



(12) **DEMANDE DE BREVET CANADIEN**  
**CANADIAN PATENT APPLICATION**

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2018/09/20  
(87) Date publication PCT/PCT Publication Date: 2019/03/28  
(85) Entrée phase nationale/National Entry: 2020/03/19  
(86) N° demande PCT/PCT Application No.: AU 2018/051030  
(87) N° publication PCT/PCT Publication No.: 2019/056063  
(30) Priorités/Priorities: 2017/09/21 (AU2017903839);  
2017/11/30 (AU2017904831);  
2018/03/09 (AU2018900795);  
2018/03/23 (AU2018900977);  
2018/04/10 (AU2018901184)

(51) Cl.Int./Int.Cl. *B29C 49/42*(2006.01),  
*B29C 31/08*(2006.01), *B29C 49/08*(2006.01),  
*B29C 49/28*(2006.01), *B29C 49/36*(2006.01),  
*B65G 47/14*(2006.01), *B65G 47/84*(2006.01)

(71) Demandeur/Applicant:  
INTEGRATED PLASTICS PTY LIMITED, AU

(72) Inventeurs/Inventors:  
MELLEN, NICK, AU;  
KIM, HO-SEON, KR

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : MACHINE, PREFORMES, SYSTEME ET PROCEDE DE MOULAGE PAR SOUFFLAGE CONTINU

(54) Title: CONTINUOUS BLOW MOULDING MACHINE, PREFORMS, SYSTEM AND PROCESS

(57) Abrégé/Abstract:

A continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine dedicated to the stretch-blow-moulding of containers from non-symmetric injection moulded preforms; the non-symmetric preforms including an integral handle extending from a first junction point to a second junction point on a body of the preform; the body of the preform and the integral handle constituted from the same material.

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(10) International Publication Number

WO 2019/056063 A4

(43) International Publication Date  
28 March 2019 (28.03.2019)

## (51) International Patent Classification:

B29C 49/42 (2006.01) B65G 47/14 (2006.01)  
B29C 49/28 (2006.01) B65G 47/84 (2006.01)  
B29C 49/08 (2006.01) B29C 49/36 (2006.01)  
B29C 31/08 (2006.01)

(72) Inventors: MELLEN, Nick; 12 Birmingham Avenue, Villawood, New South Wales 2163 (AU). KIM, Ho-Seon; Gyeonggi-Do, 15657 (KR).

## (21) International Application Number:

PCT/AU2018/051030

## (22) International Filing Date:

20 September 2018 (20.09.2018)

## (25) Filing Language:

English

## (26) Publication Language:

English

## (30) Priority Data:

|            |                                |    |
|------------|--------------------------------|----|
| 2017903839 | 21 September 2017 (21.09.2017) | AU |
| 2017904831 | 30 November 2017 (30.11.2017)  | AU |
| 2018900795 | 09 March 2018 (09.03.2018)     | AU |
| 2018900977 | 23 March 2018 (23.03.2018)     | AU |
| 2018901184 | 10 April 2018 (10.04.2018)     | AU |

(74) Agent: WALLINGTON-DUMMER PATENT AND TRADE MARK ATTORNEYS; GPO BOX 3888, Sydney, New South Wales 2001 (AU).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(71) Applicant: INTEGRATED PLASTICS PTY LIMITED [AU/AU]; 12 Birmingham Avenue, Villawood, New South Wales 2163 (AU).

## (54) Title: CONTINUOUS BLOW MOULDING MACHINE, PREFORMS, SYSTEM AND PROCESS

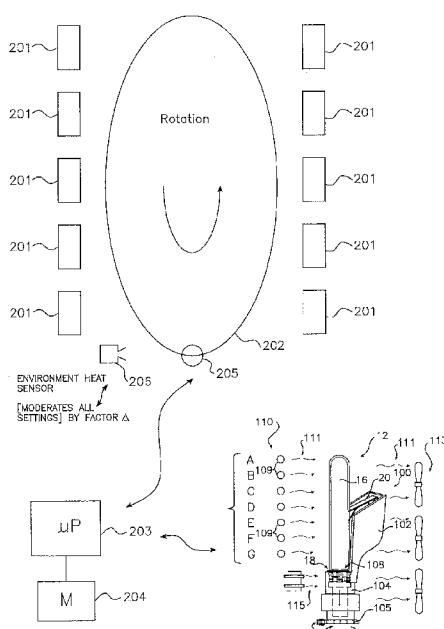



Fig. 12

(57) Abstract: A continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine dedicated to the stretch-blow-moulding of containers from non-symmetric injection moulded preforms; the non-symmetric preforms including an integral handle extending from a first junction point to a second junction point on a body of the preform; the body of the preform and the integral handle constituted from the same material.

# WO 2019/056063 A4



TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

**Published:**

- *with international search report (Art. 21(3))*
- *with amended claims (Art. 19(1))*

**Date of publication of the amended claims:**

25 April 2019 (25.04.2019)

## CONTINUOUS BLOW MOULDING MACHINE, PREFORMS, SYSTEM AND PROCESS

### TECHNICAL FIELD

[0001] The present invention relates to the equipment and method for the production of stretch-blow-moulded polymer containers from injection-moulded preforms.

### BACKGROUND

[0002] The process of stretch-blow-moulding polymer containers from a prior injection moulded preform is long established in the art. Generally, preforms, as injection moulded, comprise an elongate cylindrical body portion and a neck. In the stretch blow-moulding process, the preform enters a die, held by the neck which retains its injection moulded shape, and the body is firstly mechanically stretched in at least one direction followed by the injection of air to force the polymer material into the desired shape as defined by the die cavity and also stretching the polymer material in at least one other direction – termed biaxial orientation. Where time has elapsed between the injection moulding of the preforms and their entry into the blow moulding process so that the preforms have cooled to ambient temperature, a preheating process is applied before preforms enter the blow mould die.

[0003] The process is considerably more complicated if the preform is rotationally non-symmetric and, as in the present case, is injection moulded with an integrally attached handle, and more particularly if the handle is in the form of a loop, integrally attached at two points on the body of the preform. The complication arises primarily from the need to control the orientation of the handle and to correctly preheat the body of the preform while protecting the handle from excessive heat absorption, as well as the correct insertion of the preform into the stretch-blow-moulding die.

[0004] Such a preform and systems for its transformation into a container with integral handle are disclosed in WO2007101309. The entire disclosure of WO2007101309 is incorporated hereby cross reference. In that disclosure, preforms enter a production machine such as schematically shown in Figures 55 and 72 of that document after orientation of the handle, which orientation is then maintained, through the preheating stage and into the stretch-blow-moulding die.

[0005] In the systems disclosed in WO2007101309 however, the process of production is discontinuous or ‘batch’; that is, the production machines progress preforms incrementally, pausing at each index to allow for pick and place loading of preforms, their insertion into a supporting mandrel and the entry into and exit from the stretch blow-moulding cavities, while the preforms are stopped for each moulding cycle. A disadvantage of this incremental processing is that it is clearly less efficient than a continuous process.

[0006] The present invention relates to a machine and process for the stretch blow moulding of preforms with an integral handle in a continuous feed, thus non-incrementing system. Because of the several stages in the process, the requirements of establishing handle orientation, the preheating stage and the stretch-blow-moulding stage as well as the removal of finished containers, requires the transfer of preforms between rotating in-feed, preheating, moulding and transport elements of the system. A continuous process makes these processes and transfers for a preform with integral handle, considerably more complex.

[0007] A system for handling a non-rotationally symmetric preform requiring a known orientation for selective preheating and prior to loading into a stretch-blow-moulding die was disclosed in US8,632,333 B2. In the arrangement of this patent orientation is established with reference to a small reference tab or notch, but this preform not having a handle there is no need for orientation relative a heat shield.

[0008] US 2012/0048683 also discloses a continuously rotating blow moulding system in which special precautions are taken against deformation of preforms due to centrifugal forces by specific orientation of the preforms passing through the system. Although it is noted that such orientation may be of benefit for non-symmetric preforms, for example those with a handle, there is no disclosure of orientation of a preform for entry into a heat shield.

[0009] US 6779651 specifically teaches the importance of orientation of preforms with handles prior to introduction of the preform into the stretch-blow-moulding die. There is however no suggestion that the handle requires shielding by means of a heat shield so that there is no arrangement in this patent of the control of orientation to marry the handle with a heat shield.

[00010] A suit of patents and applications to Thibodeau, US D746,142 S; US8,524,143 B2; US9,499,302 B2 and WO2015/112440 A1 are drawn to the production of containers with

integral handle stretch-blow-moulded from injection moulded preforms with integral handles. However, in contrast with the arrangement of the present application as set out below, the handle of a container according to Thibodeau is of radically different shape to the handle as injection moulded with the preform, being subjected to a sort of uncurling during the stretch-blow-moulding phase.

[00011] Another continuously rotating blow-moulding system is disclosed in US 5683729 in which mechanisms for the transfer of preforms between various stages of the system are described. There is however no disclosure of preforms with integral handles and thus no treatment of special orientation of the preforms.

[00012] It is an object of the present invention to address or at least ameliorate some of the above disadvantages.

## NOTES

[00013] The term “comprising” (and grammatical variations thereof) is used in this specification in the inclusive sense of “having” or “including”, and not in the exclusive sense of “consisting only of”.

[00014] The above discussion of the prior art in the Background of the invention, is not an admission that any information discussed therein is citable prior art or part of the common general knowledge of persons skilled in the art in any country.

## SUMMARY OF INVENTION

### DEFINITIONS

[00015] Continuous preform feed: In this specification, continuous preform feed occurs where preforms are advanced at constant velocity from an entry location to an exit location along a path. This is to be distinguished from a batch mode operation where the preform feed advances and then stops whilst a blow mould operation takes place.

[00016] Non-symmetric preform: In this specification, a non-symmetric preform is a preform which is not symmetric about its longitudinal axis. The primary source of non-symmetry occurs where the preform incorporates an integral handle. In certain embodiments

the preform walls are also a source of non-symmetry.

[00017] Integral handle preform: In this specification, an integral handle preform is a non-symmetric preform which has a handle portion extending from a body of the preform and wherein the handle is integrally moulded with the body of the preform.

[00018] Stretch blow moulding die: In this specification, a stretch blow moulding die comprises an openable cavity adapted to receive a preheated preform for subsequent stretch blow moulding of the preheated preform within the cavity of the die.

[00019] Accordingly in one broad form of the invention there is provided a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine dedicated to the stretch-blow-moulding of containers from non-symmetric injection moulded preforms; the non-symmetric preforms including an integral handle extending from a first junction point to a second junction point on a body of the preform; the body of the preform and the integral handle constituted from the same material.

[00020] In a further broad form of the invention there is provided a method of controlling paths of grippers of pick and place apparatuses of rotating transfer systems; the rotating transfer systems operating in a continuous non-symmetric preform feed stretch-blow-moulding machine; the paths of the grippers following respective loci of non-symmetrical preforms as preforms are transferred by the rotating transfer systems from a preform pick off position, inserted into and extracted from a preform support mandrel of a preheating stage and inserted into and extracted as a stretch-blow-moulded containers from rotating stretch-blow-moulding dies; the non-symmetrical preforms comprising a body portion and an integral handle extending from the body portion; the method including the step of rotationally mounting each of the pick and place apparatuses on a rotating arm of a respective rotating transfer system.

[00021] In a further broad form of the invention there is provided a method of transferring a non-symmetric preform between stages of a continuous non-symmetric preform feed rotating stretch-blow-moulding machine; the non-symmetric preform being transformed into a stretch-blow-moulded container by a step of stretching and blowing the non-symmetric preform in a cavity of the stretch-blow-moulding die; the method including the step of

orienting the non-symmetrical preform so that an integral handle of the preform has a known orientation at arrival at a pick off position in the machine.

[00022] In a further broad form of the invention there is provided a method of manipulating a non-symmetrical injection moulded preform into a stretch-blow-moulding die of a continuous preform feed stretch-blow-moulding machine; the method including the step of extracting a preform from a preform preheating stage with a pick and place apparatus of a continuously rotating transfer system such that an integral handle of the preform has a predetermined orientation.

[00023] In a further broad form of the invention there is provided a method of controllably heating a pre-form to a die introduction temperature; the pre-form having a neck portion extending from a body portion; said pre-form further having a handle portion extending radially; said method comprising controllably transferring an integral handle PET pre-form onto a continuously moving conveyor; securing the preform by its neck portion to the conveyor whereby the preform is transported by the conveyor at substantially constant velocity along a reheating path from a pre-form entry location to a pre-form exit location.

[00024] Preferably at least portions of the pre-form controllably heated to the die introduction temperature by the time it reaches the pre-form exit location.

[00025] Preferably a controllable heater array distributed along the path arranged to direct heat to selected portions of the pre-form.

[00026] Preferably the pre-form controllably transferred from the preform exit location into a die for stretch blow moulding of the pre-form thereby to form a blown container.

[00027] In a further broad form of the invention there is provided a method of orienting a non-symmetrical preform for entry to stages of a stretch blow-moulding machine; the non-symmetrical preform including an integral handle extending from a first junction point below a neck of the preform to a second junction point on the body of the preform; the method including the step of providing preforms to slide down inclined rails towards an orientation mechanism while supported by the necks of the preforms along upper rails of the inclined rails.

[00028] In a further broad form of the invention there is provided a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine in which injection-moulded

preforms with integral handles are transferred from a first transfer system to a preheating stage; the transfer of a preform from a gripper of the first transfer system to a preform supporting mandrel achieved in one fluid motion as a vertical axis of the preform is brought into alignment with a vertical axis of the preform supporting mandrel and the handle of the preform is slid into a heat shield provided on the mandrel.

[00029] Accordingly in further broad form of the invention there is provided a continuous non-symmetric preform feed stretch-blow-moulding machine dedicated to the stretch-blow-moulding of containers from non-symmetric injection moulded preforms; the non-symmetrical preforms including an integral handle extending from a first junction point to a second junction point on a body of the preform; the body of the preform and the integral handle constituted from the same material; the machine including a preform orientation system to orient the handle of the preform into a known orientation at arrival at a pick off position.

[00030] Preferably the preforms are in continuous motion from an initial preform pick off point through stretch-blow-moulding into the containers and ejection from the machine as stretch-blow-moulded containers.

[00031] Preferably the integral handle retains a shape of the handle as injection moulded through all stages of the stretch-blow-moulding machine to forming a handle on the stretch-blow-moulded container.

[00032] Preferably the stages of the stretch-blow-moulding machine include a handle orientation stage; all preforms arriving at the pick off point having the integral handle oriented in a predetermined direction relative to motion of the preform approaching the pick off position.

[00033] Preferably the stages of the stretch-blow-moulding machine include a continuously rotating first transfer system transferring preforms from a continuously rotating preform feeder wheel at the preform pick off position to a transfer to preheating position at a continuously rotating preheating stage.

[00034] Preferably a first pick and place apparatus of the first transfer system includes a preform grasping gripper; reciprocating rotation and linear displacement of the grasping gripper induced by a combination of a rotating carrier of the pick and place apparatus and two cam loci.

[00035] Preferably the rotating carrier is an arm of four radially extending support arms rotating about a common centre of rotation; an outer end of each support arm rotationally supporting a pick and place apparatus.

[00036] Preferably the support arms rotate above a fixed cam plate; the cam plate provided with an inboard cam channel for a first locus of the two cam loci and a periphery of the cam plate providing an outer cam surface for a second locus of the two cam loci.

[00037] Preferably a housing of a linear guide of the pick and place apparatus is rotationally mounted at the outer end of the supporting arm; an outrigger arm extending from the housing provided with a first cam follower locating in the cam channel.

[00038] Preferably a free sliding element of the linear guide is provided with a second cam follower; the second cam follower maintained in contact with the outer cam surface by a spring.

[00039] Preferably the grasping gripper of the pick and place apparatus is mounted to a rotary actuator supported from an outer end of the free sliding element; the rotary actuator adapted to rotate fingers of the grasping gripper 180degrees as a pick and place apparatus transits between the preform pick off position and the transfer to preheating position.

[00040] Preferably the continuously rotating preheating stage includes a preform transport system; preform supporting mandrels travelling along a loop rail system; the preform supporting mandrels rotating preforms about a vertical axis of the preforms as preforms travel past banks of heating elements.

[00041] Preferably the preform supporting mandrels are provided with a heat shield; the heat shield comprising a channel projecting from a cylindrical collar.

[00042] Preferably the pick and place apparatus of the first transfer system brings a vertical axis of a perform into alignment with a vertical axis of the cylindrical collar of a preform supporting mandrel at the transfer to preheating position; the gripper of the pick and place apparatus concurrently manoeuvring the handle of the preform between side elements of the channel of the mandrel.

[00043] Preferably the preform is lowered after the neck of the preform is released by the gripper of the pick and place apparatus so that the neck of the preform is located within the cylindrical collar of the mandrel.

[00044] Preferably a preheated preform is extracted from a supporting mandrel by a pick and place apparatus of a second transfer system at a transfer from supporting mandrel position; the transfer from supporting mandrel position lying on a line joining respective centres of rotation of a proximate rotating guide wheel of the preheating transport system and the second transfer system.

[00045] Preferably the preform extracted from a preform supporting handle by a gripper of the pick and place apparatus of the second transfer system is rotated through 180degrees by a rotary actuator of the pick and place apparatus as an arm of the second transfer system rotates the pick and place apparatus towards a die loading position.

[00046] Preferably a combination of rotation of the arm of the second transfer system and rotation and linear displacement of the gripper induced by the loci of a first and second cam follower of the pick and place apparatus, brings a vertical axis of the preform into alignment with a vertical axis of a stretch-blow-moulding die as both the pick and place apparatus and an opened stretch-blow-moulding die approach the die loading position; movements of the gripper concurrently bringing the handle of the preform into alignment with a line joining respective centres of rotation of the stretch-blow-moulding die and the second transfer system.

[00047] Preferably a pick and place apparatus of a third transfer system extracts a stretch-blow-moulded container from the stretch-blow-moulding die as the stretch-blow-moulding die opens at a die unloading position; the die unloading position lying on a line joining respective centres of rotation of the rotating stretch-blow-moulding die and the third transfer

system.

[00048] Preferably the extracted stretch-blow-moulded containers are rotated from the die unloading position to a rotating outfeed wheel; the rotating outfeed wheel transferring the containers along a discharge channel and a container receiving bin.

[00049] In yet a further broad form of the invention there is provided a pick and place apparatus manipulating a non-symmetrical preform; the pick and place apparatus operating in a continuously rotating stretch-blow-moulding machine wherein a preform gripping gripper of the pick and place apparatus is urged into reciprocating rotation and linear displacement by a combination of a rotating support of the pick and place apparatus and two cam loci.

[00050] Preferably the reciprocating rotation is about a vertical axis; linear displacement being in a horizontal plane.

[00051] In yet a further broad form of the invention there is provided a method of controlling paths of grippers of pick and place apparatuses of rotating transfer systems; the rotating transfer systems operating in a continuous non-symmetric preform feed stretch-blow-moulding machine; the paths of the grippers following respective loci of non-symmetrical preforms as preforms are transferred by the rotating transfer systems from a preform pick off position, inserted into and extracted from a preform support mandrel of a preheating stage and inserted into and extracted as a stretch-blow-moulded containers from rotating stretch-blow-moulding dies; the non-symmetrical preforms comprising a body portion and an integral handle extending from the body portion; the method including the steps of:

- rotationally mounting each of the pick and place apparatuses on a rotating arm of a respective rotating transfer system,
  - urging reciprocating rotation of the grippers about respective vertical axes of the pick and place apparatuses controlled by a locus of a first cam follower and the rotation of the rotation of the rotating arm,
  - urging reciprocating horizontal linear displacement controlled by a locus of a second cam follower and the rotation of the rotating arm, and,
- wherein the locus of the first cam follower is determined by a cam channel of a cam plate; the locus of the second cam follower being determined by an outer cam surface of the

cam plate.

[00052] Preferably a first rotating transfer system transfers a non-symmetrical preform from a rotating preform feeder wheel to a rotating preform support mandrel of the preform preheating system.

[00053] Preferably a second rotating transfer system transfers a non-symmetrical preform from a rotating perform support mandrel into a stretch-blow-moulding die.

[00054] Preferably a third rotating transfer system extracts stretch-blow-moulded containers from the stretch-blow-moulding die to a rotating outfeed wheel.

[00055] In yet a further broad form of the invention there is provided a method of transferring a non-symmetric preform between stages of a continuous non-symmetric preform feed rotating stretch-blow-moulding machine; the non-symmetric preform being transformed into a stretch-blow-moulded container by a step of stretching and blowing the non-symmetric preform in a cavity of the stretch-blow-moulding die; the method including the steps of:

- orienting the non-symmetrical preform so that an integral handle of the preform has a known orientation at arrival at a pick off position in the machine,
- gripping a neck of the preform in grippers of a pick and place apparatus of a rotating first rotating transfer system and rotating the preform to a preheating stage of the machine,
- manoeuvring the gripper of the first pick and place apparatus so as to align the integral handle with a heat shield of a moving preform supporting mandrel and aligning an axis of a body of the preform with a neck supporting cylindrical collar of the mandrel,
- removing the non-symmetric preform from the preform supporting mandrel with a gripper of a second pick and place apparatus of a rotating second rotating transfer system and rotating the preform to a rotating stretch-blow-moulding die of the machine in a second stage,
- manoeuvring the gripper of the second pick and place apparatus so as to align the integral handle with a handle nesting portion of the stretch-blow-moulding die and a vertical axis of the preform with a vertical axis of the stretch-blow-moulding die in a third stage,

- manoeuvring grippers of a pick and place apparatus of a rotating third rotating transfer system in position to grasp the neck of a now stretch-blow-moulded container and extracting the stretch-blow-moulded container from the stretch-blow-moulding die in a fourth stage.

[00056] Preferably the movement of the grippers of the pick and place apparatus of any one of the first, second or third rotating transfer systems is controlled by a combination of rotation of an arm of the transfer system supporting the pick and place apparatus and rotation and linear displacement controlled by loci of two cam followers.

[00057] Preferably the locus of the first cam follower is determined by a cam channel provided in a fixed cam plate of each of the first, second and third rotating transfer systems; the locus of the second cam follower determined by an outer cam surface of the fixed cam plates.

[00058] In yet a further broad form of the invention there is provided a method of manipulating a non-symmetrical injection moulded preform into a stretch-blow-moulding die of a continuous preform feed stretch-blow-moulding machine; the method including the steps of:

- extracting a preform from a preform preheating stage with a pick and place apparatus of a continuously rotating transfer system such that an integral handle of the preform has a predetermined orientation, and

wherein manoeuvring of a preform supporting gripper of the pick and place apparatus is controlled by rotation of an arm of the transfer system in combination with rotation and linear extension of the gripper guided by loci of two cam followers.

[00059] Preferably the method includes the further steps of:

- manoeuvring the pick and place apparatus to align the integral handle with a bisecting radial line of an open stretch-blow-moulding die as the bisecting radial line rotates into coincidence with a line extending between rotation centres of the stretch-blow-moulding machine and the transfer system,
- further manoeuvring the pick and place apparatus to align a vertical axis of a body of the preform with an axis of the die and the handle of the preform with a handle nesting portion of the die when opposing halves of the die close on reaching the line

between rotation centres,

[00060] In yet a further broad form of the invention there is provided a method of preventing distortion of an integral handle of a preform in a stretch-blow-moulding process in a continuous preform feed stretch-blow-moulding machine; the method including the steps of:

- preparing each half of a stretch-blow-moulding die with a handle nesting cavity conforming to at least a portion of the integral handle of the preform,
- manipulating the preform so that the handle is brought into coincidence with the handle nesting cavity as two halves of the stretch-blow-moulding die close on the preform.

[00061] Preferably the manipulation of the preform is by a pick and place apparatus; a gripper of the pick and place apparatus urged into rotational and linear motion by a combination of rotation of an arm of a preform transfer system to which the pick and place is mounted, and rotation and linear displacement controlled by two cam loci.

[00062] In yet a further broad form of the invention there is provided a method of controllably heating a pre-form to a die introduction temperature; the pre-form having a neck portion extending from a body portion; said pre-form further having a handle portion extending radially; said method comprising

- controllably transferring an integral handle PET pre-form onto a continuously moving conveyor;
- securing the preform by its neck portion to the conveyor whereby the preform is transported by the conveyor at substantially constant velocity along a reheating path from a pre-form entry location to a pre-form exit location;
- at least portions of the pre-form controllably heated to the die introduction temperature by the time it reaches the pre-form exit location;
- a controllable heater array distributed along the path arranged to direct heat to selected portions of the pre-form;
- the pre-form controllably transferred from the preform exit location into a die for stretch blow moulding of the pre-form thereby to form a blown container.

[00063] Preferably the handle portion is solid and has a first end and a second end; the first end integrally connected at a first, upper location to the pre-form; the second end integrally connected at a second, lower location to the pre-form.

[00064] Preferably the first, upper location is located on the body portion.

[00065] Preferably the first, upper location is located on the neck portion.

[00066] Preferably the second, lower location is located on the body portion.

[00067] Preferably the elements are arranged in modules; the modules arrayed around the continuously rotating preform conveyer; the elements controlled as a group based on height wherein the top most elements of the modules are controlled to a predetermined temperature together whilst the next down in height elements are also controlled together to a predetermined temperature – and so on down to elements at the lowest level.

[00068] Preferably a processor controls the speed of rotation of a motor in order to control the continuous speed of advancement of the preforms.

[00069] Preferably a temperature sensor provides environment temperature sensing which is utilised by processor to modulate the degree of heating of all elements by a difference factor delta ( $\Delta$ ).

[00070] In yet a further broad form of the invention there is provided an orientation mechanism controlling orientation of a non-symmetric injection moulded preforms prior to entry into stages of a stretch blow-moulding machine; the non-symmetric preforms each including an integral handle extending from a first junction point below a neck of the preform and a second junction point on a body of the preform; the mechanism including a pair of contra-rotating drive wheels disposed along opposite sides of inclined rails; one of the drive wheels inducing rotation of the body of the preform moving down the inclined rails to rotate the handle of the preform into a preferred position.

[00071] Preferably the inclined rails include a pair of upper rails between the preforms are suspended by necks of the preform and a pair of lower rails which constrain the integral

handles into approximate alignment with a long axis of the inclined rails; integral handles of the preforms constrained to either a leading or a trailing orientation.

[00072] Preferably the pair of drive wheels are located at a level coincident with a lower portion of the body of the preform below the lower rails and a lowest point of the integral handles; axes of the drive wheels normal to the long axis of the inclined rails.

[00073] Preferably a gap between the pair of drive wheels is smaller than a diameter of the body of the preform; each guide wheel including at least one tyre of a sufficiently soft polymer material to allow passage of the body of the preform through the gap between the pair of drive wheels.

[00074] Preferably directions of rotation of the pair of contra-rotating drive wheels draw preforms moving down the inclined rails through the gap between the drive wheels; a first of the drive wheels rotating in an anticlockwise direction with a second opposite drive wheel rotating in a clockwise direction.

[00075] Preferably the drive wheels rotate at different rates of rotation; the ratio of rotation of the first drive wheel to the rotation of the second opposite drive wheel being of the order of 2:1.

[00076] Preferably the different rates of rotation of the drive wheels cause the second opposite drive wheel to rotate the body of the preform in an anticlockwise direction as the preform passes through the gap between the two drive wheels.

[00077] Preferably rotation of the body of the preform changes orientation of a preform with a leading handle at entry to the mechanism to a preform with a trailing handle on exit from the mechanism; a gap in the lower rail at the side of the lower rail adjacent the first drive wheel.

[00078] In yet a further broad form of the invention there is provided a method of orienting a non-symmetrical preform for entry to stages of a stretch blow-moulding machine; the none symmetrical preform including an integral handle extending from a first junction

point below a neck of the preform to a second junction point on the body of the preform; the method including the steps of:

- providing preforms to slide down inclined rails towards an orientation mechanism while supported by the necks of the preforms along upper rails of the inclined rails,
- constraining integral handles of the preforms in either a leading or in a trailing position between lower rails of the inclined rails,
- drawing preforms through a gap between a pair of contra rotating drive wheels of the orientation mechanism disposed along the inclined rails, and

wherein differential rates of rotation of the pair of drive wheels rotate the body of the preform from a leading orientation of the integral handle at entry to the orientation mechanism into trailing orientation of the handle at exit of the preform from the orientation mechanism.

[00079] Preferably the pair of drive wheels are located coincident with a lowermost portion of the body of the preform below lower rails of the inclined rails and below a lowermost point of the integral handle.

[00080] Preferably a first of the pair of contra rotating guide wheels at one side of the inclined rails rotates in an anticlockwise direction; the second of the pair of contra rotating drive wheels at an opposite side of the inclined rails rotating in a clockwise direction; the pair of contra rotating drive wheels acting to draw preforms through the gap between the drive wheels.

[00081] Preferably the ratio of the rate of rotation of the contra rotating drive wheel to the rate of rotation of the clockwise rotating drive wheel is in the order of 2:1.

[00082] Preferably the clockwise rotation of the clockwise rotating drive wheel rotates bodies of a preforms passing through the gap between the drive wheels in an anticlockwise direction such that a preform with an integral handle in a leading orientation is rotated so that the integral handle is in a trailing orientation.

[00083] In another broad form of the invention, there is provided an injection-moulded preform forming a stretch-blow-moulded container; the preform comprising an open neck portion and a hollow body extending from the neck portion; the preform further including an

integrally injection-moulded handle; at least a portion of walls of the hollow body varying in thicknesses.

[00084] Preferably, at least a portion of an inner surface of the hollow body is non-concentric with outer surfaces of the hollow body.

[00085] Preferably, the outer surfaces of the hollow body are defined by diameters centred on a central longitudinal axis of the preform to form a substantially cylindrical body.

[00086] Preferably, the cross sections of the at least a portion of the inner surface of the hollow body are ovoid in section.

[00087] Preferably, the centres of the cross sections of ovoid shape are centred on the central longitudinal axis of the preform.

[00088] Preferably, the centres of the cross sections of ovoid shaper are offset from the longitudinal axes of the preform.

[00089] Preferably, the centres of circular cross sections of a portion of the hollow body are offset from a central longitudinal axis of the hollow body.

[00090] Preferably, a core or mandrel forming the inner surface of the hollow body in an injection moulding step, comprises at least one portion of circular cross sections to form an upper region of the inner surface of the preform; portion of the mandrel comprising ovoid cross sections depending from a transition portion between a lower end of the at least one portion of circular cross sections and the portion of ovoid cross sections.

[00091] Preferably, the mandrel comprises two portions of circular cross sections; an upper portion and a lower portion; the transition portion depending from the lower portion.

[00092] Preferably, the upper portion is of diameters equal to inner diameters of the neck portion of the preform.

[00093] Preferably, the lower portion is of diameters smaller than the diameters of the upper portion.

[00094] Preferably, the transition portion forms an asymmetrical frustum of a cone; an upper end of the transition portion having a diameter equal to that of a lower end of the lower portion with the lower end of the transition portion conforming in cross section to the ovoid cross section of an upper end of the ovoid portion.

[00095] Preferably, each of the upper portions and the ovoid portion are tapering; the cross sections decreasing in area from respective maximum areas at upper ends of the portions to minimum areas at the respective lower ends.

[00096] Preferably, the diameters defining the outer surface of the hollow body decrease in dimension from a maximum diameter at a lower end of the neck portion to the lower end of the hollow body.

[00097] Preferably, the preform includes an integral handle; the handle forming a loop of material extending vertically below the neck portion of the preform to a lower junction on the body of the preform.

[00098] Preferably, a central vertical plane of the handle passes through the central axis of the preform.

[00099] Preferably, the major axes of the cross sections of the ovoid portion of inner surface of the hollow body of the preform lie in the central vertical plane.

[00100] Preferably, the wall thicknesses of the preform in that portion of the preform in which the inner surfaces are defined by the ovoid cross sections, vary from a maximum at opposite ends of the minor axes of the ovoid cross sections to minimum thicknesses at outer ends of the major axes.

[00101] Preferably, the ratio of maximum wall thickness to minimum wall thickness of the ovoid portion lies in the range of 2:1 and 2.2:1.

[000102] Preferably, the polymer walls of the preform proximate maximum thickness are distributed predominantly to longer side walls of a rectangular cross section blown container; the polymer walls of the preform proximate minimum thickness predominantly distributed to shorter side walls of the blown container.

[000103] In another broad form of the invention, there is provided a method of optimizing wall thickness in a stretch-blow-moulded container; the method including the steps of:

injection moulding hollow preforms in which at least a lower portion of each preform has internal cross sections non-concentric with external surfaces of the lower portion, bringing the preforms to a temperature suitable for stretch-blow-moulding, inserting the preforms into cavities of a stretch-blow-moulding machine, mechanically stretching the preforms and injecting air to form the container.

[000104] Preferably, the mandrels for the injection moulding of the preforms include at least one upper region of circular cross sections.

[000105] Preferably, the lower portion of the preform has cross sections of an ovoid form.

[000106] Preferably, the upper region of the mandrel includes an upper portion and a lower portion.

[000107] Preferably, a transition portion extends between a lower end of the lower portion and an upper end of the lower section.

[000108] Preferably, the external surfaces of the preform are defined by diameters centred on a central longitudinal axis of the preform.

[000109] Preferably, an integral handle is formed on the preform extending in a loop between a first junction region below a neck portion of the preform and a second junction region on a body of the preform; a central vertical plane of the integral handle coincident with the central longitudinal axis.

[000110] Preferably, the major axes of the cross sections of ovoid form of the lower section lie in the central vertical plane.

[000111] Preferably, the wall thicknesses of the preform in the lower section vary from maximum thicknesses at opposite ends of the minor axes of the ovoid cross sections to minimum thicknesses at opposite ends of the major axes.

[000112] Preferably, in stretch-blow-moulding a container of generally rectangular cross section, polymer material proximate the maximum thicknesses is distributed to longer sides of the container and polymer material proximate the minimum thicknesses is distributed to shorter sides of the container.

