated with it (occurs while waiting for a
response to query to locate the DA). The SA may or may not be in the PAC. These

are packets to be bridged but the destination is not yet known.

6. BDPM_LEARN SA
Local traffic packets where no PACE exists for the SA or a PACE exists for
the SA but the source port in the PACE doesn't match the source port the packet was

received on (occurs when station moves from one port to another). These packets are

-87-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

passed to the bridge DPM solely for the purpose of SA learning and they are
discarded after the SA has been learned.

7. BDPM_EXCEPTION

Unicast packets where a PACE with a valid port exists by the destination
media type differs from the source media type. These packets require translation (e.g.
Ethernet to FDDI) and are forwarded to the central processor for processing as
exception ‘packets. It is also returned if the destination is an IOM serial port, and the
WAN protocol is SMDS or X.25.

The BDPM inbound receiver is implemented as follows.

The BDPM inbound receiver is invoked by inbound demultiplexer IBD to
receive batches of packets from the local II/O ports. A separate receive function is
used for unicast and multicast batches.

Three different pairs of multicast and unicast receive functions are supported:

L. bdpm_rcv_ibd_unicast and bdpm_rcv_ibd_mcast; normal receive

functions used when filtering and debug processing not active.

2. The appropriate unicast/multicast receive function pair is selected
when the BDPM Server calls the snl_registerdpm_tag function on the central

processor.

3. When the debug or filter versions of the receive functions are active, all
packets received by the unicast and multicast receive functions are passed to the
central processor without being processed by the Bridge DPM. The filtering receive
path is used whenever mnemonic or source and destination address bridge security
filtering is enabled. It forces all packets received by the Bridge DPM to be processed
by the central processor as exception packets since filtering is not supported within
the II/O card. The debug receive path is only used to facilitate debugging. It allows
the Bridge DPM to essentially be disabled.

-88-

10

15

20

25

30

WO 96/35988 - PCT/US96/06562

The normal inbound receive path is used when filtering and debug mode are
inactive. It is described in detail below.

Normal receive path unicast packet handling for the system is done as follows.

Unicast packets in the normal receive path are received by the
bdpm_rcv_ibd_unicast function. Disposition of unicast packets is based on the packet

tag value applied by the Bridge DPM driver-level packet filter function:

1. <bridge_dest_port> -- Directly forwarded to the destination port
indicated.

2. BDPM_EXCEPTION -- Forwarded to the central processor for
processing.

3. BDPM_LEARN_SA -- Source address learning is performed and then
the packet is discarded.

4. BDPM_UNKNOWN_DA -- A PACE entry is created for the DA and
the packet is queued to the PACE, a PCQ is posted to the central processor.
Additional packets received for the same DA while waiting for the PCR from the
central processor in response to the PCQ are also queued to the PACE.

Packet disposition is based on the PCR returned as follows:

1. Destination Found

Packet is forwarded to the destination port if translation is not required
otherwise it is forwarded to the central processor for processing. The PACE is
updated so additional packets received from the same DA will be tagged as
<bridge_dest_port> or BDPM_EXCEPTION by the driver-level filter function.

2. Destination Not Found "

Packet is an unknown unicast and is flooded using the same technique
used for multicast packets described below. The PACE entry is also deleted so that
additional packets for the same DA will result in another PCU.

3. No PCR Received

This occurs if either the PCQ or PCR is lost. The PACE entry will
time-out and the packet(s) queued to PACE are discarded. The PACE entry is also

deleted so that additional packets for the same DA will result in another PCU.

-89 -

10

15

20

25

30

WO 96/35988 _ PCT/US96/06562

Normal receive path multicast data packet handling is implemented as
follows.

Inbound multicast data packets in the normal receive data path are received by
the bdpm_ibd_rcv_mcast function. Packet flooding, is applied to all inbound multicast
and unknown unicast packets received in the normal receive path. Flooding is

performed as follows:

1. A copy of the packet is forwarded to each of the local II/O ports

(excluding the one it was received on).

2. A single copy of the packet is forwarded to central
processor TB, which floods the packet to all of the active IOM ports,

performing translation as required.

3. A single copy of the packet is forwarded to each of the other
Bridge DPMs on the other II/O cards in the system without performing translation.
The receiving Bridge DPM then floods the packet to all the local II/O ports.

The BDPM outbound receiver is implemented as follows:

Outbound bridged data packets are received from the Corebus via IMS and
forwarded to the local II/O ports. Source address learning is never applied to
outbound packets received by the Bridge DPM. The Bridge DPM directly receives
the following packet types at the bdpm_outbozind_rcv function:

1. multicast packets from another I1/O or the central processor.
2. unknown unicast packets from another II/O or the central
processor.

Each packet received at bdpm_outbound_rcv is flooded to all local II/0 ports
except the one it was original received on by passing multiple copies of the packet to
the common IBD transmit function ibd_dpmZ2port_xmit. The IBD transmit routine

updates the statistics and queues the packets for transmission on the II/O local ports.

-90 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

The following packet types bypass the Bridge DPM and are passed directly to
the IBD function ibd_cec2port xmit where they are queued for transmission without
updating statistic (statistics are counted on the CEC):

1. known unicast packets from IOM ports.

2. unicast exception packets.

Known unicast packets from other IT/Os in the system bypass the Bridge DPM
and are received directly by the common IBD receive function ibd_ims2port_xmit
where statistics are updated and the packets are queued for transmission to the II/O

ports.

Spanning Tree Protocol support is implemented as follows.

Spanning Tree Protocol (STP) processing is not performed by the Bridge DPM
or Bridge DPM Server on the central processor. Instead, all STP processing is
performed by the existing STP component on the central processor. The Bridge DPM
Server monitors the STP port state (e.g. LISTENING, LEARNING, FORWARDING,
BLOCKING) of the II/O local ports and posts CONFIG messages to the bridge DPMs
to inform them of the current port state.

STP BPDUs received on II/O local ports are passed by IBD to the Default
DPM and then forwarded on the STP component on the central processor bypassing

the Bridge DPM and Bridge DPM Server.

Bridge DPM server functionality includes the following.

The primary purpose of Bridge DPM Server is to provide centralized support
on the central processor for the Bridge DPMs running on the II/O cards. Itis
responsible for:

1. Distributing configuration and status information to the
bridge DPMs. |

2. Receiving PCQ messages from the Bridge DPMs and
responding within PCRs.

-9] -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

3. Receiving PCU messages from the Bridge DPMs to
learn/refresh source addresses of stations attached to II/O local ports. _
4. Accessing debug information maintained by the Bridge DPMs.

Configuration and status information distribution occurs as follows.
Configuration and status information is distributed by the Bridge DPM Server
to the Bridge DPMs as part of the Bridge DPM initialization process. The Bridge
DPM Servér receives an ICM_PROCESS_UP message when each I1/O card with a
Bridge DPM initializes. The Bridge DPM Server also updates configuration /status
information on the bridge DPMs whenever changes occur during operation.
The following configuration and status information is distributed the Bridge
DPMs:
1. port status: disabled, listening, learning, forwarding, blocking
(I/O local ports only).
2. bridge control: Bridge or NoBridge, Forward or NoForward,
Learn or NoLearn, et cetera.
3 Local MAC addresses.
4, bridge filter state information.
5 flush entries in PAC.
6 per-port broadcast limit information.
7. current status of all slots.

Port status information is distributed as follows.

The Bridge DPM Server is responsible for distributing port state information
to the Bridge DPMs and purging obsolete information in the Bridge DPM PACs.
Within the central processor, Spanning Tree Protocol port state transitions are
reported by calling a tb_control function. The tb_control function informs the Bridge
DPM Server whenever a port state transition occurs for an II/0 port and whenever an
IOM port transitions to BLOCKING or DISABLED state.

When the Bridge DPM server receives a port state transition indication from

th_control for an I1/0 port, the new port state is passed to the Bridge DPM for the

-92.

10

15

20

25

30

WO 96/35988 PCT/US96/06562

II/O port by issuing a CONFIG message. In addition, the Bridge DPM Server issues a
flush PAC CONFIG message to all Bridge DPMs whenever a port transition to
BLOCKING or DISABLED state. This ensures the Bridge DPM PACs are purged of
obsolete information.

Local MAC address distribution oceurs as follows.

The Bridge DPM Server is responsible for distributing the local MAC
addresses to the Bridge DPMs. The local addresses are distributed to each Bridge
DPM in fhe system as part of the Bridge DPM initialization process. Additionally,
updates are distributed to all Bridge DPMs whenever a local address is changed. An
example of a local MAC addréss when can change during operation is the special
MAC address used by DECNET routing.

The local MAC addresses are distributed by the Bridge DPM Server to the
Bridge DPMs in CONFIG messages. Multiple addresses can be packet into a single
CONFIG message. Each address entry in a CONFIG message contains the following
information:

1. action: add or delete address
2. MAC address

The Bridge DPM creates a PACE for each local MAC address in a received
CONFIG message. These addresses are not subject to aging from the PAC and are
only removed from the PAC when explicitly deleted by a CONFIG message from the
Bridge DPM Server.

Bridge filter state information is distributed as follows.

The current bridge filtering state information for both mnemonic filtering and
source and destination address bridge security filtering is conveyed to the Bridge
DPMs by selecting the normal or filter versions of the unicast and multicast receive
functions for the BDPM Inbound Receiver by calling the snl_register dpm_tag

function with the following tag values:

1. IBD BDPM_RCV_UNICAST and IBD_BDPM_RCV_MCAST to

select the normal receive functions

-03 .