[000113] In another broad form of the invention, there is provided a mandrel for forming internal surfaces of an injection-moulded hollow preform; the mandrel including at least one portion with cross sections which are non-concentric with diameters defining outer surfaces of the preform.

[000114] Preferably, the non-concentric cross sections are ovoid in form; the ovoid forms defining varying wall thickness of the preform.

[000115] Preferably, the major axes of the ovoid formed cross sections lie in a vertical plane containing a vertical central longitudinal axis of the preform; the vertical plane forming a mid plane of an integral handle formed on the preform depending vertically from a first junction region below a neck portion of the preform to a second junction point on a body of the preform.

[000116] In another broad form of the invention, there is provided a method of biasing distribution of polymer material from walls of at least one portion of a preform to selected side walls of a container stretch-blow-moulded from the preform; the method including the steps of:

- arranging a mandrel defining inside surfaces of the preform with cross sections of the at least one portion which are non-concentric with corresponding outer surfaces of the preform as defined by a cavity of a preform injection moulding die,
- arranging the mandrel in the injection moulding die such that major axes of the cross sections of the mandrel of the at least one portion are aligned with a central vertical plane of the cavity,

injection moulding the preform,  
introducing the preform into a cavity of a stretch-blow-moulding machine such that the central vertical plane of the preform is aligned with a central vertical plane of a blown container of generally rectangular cross section, and  
wherein the central vertical plane of the container is parallel to opposing longer sides of the container.

[000117] Preferably, the cross sections of the mandrel in the at least one portion are ovoid in shape; major axes of the ovoid cross sections aligned with the central vertical plane; centres of the ovoid cross sections coincident with a central axis of a body of the preform.

[000118] Preferably, the outer surfaces of the body of the preform are defined by diameters centred on the central axis.

[000119] Preferably, the preform includes an integral handle forming an integral handle on the container; the integral handle of the preform extending vertically from a first junction below a neck portion of the preform to a second junction on a body of the preform; the integral handle centred on the central vertical plane of the preform.

[000120] Preferably, in a blow moulding stage polymer material of walls of the preform in the at least one portion and on opposing ends of a minor axes of the ovoid cross sections are biased to the opposing longer sides of the container; polymer material proximate to opposite ends of a major axes of the ovoid cross sections biased towards the shorter side walls of the container.

[000121] In another broad form of the invention, there is provided a method of injection moulding a preform in which at least a portion of wall thicknesses of a hollow body of the preform varies along a length of the hollow body; the method including the steps of;

forming at least one pair of opposing cavities in an injection moulding die; the cavities defining external surfaces of the preform and an integral handle,  
locating a mandrel in each of the at least one opposing cavities such that a central longitudinal axis of the mandrel is coincident with an axis of the cavity as defined by a neck portion of the hollow body,  
closing the injection moulding die to form a cavity about the mandrel,

injecting a polymer into the cavity to form the preform, and wherein the injection-moulded preform includes an integral, injection-moulded handle; the handle extending as a loop from a first junction point below a neck portion of the preform to a second junction point on the hollow body of the preform.

[000122] Preferably, the wall thicknesses of the hollow body of the perform increase from below the neck portion to proximate a lower end of the preform.

[000123] Preferably, the cross sections of internal surfaces of the perform are concentric with cross sections of external surfaces of the preform.

[000124] Preferably, at least a portion of cross sections of internal surfaces of the preform are non-concentric with cross sections of outer surfaces of the preform.

[000125] Preferably, the non-concentricity of the cross sections of internal surfaces of the preform with cross sections of the outer surface of the preform is from a portion of cross sections of the internal surface being of ovoid form.

[000126] Preferably, the non-concentricity of the internal surfaces with the outer surface of the hollow body is from centres of cross sections of the internal surface being of offset from a central longitudinal axis of the preform.

[000127] In a further broad form of the invention, there is provided a preform and a container stretch-blow-moulded from the preform in a stretch-blow-moulding machine; the preform comprising a neck portion, a collar below the neck portion and a body extending from below the collar; the body including a first cylindrical portion having a first diameter and a second conical portion tapering from a diameter smaller than the diameter of the first portion to a minimum diameter proximate a bottom portion of the preform.

[000128] Preferably, the preform includes an integral handle forming a loop extending from a first junction position proximate the collar to a second junction position along the body.

[000129] Preferably, the first cylindrical portion extends from below the collar; the first portion being of a substantially constant diameter.

[000130] Preferably, wall thickness of the second conical portion tapers from a minimum thickness proximate the first cylindrical portion to a maximum thickness proximate a tangent line between the conical portion and a bottom portion of the preform.

[000131] In a further broad form of the invention, there is provided a method of reducing material required to form a container stretch-blow-moulded from a preform; the preform comprising a neck portion, a collar below the neck portion and a generally cylindrical body below the neck portion; the preform further including a handle extending from a first junction position below the collar to a second junction position along the body of the preform; the method including the steps of:

- Forming the body of the preform in at least two portions of different configuration; a first cylindrical portion and a second conical portion;
- Reducing a base diameter of the conical portion relative to a diameter of the first cylindrical portion.

[000132] Preferably, wall thickness of the second portion varies from a minimum thickness proximate the base diameter of the conical portion to a maximum thickness proximate a tangent line between the second conical portion and a bottom portion of the preform.

[000133] In a further broad form of the invention, there is provided a continuously rotating stretch-blow-moulding machine; the stretch-blow-moulding machine including an orientation device orienting integral handles of injection-moulded preforms from which containers with integral handles are stretch-blow-moulded in the machine; the orientation device including a pair of side by side contra-rotating auger screws located above spaced apart main support rails of a preform infeed track and centred about a vertical mid plane of the main support rails; configuration of diameters, pitch and flutes of the auger screws arranged to capture necks of the preforms and advance preforms along the preform infeed track; sides of preforms advancing along the auger screws contacting a friction strip inducing rotation of the preforms; rotation causing all preform integral handles to rotate from any random first orientation to a second predefined orientation.

[000134] Preferably, the preforms with integral handles are fed onto a pair of side by side contra-rotating rollers centred about the vertical mid plane of the pair of spaced apart rails of

the preform feed-in track; the pair of contra-rotating rollers located before the auger screws; the pair of roller space apart sufficient to allow bodies and integral handles of the preforms to slide between the rollers into a position wherein the preforms are suspended between the rollers by collars below the necks of the preforms; the bodies and integral handles of the preforms constrained between spaced apart guide rails in the random first orientation; the guide rails located at a level below the main preform support rails proximate the middle of the handles.

[000135] Preferably, in the random first orientation handles may be leading or trailing relative a direction of movement of preforms along the infeed track towards a preform pick-off position at a lower outer end of the infeed track.

[000136] Preferably, the friction strip mounted to one of the main support rails is substantially coextensive with lengths of the auger screws; the friction strip intruding into space between the pair of spaced apart main support rails sufficient to engage with the sides of bodies of preforms moved along by the auger screws.

[000137] Preferably, a section of that guide rail on the same side as the friction strip is discontinuous for a length substantially coextensive with lengths of the auger screws.

[000138] Preferably, rotation of the preforms while carried along the auger screws rotates all preform handles into a handle trailing position with the handles arrested by contact with that guide rail of the pairs of guide rails opposite to the friction strip; the handles able to rotated through the discontinuous section of the guide rail.

[000139] Preferably, the auger screws separate successive preforms according to the pitch of the auger screws; the auger screws further providing downward pressure on preforms with oriented handles between the ends of the auger screws and the preform pick-off position.

[000140] In a further broad form of the invention, there is provided a method of producing stretch-blow-moulded containers with integral handle in a continuously rotating stretch-blow-moulding machine; the containers with integral handle stretch-blow-moulded from separately injection-moulded preforms with integral handle; the preform comprising a neck portion, a body portion and a handle forming a loop of orientable material extending from a first

junction point below the neck portion to a second junction point on the body portion; the method of injection-moulding including the steps of:

- Forming a multicavity injection-moulding die;
- In a heated fixed side of the die forming an array of cavities; the cavities formed to correspond to sections of the preforms to a point below the integral handle;
- Providing a corresponding array of opposing half cavities projecting from a face of the opposite moving side of the die; the half cavities shaped to form the preform from the neck portion, body and integral handle to the point below the integral handle;
- Providing cores for forming the internal shape of the preforms; the cores fixed to the moving side of the die and centred on a common axis of the cavities in the fixed heated side of the die and the opposing half cavities.

[000141] Preferably, in a mould cycle

- cavities in the heated fixed side of the die and the opposing half cavities at the opposite moving side of the die are injected with orientable polymer material to form the preforms;
- When filled, after a predetermined delay moving the moving side of the die away from the heated fixed side to draw the ends of the preform bodies below the handle out of the cavities in the heated fixed side of the die;
- After a predetermined delay, opening the opposing half cavities to release the neck portion, the integral handle and the body portion of the preform to below the handle portion.

[000142] Preferably, further in the mould cycle

- activating a robot to position an array of vacuum suction elements between the heated fixed side of the die and the moving side of the die;
- positioning the array of vacuum suction elements in registration with the array of cavities;
- as the opposing half cavities open apply vacuum pressure to the vacuum elements and activate the robot to drive the vacuum elements to fit over the ends of the preforms;
- retract the robot to draw the preforms from the cores and withdraw the vacuum elements and retained preforms from between the heated fixed side and the moving side of the die;

- rotate the array of vacuum elements into a position in which axes of the preforms are substantially vertical and cut vacuum pressure to allow preforms to fall into a receiving bin.

[000143] Preferably, each vacuum element is provided with a slot or channel at an open end of the vacuum elements; the slot or channel provided to allow each vacuum element to accommodate at least a portion of the handle of the preform.

[000144] In a further broad form of the invention, there is provided a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine in which injection-moulded preforms with integral handles are transferred from a first transfer system to a preheating stage; the transfer of a preform from a gripper of the first transfer system to a preform supporting mandrel achieved in one fluid motion as a vertical axis of the preform is brought into alignment with a vertical axis of the preform supporting mandrel and the handle of the preform is slid into a heat shield provided on the mandrel, the transfer made while accommodating each of the rotations of a loop rail of the preheating stage, the mandrel and the transfer system as well as movements of the gripper.

[000145] Preferably, the handle as injection moulded is protected by the heat shield during the preheating stage; the shape of the handle of a container stretch-blow-moulded from the injection moulded preform being identical to the as injection-moulded shape of the handle of the preform.

## BRIEF DESCRIPTION OF DRAWINGS

[000146] Embodiments of the present invention will now be described with reference to the accompanying drawings wherein:

[000147] Figure 1 is a side view of a preform with integral handle for stretch blow-moulding a container by means of a continuous blow moulding machine;

[000148] Figure 2 is a side view of a container with integral handle stretch blow-moulded from the preform of Figure 1;

[000149] Figure 3 is a plan view of the stretch blow-moulding machine producing the container of Figure 2;

[000150] Figure 4 is a side view of a preform orientation and loading section of the machine of Figure 3;

[000151] Figure 4A is a plan view of the preform orientation and loading section of the machine of Figure 3;

[000152] Figure 4B is a plan view of a further preferred embodiment of a preform orientation arrangement for the machine of Figure 3;

[000153] Figure 4C is a side elevation view of the orientation arrangement of Figure 4B;

[000154] Figure 4D is a perspective view from below of the orientation arrangement of Figures 4B and 4C;

[000155] Figure 5 is a plan view of a loading end of the preform orientation and loading section of Figure 4 and a first preform transfer system;

[000156] Figure 6 is a perspective view of the first preform transfer system of Figure 5;

[000157] Figure 7 is a plan view of a portion of the preform transfer system of Figures 5 and 6 and a preform loading and unloading area of a preform preheating stage of the machine;

[000158] Figure 8 is a perspective view of a preform of Figure 1 inserted into a mandrel with heat shield for transport through the preform preheating stage of the machine;

[000159] Figure 9 is an enlarged plan view of section of the machine showing a portion of the preform loading and unloading area of Figure 7, a second transfer system and a portion of the stretch-blow-moulding dies assembly of the machine;

[000160] Figure 10 is a front view of one half of a stretch-blow- moulding die for the production of the container shown in Figure 2;

[000161] Figure 11 is a plan view of a portion of the machine of Figure 3 showing the region of transfer of blown containers from a stretch-blow-moulding die to a container receiving bin;

[000162] Figure 12 is a schematic block diagram of control components associated with control of the heating and transport of the preforms usable with any of the above described embodiments;

[000163] Figure 13 is a side view of typical injection-moulded preform for stretch-blow-moulding of a polymer container.

[000164] Figure 13A is a sectioned side view of a preform according to a preferred embodiment of the invention in which a central vertical plane passing through a central vertical axis of the preform lies in the plane of the paper,

[000165] Figure 14 is a side view of a mandrel for injection-moulding the preform of Figure 13A in which a central vertical plane passing through a central vertical axis of the mandrel lies in the plane of the paper;

[000166] Figure 15 is cross section along the vertical central axis of the mandrel of Figure 14 taken at the level of A-A;

[000167] Figure 16 is a cross section along the vertical central axis of the mandrel of Figure 3 taken at the level B-B;

[000168] Figure 17 is a side view of a container stretch-blow-moulded from the preform of Figure 2;

[000169] Figure 18 is an end view of the container of Figure 17;

[000170] Figure 19 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000171] Figures 19A and 19B are selected cross sections of the preform of Figure 19;

[000172] Figure 20 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000173] Figures 20A and 20B are selected cross sections of the preform of Figure 20;

[000174] Figure 21 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000175] Figures 21A and 21B are selected cross sections of the preform of Figure 21;

[000176] Figure 22 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000177] Figures 22A and 22B are selected cross sections of the preform of Figure 22;

[000178] Figure 23 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000179] Figures 23A and 23B are selected cross sections of the preform of Figure 23;

[000180] Figure 24 is a schematic view of an injection moulding process for producing the preforms of Figures 13A and 19, 20 to 23;

[000181] Figure 25 is a container with integral handle as blow-moulded from the preform of Figure 13,

[000182] Figure 26 is a preform of reduced PET volume according to a preferred embodiment of the invention,

[000183] Figure 27 is a cross section view of the body of the preform of Figure 26 showing variations in wall thickness,

[000184] Figure 28 is a side view of a container stretch-blow-moulded from the preform of Figures 26 and 27,

[000185] Figure 29 is a further side view of a preform with integrally formed handle according for stretch-blow-moulding in the machine of the invention,

[000186] Figure 30 is a sectioned, schematic side view of an injection moulding press and injection moulding die for moulding the preforms for use in the continuous rotating stretch-blow-moulding machine of the invention, with the die opened prior to an injection moulding cycle,

[000187] Figure 31 is a front view of the face of the moving die section of the injection moulding die of Figure 30 at the end of an injection moulding cycle (with the heated fixed die section removed)

[000188] Figure 32 is a further view of a part of the injection moulding press showing extraction of moulded preforms by vacuum elements inserted into the opened die by a robot.

[000189] Figure 33 is a side view of a preferred embodiment of a preform and integrally attached handle according to the invention.

[000190] Figure 34 is an end view of the preform of figure 33.

[000191] Figure 35 is a view from above of the preform and handle of Figures 33 and 34.

[000192] Figure 36 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000193] Figures 36A and 36B are selected cross sections of the preform of Figure 36;

[000194] Figure 37 is a sectioned side view of a further preferred embodiment of a preform according to the invention;

[000195] Figures 37A and 37B are selected cross sections of the preform of Figure 37.

## DESCRIPTION OF EMBODIMENTS

[000196] A feature of the present machine **10**, a preferred configuration of which is shown in Figure 3, is that motion through the machine of a non-symmetric injection moulded preform **12** as shown in Figure 1, from its initial intake to its emergence as a stretch blow-moulded container **14** (as shown in Figure 2), is continuous. As shown in Figure 1, the previously injection moulded polymer preform comprises a cylindrical elongate body **16** and neck **18**. An integral handle **20** extends from a first junction point **22** just below the neck **18** to a second junction point **24** on the body **16** of the preform.

[000197] Referring again to Figure 3, the continuous, non-incrementing process of the machine **10** includes the transfer of preforms from a loading or pick off position **26** to a preheating stage **28**, through the preheating stage and transfer to a stretch-blow moulding die **30** with subsequent removal of the blown container **14** from the die and removal from the machine. These stages will now be described in detail.

### Entry of Preforms and Handle Orientation – First Preferred Embodiment

[000198] As shown in the preferred layout of the machine **10** in Figure 3 and referring also to Figures 4 and 5, the previously injection moulded preforms **12** (as shown in Figure 1) are fed, for example from a hopper (not shown but as well understood in the industry) to slide under gravity down inclined rails **32** while supported by their necks **18**. The inclined rails **32** comprise a pair of upper rails **32a** between which the preforms are suspended by their necks **18**, and a pair of lower rails **32b** which constrain the handles **20** of the preforms approximately in line with the long axis of the rails. For reasons that will become clear, it is essential however, that during the passage of preforms through the stages of the machine, the orientation of the integral handle **20** of the preform is controlled precisely.

[000199] Preforms **12** with a handle roughly oriented pass one by one through an escapement **34** to be captured by a continuously rotating feeder wheel **36** which carries the preform between the feeder wheel and a short rail **40**, in such a way that friction between the body **16** of the preform and the rail **40** induces rotation of the preform and its handle. The rotating handle collides with a stop **40a** under the rail **40** forcing each handle into a rearward orientation with respect to the direction of travel, to arrive at a pick off position **26**.

[000200] At the instance that a preform arrives at the pick off position **26**, a pair of opposing actuators (not shown) located under the pick off position **26**, simultaneously briefly close on,

and then release, the preform handle **20** to fix its orientation relative the gripper **58** which, also at that instant engages with the neck **18** of the preform.

### Entry of Preforms and Handle Orientation – Second Preferred Embodiment

[000201] In this second preferred embodiment, with reference now to Figure 4A, the injection moulded preforms **12** are again fed onto inclined rails **32a**, down which they slide under gravity supported by the flanges at the necks **18**. Again, as described for the first preferred embodiment above, the handles are loosely constrained between lower rails **32b**, with the handles either in a “leading”, that is pointing in the direction of movement of the preforms as they progress down the incline, or “trailing”, pointing rearwardly.

[000202] In this second preferred embodiment an orientation mechanism **34A** is located at a point along the rails **32** approaching the lower end of the rails. As can be seen in Figure 4A, the mechanism includes two contra-rotating drive wheels **33** and **35**, arranged at opposite sides of the rails **32**, at a level coincident with the lowermost portion of the bodies of the preforms and below the lower rails **32b** and the lowermost point of the handles. The axes of the wheels are normal to the slope of the inclined rails. Note only the lower rails **32b** are shown in Figure 4A.

[000203] The drive wheels **33** and **35** are separated by a gap **37** which is somewhat narrower than the diameter of the body **16** of the preforms. Each of the wheels **33** and **35** is provided with one or two tyres **39** of a sufficiently soft polymer material to allow a preform body **16** to pass through the gap but providing a degree of grip on the body.

[000204] As shown in Figure 4A, drive wheel **33** rotates in an anticlockwise direction while drive wheel **35** rotates in a clockwise direction. The combination of these two rotations has the effect of drawing a preform through the gap **37**. The two drive wheels do not however rotate at the same rate, with, in the preferred arrangement shown in Figure 4A, drive wheel **35** rotating at a significantly lower rpm than that of guide wheel **33**. A preferred ratio of rotation of drive wheel **33** to drive wheel **35** is of the order of 2:1.

[000205] The effect of this differential in rate of rotation of the two drive wheels is that drive wheel **35** exerts a considerably greater grip on the body **16** of the preform so that it acts to rotate the preform in an anticlockwise direction as the preform passes through the gap **37**.

between the two drive wheels. By this means a handle **20** of a preform which is in a leading position as the preform enters the gap **37**, is rotated until it contacts the right hand lower rail **32b** (as seen from above in Figure 4A). To allow for this rotation of the handle a gap **40** is provided in the left hand lower rail.

[000206] It will be understood that the anticlockwise rotation induced by drive wheel **35** has no effect on those preforms entering the gap with their handles trailing, except to drive the trailing handle into contact with the right hand lower rail. Thus, all preforms downstream of the orientation mechanism **34A** approach the escapement **34** in the preferred orientation with the handles in the trailing position.

[000207] The escapement **34** controls the feeding of the handle oriented preforms to the feeder wheel **36** as described above, retaining the trailing orientation of the handles as induced by the mechanism **34A**. As for the first arrangement above, at the instance that a preform arrives at the pick off position **26**, a pair of opposing actuators (not shown) located under the pick off position **26**, simultaneously briefly close on, and then release, the preform handle **20** to fix its orientation relative the gripper **58** which, also at that instant engages with the neck **18** of the preform.

[000208] It will be understood that although the above description is specific to the rotation of the preform in an anticlockwise direction by the clockwise rotating drive wheel, orientation according to the principles of the mechanism may equally be achieved by reversing the differential rates of rotation of the two drive wheels and providing the gap in the lower guide rail on the opposite side to that illustrated in Figure 4A. In this alternative arrangement, it is then the anticlockwise rotating drive wheel which induces clockwise rotation to the body of a preform passing between the wheels, rotating a leading oriented handle until it contacts the left hand lower rail (as seen from above in Figure 4A), the gap allowing rotation of the handle then being provided in the right hand lower rail.

[000209] Precise orientation of the handle throughout the stages of the machine is critical to the process of preheating where the orientation must align with the alignment of heat shields, and for correctly placing the preform and the handle into the stretch-blow-moulding die.

### Entry of Preforms and Handle Orientation – Third Preferred Embodiment

[000210] With reference now to Figures 4B to 4D, in this further preferred arrangement of a handle orientation mechanism 34b, injection moulded preforms **12** emerge one at a time from a bulk supply via, for example, a conveyor (not shown) to be deposited centrally onto a pair of contra-rotating, downward sloping rollers **11** and **13**. The rollers **11** and **13** are so spaced as to allow the body **16** and handle **20** of each preform to drop through the gap between them but retain the wider diameter of the projecting collar below the neck **18** of the preform. The rollers **11** and **13** are mounted above a pair of spaced apart guide rails **15** and **17** (as best seen in Figure 4D) similarly spaced as the gap between the rollers. As the bodies and the handles of the preforms drop through the gap between the rollers and that between the guide rails **15** and **17**, the handles **20** are constrained into approximate alignment between these rails, but at this stage handles may be “leading” or “trailing” relative to movement in the downward direction shown in Figures 4C and 4D. Since it is a requirement imposed by the design of the blow-moulding machine described below, that preform handles at entry of preforms into the feeder wheel **36** must be in the trailing position, those leading must be turned around.

[000211] At the downward ends of the rollers, the preforms drop to the level of main support rails **19** and **21**, so that preforms are now retained between these main support rails by their collars. A combination of gravity and pressure from following preforms forces each preform against the upward outer ends of side by side, contra-rotating auger screws **23** and **25** located on either side of a median vertical plane between the support rails. The flutes **27** of the auger screws are sized so as to capture between them the necks **18** of the preforms. The pitch of the auger screws is such as to separate preforms while being driven in the downward direction by the screws’ rotation.

[000212] Generally coextensive with the length of one of the auger screws, (in the arrangement shown in the drawings, auger screw **25**), the main support rail **21** is provided at its underside with a friction strip **29** (as best seen in the enlargement inset of Figure 4D). This friction strip **29** projects slightly into the gap between the main support rails **19** and **21** so that its inner edge engages with the body of a preform as it progresses between the augers. This friction contact urges rotation of the preform in an anticlockwise direction as seen from above.

[000213] Also approximately coextensive with the length of the auger screw **25** is a gap in the guide rail **17**. Any rotation of an already trailing handle, will only force the handle into engagement with the opposite guide rail **15**, and remain trailing. But, as can be seen from the enlarged inset of Figure 4D, handles of preforms with handles leading at entry between the auger screws will gradually be rotated from the position where the handle is leading to it being in the trailing position, (being free to do so by the gap in guide rail **17**) until these handles also are arrested from further rotation by the opposite guide rail **15**. From here as can be seen from Figures 4C and 4D, the preforms, all with handles trailing, proceed down the main support rails **19** and **21** with the handles constrained between the now continuous guide rails **15** and **17** until they reach the final orientation operation at the feeder wheel **36**.

[000214] As well as spacing and rotating preforms as they pass between the auger screws **23** and **25**, the rotation rate of the auger screws is such as to deliver a preform to the feeder wheel **36** in synchronization with the rotation of that wheel. Furthermore, the rotation of the auger screws provides pressure to ensure preforms proceed down the main support rails.

### Transfer to Preheating

[000215] Referring now to Figure 5 and Figure 6, a first rotating transfer system **42** is positioned adjacent the feeder wheel **36** with a continuously rotating carrier **44** of the first rotating transfer system **42** and the feeder wheel **36** contra-rotating one to the other.

[000216] The rotating carrier **44** of the first rotating transfer system **42** includes, in this embodiment, four opposing support arms **46** extending radially from a fixed centre of rotation **48** to rotate about a vertical axis **50**. Each end of the arms carries a first pick and place apparatus **52**. Each first pick and place apparatus **52** includes a linear guide **54**, a housing **56** which is rotatably mounted to the outer end of the support arm **46**, enabling rotation of the housing **56** about a vertical axis **51**. A two-fingered gripper **58** is mounted to a rotary actuator **60** supported by vertical plate **62** at an outer end of a free sliding element **64** of the linear guide **54**. The gripper fingers **66** are centred on a gripper effective vertical axis **68**, with the gripper able to be rotated about the horizontal axis **61** of the rotary actuator **60**.

[000217] A fixed horizontal cam plate **70** is mounted at a level below the rotating carrier **44** so that its centre is coincident with the vertical axis **50** of the rotating carrier. The perimeter edge **72** of the cam plate **70** forms an outer cam surface **74** and its upper surface **76** is

provided with a cam channel **78** which is inboard of the perimeter edge **72** and the outer cam surface **74**.

[000218] The housing **56** of the linear guide **54** is provided with an outrigger arm **80** extending radially from the centre of rotation **82** of the linear guide **54**. The outer end of the outrigger arm **80** supports a first cam follower **84** locating in the cam channel **78**. The free sliding element **64**, adapted to reciprocating linear motion in a horizontal plane, is provided with a second cam follower **86** with the free sliding element **64** biased by springs **88** to maintain contact between the second cam follower **86** and the outer cam surface **74**.

[000219] The cam channel **78** and outer cam surface **74** are arranged so that as a first pick and place apparatus **52** rotates past the preform pick off position **26**, the rotation of the rotating carrier **44**, combined with the loci of the first and second cam followers **84,86** causes the gripper **58** to be both reciprocatingly extended and retracted, and rotated relative the arm **46**. The gripper motion is such that at the approach to the preform pick off position **26**, the free sliding element **64** and thus the gripper **58** is extended followed by rotation of the linear guide **54** and gripper **58** in retrograde or negative direction relative to the direction of rotation of the rotating carrier **44**.

[000220] At the instant a preform **12** arrives at the pick off position **26** after its approximate orientation, so that the handle **20** of the preform is trailing but not yet fixed, the extending movement of the gripper **58** through the first cam follower **84** against the outer cam surface **74**, brings the gripper effective axis **68** into coincidence with the central axis of the preform. At this instance also, a pair of opposing actuators located under the pick off position **26** simultaneously briefly close on, and then release, the preform handle **20** to fix its orientation relative the gripper **58** which, also at that instant engages with the neck **18** of the preform. The gripper **58** is then rotated positively to carry the preform **12** clear of the supporting short rail **40** and away from the pick off position **26**.

[000221] This combination of reciprocating rotation and extension and retraction of the gripper **58** compensates for the divergence of the loci of the supporting tooth formation **38** of the feeder wheel **36** and the rotating carrier **44** as they contra rotate one relative the other. It is by the means of the reciprocating rotation and retraction movements of the gripper through a combination of a rotating linear guide and the two cam loci that a smooth continuous transfer

of preforms is possible between two rotating elements; that of the feeder wheel **36** and the rotating carrier **44**.

### Loading Into Mandrel Stage

[000222] With reference now to Figure 7, rotation of the rotating carrier **44** brings a preform **12** retained in a gripper **58** to the preheating stage **28** as was shown in Figure 3 of the machine **10**. Because the preheating of the preforms is conducted with the preforms inverted from their initial position at the pick off position **26**, that is, with the neck **18** upward, the rotary actuator **60** at the end of the free sliding element **64** rotates the grippers **58** and the preforms through 180degree during their transit between pick off position **26** and the transfer to a preheating transport system **90**. The effect of this rotation is that the handle **20** of the preform is now “leading” with respect to the direction of rotation of the rotating carrier **44**, instead of trailing as it was at the pick off position **26** as could be seen in Figure 5.

[000223] The preheating transport system **90** is also in continuous movement and comprises a loop rail system **92** with proximate and distal rotating guide wheels **94** and **96** respectively at either end of the loop. A plurality of preform supporting mandrels **98** are adapted to move around the loop rail system **92**, driven into motion around the straight sections of the loop by a drive chain (not shown) to which they are fixed and around the guide wheels **94,96** by nesting in niches **103** of the guide wheels. As well as travelling around the loop rail system **92**, the mandrels **98** are continuously rotated about their vertical axes.

[000224] Preheating of the preform **12** is required for the body **16** of the preform, that is for that portion of the preform which will be subjected to stretching and blow-moulding, to sufficiently soften the polymer. But the handle **20** and the neck **18** which retain their as injection moulded form in the blown container shown in Figure 3, must be protected from excessive heat as the preform moves through the preheating stage. For this reason, as shown in Figure 8, a preform supporting mandrel **98** is provided with a heat shield **100** comprising a channel **102** rising from a cylindrical collar **104** in which the handle **20** is protected while the neck **18** is protected by its insertion into the cylindrical collar **104** of the mandrel.

[000225] It may be noted that the patterns of the outer cam surface **74** and that of the cam channel **78** of the first rotating transfer system **42** as shown in Figure 5, near the pick off position **26** differ from those at the approach to, and following the preform transfer to

preheating position 106. This reflects the difference in movements required of a gripper 58 as it steers the preform into the position in which the vertical axis of the preform becomes aligned with that of the cylindrical collar 104 of the mandrel 98 and the handle 20 is aligned with the heat shield channel 102. At the instant these axes are aligned and the handle 20 of the preform is aligned between the side elements of the channel 102, a cylindrical plunger 108 within the collar 104 rises into the neck 18, then lowers to bring the neck to an inserted position within the collar. These movements of course take place while the first rotating transfer system 42 and the proximate guide wheel 94 are in continuous contrarotation. This complex movement is again made possible by the combination of the rotation of the arm 46 and the rotation and linear movements of the free sliding element 64, and thus of the gripper fingers 66 of the first pick and place apparatus 52.

[000226] Thus the transfer of a preform from the gripper of the first transfer system 42 to a preform supporting mandrel 98 is achieved in one fluid motion as the vertical axis of the preform is brought into alignment with that of the mandrel and the oriented handle of the preform slides into the heat shield, while accommodating each of the rotations of the loop rail, the mandrel and the transfer system as well as the movements of the gripper.

### Preheating of Preforms

[000227] As best seen in Figures 3 and 8, banks 110 of heating elements 109 are positioned along each of the straight sections of the loop rail system 92. Graded hot air 111 is drawn across the path of the preforms 12 by extractor fans 113. To prevent excessive heat build-up of the cylindrical collar 104 and the neck 18 of the preform in the collar, a cooling air stream 115 is directed at the collars.

[000228] As a mandrel 98 and preform 12 are rotated away from the transfer-to-preheating position 106 by the proximate rotating guide wheel 94, the mandrels supported in the chain of the preheating transport system 90 travel along the first straight section 112, around the distal rotating guide wheel 96 and back along the second straight section 114 to arrive at a transfer-from-mandrel position 116. While traversing these straight sections, the mandrels are rotated about their vertical axes by a gear 105 of the mandrel engaging with chain 107 to evenly expose the bodies of the preforms to heat from the banks 110 of heating elements 109. The heating elements 109 are each arranged as a series of infra-red heating elements which are individually adjustable as to their proximity to the passing preforms.

[000229] It will be understood that the orientation of each mandrel **98** at both the transfer to preheating position **106** and at the transfer from mandrel position **116** is critical to allow the respective first and second transfer systems to insert and extract a preform handle from the channel of the mandrel's heat shield. These heat shield orientations with respect to the periphery of the proximate guide wheel **94** are not the same at these two positions so that the orientation of the mandrel and its heat shield need to be changed from that demanded at the handle extraction position to that required at the handle insertion position.

[000230] To this end, each mandrel is provided with a guide carriage **98a** fixed to the mandrel. As a mandrel approaches the transfer-from-mandrel position **116**, cam followers **98b** and **98c** engage with guide channels to rotate the mandrel into the required orientation. During transit about the periphery of proximate guide wheel **94**, the cam followers **98b** and **98c** follow cam channels of a cam plate above the proximate guide wheel to bring the orientation of the heat shield to that required at the transfer-to-preheating position **106**.

### Transfer to Mould

[000231] With reference now to Figure 9, a second rotating transfer system **118** operates to transfer preforms **12** from the preheating transport system **90** to a stretch blow moulding die assembly **120**. The stretch blow moulding die assembly **120** comprises of four stretch blow moulding dies **30**, two of which can be seen in the truncated view of the machine in Figure 9. In the present embodiment, four radially disposed stretch blow moulding dies **30** rotate continuously about a common centre **122**.

[000232] The second rotating transfer system **118** is of similar configuration to that of the first rotating transfer system **42** described above. That is, it includes a cam plate **124**, also provided with an inboard cam channel **126** and an outer cam surface **128** around its periphery.