10

15

20

25

30

WO 96/35988 PCT/US96/06562

2. IBD_BDPM_RCV_UNICAST FILTER and
IBD_BDPM_RCV_MCAST _FILTER to select the filter versions of the receive
functions.

All inbound data packets (unicast and multicast) received by the bridge DPM
are treated as exception packets and passed to the central processor processing when
the filter version of the receive functions are active.

Slot status information is distributed as follows.

The current slot state information is distributed to the Bridge DPMs. The
Bridge DPM Server is informed of the slot status by ICM_PROCESS_UP and
ICM_PROCESS_DOWN messages. The Bridge DPMs cause the slot state
information to control flooding of multicast and unknown unicast bridged data
packets to other I1/Os.

A generic slot status function may be implemented on the [I/0s. It would
directly inform the DPMs about the current status of all slots in the system. Slot
status distribution by the Bridge DPM Server to the Bridge DPMs will not be
necessary if the generic function is implemented.

Processing of PCQ requests from bridge DPMs occurs as follows.

The Bridge DPM queries the central bridge routing table for the location of
MAC addresses by sending the PCQ messages to the Bridge DPM Server. Upon
receiving a PCQ, the Bridge DPM Server looks up the MAC address(es) specified in
the PCQ in the central bridge routing table maintained on the central processor and
posts a PCR in response to the PCQ. If an address specified in the PCQ is found in
the central bridge routing table, the destination port number, WAN address if any, and
media type is returned in the PCR. Upon receiving the PCR, the Bridge DPM updates
the PACE and forwards the queued packet(s).

If an address contained in a PCQ is not found in the central bridge routing
table, the port field in the PCR is set to UNKNOWN. The UNKNOWN is returned in
the PCR, the Bridge DPM will flood the packet and delete the PACE for the address.
Deleting the PACE causes a new PCQ to be posted by the Bridge DPM to the Bridge

DPM Server when another packet for the same destination is received.

-04 -

10

15

20

25

30

‘WO 96/35988 PCT/US96/06562

SA learning and age refresh in central bridge routing table is handled as
follows.

The Bridge DPM forwards learned MAC addresses to the bridge DPM Server
in PCU messages. A single PCU can contain several learned addresses. Each address
entry in the PCU message contains the MAC address and source port number.

The Bridge DPM Server creates an entry in the central bridge routing table for
each learned MAC in the PCU message from the Bridge DPM. These entries are
subject to the normal aging process. The Bridge DPMs periodically posts PCU
messages for active addresses in the PAC learned from the local II/O ports. This
causes the Bridge DPM Server to refresh the age of the corresponding entries in the
central bridge routing table. The interval for periodically generating PCU messages
from the DPMs is less than the time required to age out an entry in the central bridge

routing table which prevents entries from being aged out.

V. EXTENSION TO LAN OR WAN BACKBONE

Fig. 35 illustrates an extension of the present invention to a system which
replaces the high speed parallel bus of Fig. 1 with a local area network or wide area
network backbone generally 2000. For instance, the backbone 2000 might be an
ATM network coupled to a variety of local area networks using virtual circuits, such
as discussed in the document published by the ATM Forum entitled LAN Emulation
Over ATM Specification - Version 1.0. Thus, a plurality of input/output processors,
such as IOP 2001, IOP 2002, and IOP 2003 are coupled using the interprocessor
messaging systems IMS 2004 through IMS 2006 respectively. Using the backbone
physical layer 2000, the IMS communicates among the IOPs using the message
passing protocol as described above. Coupled to the WAN or LAN backbone 2000, is
at least one router in the embodiment shown. A first router labeled Router A 2007 is
coupled to the backbone through the interprocessor messaging system 2008. Also, a
second router 2009 labeled Router B in the figure; is coupled to the backbone through
the interprocessor messaging system 2010. Each of the input/output processors 2001
through 2003 and the routers 2007 and 2009 in the figure include a plurality of

network connections which provide interfaces to networks which use the router

-95-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

resources distributed amongst the processors. More than one router is included in the
system. This way, the IOP processors 2001 through 2003 can contain some fault
tolerance. For instance, if Router A is down, a processor may retry a given request to
the router by sending it to Router B. A variety of protocols can be used to optimize
performance of the system. For instance, the IOP might use Router A for a first
transaction and Router B for a second transaction, and constantly change between
routers. Alternatively, each IOP could be assigned a primary router which it relies
upon, unless a catastrophic failure in the primary router occurs. In which case, its
requests are redirected to the secondary router.

Because of the interprocessor messaging system based on the latency and
reliability classes of the present invention, the scalable internetworking processes are
achieved using the LAN or WAN backbone, which suffers lost packets from time to
time. Data in transit is ensured to receive the best available throughput across the

backbone 2000, while control messages and the like are given higher priority, and

managed to ensure greater reliability than are the high throughput, data-in-transit

messages. This way, the overhead associated with high reliability type messages is
not extended to the data-in-transit, providing substantial improvements in overall

system throughput across the backbone 2000.

VI. CONCLUSION

Accordingly, the present invention provides a high performanée family of
bridge/routers which supplies transparent communication between all types of
interfaces within a single chassis, integrating Token Ring, Ethernet, FDDI, ATM, and
WAN links. The architecture of the present invention delivers the power of single or
multiprocessor options, with a high speed backplane bus for consistently fast
throughput across all interface ports.

These resources allow for selecting the most efficient path between any two
locations, automatically re-routing around failures, solving broadcast and security
problems, and establishing and administering organizational domains.

The high speed, scalable networking framework according to the present

invention encompasses all segments of the network -- the workgroup, the building or

-96 -

10

15

20

25

WO 96/35988 PCT/US96/06562

campus backbone, and the remote and personal offices connected over wide area
links. It allows these segments to be administered from a centralized management
system. The end result is an enterprise wide network that is suited to the way in
which companies conduct business. The benefits of the high speed scalable
networking strategy include expertise can be brought together quickly to deliver
projects or products efficiently and effectively. Also, custom applications can be
developed and more cost-effectively. The cost of incremental computing power drops
dramatically because of the scalable nature. Finally, the investment in current
equipment and technology is protected while paving the way for future technologies.

Thus, the scalable platfonn of the present invention provides for
interconnection of a full function routing engine with a wide variety of input/output
modules, including other full function engines, intelligent I/O modules which perform
a subset of the routing decisions, and basic I/O modules which have no local routing
capability and rely on the centralized full function routers for such decisions. All of
these elements are interconnected by a high speed backplane bus utilized efficiently
according to logical layer interconnections for the intelligent I/O processors, and
physical layer interconnection for the basic I/O modules without processing facilities
necessary for managing the logical links. Thus, the architecture of the present
invention supports growing complexity of I/O modules, as well as basic single port
connections that can be used for incremental growth, and backward compatibility in
the systems.

The foregoing description of a preferred embodiment of the invention has been
presented for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise forms disclosed. Obviously, many
modifications and variations will be apparent to practitioners skilled in this art. It is
intended that the scope of the invention be defined by the following claims and their
equivalents.

What is claimed is:

-97.-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

CLAIMS

1. An apparatus of interconnecting a plurality of networks, comprising:

a plurality of input/output systems, having input/output ports for physical
connections to a diversity of networks, said input/output systems having a plurality of
variant sets of processing resources;

an interprocessor messaging system, coupled with the plurality of input/output
systems, including a logical layer and a physical layer, for transferring data-in-transit
and control signals among the plurality of input/output systems; and

distributed processing services in the plurality of input/output systems,
including for a given routed protocol a central routing resource and a distributed
protocol module which supports a subset of routing decisions for the given protocol
and relies on communications across the interprocessor messaging system with the

central routing resource for a balance of routing decisions for the given protocol.

2. The apparatus of claim 1, including a central routing processor coupled

to the interprocessor messaging system which includes the central routing resource.

3. The apparatus of claim 1, including a plurality of central routing
processors coupled to the interprocessor messaging system, each including central

routing resources.

4. The apparatus of claim 1, wherein the central routing resource includes
resources for communicating with input/output systems at the physical layer of the
interprocessor messaging system for input/output systems without logical layer

processing capability.

5. The apparatus of claim 1, wherein the interprocessor messaging system
supports messages among the plurality of input/output systems according to a

plurality of classes having different latency and reliability characteristics.

-98-

10

15

20

25

30

WO 96/35988 PCT/US96/06562

6. The apparatus of claim 1, wherein the central routing resource includes
a routing table for the given protocol, and the distributed protocol module includes a

routing table cache maintained through the interprocessor messaging system.

7. The apparatus of claim 1, including a central routing processor coupled
to the interprocessor messaging system which includes:

the central routing resource;

resources for communicating with input/output systems at the physical layer of
the interprocessor messaging system for input/output systems without logical layer
processing capability; and

wherein the interprocessor messaging system supports messages among the
plurality of input/output systems and the central routing processor according to a

plurality of classes having different latency and reliability characteristics.

8. The apparatus of claim 7, wherein the central routing resource includes
a routing table for the given protocol, and the distributed protocol module includes a

routing table cache maintained through the interprocessor messaging system.

9. The apparatus of claim 1, wherein the backbone communication

medium comprises a local area network.

10. The apparatus of claim 1, wherein the backbone communication

medium comprises a wide area network.

11. The apparatus of claim 1, wherein the backbone communication
medium comprises an asynchronous transfer mode network executing LAN

emulation.