[000233] In this instance, second rotating transfer system **118** includes two, rather than four, continuously rotating opposing radial arms **130**, each of which carries a second pick and place apparatus **132**. Again, similar to the first pick and place apparatuses **52** of the first rotating transfer system **42** above, each includes a linear guide rotatably mounted to the respective outer end of the radial arm **130**, with the free sliding element of the linear guide supporting a rotary actuator which, in turn supports a gripper. In this arrangement also, a first

cam follower of an outrigger arm attached to the housing of the linear guide, locates in the inboard cam channel **126**, while a second cam follower of the free sliding element of the linear guide remains in contact with the outer cam surface **128** by means of a spring.

[000234] Preforms still retained in preform supporting mandrels **98** arrive back at the rotating proximate guide wheel **94** of the preheating system and approach the transfer-from-mandrel position **116**, and are rotated into the required orientation of the heat shield as explained above. The cylindrical plunger **108** of a mandrel **98** approaching the transfer-from-mandrel position **116**, lifts the preform so that the neck is clear of the cylindrical collar **104** to allow the gripper of the second rotating transfer system **118** to engage the preform by the exposed neck **18**. Again, it is the motion of the gripper induced by the combination of rotation of the radial arm **130**, the rotation of the linear guide and linear movements of the free sliding element supporting the gripper as controlled by the cam channel **126** and outer cam surface **128**, which allows the preform and its handle to be smoothly removed from the preheating transport system **90**.

[000235] As one rotating radial arm **130** of the second rotating transfer system **118** approaches and removes a preform from the preheating transport system **90**, the opposite radial arm approaches the die loading position **134**. During its rotation from the transfer-from-mandrel position **116** to the die loading position **134**, the rotary actuator of the second pick and place apparatus **132** rotates about its horizontal axis to change the preform from its inverted position held during the preheating stage, back into an upright position. (It should be noted that Figure 9 shows both a rotating arm **130** and a stretch blow moulding die **30** approaching the die loading position **134**)

[000236] Stretch blow moulding dies of the die assembly **120**, are in the form of two die halves **136**, one of which is shown in Figure 10. Die halves **136** are hinged together about a vertical axis **142** in the manner of a bivalve, and with the hinge supported from a central structure **146** of the die assembly **130** in a typical arrangement for radial stretch-blow-moulding machines. The face surface **138** of the die half shown in Figure 10 has been shaded to highlight the die cavity **148** for the body **16** and integral handle **20** of the preform. As is common in the stretch-blow-moulding of containers, the neck **18**, which remains unaltered in the stretch-blow-moulding process, projects out of the die when closed.

[000237] Referring again now to Figure 9, as stretch-blow-moulding dies **30** approach the loading position **134** the die halves open symmetrically about a bisecting radial line **152** passing through the centre of rotation **122** and the vertical axis **142** of the die hinge **144**, in preparation for receiving a preform. It may be noted from Figures 3 and 9, that the rotation centres of the second rotating transfer system **118**, the proximate rotating guide wheel **94** of the preheating stage and that of the stretch-blow-moulding die assembly **120**, lie along a straight line **154**.

[000238] As an opened die **30** approaches the die loading position **134** lying on the straight line **154**, a radial arm **130** with a preform retained in the gripper of the second pick and place apparatus **132** also approaches the loading position. As the bisecting radial line **152** of the die halves **136** becomes coincident with the straight line **154**, the movements of the second pick and place apparatus **132** has brought the gripper effective vertical axis and thus the vertical axis of the preform into coincidence with the axis **156** of the die (as defined by the centre of the preform body when held in the die) and with the handle oriented to lie in the vertical plane defined by the straight line **154**. While the die halves close and the paths of the die **30** and the end of the rotating arm **130** begin to diverge, the rotation and extension of the gripper, still holding the neck **18** of the preform, ensures the orientation of the handle is maintained in that vertical plane defined by the bisecting line of the die halves until closure is complete. The gripper then disengages from the preform neck.

[000239] It can be seen from Figure 10, that the curved section of the handle **20** of the preform is nested in a constricting cavity **150** of the die which ensures that the handle is not distorted, nor the region between the junction points **22,24** stretched. The underside of the straight section of the handle forms a surface which, in effect, determines the shape of the container under the handle.

[000240] With the die halves **136** closed, stretch-blow-moulding of the container proceeds and the die **30** loaded at the die loading position **134** rotates towards the die unloading position **158** as shown in Figure 11.

### Container Unloading

[000241] A third rotating transfer system **160** is located adjacent the stretch-blow-moulding die assembly **120**, and is configured in similar manner to that of the first and second rotating

transfer systems 42,132 described above. As for the second rotating transfer system 132, the third rotating transfer system 160 includes opposing radial arms 162 at the ends of each of which is a third pick and place assembly 164. It does not however include a rotary actuator since the container which emerges from the die remains in an upright position through the discharge process.

[000242] As for the first and second rotating transfer systems, movements of a gripper 166 is controlled by a combination of the rotation of the opposing radial arms 160, the linear movement of the free element of the linear guide and the two cam loci.

[000243] As the stretch-blow-moulding die 30, now containing a finished container 14, nears the die unloading position 158 lying on the line 168 joining the centres of rotation of the stretch-blow-moulding die assembly 120 and of the opposing radial arms 160 of the third transfer system, the gripper of the pick and place is maneuvered into position to grasp the neck of the container. As the die reaches the die unloading position, the die halves open and the gripper extracts the blown container 14 from the die 30.

[000244] The third rotating transfer system 160 continuous to rotate, tanking the container 14 held by the gripper 166 into a discharge channel 172, with the base of the container passing over a guide rail 170. Guide rail 170 transitions from concentricity with the third rotating transfer system to concentricity with a rotating two-tiered outfeed wheel 172. As the container 14, now in the discharge channel 172, reaches a release position 174 lying on the line 176 joining the centres of rotation of the third rotating transfer system 160 and that of the outfeed wheel 172, the gripper 166 releases the neck and retracts. At the same time a scalloped indentation 172a of the rotating outfeed wheel captures the body of the container feeding it into a discharge channel 178. As containers follow the path of the gripper 166 and then a path determined by the outfeed wheel 172, the base of the container receives cooling air from orifices 182 in guide rail 170, backpressure from accumulating containers in the discharge channel 172 force containers to drop into a container receiving bin 180.

### Control of the Machine

[000245] The operation of the machine 10 is under the control a programmable logic controller. As well as ensuring that all rotation drive servo motors operate synchronously, the controller provides for fully adjustability of the parameters of the preheating elements and of

the parameters of the stretch-blow-moulding dies. This includes setting differential temperature gradients allowing for a gradually increasing exposure to heat as preforms progress around the preheating transport system, and automatic adjustment of heating element temperatures for changing ambient temperatures.

[000246] Control of the preheating is particularly critical in the present system because of the unique characteristics of the preform dictated by the integral handle of the preform. The preheating is thus designed to allow for lateral flow of material in the area between the two junction points of the handle while limiting longitudinal flow and extension during the stretching phase of the stretch-blow-moulding process. Instead, the manner in which heat is applied to the preform ensures that the bulk of polymer which forms the outer shell of the container of Figure 2, is produced from that region of the preform below the lower junction point of the handle.

[000247] Figure 12 is a schematic block diagram of control components associated with control of the heating and transport of the preforms usable with any of the above described embodiments.

[000248] As best seen in the inset of figure 12, banks **110** of heating elements **109** are positioned along each of the straight sections of the loop rail system **92**. Graded hot air **111** is drawn across the path of the preforms **12** by extractor fans **113**. To prevent excessive heat build up of the cylindrical collar **104** and the neck **18** of the preform in the collar, a cooling air stream **115** is directed at the collars.

[000249] In a preferred form each bank **110** comprises a module **201**. The modules **201** are arranged sequentially around the conveyer **202** as illustrated in figure 12.

[000250] In a preferred form a processor **203** in conjunction with memory **204** executes a program for control of the heating elements **109** of the modules **201**.

[000251] In a particular preferred form each element **109** of each module **201** is controlled individually by the processor **203**.

[000252] In an alternative preferred form the elements **109** are controlled as a group based on height – so the top most elements **109** of the modules **201** are controlled to a predetermined temperature together whilst the next down in height elements **109B** are also controlled together to a predetermined temperature – and so on down to elements **109G** at the lowest level.

[000253] In addition the processor **203** controls the speed of rotation of motor **205** in order to control the continuous speed of the preforms **16**.

[000254] A temperature sensor **206**, in one form an infrared temperature sensor provides environment temperature sensing which is utilised by processor **203** to modulate the degree of heating of all elements **109** by a difference factor delta ( $\Delta$ ).

[000255] This allows for a global control of the system temperature in response to variations in ambient temperature.

[000256] As noted above, the stretch-blow-moulding machine is especially developed for, and adapted to, the feeding and transportation of a non-symmetrical preform with integral handle and, ultimately the stretch-blow-moulding of that preform into a container with an integral handle. The preform according to the invention may take a number of different forms described below, although common to all are the neck portion **18** and the integral handle **20** as shown in Figure 1.

[000257] The preforms now to be described differ primarily in respect of the configuration of their internal surfaces, offering benefits of improved distribution of polymer material to the walls of the blown container as well as significant improvement in economy of manufacture due to reductions in the volume of polymer required.

### **First Preferred Preform Embodiment**

[000258] In a first preferred a preform **310** according to the invention as shown in Figure 13A includes a finished neck portion **312** and a tubular hollow body portion **314** extending from below the neck portion. Similar to preforms of the prior art, the outer surfaces of the body portion **314** are defined by diameters centred on a central vertical axis **316**, so that the body portion **314** approximates a cylinder but with a decrease in diameters from the neck

portion **312** to the closed end **318** of the preform.

[000259] The internal surfaces of the preform **310** include surfaces of the hollow body portion **314** which are not concentric with the outer surfaces. Preferably, as shown in Figures 15 and 16, cross sections of the internal surfaces of the preform **310** are circular and concentric in the neck portion **312** of the preform as indicated by the cross section A-A, but below the neck portion are of ovoid form as indicated by section B-B. All sections are however centred on the central longitudinal axis **316** of the body of the preform.

[000260] Referring now to Figure 14, in a preferred arrangement, the mandrel **322** around which the preform **310** is injection moulded, comprises an upper region **324** of circular cross sections adapted to position and retain the mandrel in its correct position in an injection moulding cavity. A first preform-defining portion **326** of the mandrel extends from this upper region **324** to a depth equal to that of the neck portion **312** and is of circular cross section A-A as shown in Figure 4 to form the concentric walls of the neck portion. The ovoid portion **328** of the mandrel depends from the first portion **326**, extending to the tip **330** of the mandrel.

[000261] Given the ovoid shape of the cross sections of the ovoid portion **328**, there is a short transition portion of the mandrel immediately below portion **326** forming the internal form of the neck portion, which transitions from the circular cross section A-A of portion **326** to the ovoid sections B-B. This transition thus takes the form an asymmetrical frustum of a cone; an upper end of which has a diameter equal to that of a lower end of the first portion **326** with the lower end of the transition portion conforming in cross section to the upper end of the ovoid cross section B-B of the remaining length of the preform.

[000262] It can be seen from Figure 13A, that both the outer surfaces of the body portion **314** of the preform and the ovoid portion of the inside surfaces as defined by the mandrel **322**, are tapering; that is, the diameters defining the external surface of the preform are decreasing from below the neck portion **312** to the bottom **318**, while similarly, the major axis **344** and the minor axis **342** of the cross sections of the ovoid portion **328** also decrease accordingly.

[000263] Referring still to Figure 13A, the preform **310** of the invention further includes, as noted above, an integral handle **334** which forms a loop of material extending vertically from an upper junction **336** below the neck portion **312** to a lower junction **338** with the outer surface of the preform. The handle **334** is centred on and defines a central vertical plane **340** (lying in the plane of the paper) which contains the central longitudinal axis **316** of the preform.

[000264] The mandrel **322**, and thus the internal surfaces of the ovoid portion **328**, are so oriented relative the handle **334**, that major axis **344** of the ovoid cross section B-B lies in the central vertical plane **340**.

[000265] It can thus be seen from Figure 16 and cross section B-B that the wall thicknesses of the preform **310** in that portion **328** of the preform in which the inner surfaces are defined by the ovoid cross section, varies from a maximum at opposite ends of the minor axes **342** of the ovoid cross section to minimum thicknesses at outer ends of the major axis **340**. Preferably, the ratio of maximum wall thickness to minimum wall thickness of the ovoid portion lies in the range of 2:1 and 2.2:1.

[000266] The distribution of polymer in the preform according to the invention, afforded by the non-symmetry of the ovoid portion, allows polymer walls of the preform in the region of maximum thickness to be biased predominantly towards the longer side walls **346** of a rectangular cross section blown container **348**, while the polymer walls of the preform from the region of minimum thickness is predominantly distributed towards the shorter side walls **350** of the blown container such as shown in Figures 17 and 18. It can be seen from Figures 17 and 18 that the longer side walls **346** lie on either side of the central vertical plane **340** and thus the handle **334** so that the alignment of the major axis **344** with the vertical plane **340** ensures that the polymer from regions of maximum wall thickness are directed to those longer side walls. In preferred forms the preform of the first embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

## Second Preferred Preform Embodiment

[000267] With reference now to Figure 19, in this preferred embodiment, the exterior surface **410** of the preform **400** of this embodiment, is of substantially cylindrical form. As for the first embodiment above, it too includes an integrally injection moulded handle **434**. In this embodiment, the internal surfaces **414** of the preform are consistently circular in section as shown in the two sample cross sections Figure 17A and Figure 17B. However, again as is clear from the two cross sections and the sectioned side view of Figure 17, there is a tapering of the internal surface **414** so that the wall sections, though concentric to the external surface, increase from a minimum thickness at the neck portion **412** of the preform to a maximum proximate its lower end **418**. In preferred forms the preform of the second embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### Third Preferred Preform Embodiment

[000268] In this further preferred embodiment of the invention, a preform **500** as shown in Figure 20, is formed to significantly reduce the volume of material required to produce the containers shown in Figures 17 and 18. As in the embodiments above, the preform **500** includes an injection moulded integral handle **534**. Although in this embodiment, the neck portion **512** is identical in its exterior and internal forms to that of the earlier embodiments, there is a substantial reduction in the diameter of the substantially cylindrical portion of the body of the preform below the neck portion.

[000269] In this embodiment also, as in the second preferred embodiment above, the internal surfaces of the preform are consistently circular in section as shown in the two sample cross sections A and B of Figures 20A and 20B, but taper with the wall sections increasing from the minimum thickness obtaining in the neck portion and through the transition in diameters below the neck portion, to a maximum wall thickness proximate the lower end **518** of the preform.

[000270] As a further means of reducing the volume of material in the preform of this embodiment, the outer surface **510** below the neck portion **512**, also tapers towards the lower end **518**. In preferred forms the preform of the third embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform

thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

#### **Fourth Preferred Preform Embodiment**

[000271] With reference now to Figure 21, this preferred embodiment of a preform **600** according to the invention, shares a number of characteristics with that of the first and second preferred embodiments above. It has, (as have all the preform embodiments of the present invention), an integral handle **634** as previously described, and, as in the first preferred embodiment above, the internal surfaces **614** of the preform are not consistently of circular section throughout the length of the preform. However, the external surfaces **610** of the preform are substantially cylindrical in form as in the second preferred embodiment.

[000272] Thus, although the external surfaces **610** are defined by circular cross sections, the internal surface **614** varies from circular in cross section from the neck portion **612** down to section A-A in Figure 21A, to then transition to an ovoid section B-B as shown in Figure 21B, approaching the lower end **618**.

[000273] A feature of this particular embodiment is that the wall thickness of the ovoid portion of the internal surface **614** of the preform at the ends of the major axes remains constant with the wall thicknesses of the concentric cross sections from section A-A and upwards, while there is a thickening of the walls increasing to maximum at the minor axis of the ovoid cross section. In preferred forms the preform of the fourth embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

#### **Fifth Preferred Preform Embodiment**

[000274] The preform of this embodiment of a preform **700** shown in Figure 22 is similar to that of the fourth preferred embodiment above, but here, as shown in the cross section views A-A and B-B of Figures 22A and 22b, the wall thickness at the outer ends of the major axes of the ovoid cross section portion of the preform is not maintained equal with the wall thickness of at and below the neck portion **712**. Rather the wall thickness gradually increases from below the neck portion towards the lower end **718** of the preform.

[000275] It may be noted at this point, that in those forms of the perform as in this embodiment and that of the first preferred embodiment above, shaping the internal surface in these non- concentric forms of outer and inner surfaces, introduces considerable issues for the injection –moulding of the preforms.

[000276] As shown in Figure 24, preforms, including those of the present invention, are typically injection moulded in multi-cavity dies **800** in which the cavities **820** in the die conform to the outer shape of the preform, including in the present cases, the shape of the integral handle. In preforms with concentric wall thicknesses, that is, with circular cross sections, the mandrels **840** for forming the internal surfaces will also be of circular cross sections. Thus, the only requirement for positioning such a mandrel relative the injection-moulding cavity is its concentricity with the neck portion of the cavity.

[000277] A mandrel for producing an internal surface of a perform which is wholly or partially non-circular in section may firstly require, a considerably more complex machining operation and, secondly it must be specifically oriented in the injection-moulding cavity.

[000278] Mandrels for preforms with non-circular cross sections must be positioned within the cavities of an injection-moulding die **820**, one half of which is shown in Figure 24 so that the major axes of the ovoid portion are aligned relative to a vertical central plane of the cavities. For preforms according to the present invention with integral handles, that vertical plane is the plane on which the handle of the preform is centred as set out above (in effect the face **842** of the die half).

[000279] To be effective in biasing polymer material flow from different wall thickness areas of the preform towards designated regions of the blown container, the orientation of the preform must be maintained in the cavity of the stretch-blow-moulding machine. That is, the vertical plane of the preform must coincide with a defined vertical plane of the container. In the present invention the vertical plane of the preform is defined by the integral handle and is made coincident in the stretch-blow-moulding cavity with the central vertical plane of the blown container which again is central to the integral handle of the container.

[000280] In a moulding cycle, the die halves are brought together to close the die and the array of mandrels **840** driven into the cavities **820**. The injection nozzle **848** is then advanced

into the injection pocket **844** and molten polymer forced through the runner system **846** to fill the spaces between the external surfaces of the cavities **820** and the mandrels **840** to produce the preforms.

[000281] Although the above description has focused in some embodiments on use of ovoid or offset cross sections to vary the wall thicknesses of at least a portion of a preform at any given cross section of that portion, it will be understood that such variation can be achieved with other non- concentric shaping of the mandrel. Again, although the ovoid cross sections described for the preferred embodiment are centred on the vertical axis of the preform, other material distribution effects may be achieved by an asymmetric positioning of these cross section. In preferred forms the preform of the fifth embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### **Sixth Preferred Preform Embodiment**

[000282] This further preferred embodiment of a preform according to the invention and shown in Figure 23, the preform **900** is provided with a wall thickness **911** in the region between the junction points **936** and **938** of the integrally injection-moulded handle **934** specifically to optimise control of the material in this region in the stretch-blow-moulding stage of producing a container from the preform.

[000283] In this embodiment, the external surface **910** of the preform is again substantially cylindrical. The internal surface of the preform is likewise formed of circular cross sections, but as can be seen in both the side sectioned view of Figure 13A and cross section AA of Figure 13A, the centres of a portion of the cross sections (typified by section A-A) do not lie on the central axis **930** of the body of the preform, but are offset towards the handle **934**.

[000284] The effect is to “thin” the wall thickness in the region between the junction points **936** and **938** of the handle. This is possible and desirable, because firstly there is a lesser volume of material required to form the container since there is no longitudinal stretching of this region and, secondly the thinning provides a significant cost saving in material.

[000285] It will be understood that all the above embodiments of the preform seek to optimise both the distribution of the polymer material of the preform into the blown container and do so by reducing the weight and thus the volume of material for reasons of economy of production. In preferred forms the preform of the sixth embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### Seventh Preferred Preform Embodiment

[000286] With reference to Figure 26 and 27, a preform **1000** for stretch-blow-moulding the container **1040** shown in Figure 28, is comprised of a neck portion **1012**, a collar **1014** and a body **1016** extending from below the collar. As in the preform according to prior art shown in Figure 1, the preform **1000** includes an integral handle **1018** joined to the body **1016** at first junction position **1020** just below the collar **1014** and a second junction position **1022** along the length of the body.

[000287] The first cylindrical portion **1024** of the body extending below the collar **1014**, is substantially of constant diameter, and in the region immediately below the collar, the diameter is substantially that of the finished container as can be seen in Figure 28.

[000288] But it can be seen firstly from a comparison between the preform **1000** according to the present invention, and the preform of the prior art, that there is a significant reduction in diameter of the body **1016** below the first cylindrical portion **1024**.

[000289] Furthermore, it is clear that this second portion **1026** of the body, between the reduction in diameter and the tangent line **1028** with the bottom portion **1030**, is not cylindrical but forms a portion of a narrow cone, with the base diameter **1030** of the cone, that is its largest diameter, significantly smaller than the diameter of the first cylindrical portion **1024**. Thus, this large reduction in diameter and the tapering provide a first significant reduction in the volume of PET contained in the preform of the invention.

[000290] Turning now to the cross-section view of Figure 27, the walls of the body **1016** of the preform **1000**, vary considerably in thickness. While the wall thickness of the neck portion **1012** and the first portion **1024** below the collar **1014** are substantially of a constant thickness, that of the second portion **1026** varies from a relatively thin wall section at the base

diameter **1030**, to a maximum thickness proximate the tangent line **1028**.

[000291] The wall thickness of the bottom portion **1032** is further varied, being reduced from the maximum thickness at the tangent line **1028** to a minimum at the base of the bottom portion.

[000292] This thinning of the wall thickness in the region below the maximum diameter **1030** of the second portion **1026**, augments the reduction in material volume provided by the diameter reduction and the form of the second portion **1026**.

[000293] As well as providing savings in material volume, these variation in wall thicknesses are designed to evenly distribute the volume of PET material to various areas of the walls of the stretch-blow-moulded container **1040** shown in Figure 28, to an average thickness of approximately 0.5mm. In preferred forms the preform of the seventh embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### **Eighth Preferred Preform Embodiment**

[000294] With reference to figures 33, 34 and 35 there is illustrated a preform having an integral handle with a flared portion thereby to impart an ergonomic aspect to the lifting of containers blown from the preform.

[000295] Turning now to Figure 33, in a preferred form of the preform, a preform 2100 includes a neck 2102, a body portion 2103 and a handle 2113. The neck 2102 has a threaded portion 2104 and a locating ring 2105. The preform is injection moulded from PET material in accordance with the teaching elsewhere in this specification. The handle in its configuration as injection moulded in its preform state, remains unaltered by the stretch blow-moulding process forming the resulting container from the continuous blow moulding process described elsewhere in this specification.

[000296] In order to produce the container, the preform 2100 shown in Figures 33 to 35, is fed into a blow moulding machine such for example as the machine 10 shown schematically

in Figure 3, and blow moulded according to bi-axial orientation blow moulding techniques. During this process the neck 2102 is held in a mandrel 322, as shown in Figures 14 of a transport system of the machine 10 in such a way as to prevent its expansion in the stretch blow-moulding die 30.

[000297] The loop of orientable material forming the handle 2113 has a generally uniform cross section from proximate the lower connection region 2116 to a gradually widening cross section 2124 approaching the upper connection region 2115 with the cross section reaching and maintaining a maximum width proximate the upper connection region 2115 as can be seen in Figures 34 and 35.

[000298] With reference again to Figure 33, integrally moulded first, second and third strengthening elements 2135, 2136 and 2137 are provided respectively at each of the upper connection region 2115, the lower connection region 2116 and at the junction between the straight section 2118 and the arcuate section 2120 of the handle 2113.

[000299] The first strengthening element 2135 at the upper connection region 2115 comprises a curved strengthening element conforming generally in width and in cross section to the width and cross section of the widened portion 2124 of the handle proximate the upper connection region. The curved strengthening element extends from a first separate connection region 2140 on the body portion 2103 of the preform (and on the blown container) below the upper connection region 2115 and merges with the loop of orientable material proximate a first end 2141 of the maximum width of the handle.

[000300] The second strengthening element 2136 at the lower connection region 2116 of the handle, comprises a straight strengthening element conforming generally in width and cross section with the width and cross section of the straight section 2118. The straight strengthening element extends from a second separate connection region 2142 above the lower connection region 2116 of the straight section of the handle, to merge with the straight section of the handle proximate the lower connection region.

[000301] The third strengthening element 2137 at the junction of the straight section 2118 and the arcuate section 2120 of the handle, comprises a further curved strengthening element conforming generally in width and cross section with the width and cross section of the

handle of both the straight section 2118 and the arcuate section 2120 adjacent the junction. Respective outer ends of this further curved element merge with each of the straight 2118 and arcuate 2120 sections.

[000302] It should be noted that, in this instance, the width of the first strengthening element 2135 is the same as that of the maximum width of the widened part 2124 of the handle proximate the upper connection region 2115. It is this increased width of the first strengthening element 2135 which provides for a larger area for distributing the load of a container over the index finger of a hand (not shown) lifting the container, while the curvature of the first strengthening element is selected to fit comfortably on the average index finger of a human hand.

[000303] Preferably, each strengthening element 2135, 2136 and 2137 includes a web of orientable material within boundaries formed respectively between the body portion 2112 of the preform and the first and second strengthening elements 2135 and 2136, and between the third strengthening element 2137 and the straight and arcuate sections 2118 and 2120. Each web of orientable material is aligned with and extends equally in both directions from the central line 2132 of handle. In preferred forms the preform of the eighth embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### Ninth Preferred Preform Embodiment

[000304] With reference to figure 36 there is illustrated a ninth embodiment of the preform showing alternative cross section arrangements for the purpose of reducing volume of the preform. In this instance like components are numbered as for the fourth embodiment with reference to figure 21. In this instance the cross section wall profile as shown in section AA and section BB is rotated 90 degrees as compared with the wall profile of figure 21. In preferred forms the preform of the ninth embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### Tenth Preferred Preform Embodiment

[000305] With reference to figure 37 there is illustrated a tenth embodiment of the preform showing alternative cross section arrangements for the purpose of reducing volume of the preform. In this instance like components are numbered as for the fifth embodiment with reference to figure 22. In this instance the cross section wall profile as shown in section AA and section BB is rotated 90 degrees as compared with the wall profile of figure 22. In preferred forms the preform of the tenth embodiment is produced by an injection moulding process as described earlier in this specification. In preferred forms the preform thus produced is reheated and blown on a continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine as described earlier in this specification.

### Notes on the Handle

[000306] In preferred forms the integral handle of the preform is not substantially deformed or substantially changed in shape during the stretch-blow-moulding process but substantially retains its as-injection-moulded shape. The blow-moulding cavity shown in Figure 10 includes a recess specifically shaped to the form of the handle as injection moulded. This it will be understood is also a primary function of the heat shield to protect the handle from heat which could cause distortion of the handle while the preform is transported around the preheating stage of the machine.

### Injection Moulding of Preforms

[000307] A preferred system of injection moulding any one of the above described preforms will now be described with reference to Figures 29 to 31. As noted elsewhere, the integral, double connect handles of the containers which are stretch-blow-moulded from the preforms, introduce considerable complexity in the design and operation of the injection moulding tooling.

[000308] Typically, in the injection moulding of preforms for symmetrical or non-handled containers, the bodies of the preforms below the neck are formed in cavities in the “hot”, fixed section of the injection moulding die, with the threaded neck portions formed in opposing half cavities carried on the face of the moving die section. After a mould cycle, when the die opens, the bodies of the preforms are drawn out of their cavities by the necks which, at this first opening stage, are retained in the still closed opposing half cavities and move with the opening die section. The opposing half cavities now part to release the necks

and a stripper plate is activated to force the preforms off the cores (which are fixed to the moving die section).

[000309] With reference now to Figure 29 to 31, for preforms **1100** with handles **1112**, only that section **1114** below the handle can be formed in cavities **1116** in the heated, fixed section **1118** of the die **1120**, with the neck **1122** and handle **1112** formed in much longer and more complex opposing half cavities **1124** carried on the moving die section **1126**. Again, the cores **1128** to form the internal shape of the preforms **1100** are fixed to the moving die section **1126** and are located on the common axis of the cavities **1116** in the heated fixed side of the die and the opposing half cavities.

[000310] In contrast to the demoulding of symmetrical preforms, the bodies of which are exposed to air immediately the die opens, a much larger section of the preforms of the present invention is retained in the opposing half cavities **1124** and therefore require a longer delay before preforms have cooled and are sufficiently stable for stripping off the cores **1128**. This adds considerably to the mould cycle time for preforms with handles.

[000311] In order to reduce cycle time and thus increase production, in the system of the present invention referring now to Figure 32, a robot **1130** (only a portion of the arm of which is shown in Figure 32) is employed in the demoulding of the preforms **1100**. The robot arm end effector **1132** is fitted with an array **1134** of vacuum cups **1136**, equal in number and spaced according to the number and spacing of the cavities in the injection moulding die as shown in Figure 31. Towards the end of a mould cycle this array **1134** of vacuum cups is poised above (or to the side of) the injection moulding die **1120** and as soon as the die opens sufficiently to allow insertion of the array, the robot brings the array into registered position between the parted sections **1118** and **1126** of the die, and advances the vacuum cups **1136** to fit over the lower ends of the preforms.

[000312] It is important for correct extraction of the preforms that the handles remain aligned in their as-moulded orientation to prevent rotation of the handles into positions at which they may be caught on edges of the opposing cavity halves. For this reason the vacuum cups are provided with a slot or channel **138** at their outer ends which slides around the lower end of the handle. By this means also a larger portion of the preform is covered by the vacuum cup. Vacuum is now applied to the cups **1136** and the robot retracts the array **1134**,

and the preforms **1100** now secured by vacuum pressure in the cups, to draw the preforms off the cores . Once free of the cores the array of vacuum cups and retained preforms are withdrawn from between the heated fixed section **1118** and the moving side **1126** of the die, and rotated so that the axes of the preforms are in a substantially vertical orientation. Vacuum pressure is then cut allowing the preforms to fall from the vacuum cups into a receiving bin.

[000313] The advantage of the use of vacuum in the demoulding process rather than a conventional stripper plate, is that the application of vacuum aids significantly to the cooling of the preforms, thus allowing their extraction at an earlier point in the mould cycle and shortening that cycle. This is particularly beneficial for the preforms of the present invention in which the end below the handle, being the last part of the preform to be formed (injection proceeding from the tip of the closed end of the preform), is at the highest temperature when the die opens. Additionally the slot or channel which accommodates the lower part of the handle, provides for a greater portion of the preform to be subjected to the cooling provided by air flow into the suction cups when vacuum is applied just before suction cups fully envelop the lower and mid portions of the preforms.

[000314] The cooling proceeds further as the robot draws the array of vacuum cups and preforms away from the die and over a receiving bin. The array is then rotated from the initial as-removed from the die position, that is with the axes of the preforms horizontal, to the vertical allowing the preforms to fall out of the cups when vacuum pressure is cut, and into the receiving bin.

### Industrial Applicability

[000315] The continuous movement of previously injection moulded, non-symmetrical preforms from their initial feeding into the machine **10** through the various continuously rotating stages described above, provides a marked improvement in output and quality of containers stretch-blow-moulded from such preforms. This continuous flow from preform infeed to the outfeed of container is made possible by the unique features of the transfer systems of the machine and the control of orientation of the preform handles at each transfer, and that of the preform supporting mandrels at transfers into and away from the preheating stage.

[000316] The preforms of the above described embodiments, provide for the stretch-blow-moulding of a container in the stretch-blow-moulding machine, which is equal in capacity to that of the container of the prior art shown in Figure 25, but with a significant reduction in the volume of PET and conferring an optimum distribution of material from the preform to form the containers shown in Figures 17 and 18. Thus, the preforms of the invention provides for a considerable reduction in raw material costs in the production of PET containers with integral handle.

## CLAIMS

1. A non-incremental, continuously rotating, stretch-blow-moulding machine fed with non-symmetric injection moulded preforms with integral handles and producing stretch-blow-moulded containers with integral handles from the non-symmetric injection moulded preforms with integral handles; the handles extending between a first junction point and a second junction point on a body portion of the preform; the body portion of the preform and the integral handle constituted from the same material; the machine including a preform orientation system to orient the handle of the preform into a known orientation at arrival at a pick off position; orientation of the handles controlled during transfer of the preforms by a transfer system from the pick off position to a preheating stage of the machine; manipulation of the preforms respectively concurrently aligning axes of the body portions of the preforms with axes of preform supporting mandrels of the preheating stage and aligning the handles of the preforms with heat shields of the mandrels for engagement of the preforms with the mandrels while the preheating stage is in continuous rotation.

2. The machine of claim 1 wherein preforms are in continuous motion from an initial preform pick off point through stretch-blow-moulding into the containers and ejection from the machine as stretch-blow-moulded containers.

3. The machine of claim 1 or 2 wherein the integral handle retains a shape of the handle as injection moulded through all stages of the stretch-blow-moulding machine to forming a handle on the stretch-blow-moulded container.

4. The machine of claim 3 wherein the stages of the stretch-blow-moulding machine include a handle orientation stage; all preforms arriving at the pick off point having the integral handle oriented in a predetermined direction relative to motion of the preform approaching the pick off position.

5. The machine of claim 3 or 4 wherein the stages of the stretch-blow-moulding machine include a continuously rotating first transfer system transferring preforms from a continuously rotating preform feeder wheel at the preform pick off position to

a transfer to preheating position at a continuously rotating preheating stage.

6. The machine of claim 5 wherein a first pick and place apparatus of the first transfer system includes a preform grasping gripper; reciprocating rotation and linear displacement of the grasping gripper induced by a combination of a rotating carrier of the pick and place apparatus and two cam loci.

7. The machine of claim 6 wherein the rotating carrier is an arm of four radially extending support arms rotating about a common centre of rotation; an outer end of each support arm rotationally supporting a pick and place apparatus.