12. An apparatus for interconnecting a plurality of networks through
network interface systems having different degrees of protocol processing resources,

comprising:

-99 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

a router processor having processing resources for managing multi-protocbl
routing of packets received from the plurality of networks, including protocol
processing resources serving the different degrees of protocol processing resources in
the network interface systems;

a bus having a plurality of bus slots for network interface systems and coupled
to the router processor providing a data path among the router processor and network
interface systems connected in the bus slots;

a bus communication system run in the router processor and network interface
systems in the bus slots supporting flow of data-in-transit and control messages
among the router processor and the bus slots across the bus;

wherein the protocol processing resources provide centralized protocol
processing for packets forwarded from a particular network interface system which
receives a packet needing processing for a protocol not supported by the particular
network interface system, and provide distributed protocol processing for protocols
partially supported by network interface systems in response to requests from network

interface systems.

13. The apparatus of claim 12, wherein the centralized protocol processing
includes support for per-packet routing and header processing for at least one protocol

run in the plurality of networks.

14, The apparatus of claim 13, wherein the distributed protocol processing
includes management of routing tables in the router processor and support of routing
table caches in network interface systems for at least one protocol run in the plurality

of networks.
15. The apparatus of claim 12, wherein the communications system

supports transfer of data-in-transit and control messages among the router processor

and the plurality of bus slots with reliability classes.

- 100 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

16. The apparatus of claim 12, wherein the communications system
supports transfer of data-in-transit and control messages among the router processor

and the plurality of bus slots with latency classes.

17. The apparatus of claim 12, wherein the router processor includes
shared memory resources accessible through the bus communication system by the

network interface systems in the plurality of slots, for holding data-in-transit.

18. An apparatus for interconnecting a plurality of networks, comprising:

~a backbone communicaﬁon medium having a physical layer protocol;

a central routing processor coupled to the backbone;

a plurality of input/output modules coupled to the backbone and in
communication with the central routing processor according to the physical layer
protocol, the input/output modules having respective sets of physical network
interfaces, the set for a given input/output module having one or more members;

an interprocessor messaging system in a logical layer above the physical layer
protocol executed in the central routing processor and in a set of one or more
intelligent input/output modules within the plurality of input/output modules; and

distributed protocol services executed over the interprocessor messaging
system, including a distributed protocol module in at least one of the plurality of
input/output devices which makes routing decisions supported by the distributed
protocol module, and a distributed protocol module server in the central routing
processor which in response to queries from the distributed protocol module makes

routing decisions on behalf of the distributed protocol module.

19. The apparatus of claim 18, wherein a particular input/output module in
the plurality coupled to the backbone includes resources for signalling the central
routing processor about events across the physical layer protocol, and including:

centralized routing services executed in the central routing processor over the
physical layer protocol in response to events on the particular input/output module

which makes routing decisions.

- 101 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

20. The apparatus of claim 18, wherein the distributed protocol services
include resources for performing transparent bridging in at least one the of the

input/output modules.

21. The apparatus of claim 18, wherein the distributed protocol services
include resources for performing internet protocol (IP) routing in at least one of the

input/output modules.

22. The apparatus of claim 18, wherein the interprocessor messaging
system includes resources for transferring control messages and network packets-in-
transit among the central routing processor and input/output modules in the set of

intelligent input/output modules.

23. The apparatus of claim 18, wherein the distributed protocol module
including a protocol routing table cache, and the distributed protocol module server
includes resources for maintaining a central protocol routing table and supporting the

protocol routing table caches.

24. The apparatus of claim 18, wherein the interprocessor messaging
system supports communication among the central routing processor and the plurality

of input/output modules with messages in a plurality of latency classes.

25. The apparatus of claim 18, wherein the physical layer protocol
supports communication among the central routing processor and the plurality of

input/output modules with messages in a plurality of latency classes.
26. The apparatus of claim 18, wherein the interprocessor messaging

system supports communication among the central routing processor and the plurality

of input/output modules with messages in a plurality of reliability classes.

- 102 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

27. The apparatus of claim 18, wherein the physical layer protocol
supports communication among the central routing processor and the plurality of

input/output modules with messages in a plurality of reliability classes.

28. The apparatus of claim 18, including a second central routing processor

coupled to the backbone, including a second distributed protocol module server.

29. The apparatus of claim 18, wherein the backbone communication

medium comprises a local area network.

30. The apparatus of claim 18, wherein the backbone communication

medium comprises a wide area network.

31. The apparatus of claim 18, wherein the backbone communication
medium comprises an asynchronous transfer mode network executing LAN

emulation.

32. The apparatus of claim 18, wherein the backbone communication

medium comprises a high speed parallel bus.

33. A method of transferring data on a communication medium from a
source processor to a destination processor, the data including messages of a first
transmit latency class and messages of a second transmit latency class, comprising:

queuing messages of the first transmit latency class in the source processor
according to a first transmit priority rule in a first transmit queue;

queuing messages of the second transmit latency class in the source processor
according to a second transmit priority rule in a second transmit queue; and

sending a particular message selected from the first and second transmit
queues in the source processor according to a queue priority rule to the destination
processor without establishing connection with the destination processor for the

particular message in advance of sending the particular message.

- 103 -

10

15

20

WO 96/35988 . PCT/US96/06562

34. The method of claim 33, wherein the queue priority rule provides for
sending messages in the second transmit queue prior to sending any message in the

first transmit queue, so long as a message resides in the second transmit queue.

35. The method of claim 33, wherein the first transmit priority rule

comprises a first-in-first-out rule.

36. The method of claim 33, wherein the second transmit priority rule

comprises a first-in-first-out rule.

37. The method of claim 33, wherein the step of queuing messages of the
first transmit latency class includes:

storing commands in the first transmit queue, the commands identifying the
messages to be transferred across the medium, wherein the step of sending includes

executing the commands.

38. The method of claim 37, wherein messages of the first transmit latency
class include one or more fragments of data, the fragments of data being stored in the
source processor in identified locations, and the step of storing commands includes

storing a command in the first transmit queue for each fragment of a message.

39. The method of Claim 37, wherein the commands include:

pointers to memory locations in the source processor where the

-104 -

WO 96/35988 PCT/US96/06562

10

15

20

25

30

messages to be transferred are stored, and

destinations addresses for the messages to be transferred.

40. The method of claim 33, wherein messages of the first transmit latency
class include one or more cells of data, the cells of data having a data length specified
according to characteristics of the communication medium, and the step of sending

includes segmentation of messages into cells.

41. The method of Claim 33, wherein the messages include:
pointers to memory locations in the source processor where the messages to be
transferred are stored, and

destinations addresses for the messages to be transferred.

42. The method of claim 33, including:
receiving at the destination processor messages addressed to the destination
processor; and

storing the received messages in destination processor memory according to a

‘receive priority rule, the receive priority rule providing for storing messages of a first

reliability class if a first threshold amount of storage is available in destination
processor memory, and storing messages of a second reliability class if a second
threshold amount of storage is available in destination processor memory, wherein the

first threshold is larger than the second threshold.

43. The method of claim 42, including:

providing a plurality of receive buffers in destination processor memory;

maintaining a list of free receive buffers; and wherein the step of storing
includes

loading at least a portion of a received message intd a free receive buffer
identified by the list of free receive buffers; and wherein the receive priority rule

includes dropping messages of the first reliability class if the list of free receive

- 105 -

WO 96/35988 PCT/US96/06562

buffers indicates that less than the first threshold amount of storage is available in the

receive buffers.

44, The method of claim 43, wherein the receive priority rule includes
5 dropping fnessages of the second reliability class if the list of free receive buffers
indicates that less than the second threshold amount of storage is available in the

receive buffers.

45. The method of claim 44, wherein the receive priority rule includes
10 dropping messages of a third reliability class, if the list of free receive buffers

indicates that no storage is available in the received buffers.

46. The method of claim 33, including:
providing in the source processor, a code in messages being transmitted which
15 indicates one of first and second reliability classes;
receiving at the destination processor messages addressed to the destination
processor; and
storing the received messages in destination processor memory according to a
receive priority rule, the receive priority rule providing for storing messages of the
20 first reliability class if a first threshold amount of storage is available in destination
processor memory, and storing messages of the second reliability class if a second
threshold amount of storage is available in destination processor memory, wherein the

first threshold is larger than the second threshold.

- 106 -

WO 96/35988 PCT/US96/06562

47. The method of claim 33, including:

providing in the source processor, a code in messages being transmitted which
indicates one of first and second receive latency classes;

5 réceiving messages in a destination processor;

queuing messages of the first receive latency class for handling at the
destination processor according to a first receive priority rule in a first receive queue;

qﬁeuing messages of the second receive latency class for handling at the
destination processor according to a second receive priority rule in a second receive

10 queue; and |
processing messages in the first and second receive queues at the destination

processor according to a receive queue priority rule.

48. The method of claim 47, wherein the receive queue priority rule
15 provides for processing messages in the second receive queue prior to processing any
message in the first receive queue, so long as a message resides in the second receive

queue.

49. The method of claim 44, wherein the first receive priority rule

20 comprises a first-in-first-out rule.

50. The method of claim 44, wherein the second receive priority rule

comprises a first-in-first-out rule.
25 51. The method of claim 33, wherein the communication medium
comprises a bus, and the step of sending includes transferring messages across the bus

in a burst mode transfer.

52. The method of claim 33, wherein the communications medium

30 comprises a local area network.

- 107 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

53. The method of claim 33, wherein the communications medium

comprises a wide area network.

54. The method of claim 33, wherein there are a plurality of types of
messages, and wherein said first transmit queue has a limited size, and wherein said
step of queuing messages of the first transmit latency class includes dropping
messages of a first type, if less than a first threshold number of entries is available in

the first transmit queue.

55. A method of transferring data on a communication medium from a
source processor to a destination processor, the data including messages of a first
reliability class and messages of a second reliability class, comprising:

providing in the source processor, a code in messages being transmitted which
indicates one of the first and second reliability classes;

sending a particular message from the source processor to the destination
processor without establishing connection with the destination processor for the
particular message in advance of sending the particular message;

receiving at the destination processor messages addressed to the destination
processor; and

storing the received messages in destination processor memory according to a
receive priority rule, the receive priority rule providing for storing messages of the
first reliability class if a first threshold amount of storage is available in destination
processor memory, and storing messages of the second reliability class if a second
threshold amount of storage is available in destination processor memory, wherein the

first threshold is larger than the second threshold.

56. A method of transferring data on a communication medium from a
source processor to a destination processor, the data including messages of a first
latency class and messages of a second latency class, comprising:

providing in the source processor, a code in messages being transmitted which

indicates one of a first and second receive latency classes;

- 108 -

WO 96/35988 PCT/US96/06562

sending a particular message from the source processor to the destination
processor without establishing connection with the destination processor for the
particular message in advance of sending the particular message;

receiving at the destination processor messages addressed to the destination

5 processor;

queuing messages of the first receive latency class for handling at the
destination processor according to a first receive priority rule in a first receive queue;

qﬁeuing messages of the second receive latency class for handling at the
destination processor according to a second receive priority rule in a second receive

10 queue; and |
processing messages in the first and second receive queues at the destination

processor according to a receive queue priority rule.

57. An apparatus for transferring large amounts of input/output data among
15 a plurality of processors having respective local memories, comprising:

a bus interconnecting the plurality of processors;

a plurality of bus interface devices, coupled to the bus and to corresponding
processors in the plurality of processors, a first bus interface device in the plurality of
bus interface devices which originates a transfer without first obtaining permission to

20 transfer to a destination device including

a command list storing a list of commands which characterize transfers of data

from local memory across the bus,

a bus data buffer which buffers data subject of a command being executed

between local memory and the bus,
25 and a second bus interface device in the plurality of bus interface devices which
receives a transfer including |

a free buffer list storing pointers to free buffers in local memory into which

data may be loaded from the bus,

a receive list storing pointers to buffers in local memory loaded with data from

30 the bus, and

- 109 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

an inbound data buffer which buffers data subject of a transfer addressed to the

second processor between the bus and free buffers in local memory.

58. The apparatus of claim 57, wherein the command list includes a first
high priority command list and a second lower priority command list for managing

latency of higher priority commands.

59, The apparatus of claim 57, wherein the first bus interface device
includes control logic which manages data transfer into and out of the bus data buffer
for messages, including data, identified by commands in the command list, to pack
data to compose message transfer cells for messages, the message transfer cells
including a portion of the data of the message, and to drive the message transfer cells

on the bus in burst mode.

60. The apparatus of claim 59, wherein the second bus interface device
includes control logic which manages data transfer into and out of the inbound buffer,
including receiving burst transfers of message transfer cells from the bus, loading free
buffers in local memory from the inbound buffer with message transfer cells, and

updating the receive list.

61. The apparatus of claim 60, wherein the receive list includes a first
higher priority receive list and a second lower priority receive list for managing

reliability and throughput of transfers.

62. The apparatus of claim 60, including logic which monitors the free list,
a watermark parameter which indicates an amount of free buffer resources, and
watermark logic which causes lower priority messages to be dropped when the free
list indicates that free buffer resources in local memory fall below the watermark

parameter.

- 110 -

WO 96/35988 PCT/US96/06562

10

15

20

25

30

63. The apparatus of claim 62, including a second watermark parameter
indicating a smaller amount of free buffer resources, and second watermark logic
which cause higher priority messages to be dropped when the free list indicates that
free buffer resources in local memory fall below the second watermark parameter, to

prevent overflow of the free buffer resources.

64. The apparatus of claim 59, wherein the plurality of processors have
respectivé slot numbers on the bus, and the commands indicate a destination of a

message using the slot number.

65. The apparatus of claim 64, wherein the second bus interface device
includes control logic with a plurality of channels which manages data transfer into
and out of the inbound buffer, including receiving burst transfers of message transfer
cells having the slot number of the local processor from the bus, assigning a message
transfer cell to a channel for the message, loading free buffers in local memory from

the inbound buffer with message transfer cells, and updating the receive list.

66. The apparatus of claim 64, including at least a second bus
interconnecting the plurality of processors, and the commands indicate a destination

using a bus identifier and a slot number.

67. The apparatus of claim 57, wherein said bus comprises a high speed

parallel bus.

68. The apparatus of claim 59, wherein the second bus interface device
includes control logic with a plurality of channels which manages data transfer into
and out of the inbound buffer, including receiving burst transfers of message transfer
cells having an identifier which maps to a channel number, and assigning message

transfer cells to a channel in response to the identifier.

- 111 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

69. The apparatus of claim 68, wherein the first bus interface device

supplies a single identifier to all message transfer cells which it transfers.

70. The apparatus of claim 69, wherein the plurality of processors have
respective slot numbers on the bus, and the identifier comprises the slot number of

the transferring device.

7. A bus interface which provides access to a bus for a local processor
having local memory, comprising:

a command list storing a list of commands which characterize transfers of data
from local memory across the bus,

a bus data buffer which buffers data subject of a command being executed
between local memory and the bus,

a free buffer list storing pointers to free buffers in local memory into which
data may be loaded from the bus,

an inbound data buffer which buffers data subject of a transfer addressed to the
local processor betweeﬁ the bus and free buffers in local memory, and

a receive list storing pointers to buffers in local memory loaded with data from

the bus.

72. The bus interface of claim 71, wherein the command list includes a
first high priority command list and a second lower priority command list for

managing latency of higher priority commands.

73. The bus interface of claim 71, including control logic which manages
data transfer into and out of the bus data buffer for messages identified by commands
in the command list to composes message transfer cells for messages, and drives the
message transfer cells on the bus in burst mode without first obtaining permission to

send to a destination on the bus.

- 112 -

10

15

20

25

30

WO 96/35988 PCT/US96/06562

74. An apparatus for transferring large amounts of input/output data among
a plurality of processors having respective local memories, comprising:

a bus interconnecting the plurality of processors;

a plurality of bus interface devices, coupled to the bus and to corresponding
processors in the plurality of processors, including a first bus interface device in the
plurality of bus interface devices which originates a transfer; and a second bus
interface device in the plurality of bus interface devices which receives a transfer, the
second bus interface device, including

a free buffer list storing pointers to free buffers in local memory into which
data may be loaded from the bus,

a receive list storing pointers to buffers in local memory loaded with data from
the bus, including a first high priority receive list and a second lower
priority receive list, and

'logic which monitors the free buffer list which causes lower priority messages

to be dropped to prevent overflow of the free buffer resources.

75. A network traffic management system, comprising:

a bus;

a plurality of processors, each including local memory, at least one network
interface, a bus interface coupled to the bus, and resources for managing the at least
one network interface and the bus interface; the bus interface including

a command list storing a list of commands which characterize transfers of data

from local memory across the bus,

a bus data buffer which buffers data subject of a command being executed

between local memory and the bus,

a free buffer list storing pointers to free buffers in local memory into which

data may be loaded from the bus,

an inbound data buffer which buffers data subject of a transfer addressed to the

second processor between the bus and free buffers in local memory,

and

- 113 -

WO 96/35988 PCT/US96/06562

a receive list storing pointers to buffers in local memory loaded with data from

the bus.

- 114 -

WO 96/35988 PCT/US96/06562

1/30

network connections
“1 A A A AN
S] |
cox _ y vy Y V¥
10P 0P IDP\ 10P 108 108 10M IOM
[T 20T TUI TTUS T TH7 T 516 T =15 T 14]
11J 13
12
(31
35 T _
hetwork/ rans
NetWork
DMA celver Connector
Mac
Chip
30
)
\32

FIG.2

S0

Network Connections p)

Console 53 AN
Por"t 51-1 51-7

48f\/ Sta LHj (PHY)[m S51-N

tus
LED's Q . i
52 -1 52-2

L@

49 ’U‘—.