8. The machine of claim 7 wherein the support arms rotate above a fixed cam plate; the cam plate provided with an inboard cam channel for a first locus of the two cam loci and a periphery of the cam plate providing an outer cam surface for a second locus of the two cam loci.

9. The machine of claim 7 or 8 wherein a housing of a linear guide of the pick and place apparatus is rotationally mounted at the outer end of the supporting arm; an outrigger arm extending from the housing provided with a first cam follower locating in the cam channel.

10. The machine of claim 9 wherein a free sliding element of the linear guide is provided with a second cam follower; the second cam follower maintained in contact with the outer cam surface by a spring.

11. The machine of claim 11 wherein the grasping gripper of the pick and place apparatus is mounted to a rotary actuator supported from an outer end of the free sliding element; the rotary actuator adapted to rotate fingers of the grasping gripper 180 degrees as a pick and place apparatus transits between the preform pick off position and the transfer to preheating position.

12. The machine of any one of claims 5 to 11 wherein the continuously rotating preheating stage includes a preform transport system; preform supporting mandrels travelling along a loop rail system; the preform supporting mandrels rotating preforms

about a vertical axis of the preforms as preforms travel past banks of heating elements.

13. The machine of claim 12 wherein the preform supporting mandrels are provided with a heat shield; the heat shield comprising a channel projecting from a cylindrical collar.

14. The machine of claim 13 wherein the pick and place apparatus of the first transfer system brings a vertical axis of a perform into alignment with a vertical axis of the cylindrical collar of a preform supporting mandrel at the transfer to preheating position; the gripper of the pick and place apparatus concurrently manoeuvring the handle of the preform between side elements of the channel of the mandrel.

15. The machine of claim 14 wherein the preform is lowered after the neck of the preform is released by the gripper of the pick and place apparatus so that the neck of the preform is located within the cylindrical collar of the mandrel.

16. The machine of any one of claims 12 to 15 wherein a preheated preform is extracted from a supporting mandrel by a pick and place apparatus of a second transfer system at a transfer from supporting mandrel position; the transfer from supporting mandrel position lying on a line joining respective centres of rotation of a proximate rotating guide wheel of the preheating transport system and the second transfer system.

17. The machine of claim 16 wherein the preform extracted from a preform supporting handle by a gripper of the pick and place apparatus of the second transfer system is rotated through 180degrees by a rotary actuator of the pick and place apparatus as an arm of the second transfer system rotates the pick and place apparatus towards a die loading position.

18. The machine of claim 16 or 17 wherein a combination of rotation of the arm of the second transfer system and rotation and linear displacement of the gripper induced by the loci of a first and second cam follower of the pick and place apparatus, brings a vertical axis of the preform into alignment with a vertical axis of a stretch-

blow-moulding die as both the pick and place apparatus and an opened stretch-blow-moulding die approach the die loading position; movements of the gripper concurrently bringing the handle of the preform into alignment with a line joining respective centres of rotation of the stretch-blow-moulding die and the second transfer system.

19. The machine of claim 17 or 18 wherein a pick and place apparatus of a third transfer system extracts a stretch-blow-moulded container from the stretch-blow-moulding die as the stretch-blow-moulding die opens at a die unloading position; the die unloading position lying on a line joining respective centres of rotation of the rotating stretch-blow-moulding die and the third transfer system.

20. The machine of claim 19 wherein extracted stretch-blow-moulded containers are rotated from the die unloading position to a rotating outfeed wheel; the rotating outfeed wheel transferring the containers along a discharge channel and a container receiving bin.

21. A pick and place apparatus of a preform transfer system manipulating a non-symmetrical injection moulded preform; the preform including an integral handle extending between a first and a second junction point on a body portion of the preform; the pick and place apparatus operating in a continuously rotating stretch-blow-moulding machine wherein a preform gripping gripper of the pick and place apparatus is urged into reciprocating rotation and linear displacement by a combination of a rotating support of the pick and place apparatus and two cam loci; manipulation of the preform respectively concurrently aligning an axis of the body portion of the preform with an axis of a preform supporting mandrel of a preheating stage of the stretch-blow-moulding machine and aligning the handle of the preform with a heat shield of the mandrel for engagement of the preform with the mandrel while the preheating stage is in continuous rotation.

22. The pick and place apparatus of claim 21 wherein reciprocating rotation is about a vertical axis; linear displacement being in a horizontal plane.

23. A method of controlling paths of grippers of pick and place apparatuses of rotating transfer systems; the rotating transfer systems operating in a continuous non-symmetric preform feed stretch-blow-moulding machine; the paths of the grippers following respective loci of non-symmetrical preforms as preforms are transferred by the rotating transfer systems from a preform pick off position, inserted into and extracted from a preform support mandrel of a preheating stage and inserted into and extracted as a stretch-blow-moulded containers from rotating stretch-blow-moulding dies; the non-symmetrical preforms comprising a body portion and an integral handle extending from the body portion; the method including the steps of:

- rotationally mounting each of the pick and place apparatuses on a rotating arm of a respective rotating transfer system,
- urging reciprocating rotation of the grippers about respective vertical axes of the pick and place apparatuses controlled by a locus of a first cam follower and the rotation of the rotation of the rotating arm,
- urging reciprocating horizontal linear displacement controlled by a locus of a second cam follower and the rotation of the rotating arm, and,

wherein the locus of the first cam follower is determined by a cam channel of a cam plate; the locus of the second cam follower being determined by an outer cam surface of the cam plate; manipulation of the preform respectively concurrently aligning an axis of the body portion of the preform with an axis of the preform support mandrel of a preheating stage and aligning the handle of the preform with a heat shield of the preform support mandrel in a first transfer; manipulation of the preform further aligning the preform and the handle with a cavity of the stretch-blow-moulding die in a second transfer.

24. The method of claim 23 wherein a first rotating transfer system transfers a non-symmetrical preform from a rotating preform feeder wheel to a rotating preform support mandrel of the preform preheating system.

25. The method of claim 24 wherein a second rotating transfer system transfers a non-symmetrical preform from a rotating perform support mandrel into a stretch-blow-moulding die.

26. The method of claim 25 wherein a third rotating transfer system extracts stretch-blow-moulded containers from the stretch-blow-moulding die to a rotating outfeed wheel.

27. A method of transferring a non-symmetric preform between stages of a non-incremental, continuously rotating stretch-blow-moulding machine producing containers with integral handles from injection moulded preforms with integral handles; the non-symmetric preform being transformed into a stretch-blow-moulded container by a step of stretching and blowing the non-symmetric preform in a cavity of the stretch-blow-moulding die; the method including the steps of:

- orienting the non-symmetrical preform so that the integral handle of the preform has a known orientation at arrival at a pick off position in the machine,
- gripping a neck of the preform in grippers of a pick and place apparatus of a rotating first rotating transfer system and rotating the preform to a preheating stage of the machine,
- manoeuvring the gripper of the first pick and place apparatus so as to concurrently align the integral handle with a heat shield of a moving preform supporting mandrel and aligning an axis of a body of the preform with a neck supporting cylindrical collar of the mandrel,
- removing the non-symmetric preform from the preform supporting mandrel with a gripper of a second pick and place apparatus of a rotating second rotating transfer system and rotating the preform to a rotating stretch-blow-moulding die of the machine in a second stage,
- manoeuvring the gripper of the second pick and place apparatus so as to align the integral handle with a handle nesting portion of the stretch-blow-moulding die and a vertical axis of the preform with a vertical axis of the stretch-blow-moulding die in a third stage,
- manoeuvring grippers of a pick and place apparatus of a rotating third rotating transfer system in position to grasp the neck of a now stretch-blow-moulded container and extracting the stretch-blow-moulded container from the stretch-blow-moulding die in a fourth stage, and

wherein each of the steps are performed while the first and second rotating systems, the preheating stage and the stretch-blow-moulding die are in continuous rotation.

28. The method of claim 27 wherein movement of the grippers of the pick and place apparatus of any one of the first, second or third rotating transfer systems is controlled by a combination of rotation of an arm of the transfer system supporting the pick and place apparatus and rotation and linear displacement controlled by loci of two cam followers.

29. The method of claim 28 wherein locus of the first cam follower is determined by a cam channel provided in a fixed cam plate of each of the first, second and third rotating transfer systems; the locus of the second cam follower determined by an outer cam surface of the fixed cam plates.

30. A method of manipulating a non-symmetrical injection moulded preform into a stretch-blow-moulding die of a continuous preform feed stretch-blow-moulding machine; the preform injection moulded with an integral handle extending between a first and a second junction point on a body portion of the preform; the method including the steps of:

- extracting a preform from a preform preheating stage with a pick and place apparatus of a continuously rotating transfer system such that an integral handle of the preform has a predetermined orientation, and

wherein manoeuvring of a preform supporting gripper of the pick and place apparatus is controlled by rotation of an arm of the transfer system in combination with rotation and linear extension of the gripper guided by loci of two cam followers; manipulation of the preform concurrently aligning an axis of a body portion of the preform with an axis of a cavity of a stretch-blow-moulding die and orienting the handle to lie in a vertical plane defined by a bisecting line of opened die halves for insertion of the preform into the stretch-blow-moulding die.

31. The method of claim 30 wherein the method includes the further steps of:

- manoeuvring the pick and place apparatus to align the integral handle with a bisecting radial line of an open stretch-blow-moulding die as the bisecting radial line rotates into coincidence with a line extending between rotation centres of the stretch-blow-moulding machine and the transfer system,
- further manoeuvring the pick and place apparatus to align a vertical axis of a body of the preform with an axis of the die and the handle of the preform with a handle nesting portion of the die when opposing halves of the die close on reaching the line between rotation centres.

32. A method of preventing distortion of an integral handle of a preform in a non-incrementing, continuously rotating stretch-blow-moulding process producing containers with integral handles formed from preforms with integral handles in a stretch-blow-moulding machine; the method including the steps of:

- preparing each half of a stretch-blow-moulding die with a handle nesting cavity conforming to at least a portion of the integral handle of the preform,
- manipulating the preform so that the handle is brought into coincidence with the handle nesting cavity as two halves of the stretch-blow-moulding die close on the preform, and

wherein manipulation of the preform aligns an axis of a body portion of the preform with an axis of a cavity of the stretch-blow-moulding die and concurrently orients the handle to lie in a vertical plane defined by a bisecting line of opened die halves for insertion of the preform into the stretch-blow-moulding die.

33. The method of claim 32 wherein manipulation of the preform is by a pick and place apparatus; a gripper of the pick and place apparatus urged into rotational and linear motion by a combination of rotation of an arm of a preform transfer system to which the pick and place is mounted, and rotation and linear displacement controlled by two cam loci.

34. In a non-incrementing, continuously rotating stretch-blow-moulding process producing containers with integral handles; a method of controllably heating a pre-form to a die introduction temperature; the pre-form having a neck portion extending

from a body portion; said pre-form further having an integral handle portion extending radially from the body portion; said method comprising;

- controllably transferring an integral handle PET pre-form onto a continuously moving conveyor of a preheating stage of a stretch-blow-moulding machine by respectively and concurrently aligning an axis of the body portion of the preform with an axis of a preform supporting mandrel of the preheating stage and aligning the handle of the preform with a heat shield of the mandrel for engagement of the preform with the mandrel while the preheating stage and the transfer system are in continuous rotation;
- securing the preform by its neck portion to the conveyor whereby the preform is transported by the conveyor continuous from a pre-form entry location to a pre-form exit location;
- at least portions of the pre-form controllably heated to the die introduction temperature by the time it reaches the pre-form exit location;
- a controllable heater array distributed along the path arranged to direct heat to selected portions of the pre-form;
- the pre-form controllably transferred from the preform exit location into a die for stretch blow moulding of the pre-form thereby to form a blown container.

35. The method of claim 34 wherein the handle portion is solid and has a first end and a second end; the first end integrally connected at a first, upper location to the pre-form; the second end integrally connected at a second, lower location to the pre-form.

36. The method of claim 34 or 35 wherein the first, upper location is located on the body portion.

37. The method of claim 34 or 35 wherein the first, upper location is located on the neck portion.

38. The method of any one of claims 34 to 37 wherein the second, lower location is located on the body portion.

39. The method of any one of claims 34 to 38 wherein heating elements are arranged in modules; the modules arrayed around the continuously rotating preform conveyer; the heating elements controlled as a group based on height wherein the top most heating elements of the modules are controlled to a predetermined temperature together whilst the next down in height heating elements are also controlled together to a predetermined temperature – and so on down to elements at the lowest level.

40. The method of any one of claims 34 to 39 wherein a processor controls the speed of rotation of a motor in order to control the continuous speed of advancement of the preforms.

41. The method of any one of claims 34 to 40 wherein a temperature sensor provides environment temperature sensing which is utilised by processor to modulate the degree of heating of all heating elements by a difference factor delta ( $\Delta$ ).

42. An orientation mechanism controlling orientation of a non-symmetric injection moulded preforms prior to entry into stages of a stretch blow-moulding machine; the non-symmetric preforms each including an integral handle extending from a first junction point below a neck of the preform and a second junction point on a body of the preform; the mechanism including a pair of contra-rotating drive wheels disposed along opposite sides of inclined rails; one of the drive wheels inducing rotation of the body of the preform moving down the inclined rails to rotate the handle of the preform into a preferred position; and wherein a gap is provided between the pair of contra-rotating drive wheels whereby the combination of the two rotations of the contra-rotating drive wheels is to draw the preform through the gap between the contra-rotating drive wheels; the drive wheels inducing rotation of the body of the preform by said drive wheels rotating at different rates of rotation.

43. The mechanism of claim 42 wherein the inclined rails include a pair of upper rails between the preforms are suspended by necks of the preform and a pair of lower rails which constrain the integral handles into approximate alignment with a long axis of the inclined rails; integral handles of the preforms constrained to either a leading or a trailing orientation.

44. The mechanism of claim 43 wherein the pair of drive wheels are located at a level coincident with a lower portion of the body of the preform below the lower rails and a lowest point of the integral handles; axes of the drive wheels normal to the long axis of the inclined rails.

45. The mechanism of any one of claims 42 to 44 wherein a gap between the pair of drive wheels is smaller than a diameter of the body of the preform; each guide wheel including at least one tyre of a sufficiently soft polymer material to allow passage of the body of the preform through the gap between the pair of drive wheels.

46. The mechanism of any one of claims 42 to 45 wherein directions of rotation of the pair of contra-rotating drive wheels draw preforms moving down the inclined rails through the gap between the drive wheels; a first of the drive wheels rotating in an anticlockwise direction with a second opposite drive wheel rotating in a clockwise direction.

47. The mechanism of any one of claims 42 to 46 wherein the drive wheels rotate at different rates of rotation; the ratio of rotation of the first drive wheel to the rotation of the second opposite drive wheel being of the order of 2:1.

48. The mechanism of claim 47 wherein the different rates of rotation of the drive wheels cause the second opposite drive wheel to rotate the body of the preform in an anticlockwise direction as the preform passes through the gap between the two drive wheels.

49. The mechanism of claim 48 wherein rotation of the body of the preform changes orientation of a preform with a leading handle at entry to the mechanism to a preform with a trailing handle on exit from the mechanism; a gap in the lower rail at the side of the lower rail adjacent the first drive wheel.

50. A method of orienting a non-symmetrical preform for entry to stages of a stretch blow-moulding machine; the non symmetrical preform including an integral handle extending from a first junction point below a neck of the preform to a second junction point on the body of the preform; the method including the steps of:

· Providing preforms to slide down inclined rails towards an orientation mechanism while supported by the necks of the preforms along upper rails of the inclined rails,

· Constraining integral handles of the preforms in either a leading or in a trailing position between lower rails of the inclined rails,

· Drawing preforms through a gap between a pair of contra rotating drive wheels of the orientation mechanism disposed along the inclined rails, and wherein differential rates of rotation of the pair of drive wheels rotate the body of the preform from a leading orientation of the integral handle at entry to the orientation mechanism into trailing orientation of the handle at exit of the preform from the orientation mechanism.

51. The method of claim 50 wherein the pair of drive wheels are located coincident with a lowermost portion of the body of the preform below lower rails of the inclined rails and below a lowermost point of the integral handle.

52. The method of claim 50 or 51 wherein a first of the pair of contra rotating guide wheels at one side of the inclined rails rotates in an anticlockwise direction; the second of the pair of contra rotating drive wheels at an opposite side of the inclined rails rotating in a clockwise direction; the pair of contra rotating drive wheels acting to draw preforms through the gap between the drive wheels.

53. The method of claim 52 wherein the ratio of the rate of rotation of the contra rotating drive wheel to the rate of rotation of the clockwise rotating drive wheel is in the order of 2:1.

54. The method of claim 53 wherein the clockwise rotation of the clockwise rotating drive wheel rotates bodies of a preforms passing through the gap between the drive wheels in an anticlockwise direction such that a preform with an integral handle in a leading orientation is rotated so that the integral handle is in a trailing orientation.

55. An injection-moulded preform forming a stretch-blow-moulded container produced in the machine of claims 1 to 22; the preform comprising an open neck

portion and a hollow body extending from the neck portion; the preform further including an integrally injection-moulded handle; at least a portion of walls of the hollow body varying in thicknesses.

56. The preform of claim 55 wherein at least a portion of an inner surface of the hollow body is non-concentric with outer surfaces of the hollow body.

57. The preform of claim 55 wherein the outer surfaces of the hollow body are defined by diameters centred on a central longitudinal axis of the preform to form a substantially cylindrical body.

58. The preform of claim 55 or 56 wherein cross sections of the at least a portion of the inner surface of the hollow body are ovoid in section.

59. The preform of claim 57 wherein centres of the cross sections of ovoid shape are centred on the central longitudinal axis of the preform.

60. The preform of claim 57 wherein centres of the cross sections of ovoid shape are offset from the longitudinal axes of the preform.

61. The preform of claim 56 wherein centres of circular cross sections of a portion of the hollow body are offset from a central longitudinal axis of the hollow body.

62. The preform of any previous claim wherein a core or mandrel forming the inner surface of the hollow body in an injection moulding step, comprises at least one portion of circular cross sections to form an upper region of the inner surface of the preform; portion of the mandrel comprising ovoid cross sections depending from a transition portion between a lower end of the at least one portion of circular cross sections and the portion of ovoid cross sections.

63. The preform of claim 62 wherein the mandrel comprises two portions of circular cross sections; an upper portion and a lower portion; the transition portion depending from the lower portion.

64. The preform of claim 62 or 63 wherein the upper portion is of diameters equal to inner diameters of the neck portion of the preform.

65. The preform of claim 64 wherein the lower portion is of diameters smaller than the diameters of the upper portion.

66. The preform of any one of claims 64 to 65 wherein the transition portion forms an asymmetrical frustum of a cone; an upper end of the transition portion having a diameter equal to that of a lower end of the lower portion with the lower end of the transition portion conforming in cross section to the ovoid cross section of an upper end of the ovoid portion.

67. The preform of any one of claims 63 to 66 wherein each of the upper portions and the ovoid portion are tapering; the cross sections decreasing in area from respective maximum areas at upper ends of the portions to minimum areas at the respective lower ends.

68. The preform of any one of claims 55 to 67 wherein the diameters defining the outer surface of the hollow body decrease in dimension from a maximum diameter at a lower end of the neck portion to the lower end of the hollow body.

69. The preform of any previous claim wherein the preform includes an integral handle; the handle forming a loop of material extending vertically below the neck portion of the preform to a lower junction on the body of the preform.

70. The preform of claim 69 wherein a central vertical plane of the handle passes through the central axis of the preform.

71. The preform of any one of claims 66 to 70 wherein major axes of the cross sections of the ovoid portion of inner surface of the hollow body of the preform lie in the central vertical plane.

72. The preform of claim 71 wherein wall thicknesses of the preform in that portion of the preform in which the inner surfaces are defined by the ovoid cross

sections, vary from a maximum at opposite ends of the minor axes of the ovoid cross sections to minimum thicknesses at outer ends of the major axes.

73. The preform of claim 72 wherein the ratio of maximum wall thickness to minimum wall thickness of the ovoid portion lies in the range of 2:1 and 2.2:1.

74. The preform of claim 72 or 73 wherein polymer walls of the preform proximate maximum thickness are distributed predominantly to longer side walls of a rectangular cross section blown container; the polymer walls of the preform proximate minimum thickness predominantly distributed to shorter side walls of the blown container.

75. A method of optimizing wall thickness in a stretch-blow-moulded container formed in the machine of any one of claims 1 to 22; the method including the steps of:

- injection moulding hollow preforms in which at least a lower portion of each preform has internal cross sections non-concentric with external surfaces of the lower portion,
- bringing the preforms to a temperature suitable for stretch-blow-moulding,
- inserting the preforms into cavities of a stretch-blow-moulding machine,
- mechanically stretching the preforms and injecting air to form the container.

76. The method of claim 75 wherein mandrels for the injection moulding of the preforms include at least one upper region of circular cross sections.

77. The method of claim 75 or 76 wherein the lower portion of the preform has cross sections of an ovoid form.

78. The method of any one of claims 75 to 77 wherein the upper region of the mandrel includes an upper portion and a lower portion.

79. The method of claim 78 wherein a transition portion extends between a lower end of the lower portion and an upper end of the lower section.

80. The method of any one of claims 75 to 79 wherein external surfaces of the preform are defined by diameters centred on a central longitudinal axis of the preform.

81. The method of any one of claims 75 to 80 wherein an integral handle is formed on the preform extending in a loop between a first junction region below a neck portion of the preform and a second junction region on a body of the preform; a central vertical plane of the integral handle coincident with the central longitudinal axis.

82. The method of claim 81 wherein major axes of the cross sections of ovoid form of the lower section lie in the central vertical plane.

83. The method of claim 82 wherein wall thicknesses of the preform in the lower section vary from maximum thicknesses at opposite ends of the minor axes of the ovoid cross sections to minimum thicknesses at opposite ends of the major axes.

84. The method of claim 83 wherein in stretch-blow-moulding a container of generally rectangular cross section, polymer material proximate the maximum thicknesses is distributed to longer sides of the container and polymer material proximate the minimum thicknesses is distributed to shorter sides of the container.

85. A mandrel forming internal surfaces of an injection-moulded hollow preform; the preform forming a stretch-blow-moulded container on the machine of any one of claims 1 to 20; the mandrel including at least one portion with cross sections which are non-concentric with diameters defining outer surfaces of the preform.

86. The mandrel of claim 85 wherein the non-concentric cross sections are ovoid in form; the ovoid forms defining varying wall thickness of the preform.

87. The mandrel of claim 86 wherein major axes of the ovoid formed cross sections lie in a vertical plane containing a vertical central longitudinal axis of the preform; the vertical plane forming a mid plane of an integral handle formed on the preform depending vertically from a first junction region below a neck portion of the

preform to a second junction point on a body of the preform.

88. A method of biasing distribution of polymer material from walls of at least one portion of a preform to selected side walls of a container stretch-blow-moulded from the preform on the machine of any one of claims 1 to 20; the method including the steps of:

- arranging a mandrel defining inside surfaces of the preform with cross sections of the at least one portion which are non-concentric with corresponding outer surfaces of the preform as defined by a cavity of a preform injection moulding die,
- arranging the mandrel in the injection moulding die such that major axes of the cross sections of the mandrel of the at least one portion are aligned with a central vertical plane of the cavity,
- injection moulding the preform,
- introducing the preform into a cavity of a stretch-blow-moulding machine such that the central vertical plane of the preform is aligned with a central vertical plane of a blown container of generally rectangular cross section, and wherein the central vertical plane of the container is parallel to opposing longer sides of the container.

89. The method of claim 88 wherein cross sections of the mandrel in the at least one portion are ovoid in shape; major axes of the ovoid cross sections aligned with the central vertical plane; centres of the ovoid cross sections coincident with a central axis of a body of the preform.

90. The method of claim 88 or 89 wherein outer surfaces of the body of the preform are defined by diameters centred on the central axis.

91. The method of any one of claims 88 to 90 wherein the preform includes an integral handle forming an integral handle on the container; the integral handle of the preform extending vertically from a first junction below a neck portion of the preform to a second junction on a body of the preform; the integral handle centred on the

central vertical plane of the preform.

92. The method of any one of claims 88 to 91 wherein in a blow moulding stage polymer material of walls of the preform in the at least one portion and on opposing ends of a minor axes of the ovoid cross sections are biased to the opposing longer sides of the container; polymer material proximate to opposite ends of a major axes of the ovoid cross sections biased towards the shorter side walls of the container.

93. A method of injection moulding a preform in which at least a portion of wall thicknesses of a hollow body of the preform varies along a length of the hollow body; the method including the steps of;

- Forming at least one pair of opposing cavities in an injection moulding die; the cavities defining external surfaces of the preform and an integral handle,
- Locating a mandrel in each of the at least one opposing cavities such that a central longitudinal axis of the mandrel is coincident with an axis of the cavity as defined by a neck portion of the hollow body,
- Closing the injection moulding die to form a cavity about the mandrel,
- Injecting a polymer into the cavity to form the preform, and

wherein the injection-moulded preform includes an integral, injection-moulded handle; the handle extending as a loop from a first junction point below a neck portion of the preform to a second junction point on the hollow body of the preform.

94. The method of claim 93 wherein wall thicknesses of the hollow body of the preform increase from below the neck portion to proximate a lower end of the preform.

95. The method of claim 94 in which cross sections of internal surfaces of the preform are concentric with cross sections of external surfaces of the preform.

96. The method of claim 94 wherein at least a portion of cross sections of internal surfaces of the preform are non-concentric with cross sections of outer surfaces of the preform.

97. The method of claim 96 wherein non-concentricity of the cross sections of internal surfaces of the preform with cross sections of the outer surface of the preform is from a portion of cross sections of the internal surface being of ovoid form.

98. The method of claim 96 wherein non-concentricity of the internal surfaces with the outer surface of the hollow body is from centres of cross sections of the internal surface being of offset from a central longitudinal axis of the preform.

99. A preform and a container stretch-blow-moulded from the preform by the stretch-blow-moulding machine of claims 1 to 20; the preform comprising a neck portion, a collar below the neck portion and a body extending from below the collar; the body including a first cylindrical portion having a first internal diameter and a second internally conical portion tapering from an internal diameter smaller than the internal diameter of the first portion to a minimum internal diameter proximate a bottom portion of the preform.

100. The preform and container of claim 99 wherein the preform includes an integral handle forming a loop extending from a first junction position proximate the collar to a second junction position along the body.

101. The preform and container of claim 99 or 100 wherein the first cylindrical portion extends from below the collar; the first portion being of a substantially constant diameter.

102. The preform and container of any one of claims 99 to 101 wherein wall thickness of the second conical portion tapers from a minimum thickness proximate the first cylindrical portion to a maximum thickness proximate a tangent line between the conical portion and a bottom portion of the preform.

103. A method of reducing material required to form a container stretch-blow-moulded from a preform in the stretch-blow-moulding machine of claims 1 to 20; the preform comprising a neck portion, a collar below the neck portion and a generally cylindrical body below the neck portion; the preform further including a handle

extending from a first junction position below the collar to a second junction position along the body of the preform; the method including the steps of:

- Forming the body of the preform in at least two portions of different configuration; a first cylindrical portion and a second conical portion;
- Reducing a base diameter of the conical portion relative to a diameter of the first cylindrical portion.

104. The method of claim 103 wherein wall thickness of the second portion varies from a minimum thickness proximate the base diameter of the conical portion to a maximum thickness proximate a tangent line between the second conical portion and a bottom portion of the preform.

105. A continuously rotating stretch-blow-moulding machine; the stretch-blow-moulding machine including an orientation device orienting integral handles of injection-moulded preforms from which containers with integral handles are stretch-blow-moulded in the machine; the orientation device including a pair of side by side contra-rotating auger screws located above spaced apart main support rails of a preform infeed track and centred about a vertical mid plane of the main support rails; configuration of diameters, pitch and flutes of the auger screws arranged to capture necks of the preforms and advance preforms along the preform infeed track; sides of preforms advancing along the auger screws contacting a friction strip inducing rotation of the preforms; rotation causing all preform integral handles to rotate from any random first orientation to a second predefined orientation.

106. The stretch-blow-moulding machine of claim 105 wherein preforms with integral handles are fed onto a pair of side by side contra-rotating rollers centred about the vertical mid plane of the pair of spaced apart rails of the preform feed-in track; the pair of contra-rotating rollers located before the auger screws; the pair of roller space apart sufficient to allow bodies and integral handles of the preforms to slide between the rollers into a position wherein the preforms are suspended between the rollers by collars below the necks of the preforms; the bodies and integral handles of the preforms constrained between spaced apart guide rails in the random first orientation; the guide rails located at a level below the main preform support rails proximate the

middle of the handles.

107. The stretch-blow-moulding machine of claim 105 or 106 wherein in the random first orientation handles may be leading or trailing relative a direction of movement of preforms along the infeed track towards a preform pick-off position at a lower outer end of the infeed track.

108. The stretch-blow-moulding machine of any one of claims 105 to 107 wherein the friction strip mounted to one of the main support rails is substantially coextensive with lengths of the auger screws; the friction strip intruding into space between the pair of spaced apart main support rails sufficient to engage with the sides of bodies of preforms moved along by the auger screws.

109. The stretch-blow-moulding machine of any one of claims 105 to 108 wherein a section of that guide rail on the same side as the friction strip is discontinuous for a length substantially coextensive with lengths of the auger screws.

110. The stretch-blow-moulding machine of any one of claims 105 to 108 wherein rotation of the preforms while carried along the auger screws rotates all preform handles into a handle trailing position with the handles arrested by contact with that guide rail of the pairs of guide rails opposite to the friction strip; the handles able to rotated through the discontinuous section of the guide rail.

111. The stretch-blow-moulding machine of any one of claims 107 to 109 wherein the auger screws separate successive preforms according to the pitch of the auger screws; the auger screws further providing downward pressure on preforms with oriented handles between the ends of the auger screws and the preform pick-off position.

112. A method of producing stretch-blow-moulded containers with integral handle in a continuously rotating stretch-blow-moulding machine; the containers with integral handle stretch-blow-moulded from separately injection-moulded preforms with integral handle; the preform comprising a neck portion, a body portion and a handle forming a loop of orientable material extending from a first junction point

below the neck portion to a second junction point on the body portion; the method of injection-moulding including the steps of:

- Forming a multicavity injection-moulding die;
- In a heated fixed side of the die forming an array of cavities; the cavities formed to correspond to sections of the preforms to a point below the integral handle;
- Providing a corresponding array of opposing half cavities projecting from a face of the opposite moving side of the die; the half cavities shaped to form the preform from the neck portion, body and integral handle to the point below the integral handle;
- Providing cores for forming the internal shape of the preforms; the cores fixed to the moving side of the die and centred on a common axis of the cavities in the fixed heated side of the die and the opposing half cavities.

113. The method of claim 112 wherein in a mould cycle;

- cavities in the heated fixed side of the die and the opposing half cavities at the opposite moving side of the die are injected with orientable polymer material to form the preforms;
- When filled, after a predetermined delay moving the moving side of the die away from the heated fixed side to draw the ends of the preform bodies below the handle out of the cavities in the heated fixed side of the die;
- After a predetermined delay, opening the opposing half cavities to release the neck portion, the integral handle and the body portion of the preform to below the handle portion.

114. The method of claim 113 wherein further in the mould cycle;

- activating a robot to position an array of vacuum suction elements between the heated fixed side of the die and the moving side of the die;
- positioning the array of vacuum suction elements in registration with the array of cavities;
- as the opposing half cavities open apply vacuum pressure to the vacuum elements and activate the robot to drive the vacuum elements to fit over the ends of the preforms;

- retract the robot to draw the preforms from the cores and withdraw the vacuum elements and retained preforms from between the heated fixed side and the moving side of the die;
- rotate the array of vacuum elements into a position in which axes of the preforms are substantially vertical and cut vacuum pressure to allow preforms to fall into a receiving bin.

115. The method of claim 114 wherein each vacuum element is provided with a slot or channel at an open end of the vacuum elements; the slot or channel provided to allow each vacuum element to accommodate at least a portion of the handle of the preform.

116. A continuously rotating, non-symmetric preform feed, stretch-blow-moulding machine in which injection-moulded preforms with integral handles are transferred from a first transfer system to a preheating stage; the transfer of a preform from a gripper of the first transfer system to a preform supporting mandrel achieved in one fluid motion as a vertical axis of the preform is brought into alignment with a vertical axis of the preform supporting mandrel and the handle of the preform is protected from heat by a heat shield provided on the mandrel, the transfer made while accommodating each of the rotations of a loop rail of the preheating stage, the mandrel and the transfer system as well as movements of the gripper.

117. The machine of claim 116 wherein the handle as injection moulded is protected by the heat shield during the preheating stage; the shape of the handle of a container stretch-blow-moulded from the injection moulded preform being identical to the as injection-moulded shape of the handle of the preform.

118. A container stretch-blow-moulded from a non-symmetric preform by the stretch-blow-moulding machine of any one of claims 1 to 20.

119. The container of claim 118 wherein the preform includes an integral handle forming a loop extending from a first junction position proximate the collar to a second junction position along the body.

120. The container of claim 118 or 119 wherein wall thickness of the preform increases from near the top of the preform to near the bottom of the preform.

121. The container of claim 120 wherein the external diameter of the preform is substantially the same from near the top of the preform to near the bottom of the preform.

122. The container of claim 120 or 121 wherein wall thickness of the preform increases irregularly from near the top of the preform to near the bottom of the preform.

123. A non-incremental, continuously rotating, stretch-blow-moulding machine fed with non-symmetric injection moulded preforms with integral handles and producing stretch-blow-moulded containers with integral handles from the non-symmetric injection moulded preforms with integral handles; the handles extending between a first junction point and a second junction point on a body portion of the preform; the body portion of the preform and the integral handle constituted from the same material; the machine including a preform orientation system to orient the handle of the preform into a known orientation at arrival at a pick off position; the known orientation of the preform maintained from the pick off position and during movement through a preheating stage; preforms being extracted from the preheating stage having been rotated into a position in which the handle is oriented for insertion into a continuously rotating stretch blow moulding die.