UART

45 Local
._. (LaTcHES—"43 41

/

CMP1
AS‘IC 40
—11
FIG.3

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

2/30

N-0Z
J9W
NGO
69

21
i

T OId

(S)03Dauuo’ mJW_T

T
cmM

JISY
JdKW

29

105

JISV
JdNW

vm‘\\\\\

»1 Wyd3
£9 _ _
SNg 33 vjpawdaul JIsSV
(59 | - W02 d33
ldd et
L9 -
Adouwaly
2-0/ 1-0/ pa-ous | 1avn
-1 £t
2-1L THa H S.a31
SN}03S QN\\V+Lom
3)0suo)

Suoj3dauuc] HAOMIL AN

S/

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

3/30

WO 96/35988

EN G DA

S//I/
ﬁm¥

L6

(5)40323auuo) sng

\

WOad33

~_
f , P03
o] J4LNI < Yso)4
qHuzum,N 01
SR oow%
»H043.u0] < 0\ d
L Addo) 4 l:oH 03

CaHd s

] 1s3s <P

£6

Adouway
paJoys

01
re WO 201
yauoy
» JINI Juou 4
L01 o3
: \ £Eol

SUO|3.D8UU0] >UoMm3aN > 13VN _ :
5,a3in S,a3n M _
SNy 01 m:vﬁ%b ¥01 \g/ﬂ\mcﬁ
G017/ 349d 3}-40d

ajosuo] snga(

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

4/30

K|

)

ydoj

gdoj

~ | ND
\wmao. V 1doy

SOT~——

b 0300 (3Hd)Bsp

SRSIIATR ALY

'538 S33Aq 921
E43UI-JPH MS

moﬁ/l/ 3o (35d)EBsy

v Foy

9 DI

ho~4

A LI 22308 OO KA SRR Se3 SR S TR

1403S "yuvyS ﬁ#om

ARSI

801
2

o3oq (3>d)Bsy

yUoY> ‘G1.0)S

S PY0D ‘g F3ul ‘3xd X3 03 pasn Jpy MS

}Xau u|

pPJ0D 3ndino 03 X3} Joj3 anang

14

MS 031 sananb ‘uajijng aauy
S3)10WasSSVad ‘SaA|3D34 MH

pajuawbouy ‘spuas M H

“4PH MS PPV
ssaboud ‘dnxoo) ‘asuvg

P40D ‘2 43Ul UO PADU 3Hd

SUBSTITUTE SHEET (RULE 26)

WO 96/35988

2/30

PCT/US96/06562

’ ’//150
Physical Interfaces

(Eontrd/Mg{)

‘\\£ﬁ60 ¢

—158

154 Rx/Tx
152 — \
\\'HTQ HTQ {_|
HW
or 135
SW HRQ HRQ
y ' 1!
\\\ /// 1577 % \\\//ﬂ
<: Bus Tx <> <: Bus Rxgj)
(/
153> &156
FIG.8

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

6/30

6 OId

SJ84SUDU] V30 SNYaUO]

»ood 3
ou ou ou ou ou sak sak sak sak sak ubno
4333nq | 3sSn puwd
ddng nao nas Ul Pap [44N9 NADEH4NG N18344Ng NN@dldNg 112D(44ng ©ad|44ng Na>d(34ng nas(|Buiua g 4ng
punoogul | Bupidod | —pacqua | punoqui | Bupisod | Bupood Buiydod | Buisod | Buyaod | Bupsidod 03}.0p
WVasS 3Sh aady WVOsS WYAOS [3¥sSh 834y AYIAI3D0
03} aAou 44Ng ADJ| S3|UDA |03 anocuw |0} aA0U|jing ADU v /U anlanad
a)24A> 40D TSR Pm: 21242 jo
g3 Auvo J3y3o [puowwosipuouwuoa: uiBluo
¢¢dooyy (g 3ouy WOI3 M
puNogul | punoqui [puNodgind| punodu; punoginopidogdoo)| punogu) | punogul pUNOd3Nd(puUNOg}no|| uolrdaulp
padanig
\(__O—Od (Ol /uauw) (y|uuoys) <ppo Bsu (lauuoyd) O—&U_Od
g3 Auo | pgoez | 31ondxa OSK 3ONdxa | Wyas | Wvaas OSKW W3IWS OSK }sap
40D (Ol/Wwaw)y P40 o-PpPO
4ayzo - | 3pndxa| gepee 43430 | WYNAS WVOsS W3NS W3NS WVas WYasS 224N0s
NAJd JLIaM
snonJ | av3y W3WED | ADN LIWX ANOW av3y av3y JLINM LIWX adAy.
=SIWOdd g2 3 0193 OSKW 1133 W3W W3NS VWS W3NS OSK -48345Uv4y

SUBSTITUTE SHEET (RULE 26)

WO 96/35988

Command List

PCT/US96/06562

7/30

Data Alignment/Packing

Inkound Memary
(From Network Interface)

Transmit Buffers

200~ 204 (Msg.Protocoldatal2)
- 0 ;U C Q‘ .
begin msg e f gh /(,
201——{ [Src Buffer 0d145 205
destination -A—dﬂ”“‘/“o/P - .
| [o016 A 2 fb—c—d—g a
niddle ikl
Buff mmnoop
D[P Src Buffer 207 7T e
) uvwe
| 10d25 Y
[[niddle
203—~— [Src Buffer -
e fgh
1 ig kL
0d52 208 mnop
- gr st
end 209 uv w E
y z a
204——{ |[Src Buffer cdef
ghiyj
|52 Eim
Flags b c d g S 1 v v
Src Buffer fghi wz vy 2
Dest Add JokoLm
es r hop g
Byte Count rstu
Fl VW Xy
=9* zabe
Src Buffer def g
Dest Addr hijk
Byte Count }l)’rg e
Tt uvw
xT Y 2
KEY
Memory Data Pointed
Point »1t0 by memory
ointer Reference pointer
Dota > Data After

Before Data moved

FIG.10A

SUBSTITUTE SHEET (RULE 26)

WO 96/35988 PCT/US96/06562

8/30
Data Alignment/Packing
Hordware Domain . Outbound Memory
- (To Network Interface)
210 21z . Recelve Normal Priorit
: Y
2 - Bus Cells S : Bm“-Fc—:r‘sjer3 Recelve Queue
:'" lest STot Best—Stet—r—| 3 ? 5 },0“ 64 |Flgs, Count
First, 0 End. 3 | 04145 Buffer
o b C d TKin| |labed F.L.160
§d1+459 A U : q lefgh |Buffer
rs u 4
mnop V W X i . %Jnkofp Flgs, Count
g;c’d" z 8 g 7 st Buffer
2 J g ## # & luvwaz =
15kl Ba sl g0 b c lgs, Count
mnop| . e, (N R Buffer
__—_—3——*0—-&7'5:‘ : Pl’ rln # E Flgs, Count
a b ¢
gew“g pgr s Buffer
Plu i gk 'tUVV; Flgs, Count
mn o Xy z
Pgrs beode Buffer
T uvw 211 Faghi Flgs, Count
Dest Slot / 'Jn,ko ZP"; Buffer
Middle. 1 rstu Flgs, Count
— vw e Buffer
5t de 38 L
¢ e
jg h 1 hoofk 214
Jklm l mnfo
mn o P qg p q S
rstu t u w
vwazYy Xy a
zaoabc b c e
defg fafhi
h i Jk Jj k[l m
l mno ndqgopq
Pgrs T§Jtu
Tuvaw v T Yy
Xy z a
Y Wi
faghi 4o
KEY # #
Memor Data Pointed
Point Y 10 by memory
oiNTer Reference pointer
Data
> t
Before Data moved Data After

FIG.10B

SUBSTITUTE SHEET (RULE 26)

WO 96/35988

Receive Data Structure Layout

220
F reeD

9/30

PCT/US96/06562

223

Receive
Queue 0

)

22l
Message Passing Hurdwum?

ptr B
ptr D

1

Recelve
Queue 1

ptr A

Invalid ptr A
Channel 0 = Null
Channel 1 = Null
Invalid ptr B Channel 2 = Pir E
Channel 3 1= Ptr F
Invalid ptr C Channel 4 = Ptr G
Channel 5 = Null
Channel 6 1= Null
Invalid ptr D Channel 7 = Null
In use E
1 F
n use gEEB
In use G
: Free List Fifor
HW d H
owne Ptr H
HW owned 1 Ptr 1
225 HW owned J Ptr J
{ Free_head
HW avail K
HW owned
HW avail L
226
Free_tail HW ovail M
SW_owned |1nuqig ptr N

HW shadowed

Invalid ptr O

FIG.11

SUBSTITUTE SHEET (RULE 26)

ptr C

L224

WO 96/35988

10730

Receive Queue 0

Flgs, Count

Rev_R0_head

> F.L,80,3

Buffer pir

Buffer pir

// SW Owned

First,256,3

231 ,aq /

Buffer ptr

235 /

F.L,80,2

2377]

Buffer pitr

Mid,256,3

Buffer pitr

First,256,2

Buffer ptr

Mid,256,2

Buffer pir

239

Lost,196,3

Buffer ptr

Last,128,2

Buffer pir

F.L,196,3

Buffer ptr

F.L,128,2

Buffer ptr

232
QCV_Q 0_tail

» Flgs, Count

HW Owned

Buffer pitr

PCT/US96/06562

Recelve Queue

Example

oX - 0 o

NNNNN NN OUN OUNAN

Buffers Addressed o
Channel 2 (From Slot2)

N
\\Chunnel 2

AR R NN D a e aN
kMul“tiple Buffer Mess uge\

DU ONONUNANUNNINNNNANYN \

////////////

Bu?Fers Addressed to
/Channel 3 (From SlO'tB)/

//////////////////

SUBSHTUTESHEET(RULEZG)

A Ay e

/ e ey &.:%-? /
ZéMul'tiple Buffer Mess ugeg’
ZChannel 3 %

= I _._____==:

FIG.12A

PCT/US96/06562
11/30

Recelve Queue Example

WO 96/35988

OOV ANTANANNNANUNNNNY AT AN

FIG.12B

O .C (SN 8 Uy . /_.____:__:___
O e s awe~Srbu.x 3 4TE
U Q . (%] i
DO el T TC NUOgooge® P30 . HeY 8
b?&nbf.] ®o - —E /bc.mw_.nbf.JﬂTvu-lm/ /“S _
‘e _ N ~i Y
suoe 8o mquy.h /Qewmae.tmquy-hl.\ﬁ /__M |
P S VA NN N N N NN NN /_P w
% N K
[77 7 7277272777727 77 NN N NN N NN N N N N NN NN N N D S -
T 0w EU S >U Ot O \ ._/_.M___ﬁy.h..___m__w._____m___y%_.___Wy___ﬁ_._,_ﬁ__ﬁ/w_@____mu:_: :_ %._ N ru:
| m <
.vzdhlptxbr..Jn\\ i|>NDC—arxow c i N | Rl
A it N
‘uv..choswuelNQ\ quchosweeima._“ N Wd
XQ4% —c C>NDS—a | o C>ND .c—all NE 5 &
PO III OIS IIa \ / /;%E_v_mﬁ.mm/ﬁ___ﬁ:_@ ._m_n..@_@___ﬁ__;__/__ﬁ___@_:_@__ ______./____Cmm N_.*I\MUM m
W.u 7777777 7777777777 RISV TISTITWon Vi Ve i S Fn i FON T T S Vi J U.___@__@:ﬁ:__ﬁ
% “SWQ C—~ ET3I>XUD- OS“ /”Mmrr_wuei FETS>UD- oni ©
% \PVZdhl\p.TXbﬂT-nP\ NECS S NDC—0a+d X oo nh.m. %
y H AN
= \quycgkoswae.mq“ /— S>NUODDYO WS - £ i
, A
o |Op X 24 S ¢ >ND - —a/ D X Q4 —>c >ND - N o~ 3 oD
//// N \ \ 0 |\ 5o
MV S S A G S S G S A A AF SV S G G G 4 T T i W T ST i T i W) AR TEZ RN
f _ . /] N E....:é.:___=.==._ HEHIH TR R TR R T B HEHTHERE ST 0 N n
oL 0v< P.ﬂxc ko“ /r < Ddhln..trc.ko__ he [N ue N
LU O) uo O LT 2] i (@] O
‘ mMO .Mv PWb ne NWWCQMOCgkOwa.J N WP N..WPN
P rpiuady’ I e L S NS
L o -— - p— .
VPP I IIID I I I IIIID /:rurﬁm%a,efm/m/ﬂmw.nn/ J TRUT NN
N X \ v Y N SR YRRN
v g ~ v \
4 C N
4 o 4 S N
> < N3 CN
mo N MmO N\
SNNN NN

N

N

Multiple Buffer Message|

Channel 2

N

AUV N NN IR NNNNNNNANN

\\\ SO NN NSNS \\\\\

N\

\
N

PCT/US96/06562

12/30

(40lAvY3g Ul oD uap|
840 3Sayjy ‘majA 40
Julod adompUdy WOUG)

(2> SLSIT IAAIFI3Y

ssauppo abovssauw

aYy 40 3uod auv ananb

9G2 " o
S)ana)

A3A 13334 uo|jouljrsap puv

Lr1vigoyag, yrog-
«A3y14014d ssoy, 118>
Arinigoryag, jo

234y3 1a3J0ga43Yy

&1 DA

(Sananb

}lusuody ,ADuajo0)-mo),
puo ,3ndyBnouyy-iy, ayy
9584} Nvd Avw 340Mm} 4OS)

S3N3NY

LIWSNVJ1 SV 9NILIV

(2> S1SIT UNYWWOD

1Se2 Y

WO 96/35988

‘SHAOWIB}OM OM)—
ssauppv) EG2
\\.mm: uo pasoq \\ (4d—youwuou)
3311 3Al18dad4 ananb aajanau (NYT] -0 Auv jo poayo 3Sh) puodwwWo>
A3iuolud yowdou)

Agjuolud yowuou

03} HILVdSIA je— |06 N Bsw jud-y
(S3dowdayom | SN INVIANIVE MﬂwLM:WWJWmem
‘'SA s34ng 03
Bpooo syas doup) LINSNVa1l W3
\ONIYILII4 AT (m k
262

VWN\H

T
I~—cc2 0G2

3Sh) aal@dad
Ayju01ud-yBiy

3}SI) pUvDWWOD
Ay 1uojuad—-y6iy

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

13730

71 DA

Yjyodoyoq jlwsuod] aBossap

v30p povad soud™
g2 J

_.

WYNOS 03
vmm\ﬁ

“4844ng
nej
anlanay

sng

mwmw

mmmm,

434 4Nng
naj
Buixooy

WYAOS wWodg \w
| 192
892

2t

v}0p 33ldm Doud Uﬂ
032

(4833Ng a}ldm sng >dM3

L92

SNg wody
sSnd 03
£92

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

14/30

1 DId

UFVd SS34ppy 1iwsuod)] abBussay

433unoj SNONDSIWoUy SsaJdppy S1E MMMLUB«
Bldum Gle WY S 10€
WopS SN3}.03.s
jduuoy>d Ul JppY
4pPPY 44Nn9 0 SN
- < anl@dad TGOS .
mmm:\._OUQ / ‘C\ .AIII/
AqldMm
RS T N 2€ ﬂmﬁm
L1IE7 g1g 80€ £0€
uojjoJuauag uojy3vuauan
SSadppy V1€ “ppY
uoljyoulgsa(g OSKW
(£>S3S1) /
_or:o..:.._ou\.v > —>
mom% H
20 20& |
| >
/' . 3N0 PPy
00€ o MEY snd
uoljouauag vos Bol gma
SsaJppy
834Nnogy 4APpPY pPoay J0dd M \A)
< Sog
SSaJppY M o1g
poay e0€

WV QS

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

13730

91 DI

<

H201g D160 anjenay aBoussay

L3S T\

T

128

Ses

£0:21ziIs™ 34Ng
635 \Aomm

-

928 -

[0:1€10} 0P Ysny4 o)

L0 I4PP O PA— o]

[O:€IUa)"yYsmg o>

[B:IE14PPOTYsSm 4~ go)

f BadTysmzTopd
sSngli~ oy "ysm¢

82s ¢om;l\er .
BaaT 03" ADuy
BauT o3 " AU
ALIPNOA 4N~ ADU

61S
1S N

Buppayn~—asuanbas—Bs
“AMTESITADUT)3UD
FUD T30 SYDTIUSWaUDU)

4PPVTYsN 13T gD"uab
AppPOVTPATgDITuab

8
A_lmm(.lr_msilu.m:l>u§ ‘

A~
=
™M
-
[
v
|
+)
v
~
>
U
[
<
un
=
Q-

1
(4%
Q-

S
<
>
U
<
ADS

91S

g7

208

APPOVTPUAT F4NGTAD

N

[0TEIFNO 44N~ ADU
SiS

[OTEU™ F4Nng

148

(33NY 1SN ADU |ud—iupgTY

~—

O#431

omm/
[0TEJUI 03 0p D

[0 J4APPO Um o]

EH#431

mﬁww

228~

PRV UM T gD uab

£28
¢.YBuluayyg—Aou /m

N4 921 pUB~AD U Bsu

€08

Bau"Aypnoa~303syo
Bau™>uowaagom 00S

10S

20107 a4 4Nng S$ing eaug"uab

[0:TEJUI" 4ppO oo

Bad~azisTaauy
BadT3u03s5"aauy
BauT 03 aauy
Bad"pvayTaauy

01s

0S

[0y]4PPO pA~ 10 0 Hmom L_ AMJ
! SYydD = =t
e w “ppPoTPJdT oy

[0T€13N0 "3 035> Lol Sppo o4 PeHT N ong

21s

1S

SN3}D03S jauuoyd)

T
(H4344ng € Amem3%ﬁ

}SH 234y
433 505 g4

3}no~v3op oy M

60S

(dnax>jom 10 Uo ysnyj o
Buimonoy 34ng oono Aoy

[0 TEJUIT 03 0P O 4

£0S

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

16/30

WO 96/35988

N._.H UH_”_H._” - _ mﬂm\/u_mOJ 483SUvd]| 030 3}S|T-puUsLLO]

< XNO v3opTodd Ino viop god o
mmw:l\NLUUG Ysng sngl” god <4pPpPOVTYsni3 oo god_
R_uw(_ Ysny4~sngi—god s6v3~god bau~ysny3~gq>~god
829 ‘ G29 929 1€9
¥29 0ES
a>d g — = 0 429
NW‘ 4pPOT4mToad AppYTpJagad gad ysnyy
Sm~ood
909 vp oS 809 — 1
‘'s6oy3 119 (S4a44ng 8> Bupidod) 109
129 urT o3 opTgad S,43d
029 “ax>vod
< Ml _ _ a34Adg 019 229
JPPO NI SNojl oD < Ng_o T ERER
bad ™3™ sngi" g PO Nid 92 o
= T A £29—" bad g op oD
(L0T€IUT 03 0p~ SN

2l9 azisTqp
BauT3uo3s"g)n
BauT 03" g)1>
Bau~poay~gp
G09

appoTpJdT oD

M\ v3op - godT 03T gD
609

619 09

SUBSTITUTE SHEET (RULE 26)

pwdTasuod

SJdaging S|y puwd
009—1=— 0 209

.vﬁmj
[0TEIUT 03 0P SNY —G1 [01€13N0 030p D
Xd:\mdz

109 ‘a3s0

PCT/US96/06562

WO 96/35988

17/30

Jdd44ng aauy

Jd234ng aad 4

AdF3Ng @344

4d344ng aad

Jaging aauy

81 DI

4335163y 34v3s aauy

+

4231s16ay az|s aauy

433 sIB8ay o] 2844

4235168y povay aaduy

4331siBay 3uo3s mmLu_

(WYATS)IISIT Jaging 2344

SUBSTITUTE SHEET (RULE 26)