124. The machine of claim 123 wherein preforms are in continuous motion from an initial preform pick off point through stretch-blow-moulding into the containers and ejection from the machine as stretch-blow-moulded containers.

125. The machine of claim 123 or 124 wherein the integral handle retains a shape of the handle as injection moulded through all stages of the stretch-blow-moulding machine to forming a handle on the stretch-blow-moulded container.

126. The machine of claim 125 wherein the stages of the stretch-blow-moulding machine include a handle orientation stage; all preforms arriving at the pick off point

having the integral handle oriented in a predetermined direction relative to motion of the preform approaching the pick off position.

127. The machine of claim 125 or 126 wherein the stages of the stretch-blow-moulding machine include a continuously rotating first transfer system transferring preforms from a continuously rotating preform feeder wheel at the preform pick off position to a transfer to preheating position at a continuously rotating preheating stage.

128. The machine of claim 127 wherein a first pick and place apparatus of the first transfer system includes a preform grasping gripper; reciprocating rotation and linear displacement of the grasping gripper induced by a combination of a rotating carrier of the pick and place apparatus and two cam loci.

129. The machine of claim 128 wherein the rotating carrier is an arm of four radially extending support arms rotating about a common centre of rotation; an outer end of each support arm rotationally supporting a pick and place apparatus.

130. The machine of claim 129 wherein the support arms rotate above a fixed cam plate; the cam plate provided with an inboard cam channel for a first locus of the two cam loci and a periphery of the cam plate providing an outer cam surface for a second locus of the two cam loci.

131. The machine of claim 129 or 130 wherein a housing of a linear guide of the pick and place apparatus is rotationally mounted at the outer end of the supporting arm; an outrigger arm extending from the housing provided with a first cam follower locating in the cam channel.

132. The machine of claim 131 wherein a free sliding element of the linear guide is provided with a second cam follower; the second cam follower maintained in contact with the outer cam surface by a spring.

133. The machine of claim 132 wherein the grasping gripper of the pick and place apparatus is mounted to a rotary actuator supported from an outer end of the free

sliding element; the rotary actuator adapted to rotate fingers of the grasping gripper 180degrees as a pick and place apparatus transits between the preform pick off position and the transfer to preheating position.

134. The machine of any one of claims 127 to 133 wherein the continuously rotating preheating stage includes a preform transport system; preform supporting mandrels travelling along a loop rail system; the preform supporting mandrels rotating preforms about a vertical axis of the preforms as preforms travel past banks of heating elements.

135. The machine of claim 134 wherein the preform supporting mandrels are provided with a heat shield; the heat shield comprising a channel projecting from a cylindrical collar.

136. The machine of claim 135 wherein the pick and place apparatus of the first transfer system brings a vertical axis of a perform into alignment with a vertical axis of the cylindrical collar of a preform supporting mandrel at the transfer to preheating position; the gripper of the pick and place apparatus concurrently manoeuvring the handle of the preform between side elements of the channel of the mandrel.

137. The machine of claim 136 wherein the preform is lowered after the neck of the preform is released by the gripper of the pick and place apparatus so that the neck of the preform is located within the cylindrical collar of the mandrel.

138. The machine of any one of claims 134 to 137 wherein a preheated preform is extracted from a supporting mandrel by a pick and place apparatus of a second transfer system at a transfer from supporting mandrel position; the transfer from supporting mandrel position lying on a line joining respective centres of rotation of a proximate rotating guide wheel of the preheating transport system and the second transfer system.

139. The machine of claim 138 wherein the preform extracted from a preform supporting handle by a gripper of the pick and place apparatus of the second transfer system is rotated through 180degrees by a rotary actuator of the pick and place

apparatus as an arm of the second transfer system rotates the pick and place apparatus towards a die loading position.

140. The machine of claim 138 or 139 wherein a combination of rotation of the arm of the second transfer system and rotation and linear displacement of the gripper induced by the loci of a first and second cam follower of the pick and place apparatus, brings a vertical axis of the preform into alignment with a vertical axis of a stretch-blow-moulding die as both the pick and place apparatus and an opened stretch-blow-moulding die approach the die loading position; movements of the gripper concurrently bringing the handle of the preform into alignment with a line joining respective centres of rotation of the stretch-blow-moulding die and the second transfer system.

141. The machine of claim 139 or 40 wherein a pick and place apparatus of a third transfer system extracts a stretch-blow-moulded container from the stretch-blow-moulding die as the stretch-blow-moulding die opens at a die unloading position; the die unloading position lying on a line joining respective centres of rotation of the rotating stretch-blow-moulding die and the third transfer system.

142. The machine of claim 141 wherein extracted stretch-blow-moulded containers are rotated from the die unloading position to a rotating outfeed wheel; the rotating outfeed wheel transferring the containers along a discharge channel and a container receiving bin.

143. A non-incremental, continuously rotating, stretch-blow-moulding machine fed with non-symmetric injection moulded preforms with integral handles and producing stretch-blow-moulded containers with integral handles from the non-symmetric injection moulded preforms with integral handles; the handles extending between a first junction point and a second junction point on a body portion of the preform; the body portion of the preform and the integral handle constituted from the same material; the machine including a preform orientation system to orient the handle of the preform into a known orientation at arrival at a pick off position; orientation of the handle controlled during transfer of the preform by a transfer system for entry of the preform into halves of a stretch blow moulding die; a vertical axis of the preform

brought into alignment with a vertical axis of the stretch blow-moulding die as both the transfer system and the stretch blow-moulding die approach a die loading position; movement of the transfer system bringing the handle of the preform into alignment with a vertical plane lying in a bisecting radial line of the die halves.

144. The machine of claim 143 wherein preforms are in continuous motion from an initial preform pick off point through stretch-blow-moulding into the containers and ejection from the machine as stretch-blow-moulded containers.

145. The machine of claim 143 or 144 wherein the integral handle retains a shape of the handle as injection moulded through all stages of the stretch-blow-moulding machine to forming a handle on the stretch-blow-moulded container.

146. The machine of claim 144 or 145 wherein the stages of the stretch-blow-moulding machine include a continuously rotating first transfer system transferring preforms from a continuously rotating preform feeder wheel at the preform pick off position to a transfer to preheating position at a continuously rotating preheating stage.

147. The machine of claim 146 wherein a preheated preform is extracted from a supporting mandrel of the preheating stage by a pick and place apparatus of a second transfer system at a transfer from supporting mandrel position; the transfer from supporting mandrel position lying on a line joining respective centres of rotation of a proximate rotating guide wheel of a preheating transport system and the second transfer system.

148. The machine of any one of claims 143 or 147 wherein a pick and place apparatus of a third transfer system extracts a stretch-blow-moulded container from the stretch-blow-moulding die as the stretch-blow-moulding die opens at a die unloading position; the die unloading position lying on a line joining respective centres of rotation of the rotating stretch-blow-moulding die and the third transfer system.