WO 96/35988 PCT/US96/06562
31 18/30 0
Word D S «—# of bytes in buffer—s,
0 1) CODECODE I
FLaGHLILCL | | | IFILIVINGXxdXIxdxd L L Ll
[. L |
L L | - bytes in frag-
ment buffer
: Daon't cares
‘ Notify bitt hardware notifies
software of transaction completion
by sending event to local processor
——Valid kit Indicates entry needs
processing; see text
Last kit o 1 indicates buffer pointed
at is last in message transfer
First kit: o 1 indicates kuffer pointed
ot is first in message transfer
b———§ Code: gives location/space of
source address)
D Coder gives location/space of
dest address;
Ct o 1 Indicates CELL XMIT) see text
Type bitt msg transfer=1!; non-message
31 transfer= (; 0
Worad physical source address in SDRAM or CEC Shared Memory —»
1
SoureD, L L L L b L bty
Word Destina{Destina-{SourcelSource| cr | €CeIVe
2 tion Slottion bus| Slot | bus Channel
(ESTHLLI0[OR] [[| LI L Liviviviy
—] I—
R=1:high-priority receive list HW sets for all
R=0inormal-priority recieve list L bu-;eceEL_lt-eﬁrﬂtﬂ'
Word 2 kecomes the cell address cell reliability
fleld) with MSBs of 100, I0Ps on the
bus will know that that cell is
part of o message transfer
31 0
Word Ignored by Hardware >
3
SN RN

Command List Bit Definiton (Message)

FIG.19

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988
1 19/30 0
Word D S «—4# of bytes in buffer—s,
0 ko) CODECODE I |
FLaGLTIC] [| | FlLivINGIXIXIXIXIxXE L LD L]
LTJ l |
L l | L bytes in frag-
ment buffer
, : Don‘t cares
‘ Notify kitt hardware notifies
software of transaction completion
by sending event to local 29K
— Valid kit Indicates entry needs
processing; see text
Last bitr a 1 indicates buffer pointed
ot is last in message transfer
First kit o 1 indicates buffer pointed
ot is first in message transfer
S Coder gives location/space of
source address)
D Coder gives location/space of
dest address;
C: always 0 for non-message
transfers; see text
Type bit: msg transfer=l non-message
31 transfer= 0 0
Word hysical source address In SDRAM or CEC Shared Memory —s
1 or data, if S CODE kits indicate embedded-dato transfer
OOURCE | | J L L L Lt
WDE"‘d physical destination address
DEST P L L L L]
Word Ignored by Hardware >
3
NI
Command List Bit Definiton (Non-Message)
bit bit
31 2423 16115 817 0
Dest | Dest |SOURCE[SOURCE| cr|receive
Slot | Bus | Siot | Bus channel
allololR HEREEEEEE NN

Message Address Fileld

FIG.21

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

20/30

d0I/S0O1 uo sjuauoduo]

43AIMO O/1 dOI/S0O1

1eL L\

'UBp anang punogyng d—RWdd

oth

4-170 d0I/s01

mﬁhu mmmm

43XNWa('ADY punoquy

»

L A—
112 INS

(Wdd NJY3z-ssod puo s)03030ud
R33N0y ‘¥ys ‘gl Buipnidul
SWdd :

91L w

Snoa.uo) XdO uo sjuauoduog
_ 60/~
|
A|||:|I":| -~ - - Isjuaby Janlug
| 0/1 dOoi/sol 01L
! +SJ3AMT 0/1 WOl al
!
" 80/—1 4WT Wdd
\ L0l
“ s3uaby
3---}----t---f» | 770 dO1/sOI
: + S0 WOI
"
[
g 43XNW3([3AI8Day punogu] 0L
L —vou
1
A|||,||ﬂ.xx||| - INS g1 AS 1
; \ £0L
! S0z
[
! S)0D030Ud
N R S102031.0u4 “ako7
< " 17 P33N0Y »40M3 3N |
“ , aayzxn [)
I L 510D20304d 43kv) Jd
! ooh(\‘ 1 ¥ 1 n

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

21/30

a)\npouw s[]

8G/L—

4866nga(q
DNOGUAS
a9
/q9ad

CTISKD
43A07

1001607
~ SKWI

2Ss

3dD

830 44a3u]

3Jdl

Dj4auag

Ec DId

sng 340)

ad332>
A3ALI

330

vmhm

ason
J3ALIQ

SOI

0SL

£GL

1SL

ayhpou
| LG/
4366nga(g
DNOGWAS
aa9
/90y
QdD
20044
AL GXOD
43B6vouvyy
JIdl X0OI ~ 6G/
DjJauan

CTISHWD
“dA07

1001607
SKHI

\-gGg/

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

22/30

WO 96/35988

e DId

40 |UO
audJa
008—1 1oRAN dnt/sor d01/S0I
6 5 NMom
480vuvl 3DauuodUa;yU] 3sv] Bngag
Sm(L. ™—¢o08
T
AT 1
XS SWAT - 43Bvouvop 18
a Jayzo |- ananyg
T8 3A18D3Yy e
|| Punoaur Hm;min_m —_— punogul >
218 dl 7] L3
S>ujjo3.0
SJA3AlI[] iHho3ea Gi8 WA L SUAAlAQ
I1d01] — aBpjug e anina(
J 436vouvy pig xruag SM013.107
oaag vig ANBD3Y [«
}wWwsuou| [Wdd :3_0 M_
< punocynp [« —~23noug P Axng 228 H
0i8 £18 S8)NPO| 10303.0uy 028 S
SJUSAIM([judpuadag >Jom3aN Pa3NAIAYSI]
QOv\ P Fuaby juawabouvy >uomyap 43aAldq BulBossay
808 208 Hhomw

SUBSTITUTE SHEET (RULE 26)

WO 96/35988

23/30

PCT/US96/06562

Frequency
Minimum | Minimum of MS 1Ms o
IMS Message Type| Latency | Reliakility c’CCL'”\"\E’N:EMessmge pr‘lor*rtoyp
: RequirementRequirement/on I0S/10R gueye
-Avg.Peak
(Msgs/Sec)
Internal Remote| High [Very High| 20, 40 HRQ Glfto;r;%n-
function calls Delivery
Guaran-
10P Management High High 5, 30 HRQ teed
(e.g. statistics) Delivery
I0S/10P control
ILow dro
nessages (9. Loy Nvery Hgh| 20, 200 | HRQ | &P
cache—-query, pblli‘t 3
intra—-box msgs) Y
Critical Netwark
Control Pkis Me dium High 10, 50 HRQ e
(e.g.IS-IS LSPs,
' STP Pkts)
Other Network 3(High
Control Pkts | Megium | Medium | 10, 100 | HRQ drop prok-
(e.g. ES-IS hellos, ability)
IPX SAPs)

IOP-I0P Data I(Low drop
pits for o | Medum | Low-Med | 10k, S0k | HTQ proka-
protocol y

I0P-I0OM Data
pkts for a - HTQ 2
I0P—distriouted Medium | Low-Med | 5k, 50k
protocol
IOP-CEC central-
ized protocol Medium | Low—Med | Sk, S0k | HTQ 3
data packets
I0P~-external
distributed pro-
tocol exception High Low 10, 500 HTQ 4
packets
S(High
Transit Multicast High Lower | 20, 1000 | HTQ (drop prok+
packets ' akility)

FIG.25

SUBSTITUTE SHEET (RULE 26)

WO 96/35988 PCT/US96/06562
24/30
(NE/_\ 902 (903 (904 905
IMS Heoder | Header Dota| Pad | Buffer Data ’

—— Header Length —

Buffer Doata Offset—

Message Length
IMS Message format

Tralling Pad

FIG.26

o1

¢ 912

(908f909 ;910

derfHead '
% ybg” eader| Buffer Data

Message Length

Length ffset
(0xQ0% ~, ?I | IDI A R A A I A AR AR
Message Type Unused
(N N A A A AR I I AN I I A A S AR AR R AR AN
913
IMS BD Message Header format
915
(916 (917 918 ¢ 919
gerfHead
g (;}pgn Lgr?g:}: Bufnffefr;el?to'tu Message Length
0xQ23 ™ [N N T O T T T O O O I I O A B R A

Must be zero

IR A AN A A B I B N

Receive Sequence

Numker 921
L1 41 1y

Send Sequence

Numker 920
L1 1] |

P 1

User Message Type
A IR R B AR

Remote Mailbox 1D

I I I

(522
IMS Kernel Message Header

‘5’23J

format

FIG.28

928

¢ 929

(925 926 927

E Hleudgr Heaoer

20 e)

Buffer Data

Offset
IR I T I

Length
I

Message Length

N NV NS T N TN N N O I Y I

Messoage Type

Send Sequence [Receive Sequence
Numker Number

AN N N A VO N S S N O A O |

(I T N T A O ST S T O
930

(g3t Lgaz

IMS Frame Driver Message Header format

FIG.29

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

23/30

SOI uo weysAs-_gns sWp N8 2407

(Ardgngx qg)

pPdTpuasTsuw]

(4rdgngx qg)

A ————
DUNGADU Juap])

mcoﬁl\L

mooﬂu, mooﬁN
L] ®
L] — —_——]
[] ® N
1S +SI7
PUDWWO] puUBWLWOT]
x3buy x3.byy
_hooﬁu, mooﬁﬂ
e |®7- 37777
: P
3si T
aAlaD3y aAjaday
x3buy xubiyy

0E DIA

-~

aB0SSPW SWI

¢oc-, mooHN
[] []
[] [}
i P A TR °
3sI ¥Si7
ANaDay aA|3Day
xJbuy xJbyy
mooﬁy. ﬁooﬁN
) IS IO (R
[] L]
3s17 3S17
PUDLWOT PUDWWOT]
x3bay x3b3yy