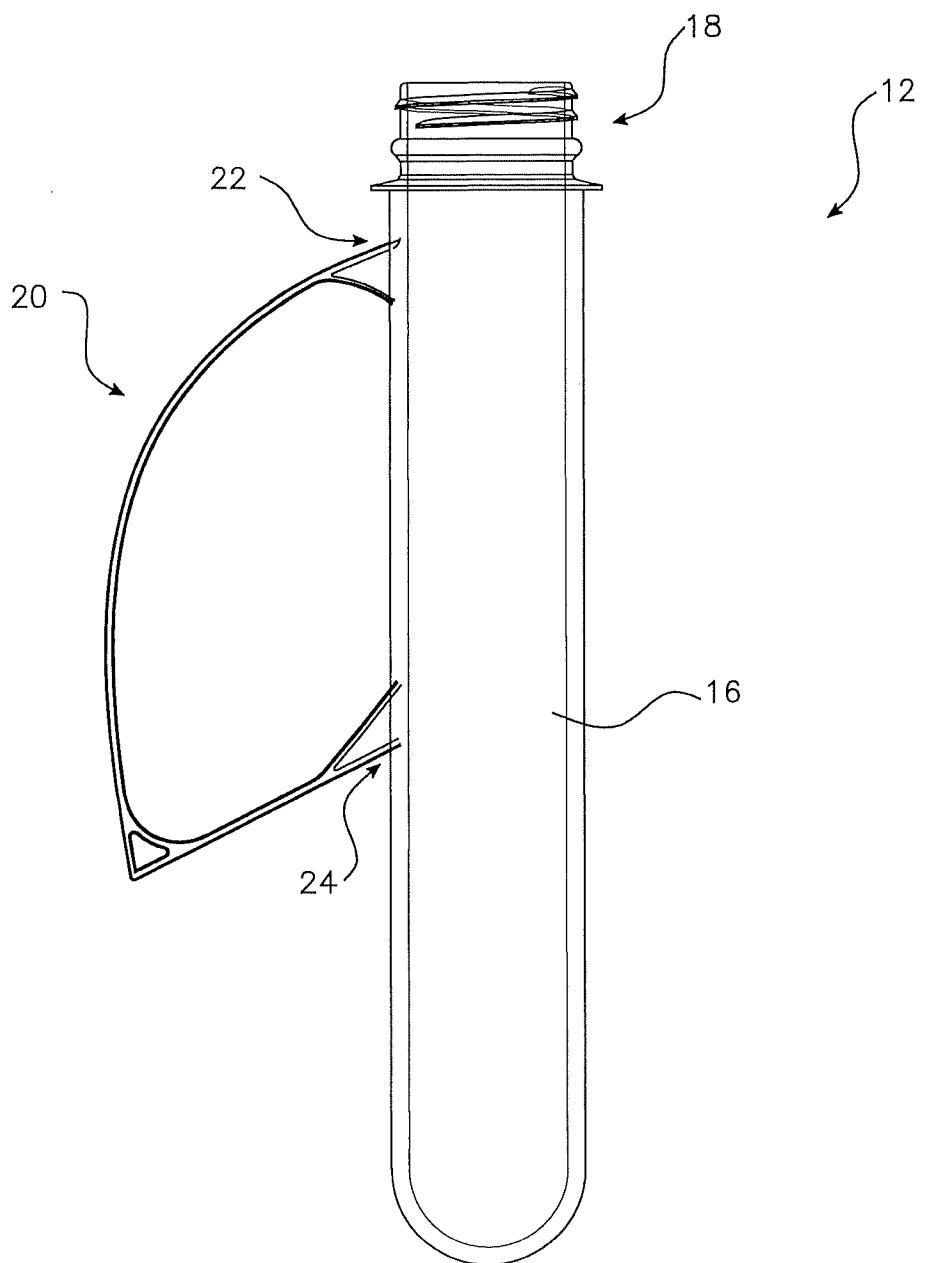



Fig. 1

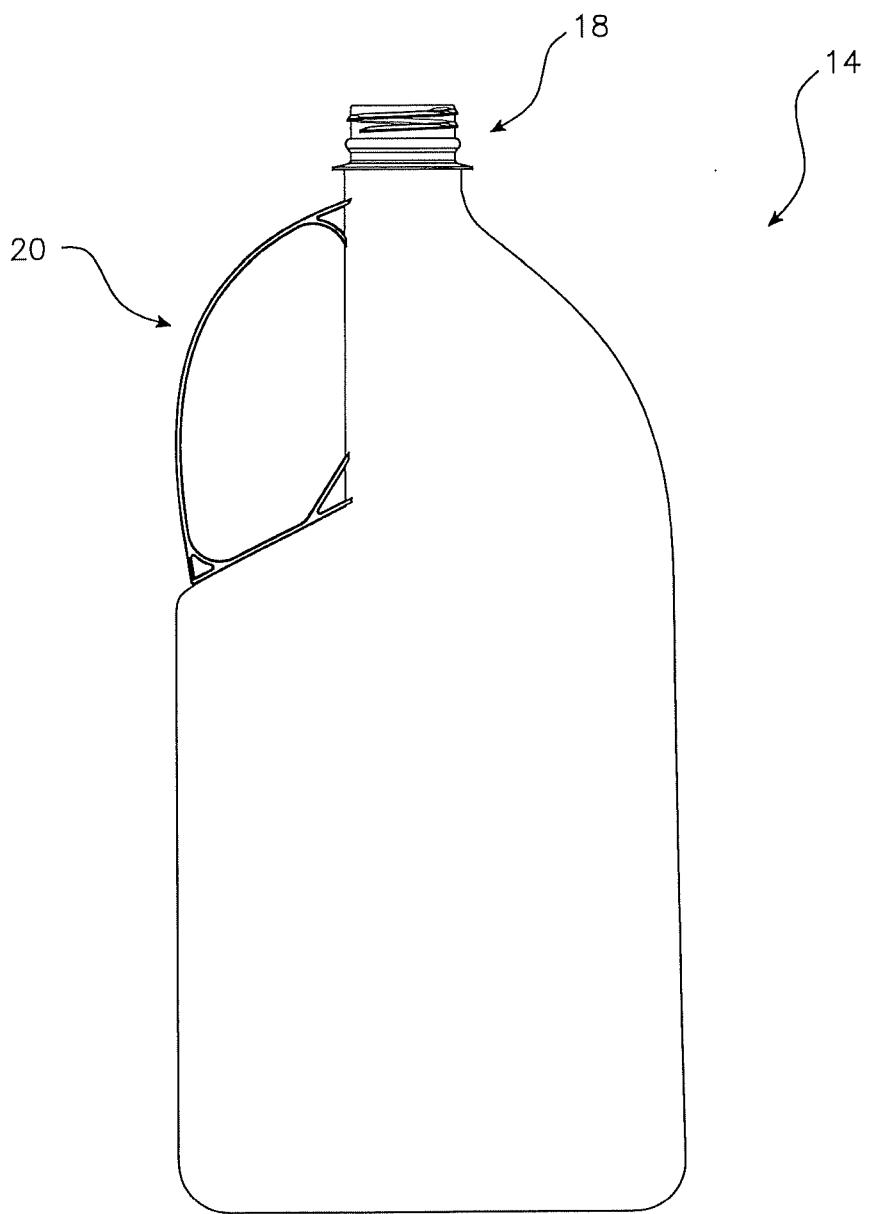



Fig. 2

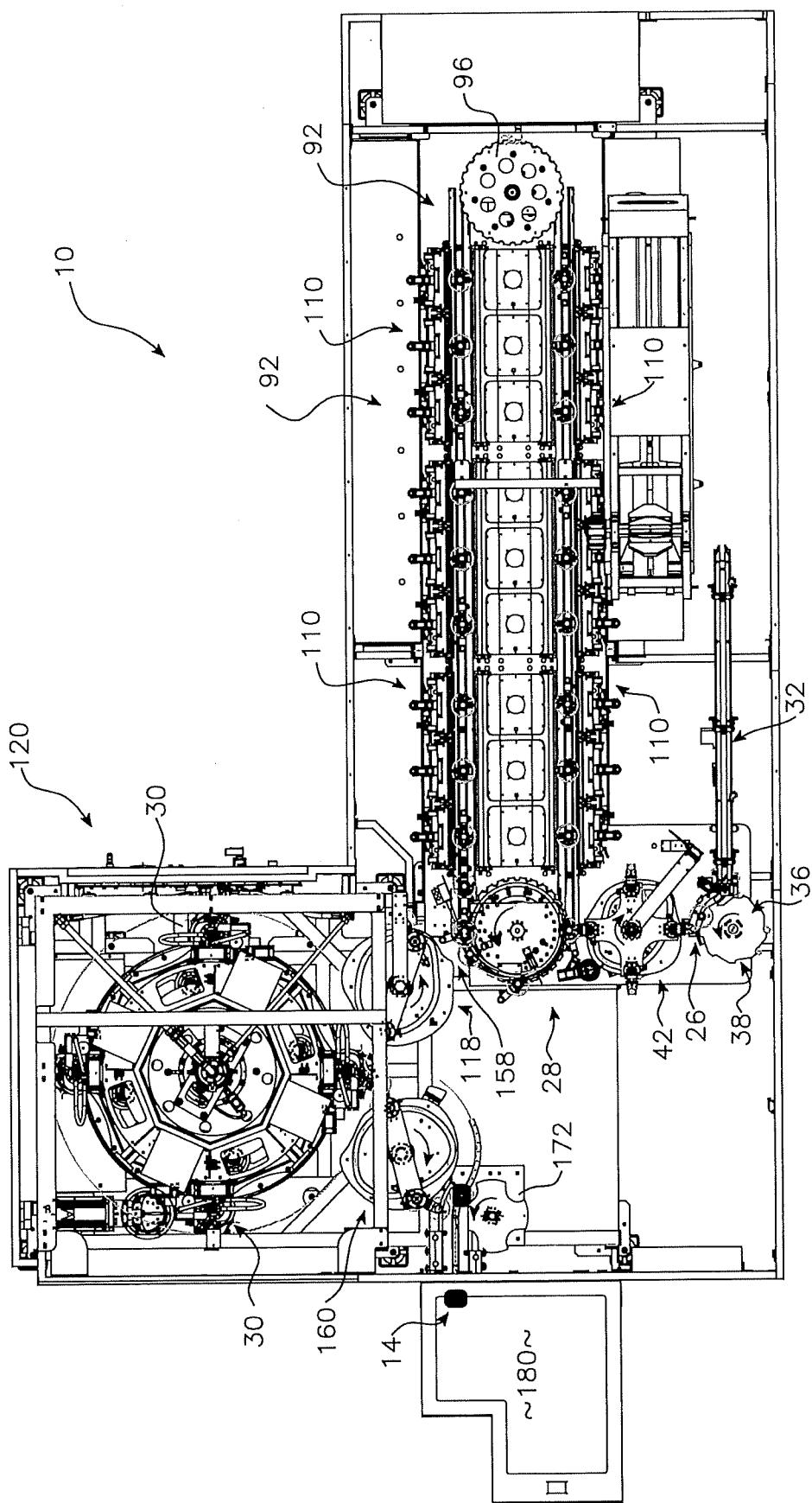



Fig. 3

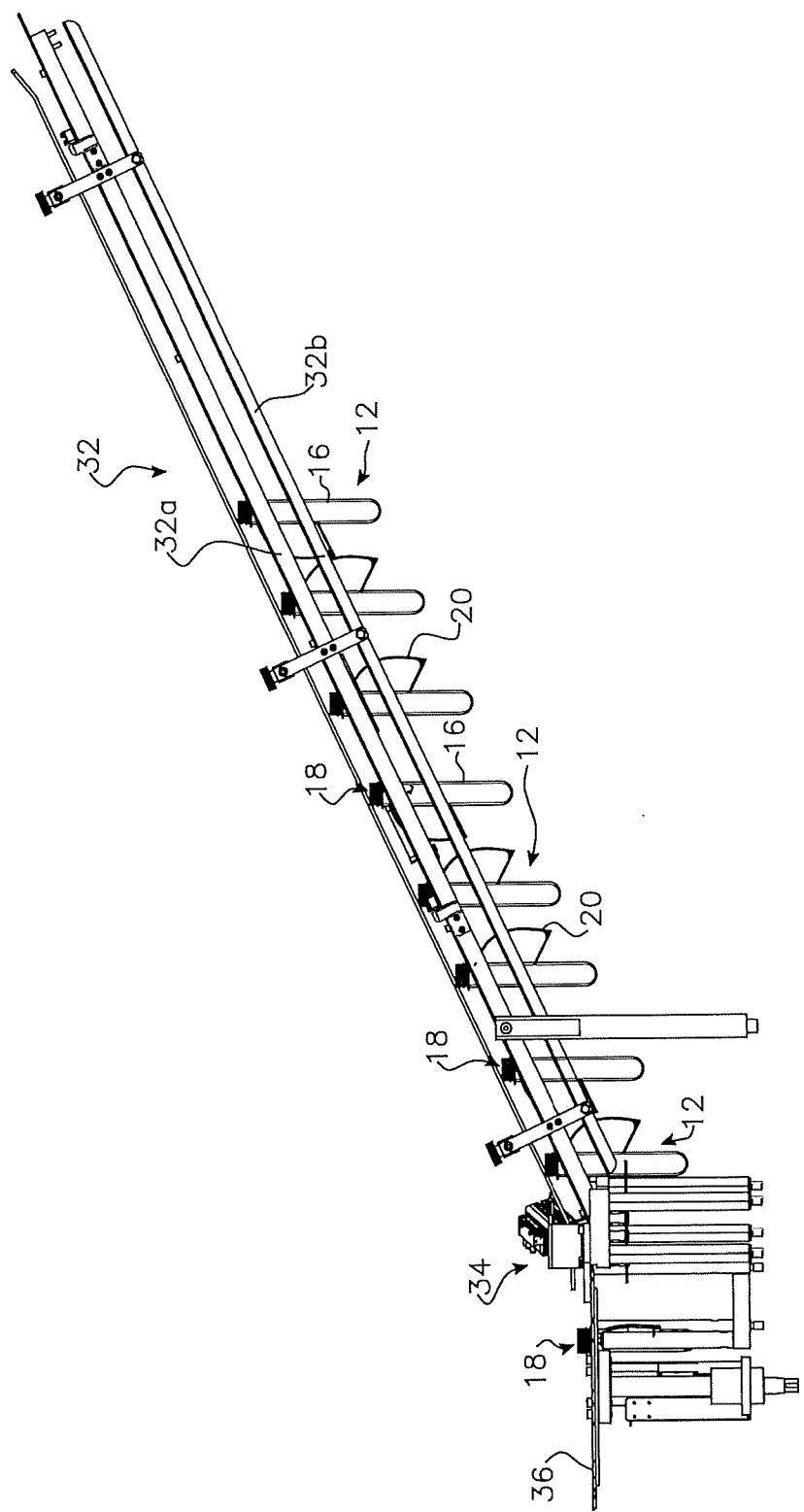



Fig. 4

5/37

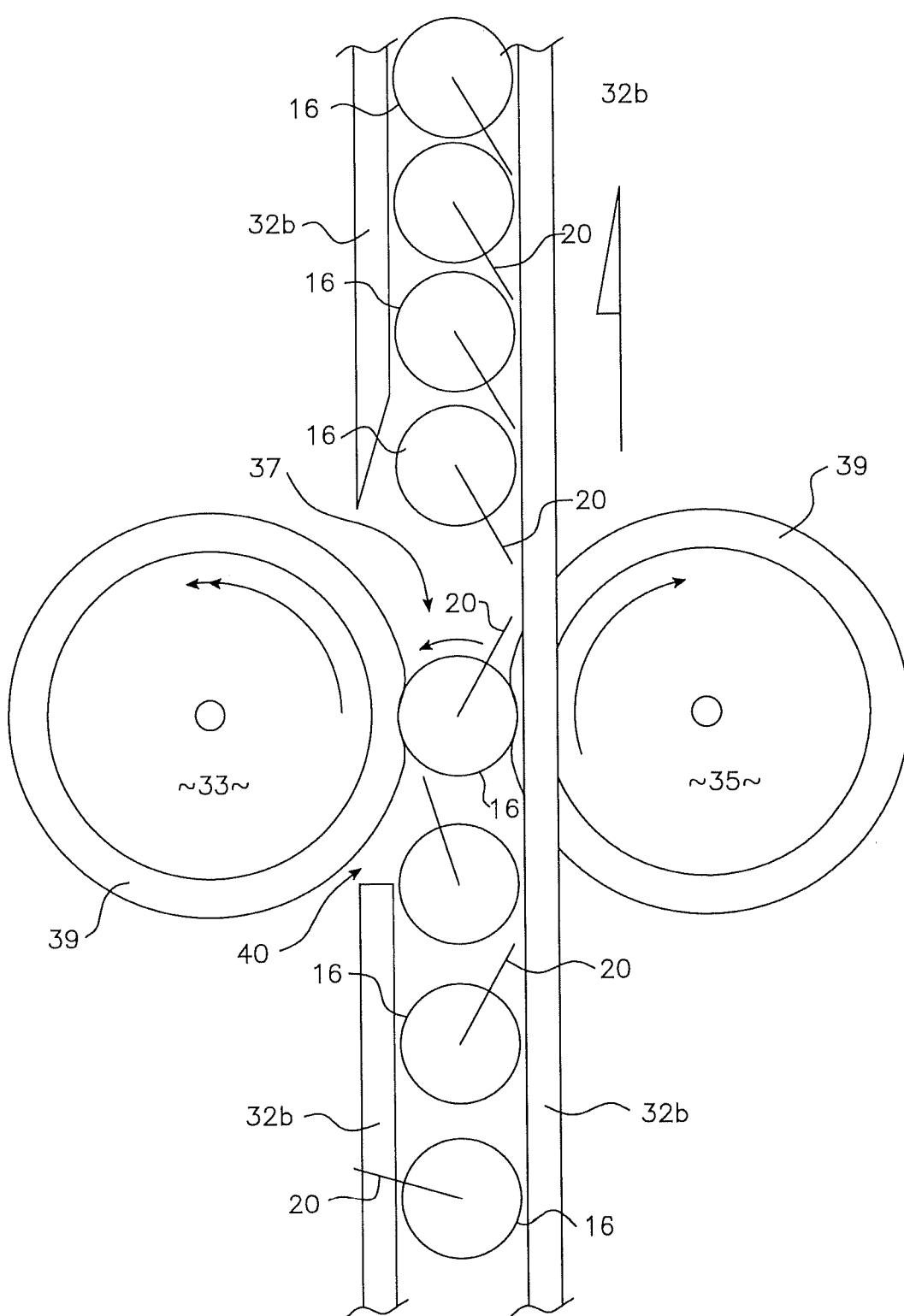



Fig. 4A

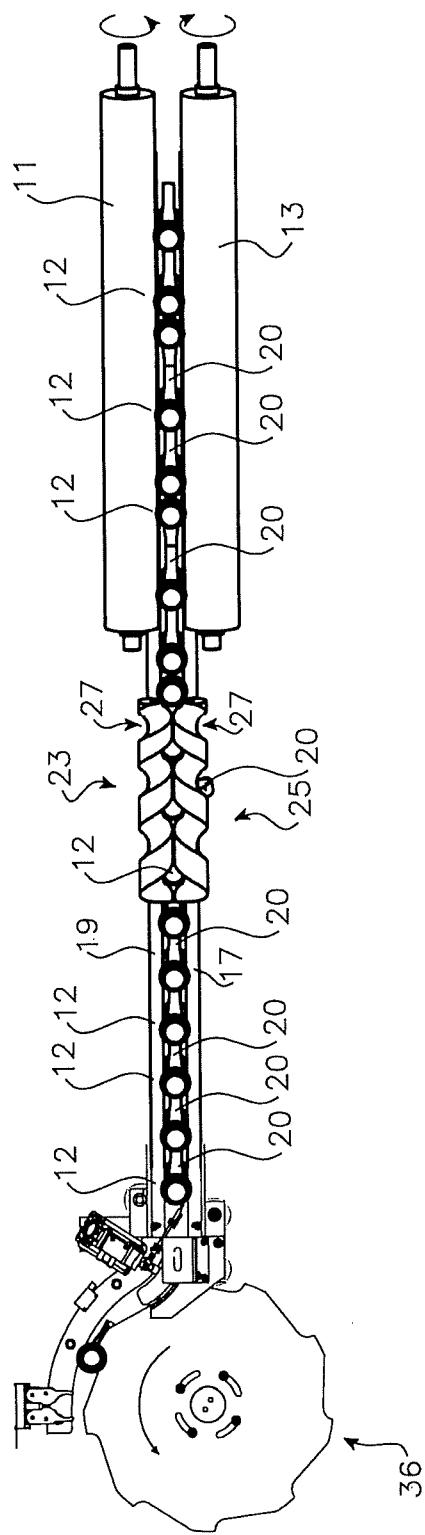



Fig. 4B

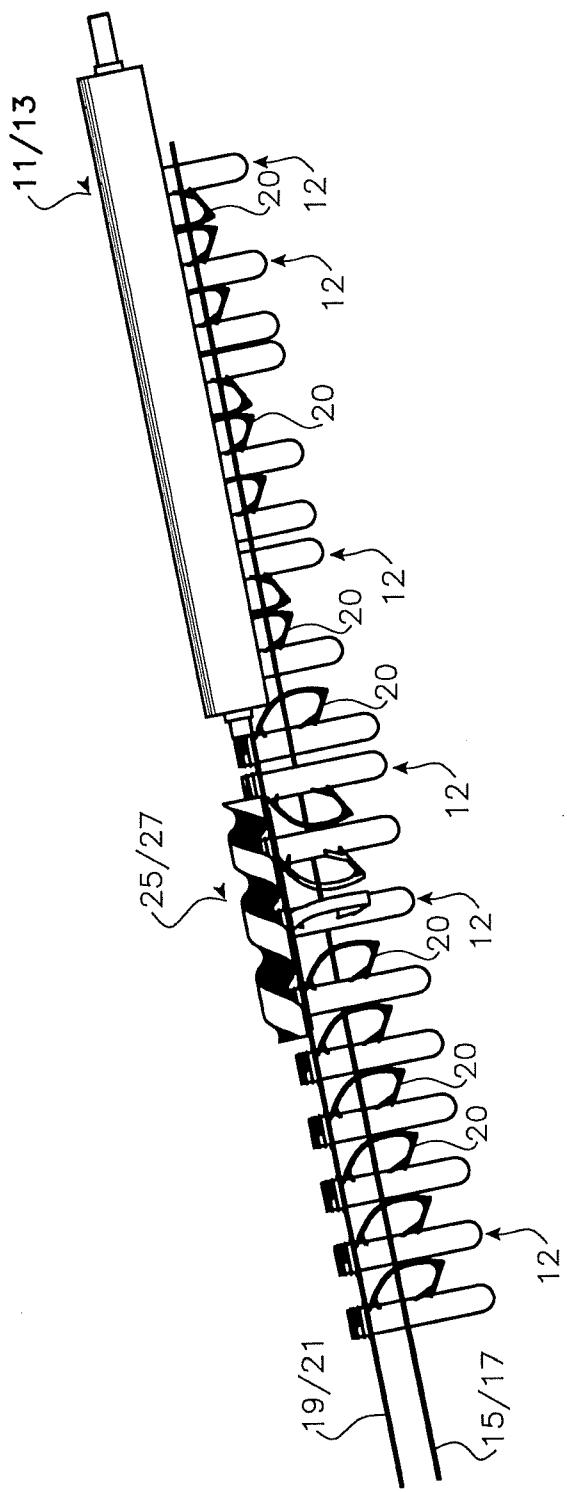



Fig. 4C

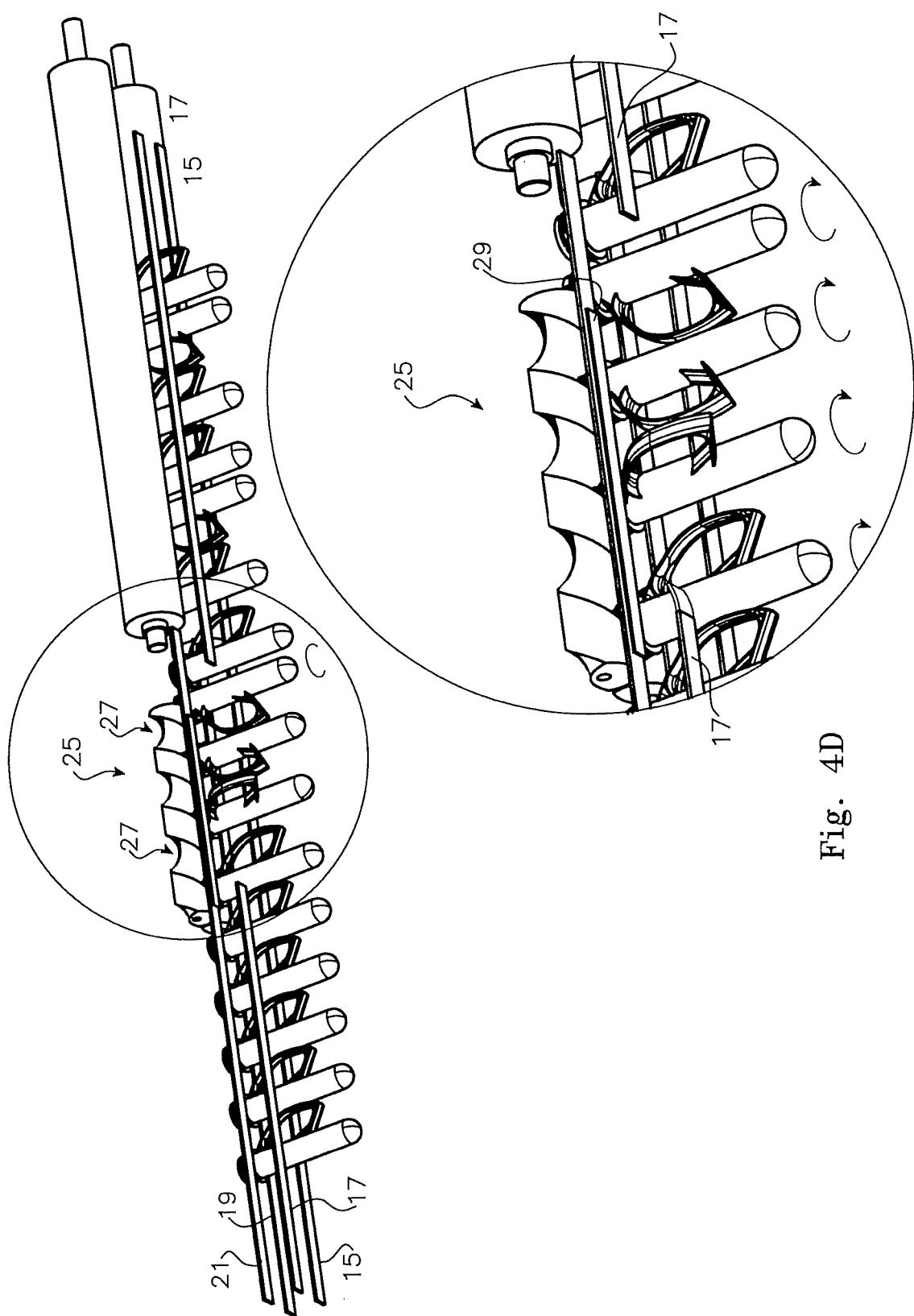



Fig. 4D

9/37

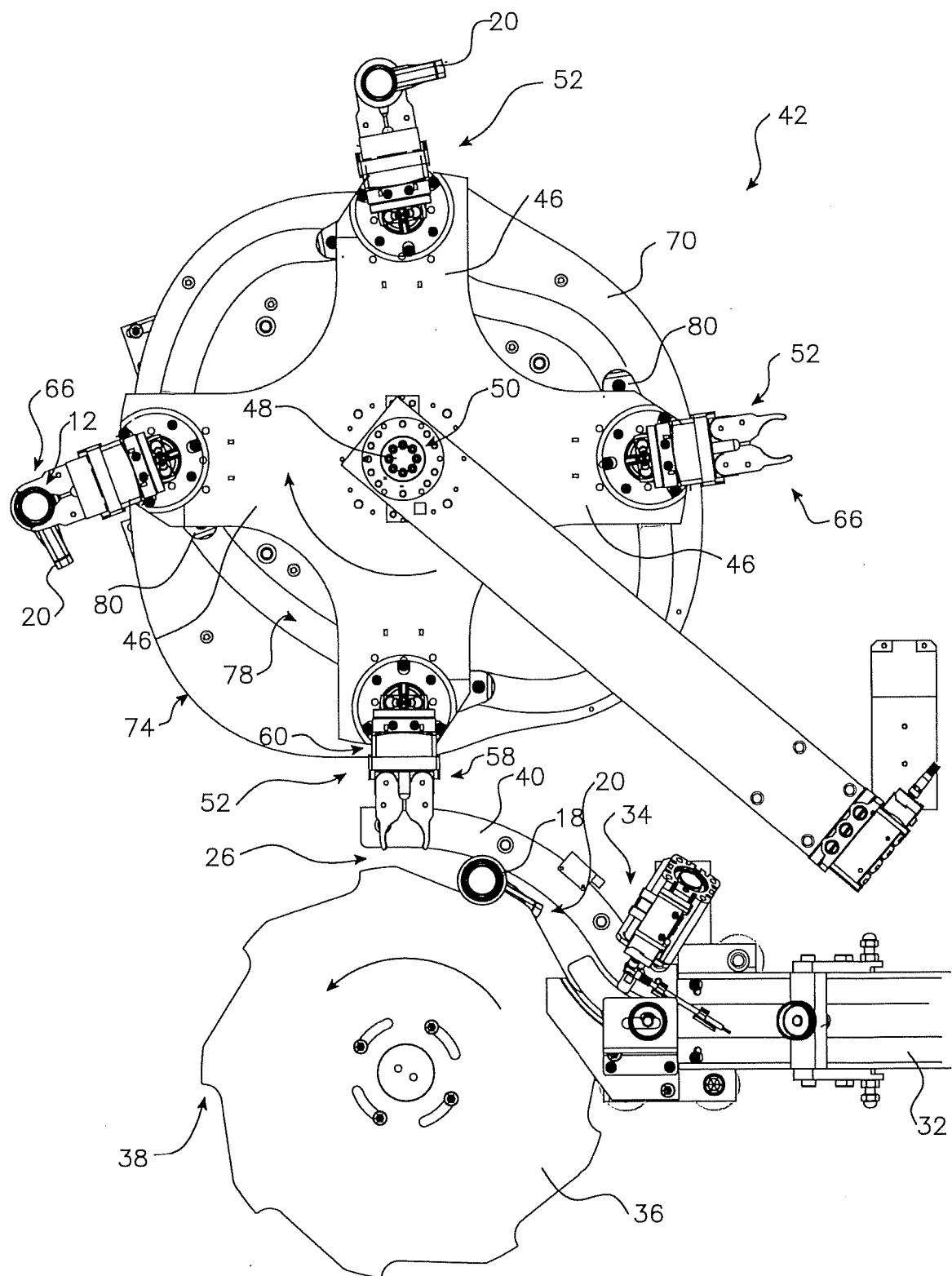



Fig. 5

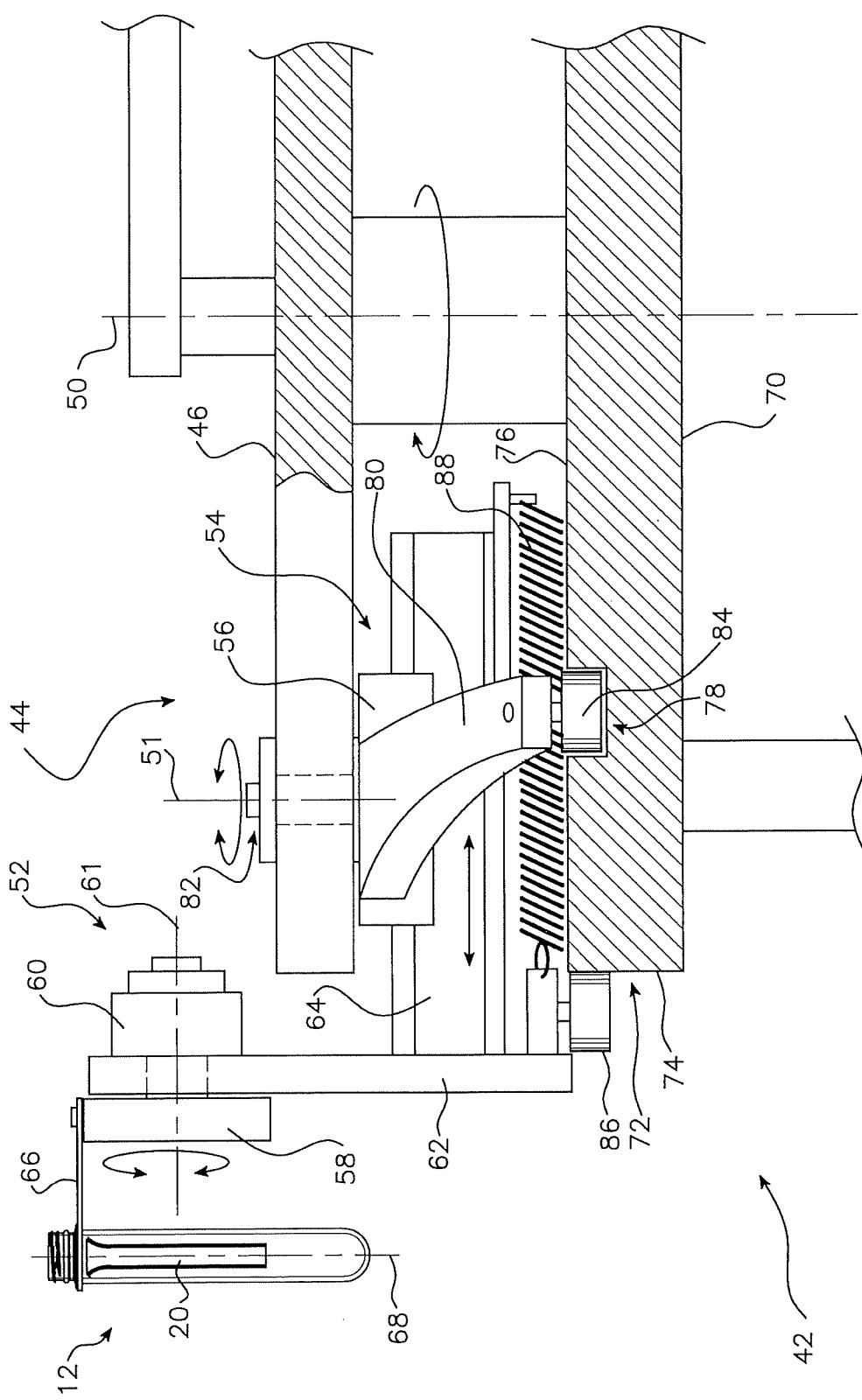



Fig. 6

11/37

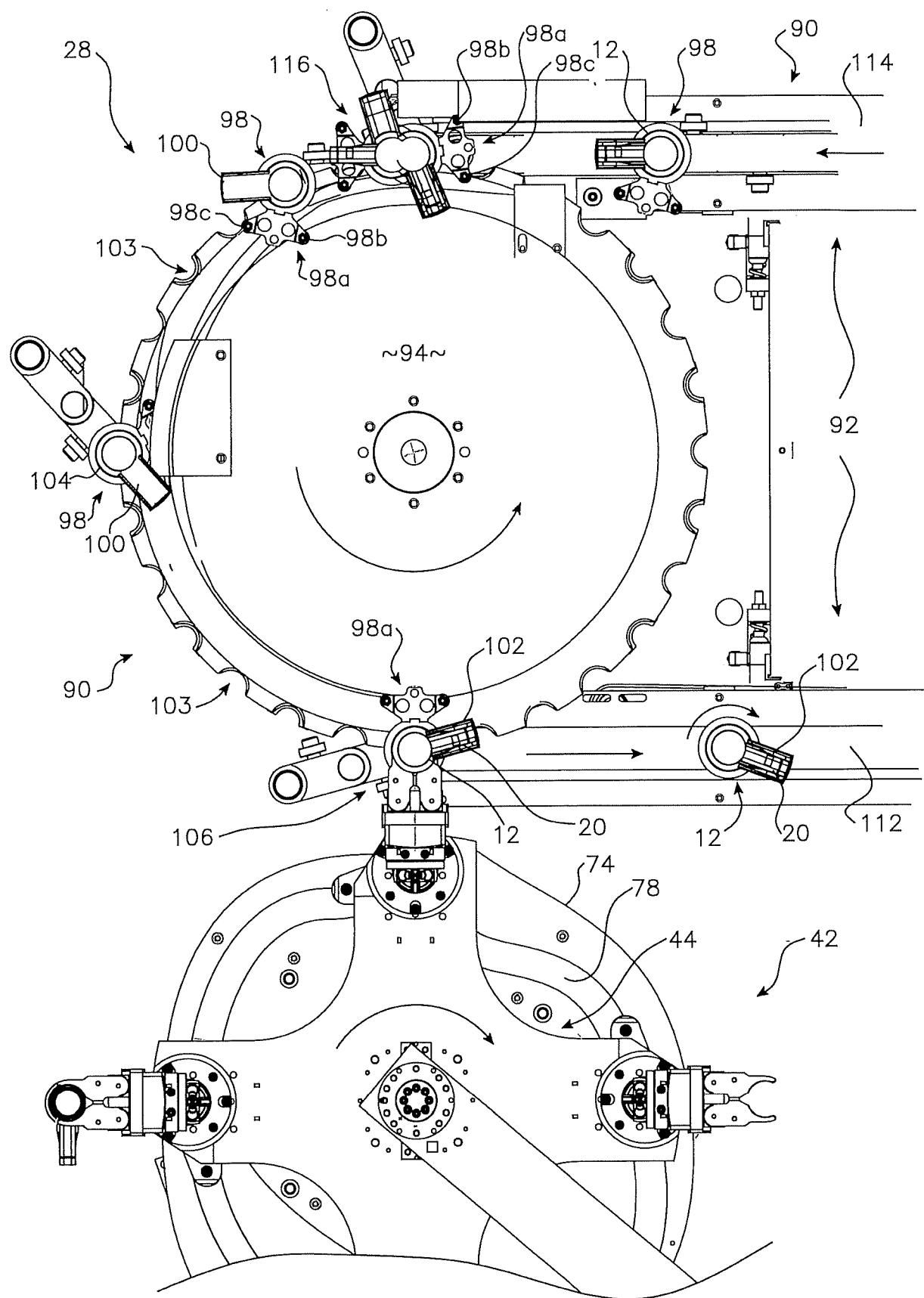



Fig. 7

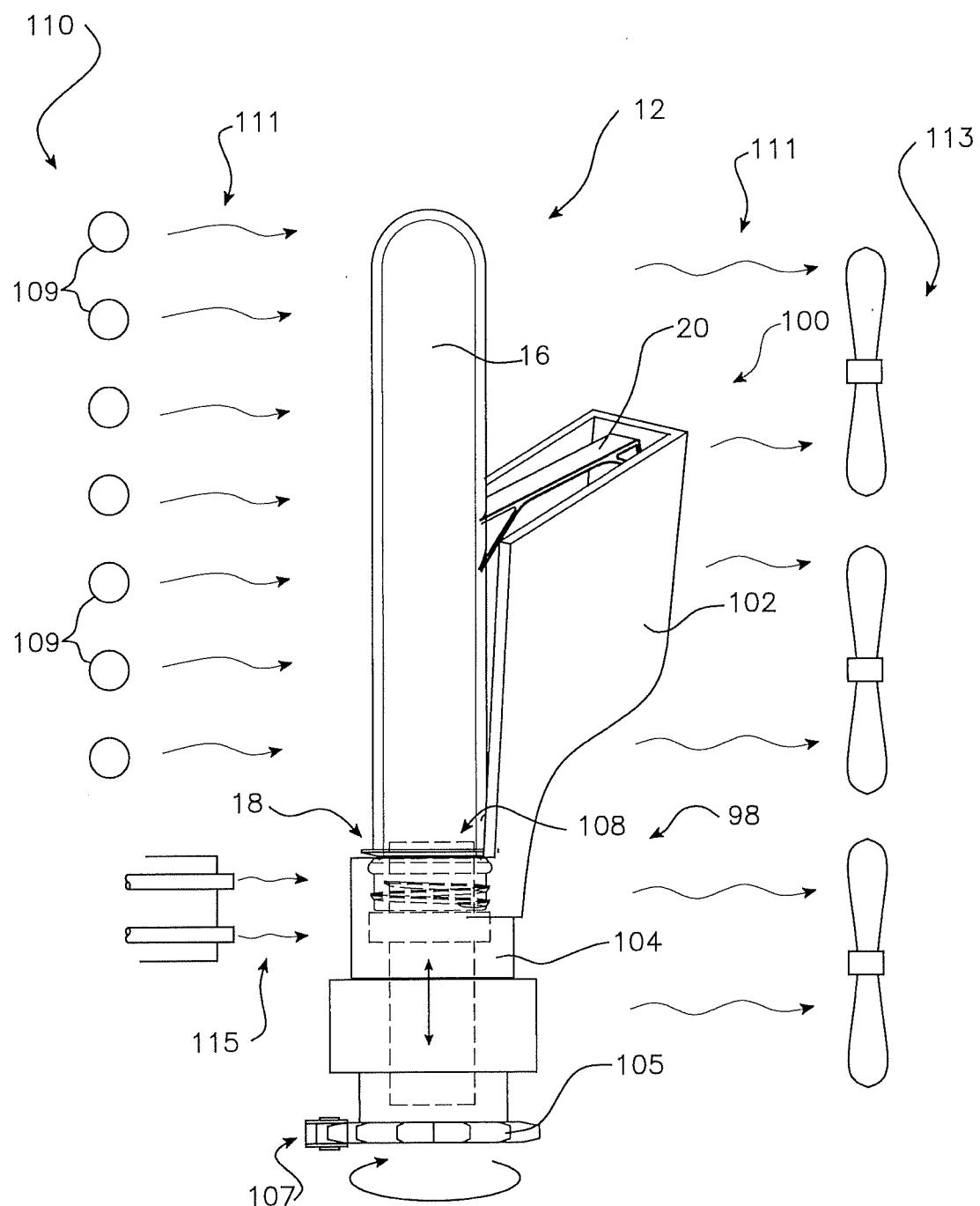
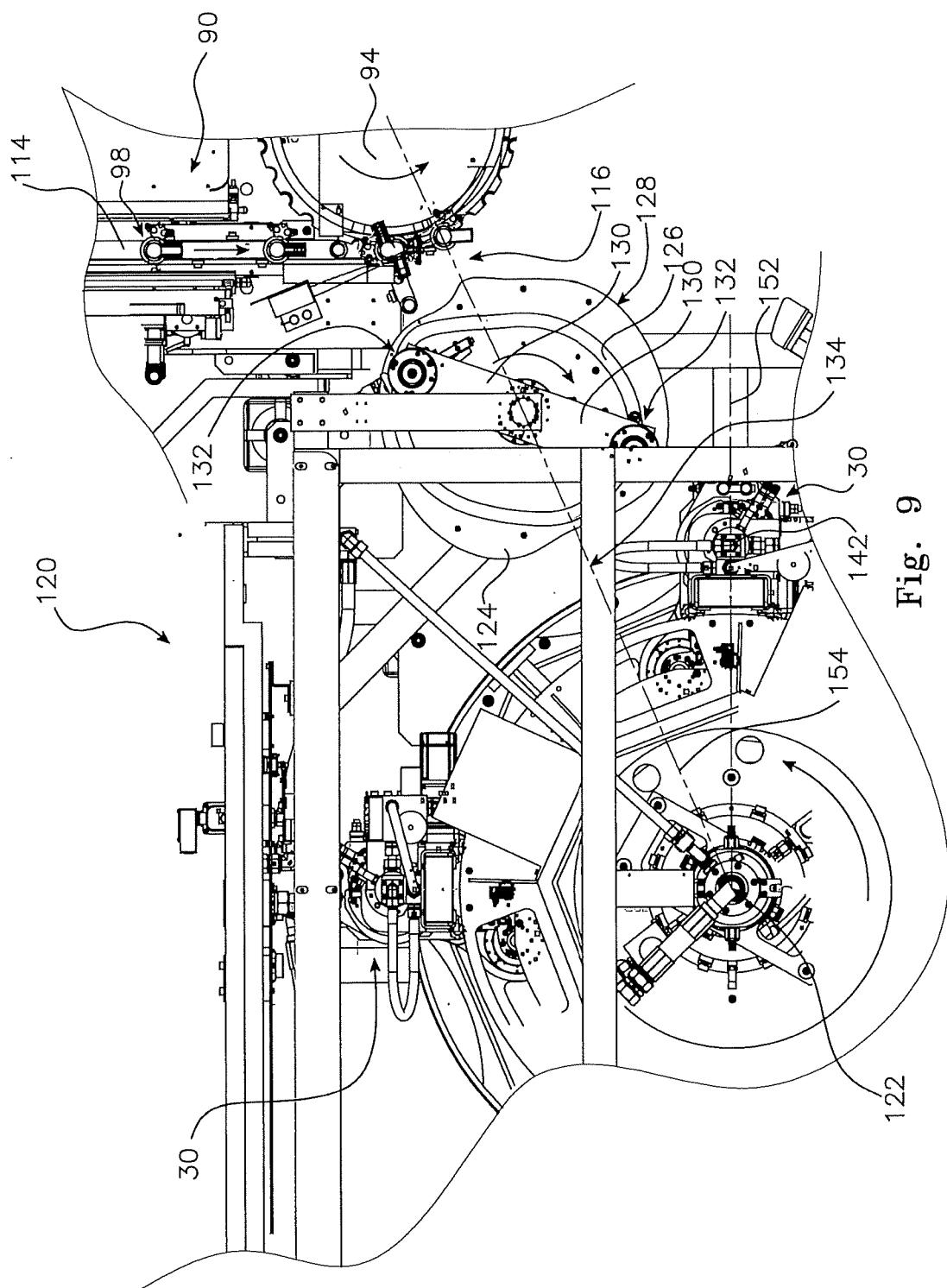




Fig. 8



14/37

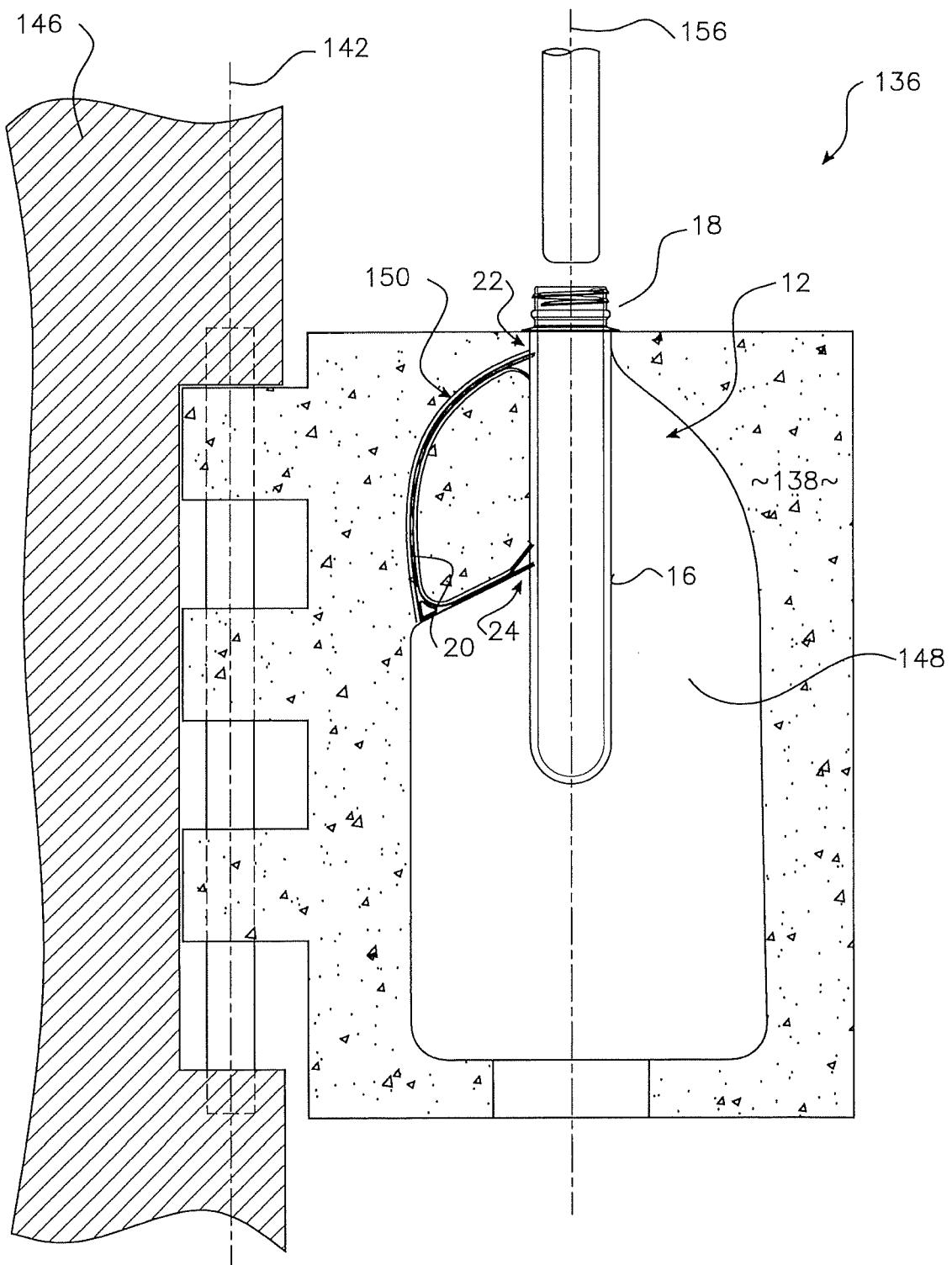



Fig. 10

15/37

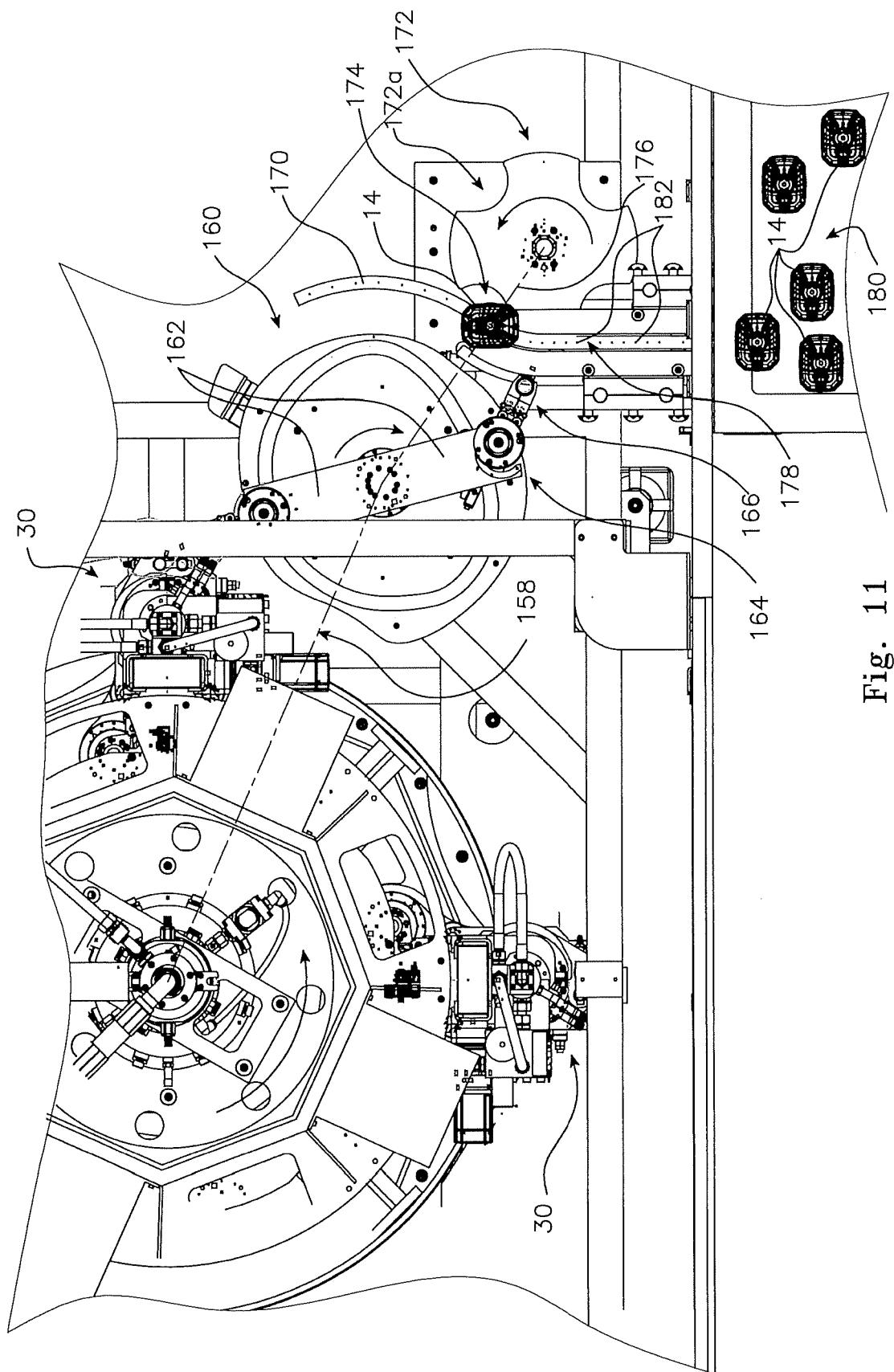



Fig. 11

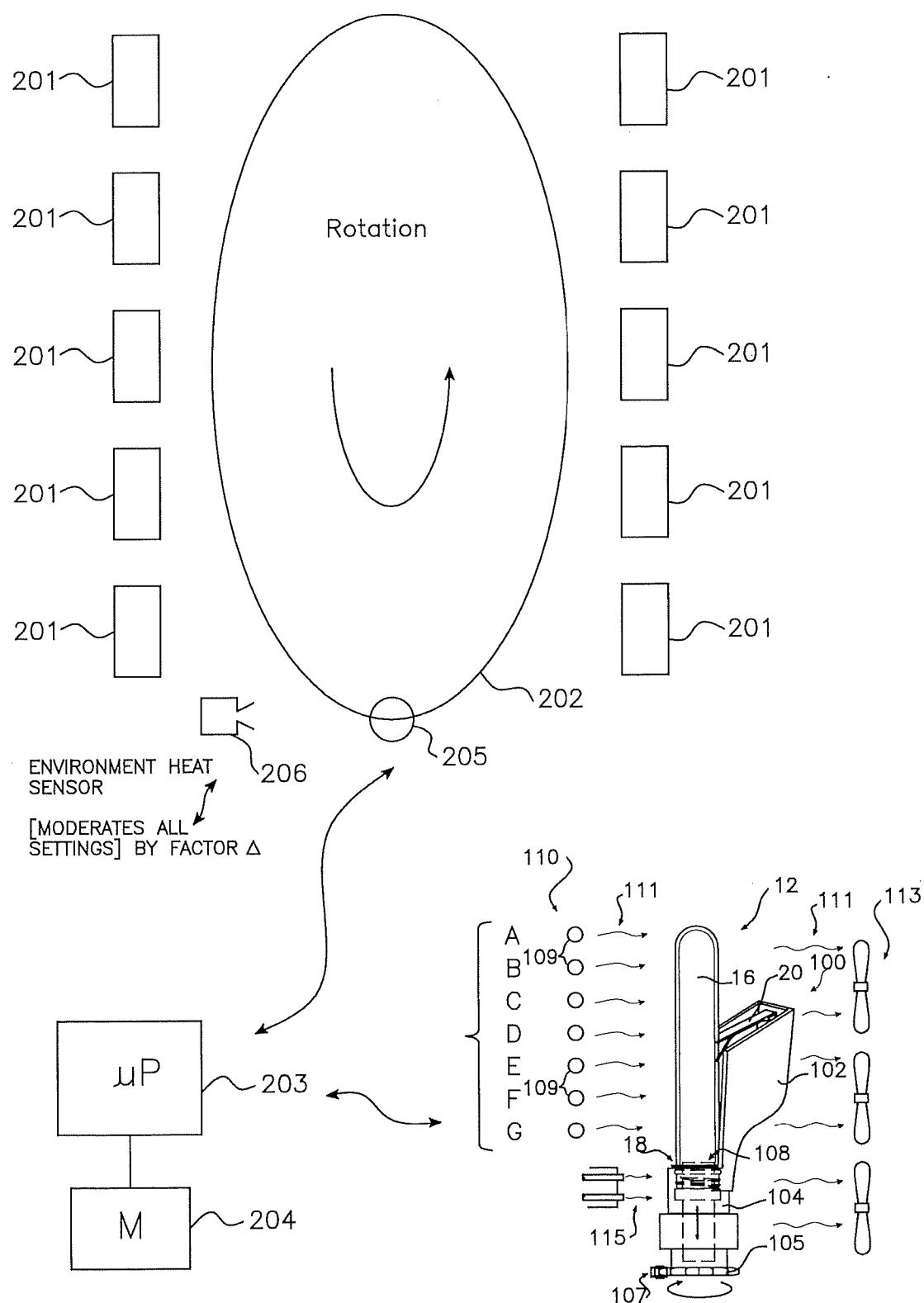



Fig. 12

17/37

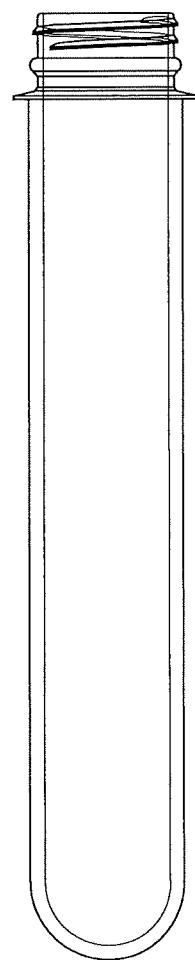



Fig. 13 (Prior Art)