J3J U0 wa3sAs—gns SWI

(4rdgngx ag>
——————— -t
UC3:+>UL PCW:U

(Ardgngx ad
prg T pUasST sW]

.//1oooﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

A

1€ DIA

J=SsSadppov~pPq

961=43bua)"pq
1INN=3-Xau~pqg

P=SSaJppo pg

®
9S2=436ua;"pq

N~gg=3x3u"pq

(8+d)=553JppT™ pg

®
8v2=436ua"pq
0_qg=3Xau~pqg

70— P ad ~— 4 a4

(SOI uo) | <aAlJg 333 SNE 43Al40 SO
484Av7 102160 SK \ mﬂou
I -
i— PoayTxdbyy
“ o3 "xJbyy ! ﬁdmiuxyvﬁslll.
| . 1 Y037 x3byy
I . I
I . I
! 952=y3BuaT .
! uHJummdem“ .
il A=4NGADY 1
— I J11=s60y4
“ mmmlr_urmch | mm.ﬁ“—_uumcml_
! quummcr*“ H=4NgIUS
“ D=3ngady |
I mmmu&*mcmqu 314=s60y4
| UHanmer.r ommHJHmMMJ
" S
“ R H
I 2177 ¥S
I antea3y ! pUBLLIOT
" Xabay | x3bay
[1
MMMWm mmwwmmwa mmmnﬂwmmunvu
I
"
1
|
!
|
i
I
1
I
I

4 ag

-lll‘l‘.l.\\\‘

Uc3¢>ULM¥cm:U

0201
©

(J33J uo)
43A0v7 o160 SKI

Y AN

g§=SSa4ppo-pd

881=4316ua17pg
1INN=3Xau~pd

¥Y=SS534ppo” pqg

L]
216=436ua)7pq
8- ag=3xau”pq

mmOﬁ\W\

0 40153580 VIVA“SWI Vv T PA-puas-

d 0=

¢ v ad

_teo® 7

sSu)

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

27/30

(333 uo)

J48A07 yoo|607 SWI

A3AIT SO

& DI

SN
8407 AT 330

034y 3 035xubgy

g=Ssadppopg
(]
961=Y3Bua)"pg

TINN=3X3u~pg

nm+¢vummmuttdlun

¥0S=436ua)"pqg
- ag=3xau”pg

909 «—

v ag
|\\

SN

(SOl uo)
Lm%dl_ adU_@Ol_ MZH

KX

d=Ssauppo~pg
881=436ua)"pq

0=SSaJppov_pqg

®
9G62=436uay"pg
3 qg=3xau"pqg

1INN=3X2au”pg

d=Ssadppo”pg
[
9G2=43Bua)"pq

n_gg=1xau”pg

N_.Iﬂ.,m‘l\\

1
|
|
! - ' poay " xabyy
0) b P Y 3B} Y
[preE aeRsxdbayr B ey
_ o | . .Ju
1 ® 1 .
1 . “ .
“ J171=s6oy4|,[& (GEIGERR
! =sboyy| ! JI1=s08014
! uHm. L | 881=u3bua’
! . ! d=4Nng>dus
I . 1 [ozu=dppyisag
! 3S17 aAleday | B ad=ado9s
! 3103.Sxubyy | JIW=S6013
I—Poay” gnoxubyy ! 9G2=431Buan
! 103~ 4noxubyy O=4Ng>oJ4s
! o zu=uppyisa(
| . [4 ad=aqdo9s
! . ! wwunmmafw
v +92=U3.6uan
! g=4NEA2 T g—gy=4ngous
i V=gNgADy “d\cuLvﬁqymwm
“ . ! .
I . | °
! ¥SIT 3AI8D3y |, 351 puOWWo
' dnojxJbay “ x3.byy
NNNE: NN\ _ @ 3
¥ 4 m
|
!
f
1
!
I
)
|

(Vv a9y dUungAdUd™3uand

(0 0 0 VIVA SWI ‘d7ad> pg~puas sul

U 0=

d ag
o

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562

WO 96/35988

28/30

8 DIAd

SUBSTITUTE SHEET (RULE 26)

- Sid0d eo11~__} SKWI > SWI
WOI
2011~}
e111—/ , —] a
Wda
T NOILISOJSIA NOLLISOdSIA
¢:ﬁfv 13X43vd L3I
T oD
0111 2111 ‘ m\
S37EYL ONILNOY ONISS3003d 9011
1030L03d 030.10Md IHIYI
31377dW0O3 3137dW03 | sSS3NaaV
o 1 102010344
La0ddans 3novo UJ m. \ :
ooaaday SOt ONISS330d
1020.103d S La0d
dIANANIAS Wdd INIANIJ3q
, 10201034 0/1
NOILYINDIANOD | EVNERE| lv
Wdd 310W3Y) R
d st eon/ SS3303d dI SOOI o1l) LOTT
SS32308d dI 333 \ ,
1011 oo11

PCT/US96/06562

WO 96/35988

29/30

e DI

M._.ZW_DDHn_ 91e1~__} SKHI SKI
LOET
11—/ -~]
Wda
\ I NOILISOdSIa NOILISOdSIA
g1e1 L3NV LINIvd
A u
viET— SIET ; m\
sS37gv1l ONILNOYN ONISS3308d 20€71
I0aINg Ioaryd
YALINID 3131dW03
rw 130ddns
£l 3331 9NINNVJS
21€1 S €1
130ddNs |y, < S0
JHIV] < 3HIVI ; ONISS3303d
370144 dINAIAS WAT | Ay 3901 soc] INIANId3C S 130d
I9qINg ONIDUIdg 0/1
NOILYAN9IANOD | ONINYI IAIITIIY lv
Wdd 3L0OW3Y) '¥aay 323N0S \
SS3J0dd 3I9qIidg 233 ~ SS330dd 39019 sOI /
__10€1 \——00€1

SUBSTITUTE SHEET (RULE 26)

PCT/US96/06562
30/30

WO 96/35988

GE DId

SNOILJ3INNOD

SNOILIINNOD
MYOM L3N MAOMLAN
- » 9 » A U Y S SR
£002 : g
<t 6002 — §3LN0Y
9002 ~_ SKWI
SKI

~ SLINJ¥ID
IYNLAIA/M WLV '9'3
NYM N0 Ny

oooe

4

SKWI
so0e ‘ SKWI ¥002 SWI
v
2002 ~_ <01 £002 ~ diLlnod 1002 ~_/ d0I
A A J § A A
~ 0 0 0 e _ Y_ v v v vy vy
SNOILJ33INNOD SNOILJ3INNOD SNOILJ3INNOD

MA0M L3N AJOM L3N AA0M L3N

SUBSTITUTE SHEET (RULE 26)

—

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/06562

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.
US CL :Please See Extra Sheet.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

UsS. : 395/775, 250, 200.1, 200.14, 200.01, 800, 200.16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS (USPAT) database

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X | US, A, 5,379,296 (JOHNSON ET AL.) 03 January 1995, | 1-23,57-60
col.4, lines 55-65.
Y US, A, 5,093,824 (COAN ET AL.) 03 March 1992, col.1,| 1-75
lines 46-56; col.2, lines 25-33; col.12, lines 57-68; col.13,
lines 1-41.
X US, A, 5,335,325 (FRANK ET AL.) 02 August 1994, col.7,| 1,59,75

lines 37-49; col.10, lines 22-35.

X US, A, 4,962,497 (FERENC ET AL.) 09 October 1990, 1-6,567-62, 9-
col.11, lines 13-31; col.12, lines 4-13; col.16, lines 41-52. | 17, 70,71

Y US, A, 5,088,090 (YACOBY) 11 February 1992, col.3, lines 1-45,57-71, 75
54-66; col.8, lines 39-56.

D Further documents are listed in the continuation of Box C. D See patent family annex.

b Special categories of cited documents: T later d blished after the i ional filing date or priority
e . . R date and not in conflict with the application but cited to understand the
A document defining the general state of the art which is not considered principle or theory underlying the invention
to be part of particular relevance
e X document of particular relevance; the claimed invention cannot be
E carlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
°L° document which may throw doubts on priority clmm(l) or which is when the document is taken alone
cited to establish the publication date of anoth tion or other o .
special reason (as specified) Y document of particular r ; the o0 cannol be
considered to involve an invenlive step when the documem s
0 document referring to an oral disclosure, use, exhibition or other combined with one or more other such d such bil
means being obvious to a person skilled in the art
P document published prior to the intemational filing date but later than = g,= document member of the same patent family
the priority date claitned
Date of the actual completion of the international search Date of mailing of the international scarch repont
18 JUNE 1996 25 JUL 1996
Name and mailing address of the ISA/US uthorized officer . ___ .
Commissioner of Patents and Trademarks . A)
Box PCT "Danicl H. Pan _Jix SR
Washington, D.C. 20231 RS AL
Facsimile No. (703) 305-3230 lephone No. (703) 305-9696

Form PCT/ISA/210 (second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/06562

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):

GOG6F 9/02, 13/20, 13/10, 13/36, 13/40, 13/42, 15/16, 15/163, 15/173

A. CLASSIFICATION OF SUBJECT MATTER:
USCL :

395/775, 250, 200.1, 200.14, 200.01, 800, 200.16, 182.02, 490 ; 340/825.02; 370/60,85.13, 60.1

Form PCT/ISA/210 (extra sheet)(July 1992)x

——

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