18/37

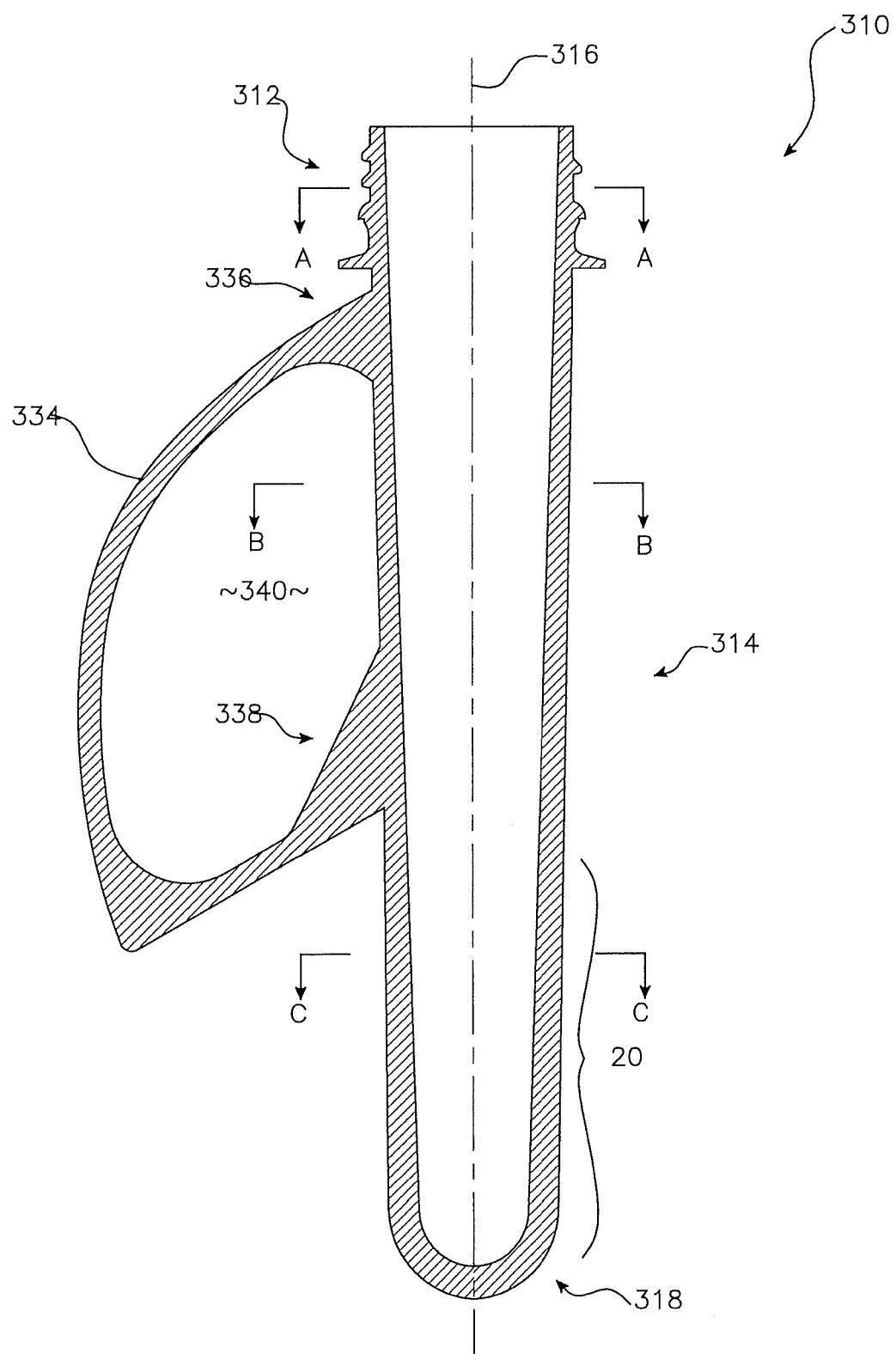



Fig. 13A

19/37

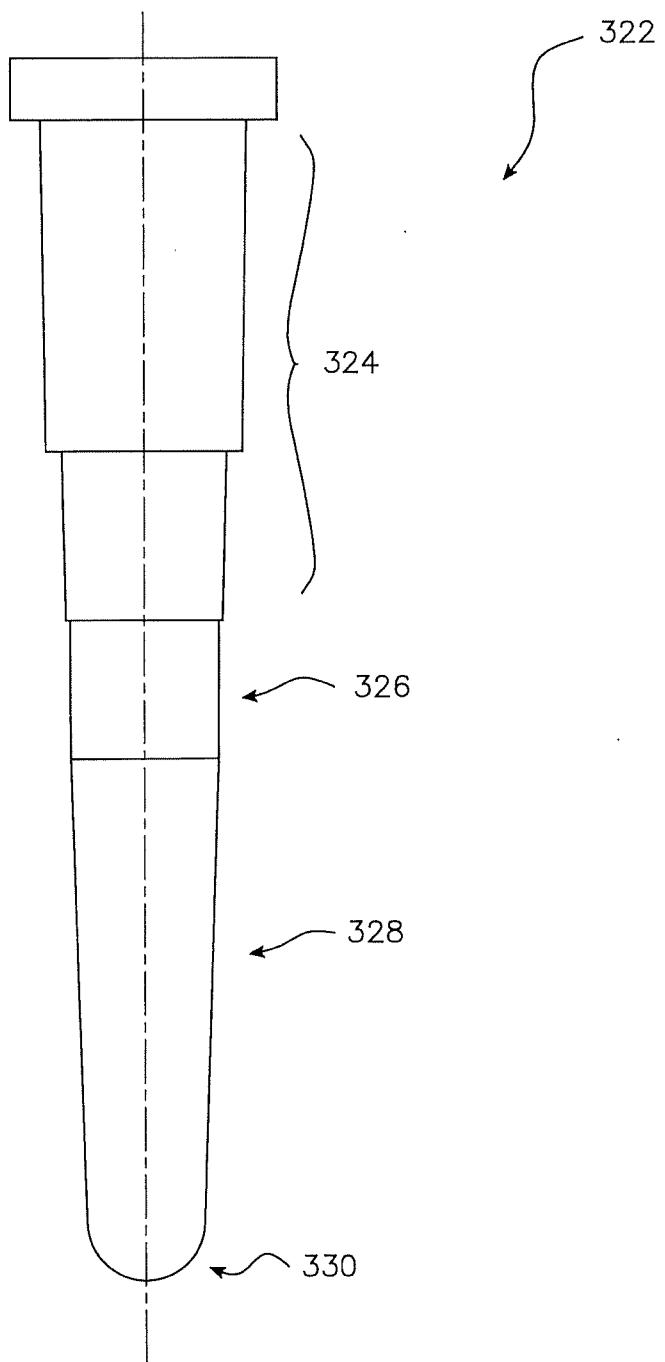



Fig. 14

20/37

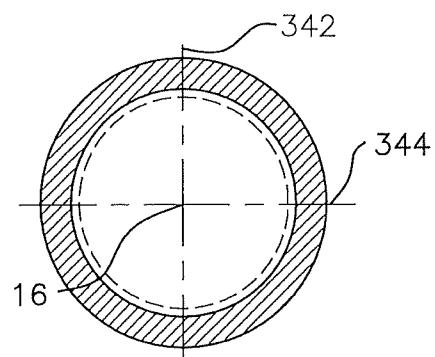



Fig. 15

Section A-A

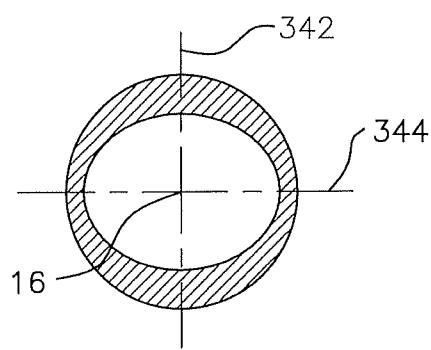



Fig. 16

Section B-B

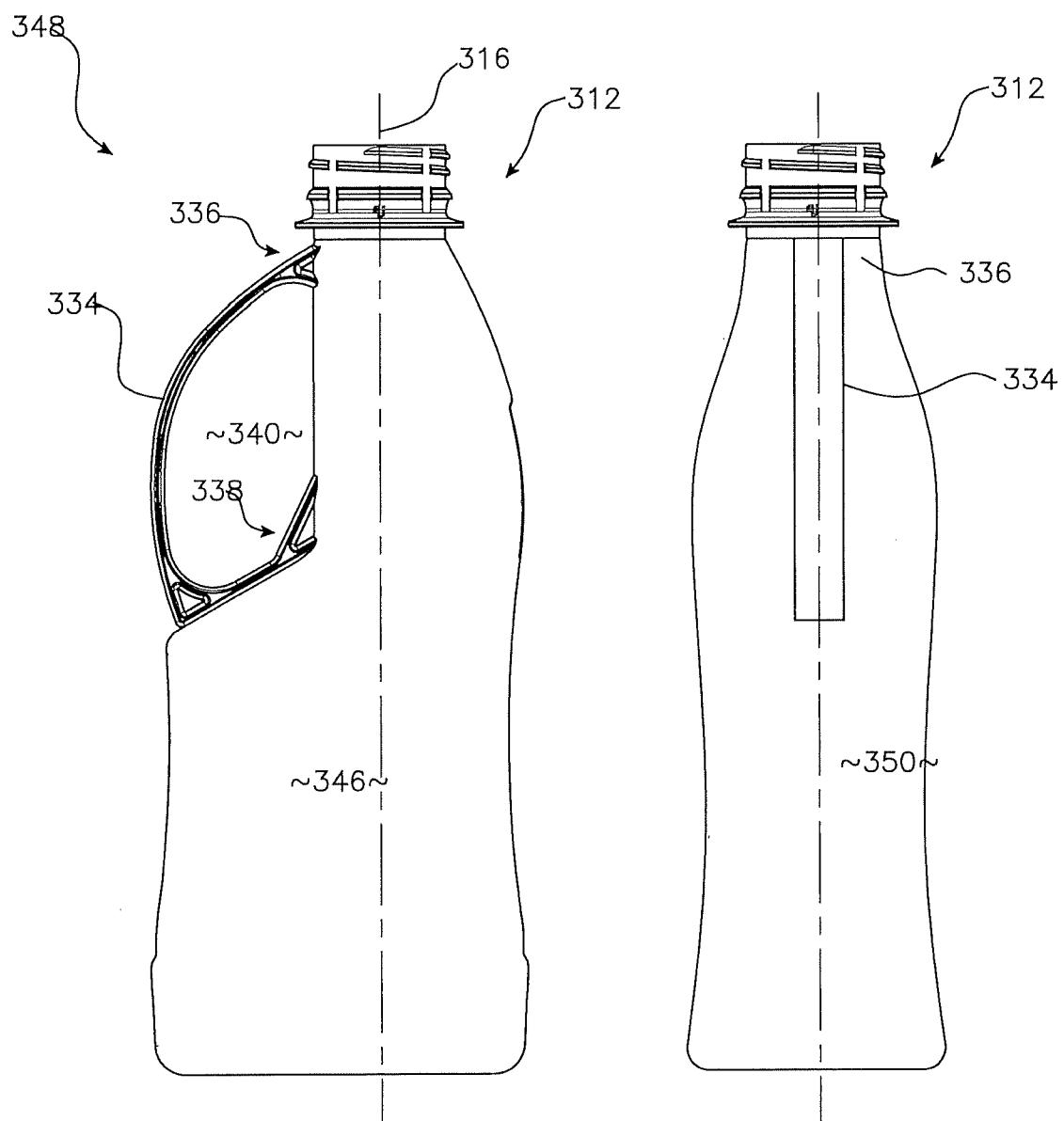



Fig. 17

Fig. 18

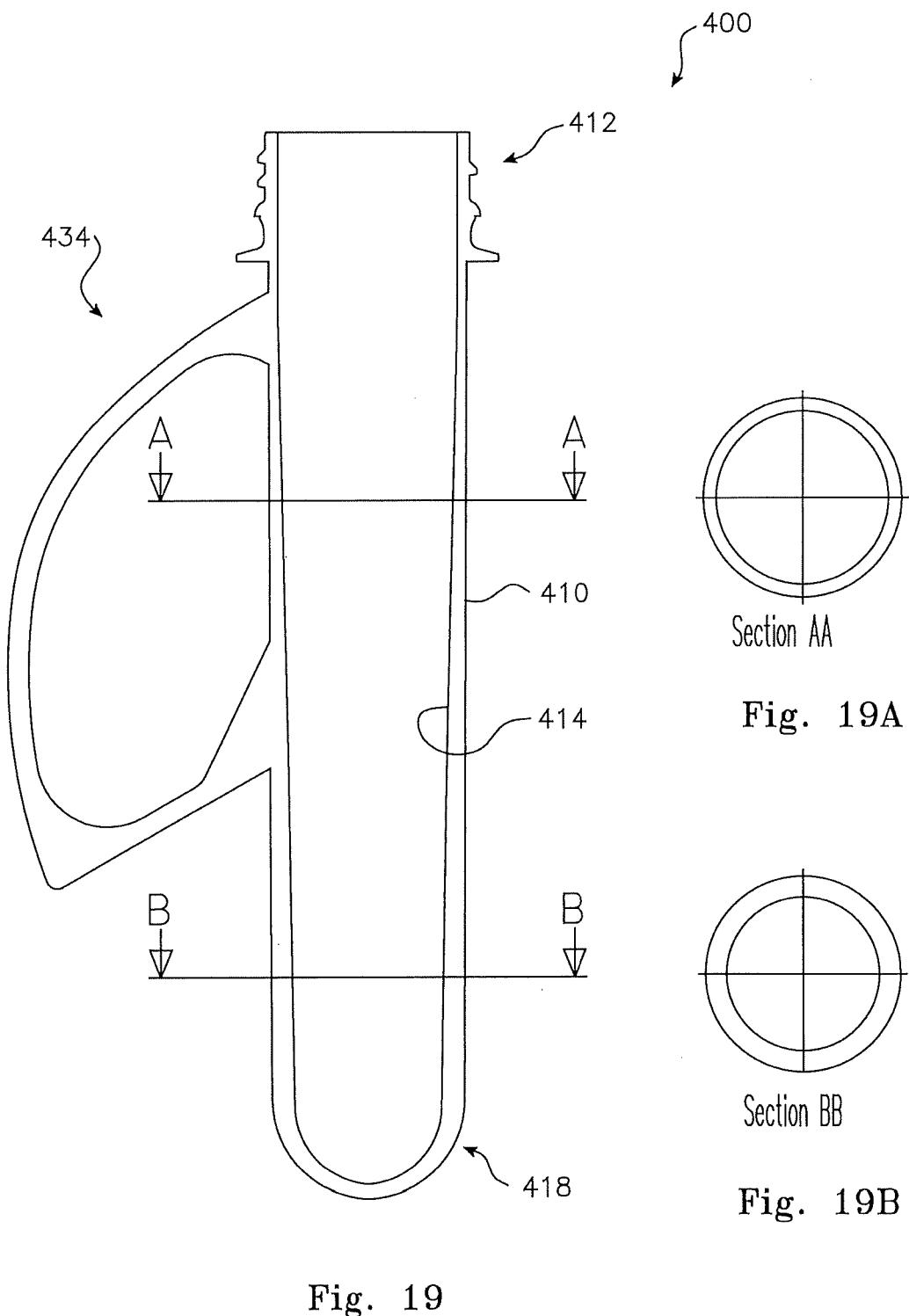



Fig. 19

Fig. 19A

Section AA

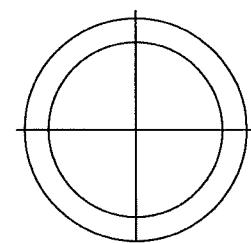
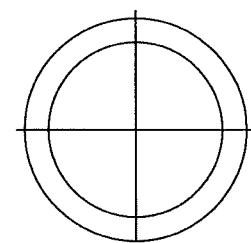
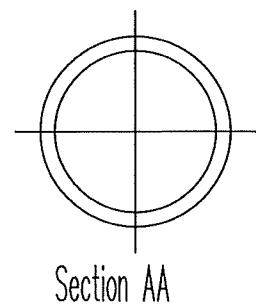
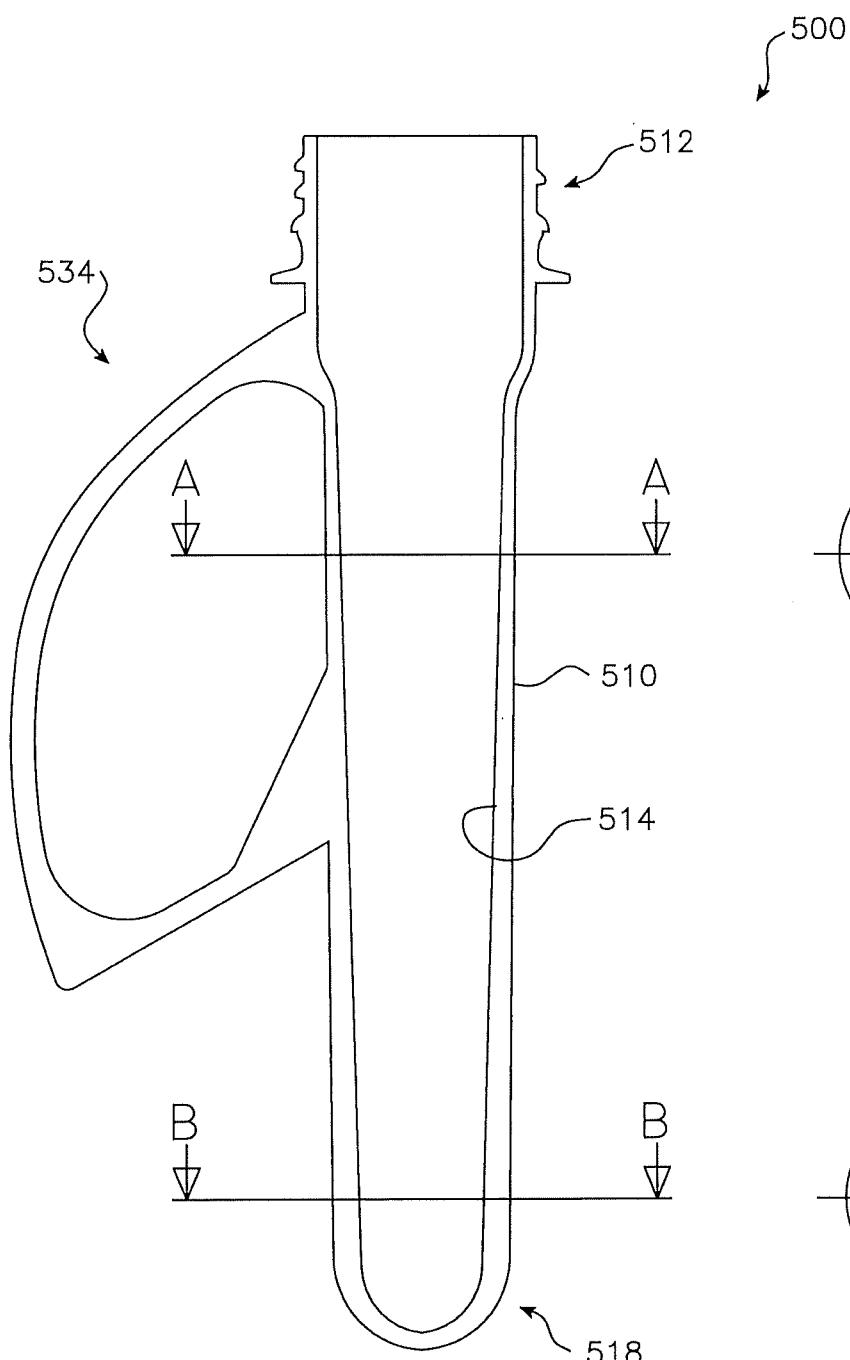
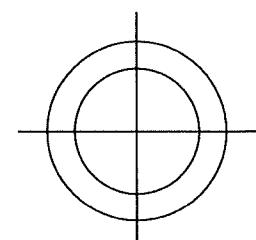



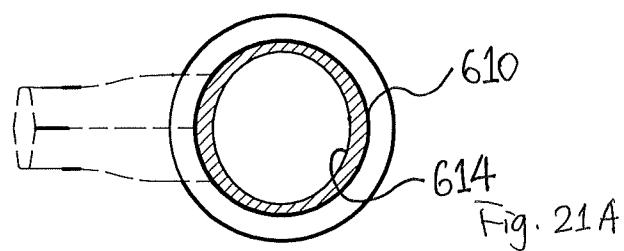

Fig. 19B

Section BB



23/37



Fig. 20A



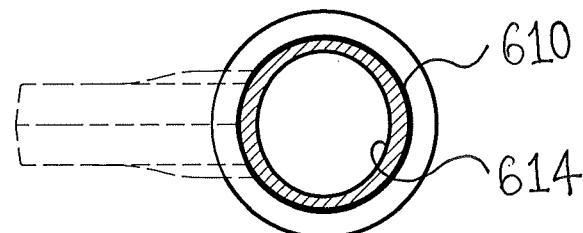
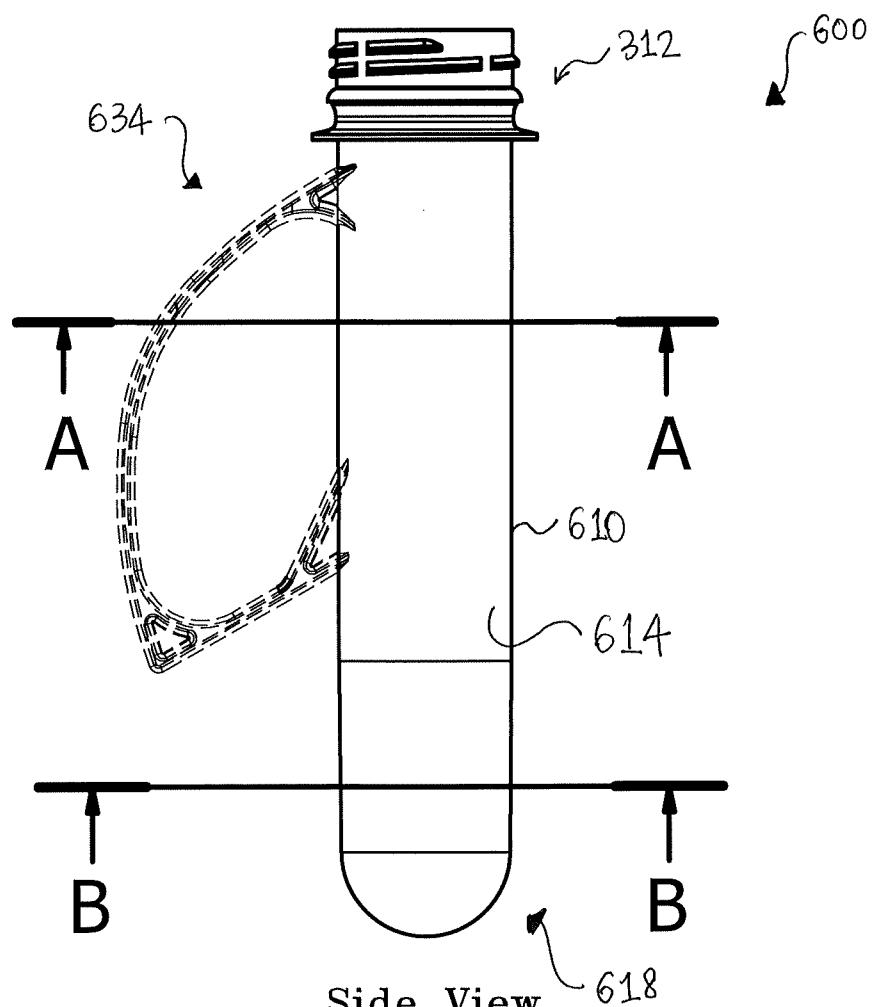

Section BB

Fig. 20B


Fig. 20



Section A-A



Section B-B Fig. 21B



Side View Fig. 21

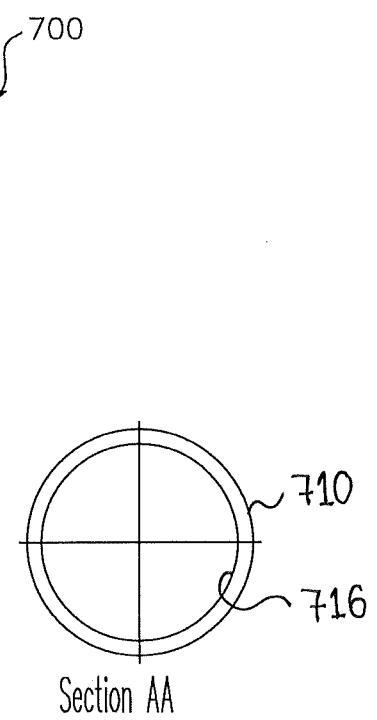
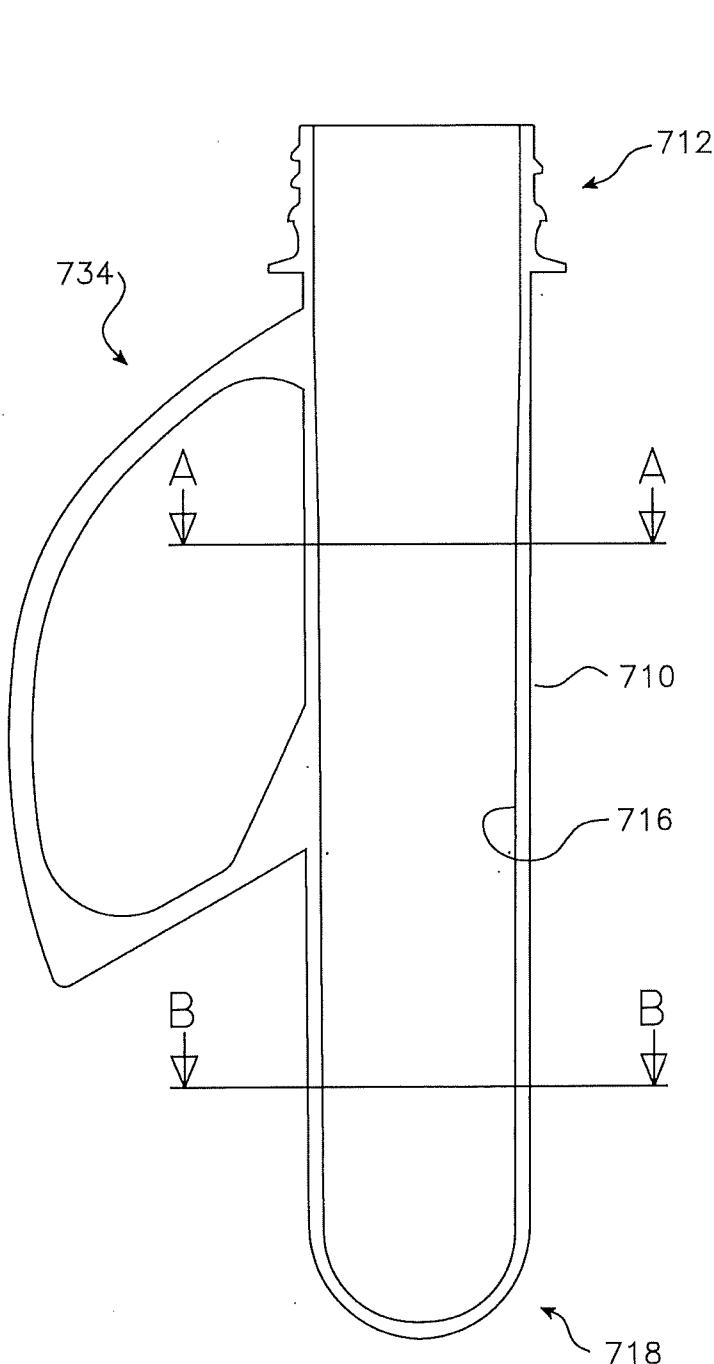




Fig. 22A

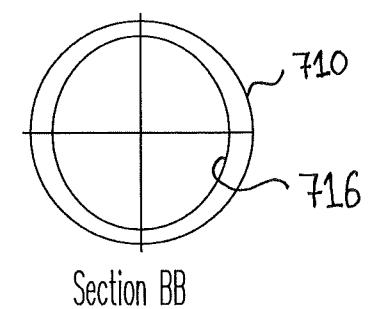



Fig. 22B

Fig. 22

26/37

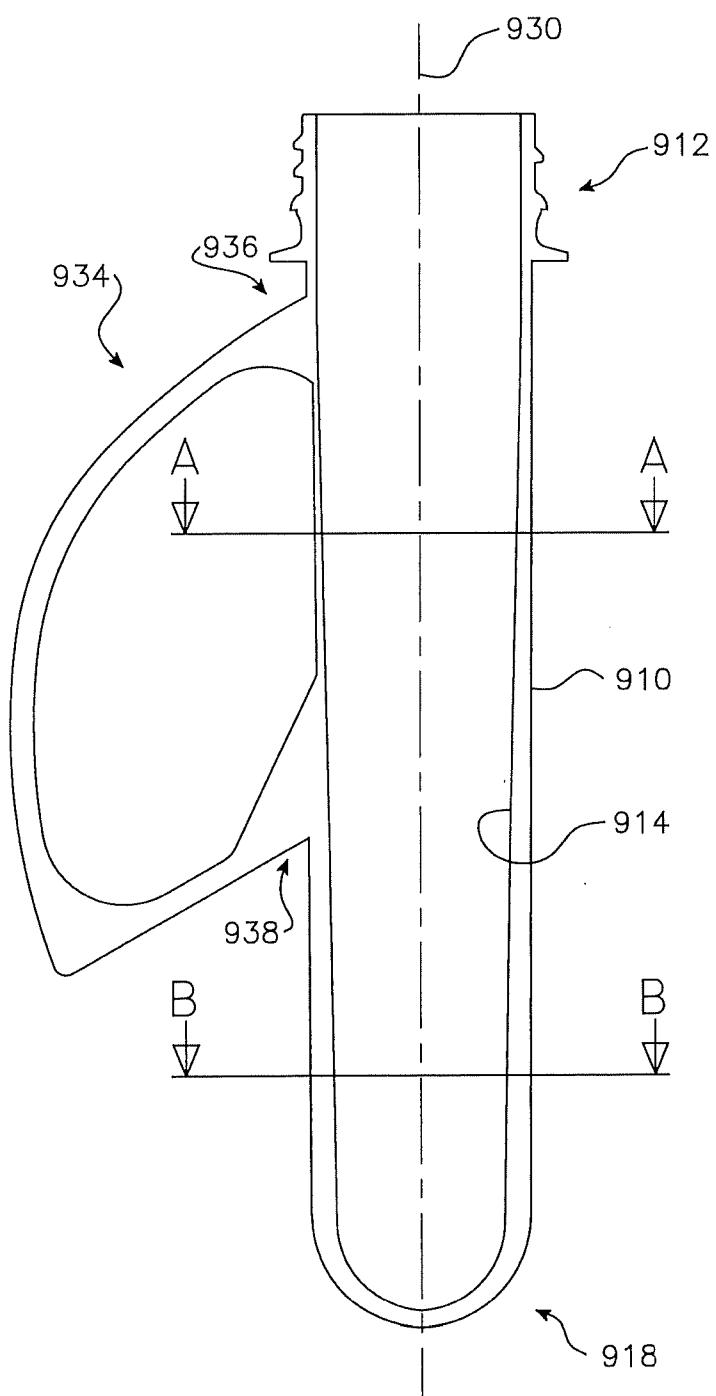



Fig. 23A

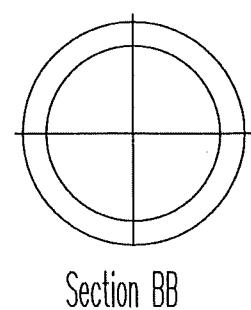



Fig. 23B

Fig. 23

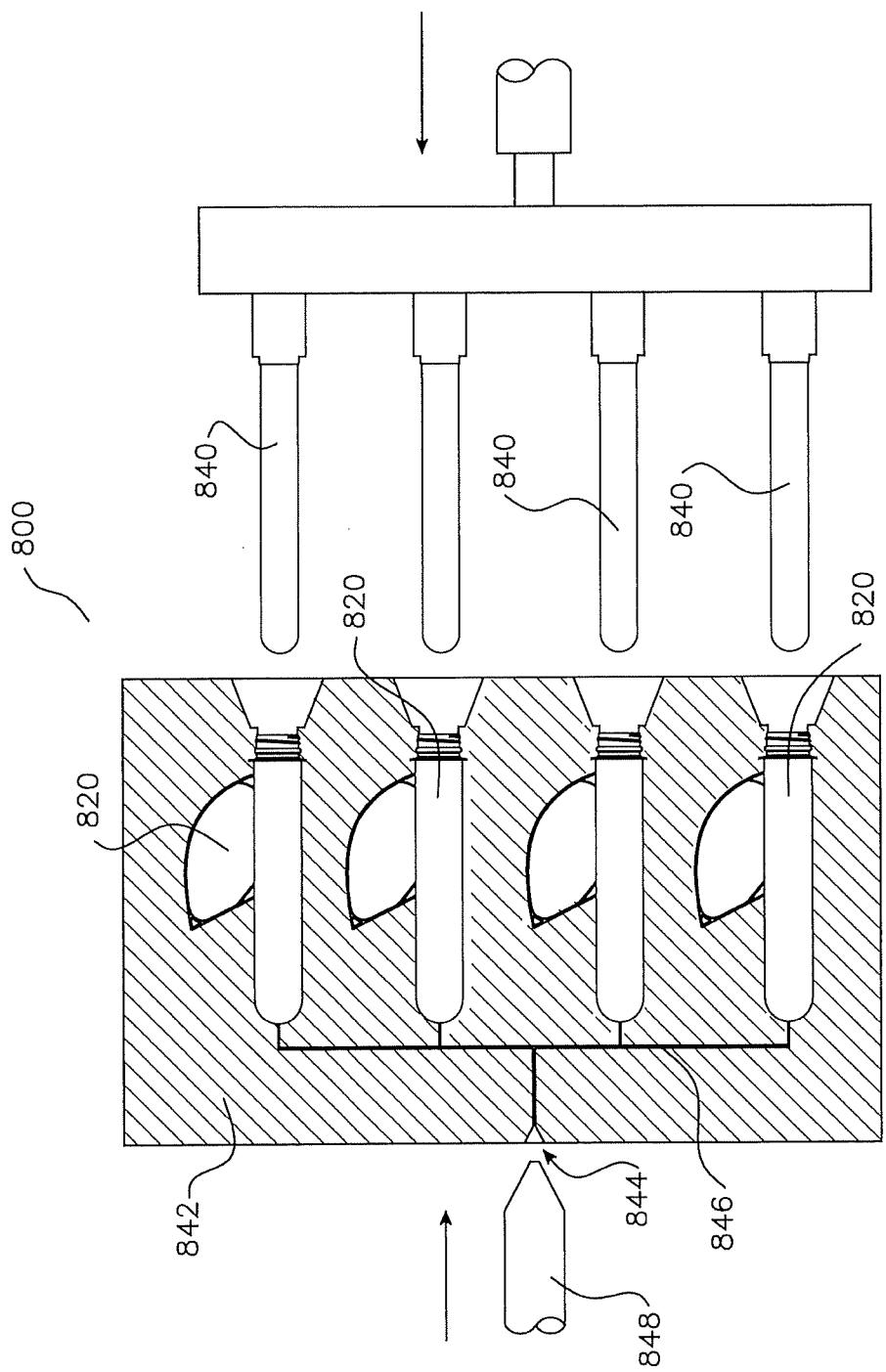



Fig. 24

28/37

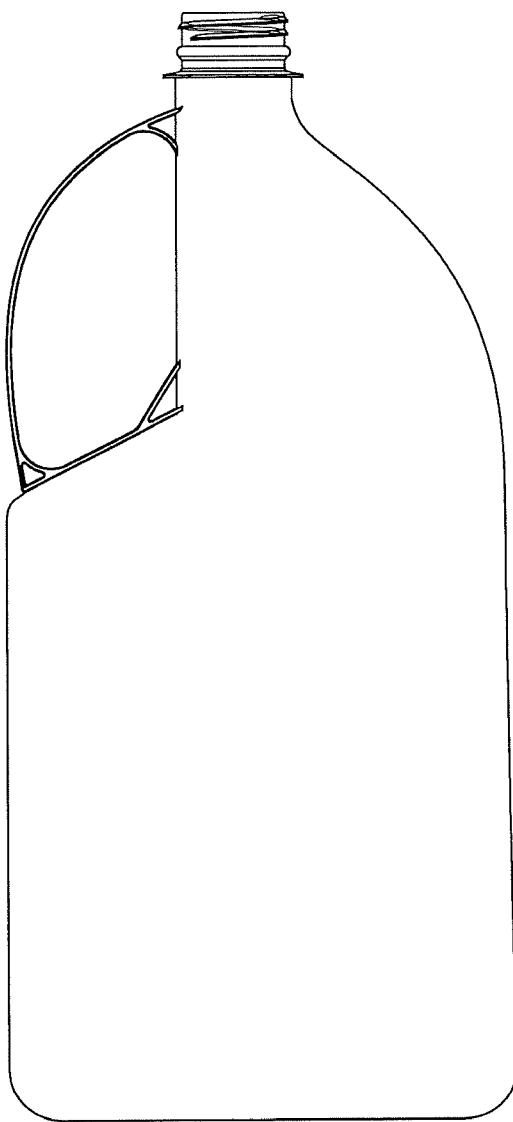



Fig. 25 (Prior Art)

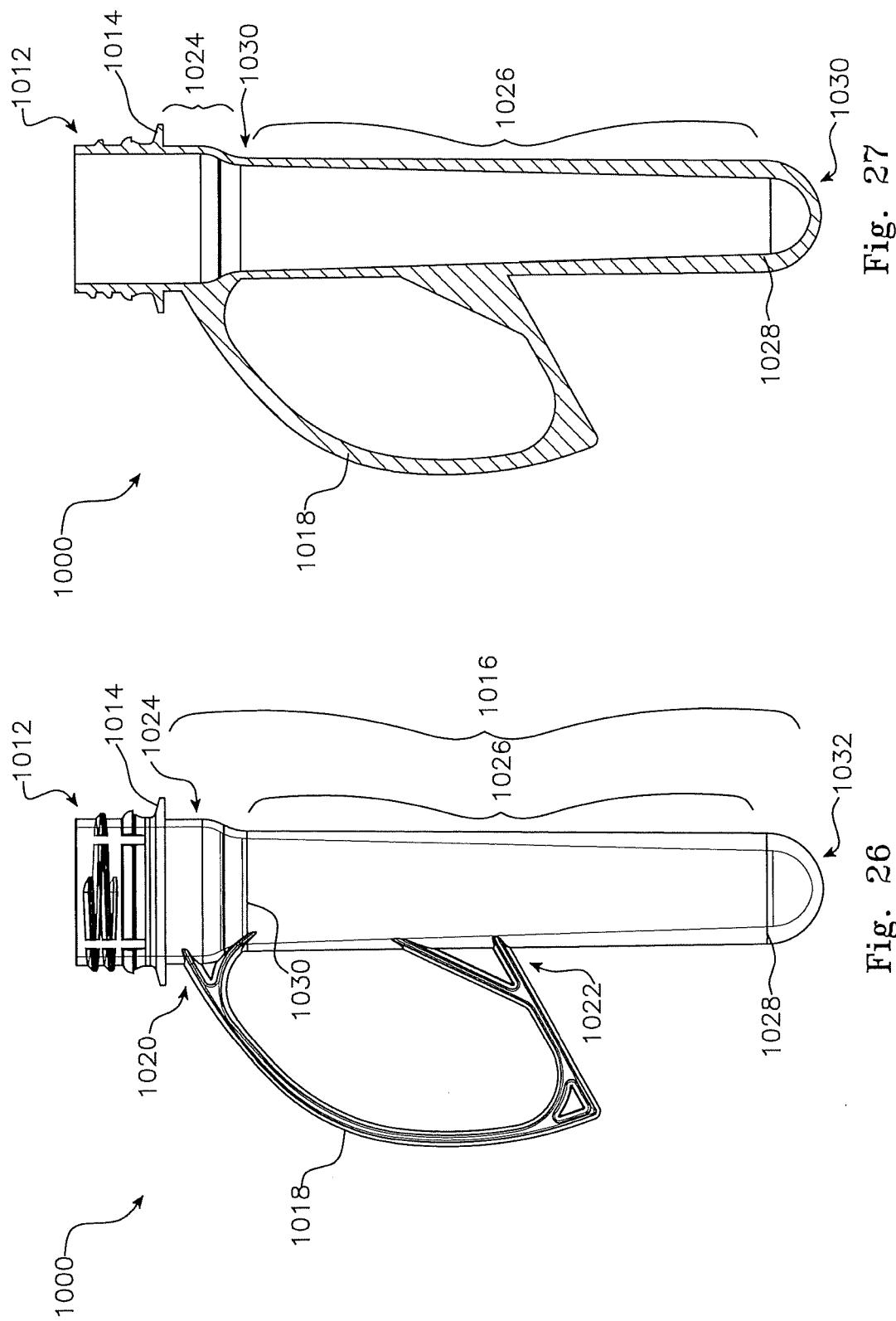



Fig. 26

Fig. 27

30/37

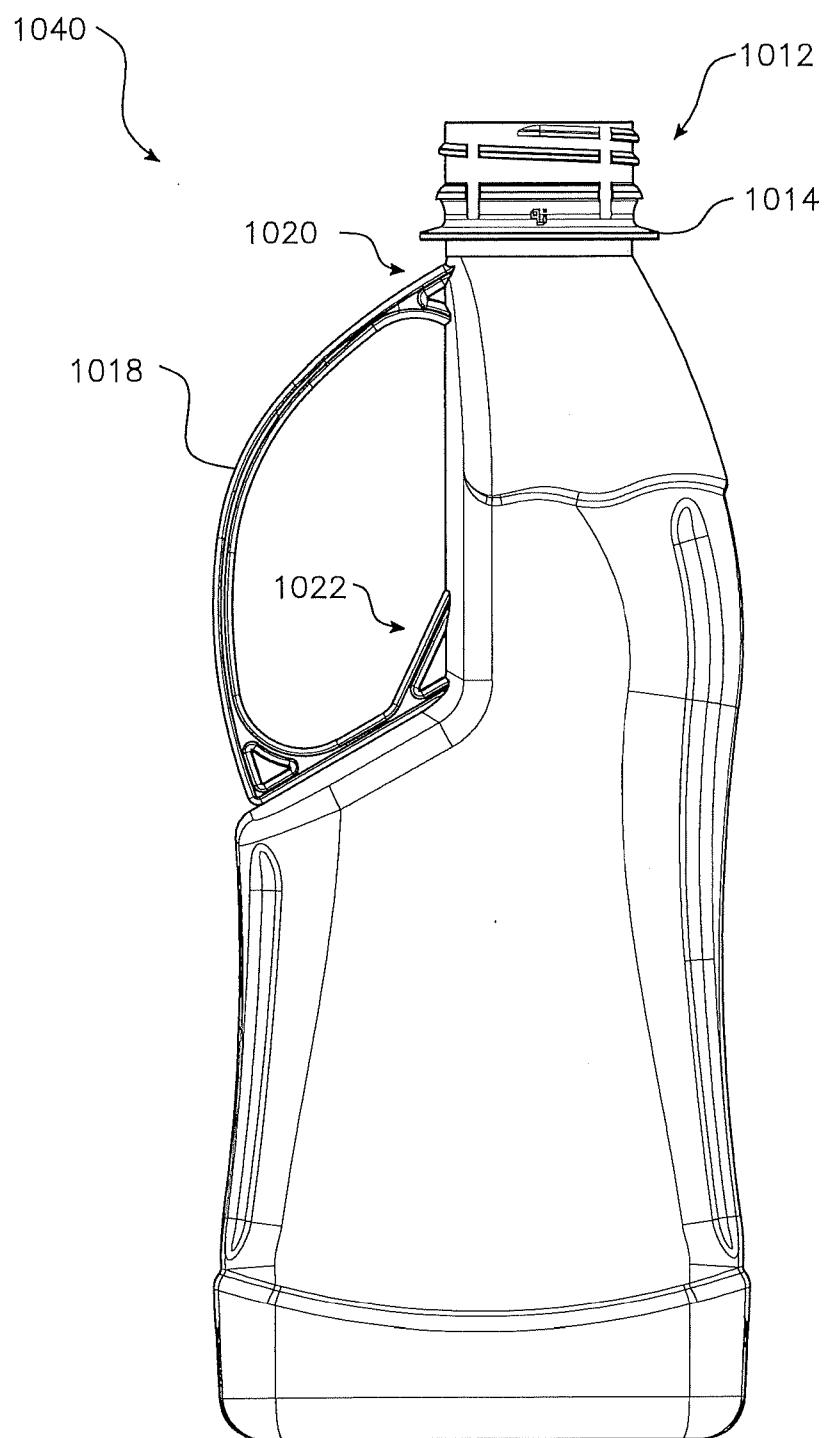



Fig. 28

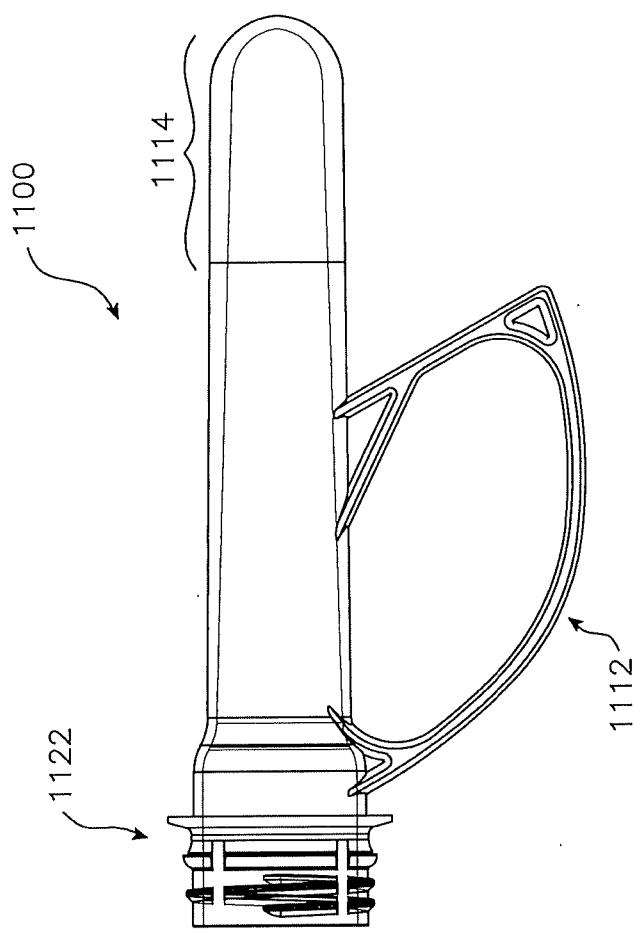



Fig. 29

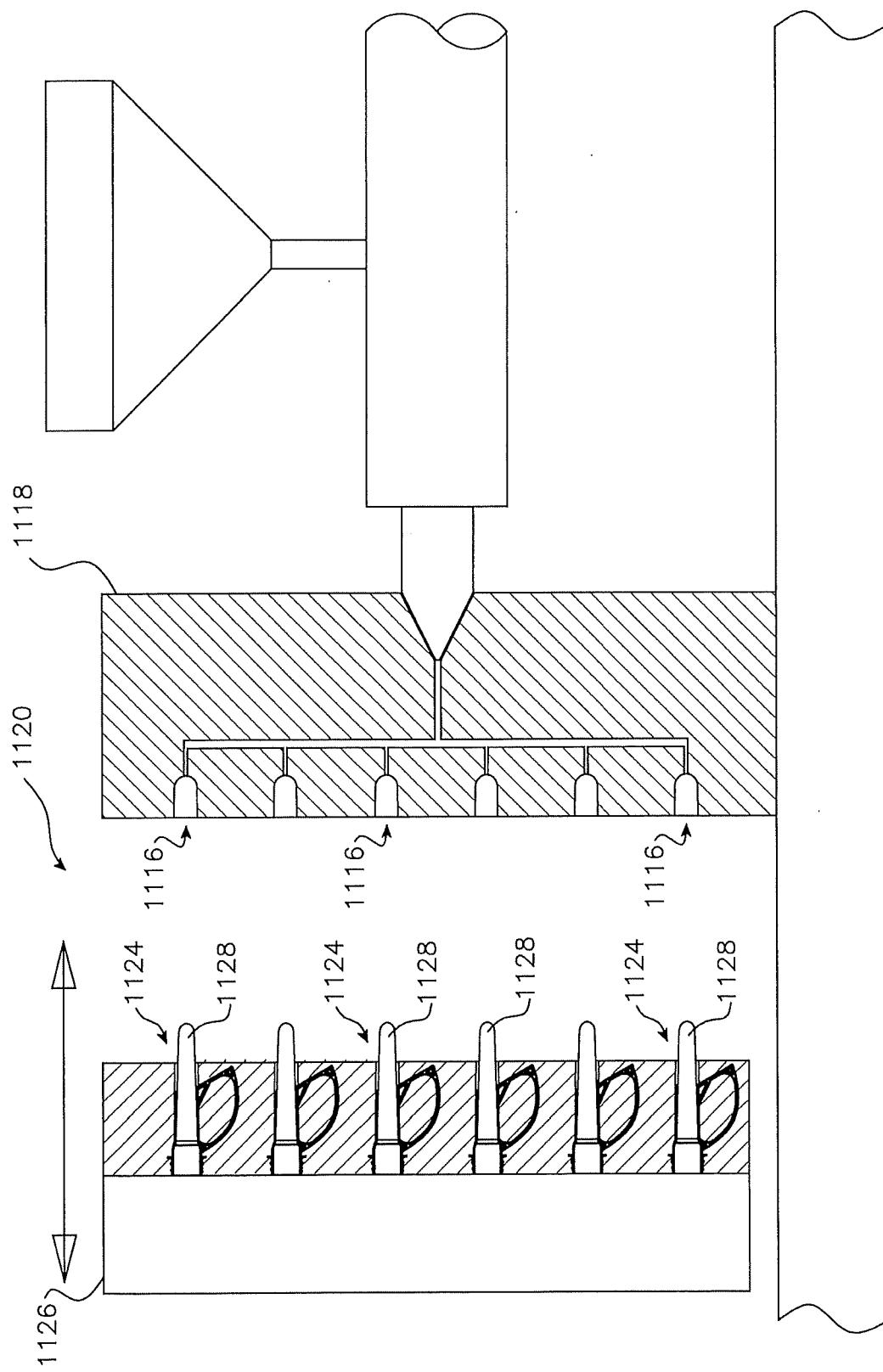



Fig. 30

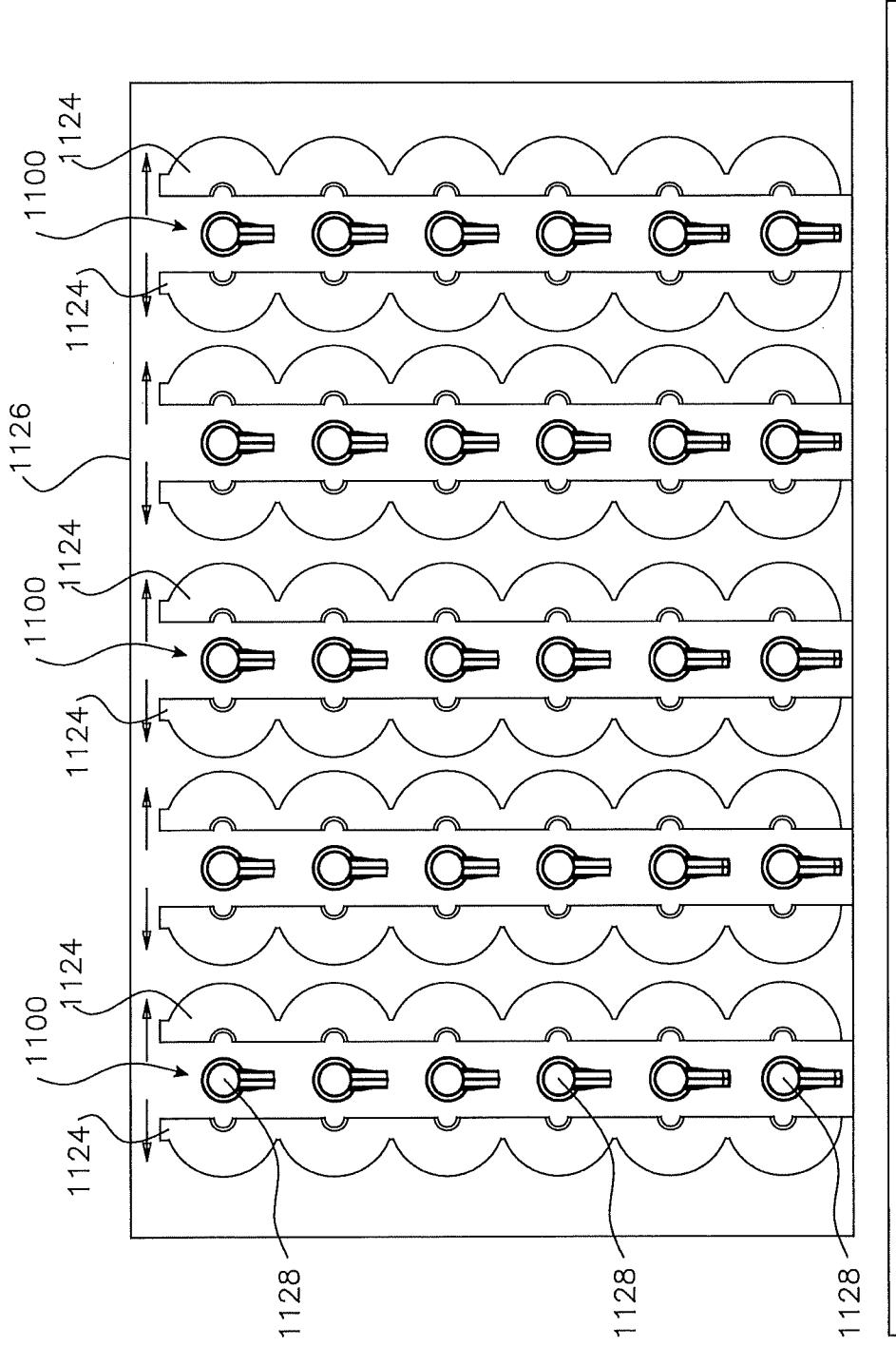



Fig. 31

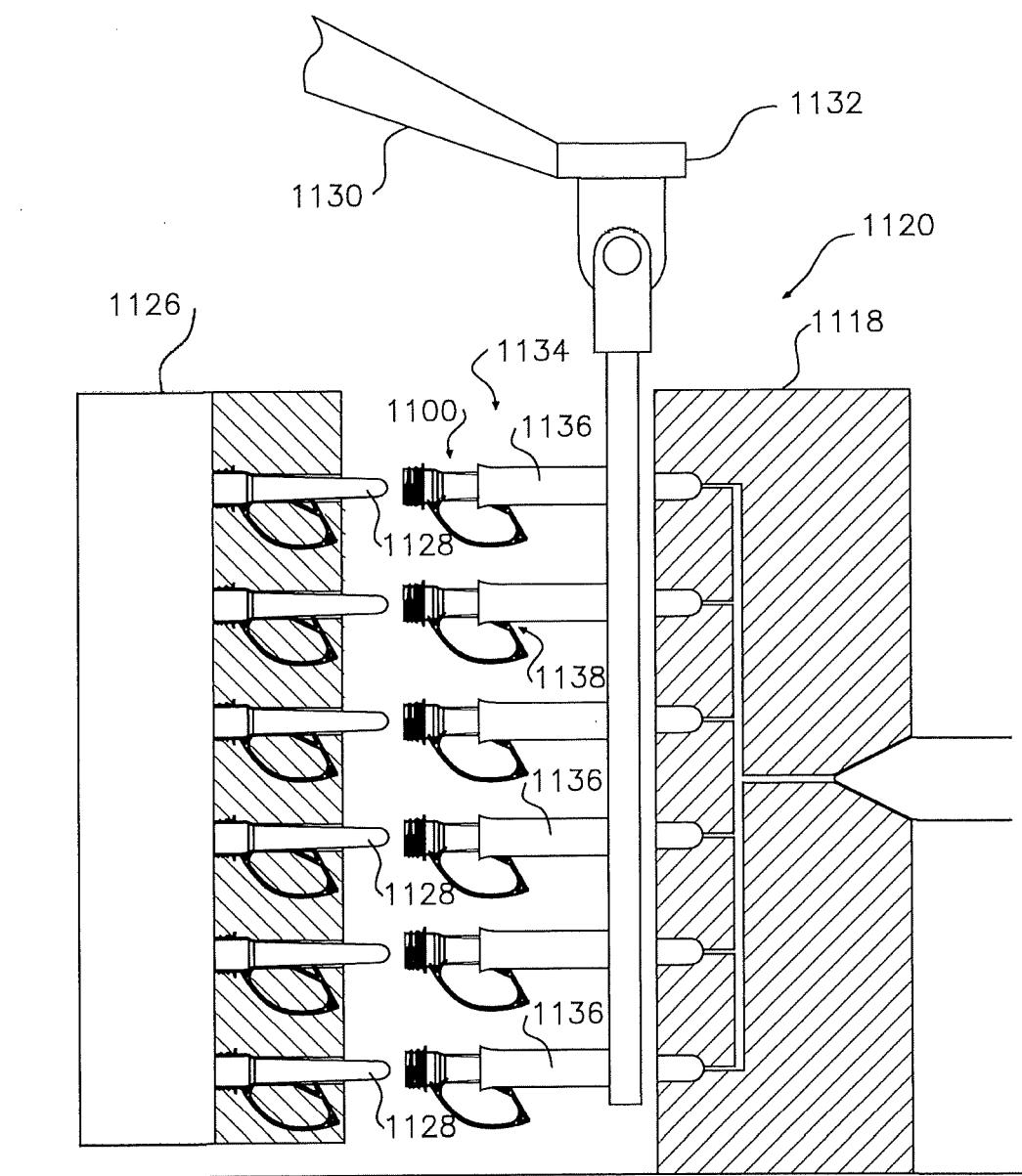



Fig. 32

35/37

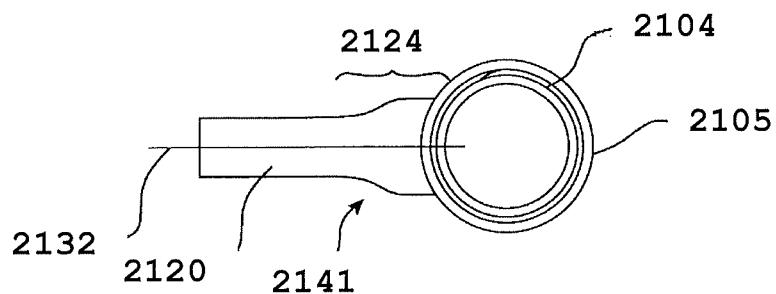



Fig. 35

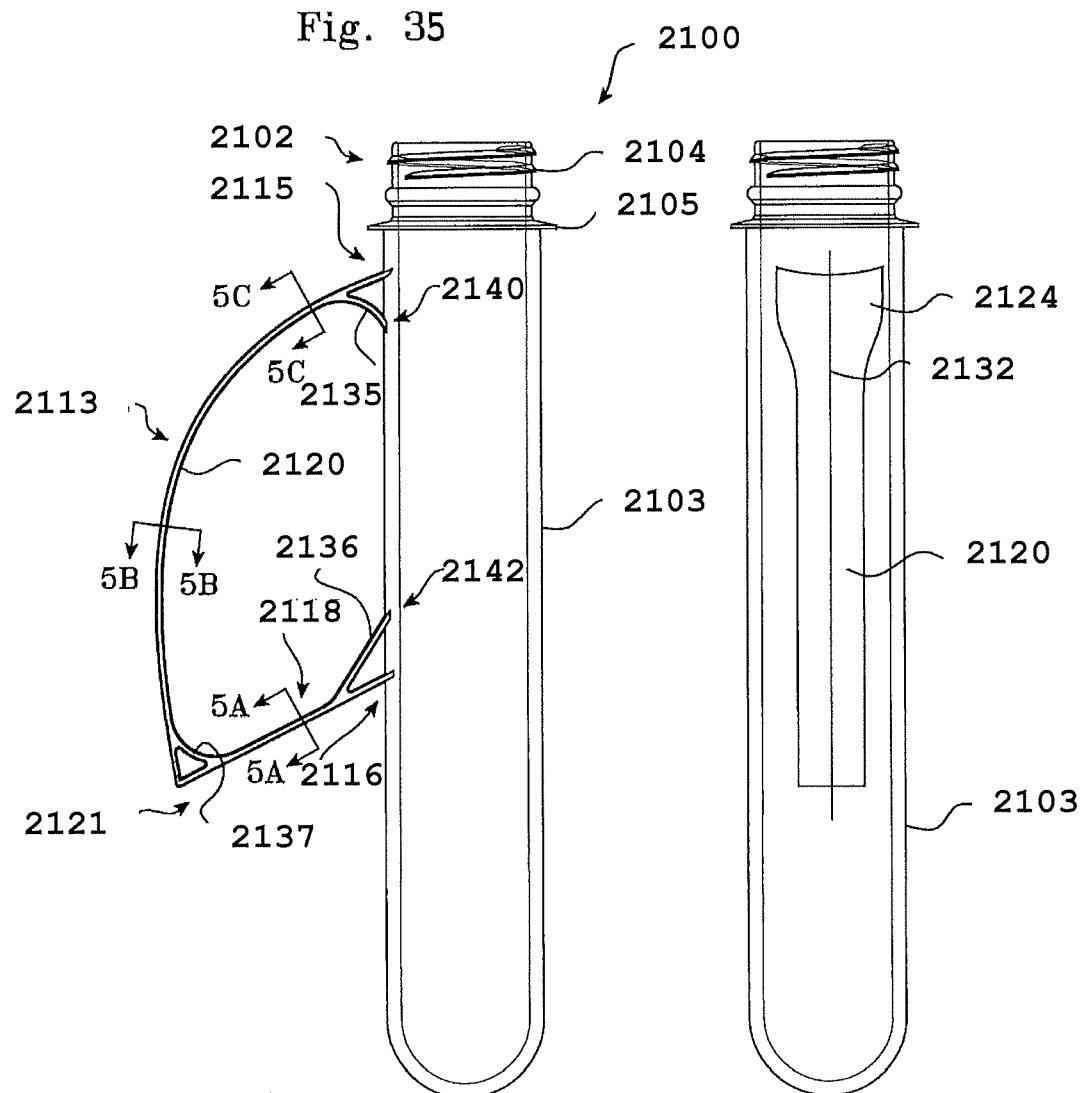



Fig. 33

Fig. 34

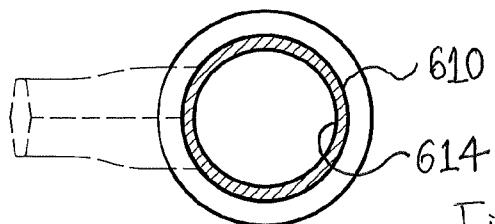
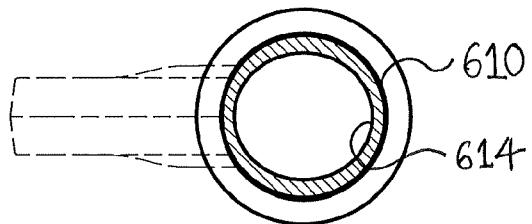
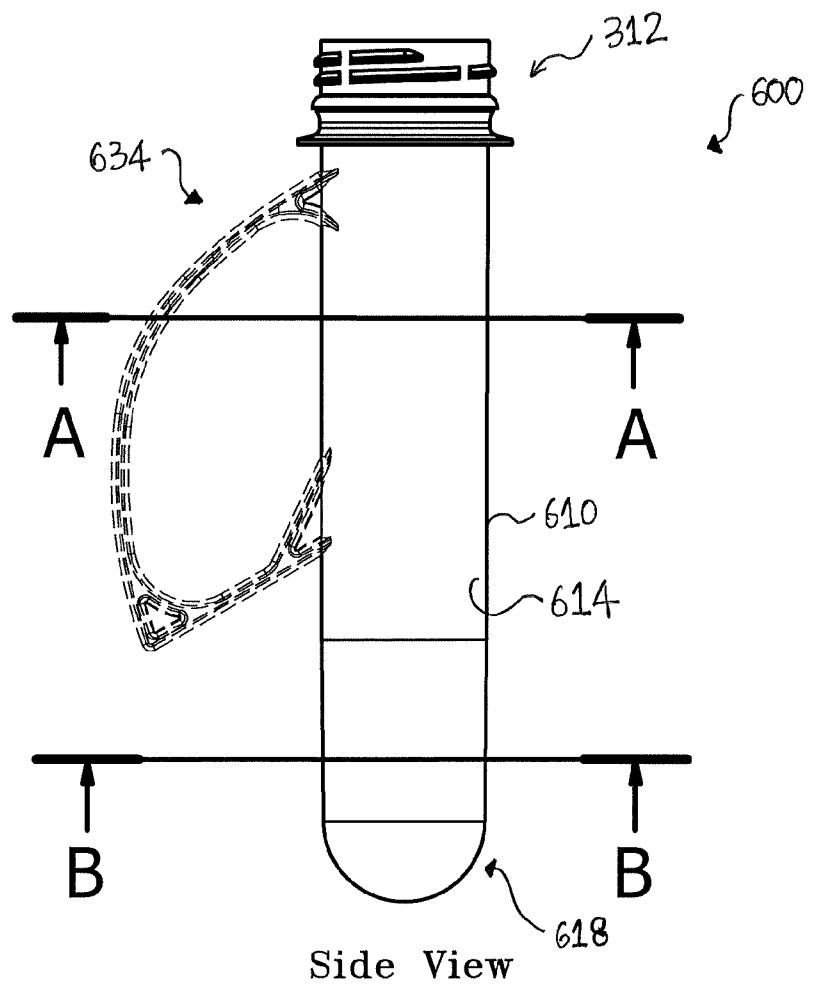





Fig. 36A

Section A-A



Section B-B Fig. 36B



Side View

Fig. 36

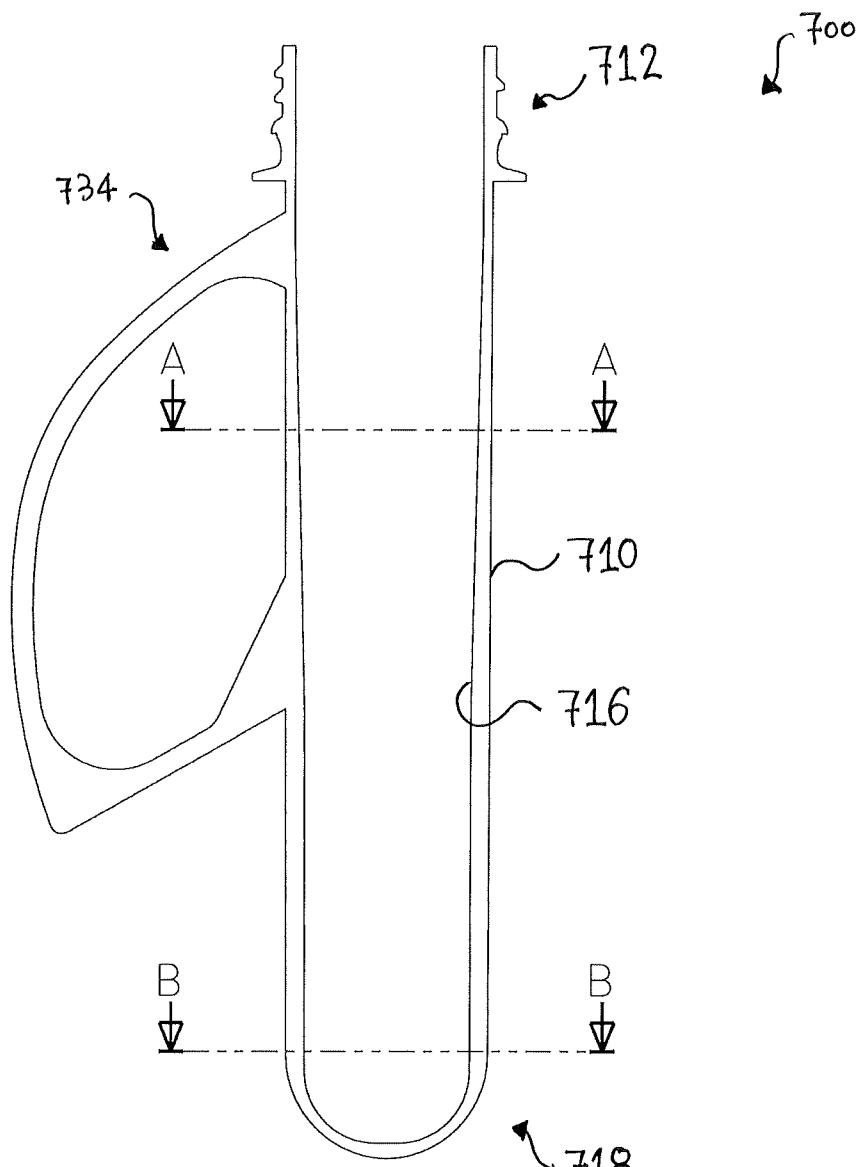



Fig. 37

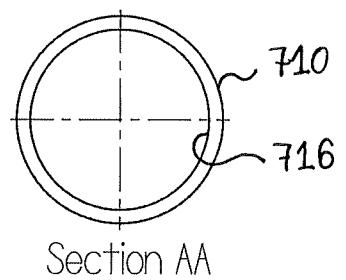



Fig. 37A

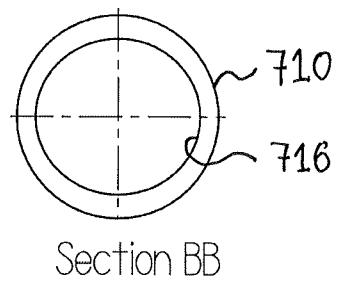



Fig. 37B