WO 2005/091963 A2 |0 |00 000 0 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
6 October 2005 (06.10.2005)

A O OO OO R

(10) International Publication Number

WO 2005/091963 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2005/006955

(22) International Filing Date: 3 March 2005 (03.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/551,535
10/880,967

UsS
Us

9 March 2004 (09.03.2004)
30 June 2004 (30.06.2004)

(71) Applicant (for all designated States except US): SIEBEL
SYSTEMS, INC. [US/US]; 2207 Bridgepointe Parkway,
San Mateo, CA 94404 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): JINDAL, Bharat

(74)

(81)

[IN/US]; 1347 Jackson St. #402, San Francisco, CA 94019
(US). SHROFF, Vipul [IN/US]; 865 Carlisle Way, #52,
Sunnyvale, CA 94087 (US). SUKLIKAR, Atul [US/US];
96 Bayview Drive, San Carlos, CA 94070 (US). WANG,
Dejia [CN/US]; 138 West 36th Avenue, San Mateo, CA
94403 (US). LAM, Ming [CN/US]; 2755 South Norfolk
St., #107, San Mateo, CA 94403 (US). TAO, Victor
[US/US]; 3220 Countryside Dr., San Mateo, CA 94403
(Us).

Agents: SARATHY, Rajiv et al.; Perkins Coie LLP,
Patents-SEA, P.O. Box 1247, Seattle, WA 98111-1247
(Us).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

[Continued on next page]

(54) Title: PRESERVING USER INTERFACE CUSTOMIZATIONS WHILE UPGRADING AN ENTERPRISE APPLICATION

Transform customized Ul objects

802
(object)

808

Perform applet-specific
transformations

Applet?

(57) Abstract: In an embodiment, a system
for preserving user interface customizations
while upgrading an enterprise application is
provided. The system preserves customizations
by identifying customizations made to user
interface ("UI") objects of an enterprise
application, and enabling these Ul customiza-
tions to function with a newer version of the

810

Perform view-specific
transformations

enterprise application. The system transforms
Ul customizations so that the transformed
Ul customizations function with a new UI
model. By enabling a portion of an enterprise
application to be upgraded while preserving Ul

814

Perform screen-specific

o ;
Screen? transformations

customizations, the system dramatically reduces
the time and cost incurred by companies when
they upgrade enterprise software.

Nle

816

Identify and resolve issues
relating to preserving layout

818

Compile application

820
Return

WO 2005/091963 A2 1IN} A0VOA0 T O 00 OO AR

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,
GQ, GW, ML, MR, NE, SN, TD, TG).

T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
M, ZW.

Published:

— without international search report and to be republished

(84) Designated States (unless otherwise indicated, for every
upon receipt of that report

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, ning of each regular issue of the PCT Gazette.

WO 2005/091963 PCT/US2005/006955
1

PRESERVING USER INTERFACE CUSTOMIZATIONS WHILE
UPGRADING AN ENTERPRISE APPLICATION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Patent Application No.
10/880,967, filed June 30, 2004, which claims the benefit of U.S. Provisional
Application No. 60/551,535, filed on March 9, 2004, each of which are herein

incorporated in its entirety by reference.
TECHNICAL FIELD

[0002] The technology disclosed herein relates generally to enterprise
applications and, more particularly, to preserving user interface customizations while

upgrading enterprise applications.
BACKGROUND

[0003] Enterprise applications are typically large software applications that are
used by many customers or users, such as employees of a business. These
applications usually have multiple components‘that interact with one another and
with other systems to perform various tasks. Enterprise applications include, e.g.,
enterprise resource planning, customer relationship management, and electronic

messaging systems.

[0004] While the enterprise applications may offer a host of functionality,
businesses using these applications sometimes need to customize the enterprise
applications. As an example, a business may add or modify components to perform
or validate the rules of the business. As another example, the business may add or
modify user interface ("UI") components to implement a look and feel that may be
unique to the business. Administrators may expend considerable effort in
customizing the Uls, testing their customizations, training users, developing user
manuals, and performing other activities relating to the enterprise applications and

their customizations.

WO 2005/091963 PCT/US2005/006955
2

[0005] Vendors of enterprise applications sometimes upgrade the enterprise
applications. Such upgrades may be necessitated by, e.g., addition of important
functionality requested by the business, resolution of defects in the enterprise
applications, addition of new features that may be valuable to several customers of

the vendor, and a variety of other reasons.

[0006] Enterprise applications may comprise multiple repositories. As an
example, an enterprise application may comprise a repository of components
delivered by a vendor and a repository of components added by a business.
Repositories comprise components of an enterprise application. As an example, a
repository may contain Ul or logic components of an enterprise application. When
administrators upgrade the enterprise application, they may need to again expend
considerable resources in reapplying their customizations, which could increase the
total cost of ownership of such enterprise applications. It would thus be desirable to

upgrade enterprise applications without incurring such additional costs.
BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1 is a block diagram illustrating an embodiment of the system for

preserving customizations when upgrading an enterprise application.

[0008] Figure 2 is a block diagram illustrating an embodiment of a computing

device of Figure 1.

[0009] Figure 3 is a block diagram illustrating an embodiment of an application
of Figure 2.
[0010] Figure 4 is a block diagram illustrating an embodiment of a repositories

component of Figure 2.

[0011] Figure 5 is a block diagram illustrating interactions between components
of the system for preserving customizations when upgrading an enterprise

application in an embodiment.

[0012] Figure 6 is a block diagram illustrating interactions between components
of the system for preserving customizations when upgrading an enterprise

application in an embodiment.

WO 2005/091963 PCT/US2005/006955

3
[0013] Figure 7 is a flow diagram illustrating an embodiment of a routine for
preserving user customizations.
[0014] Figure 8 is a flow diagram illustrating an embodiment of a subroutine for
transforming customized objects.
DETAILED DESCRIPTION
[0015] In an embodiment, a system for preserving user interface customizations

while upgrading an enterprise application is provided. The system preserves
customizations by identifying customizatons made to Ul objects
("UI customizations") or elements of an enterprise application, and enabling these Ul
customizations to function with a newer version of the enterprise application. The
system creates a list of Ul customizations by comparing a present state of a
repository of Ul objects with the repository as delivered by the enterprise application
vendor ("original repository"). The system creates a list of changes in a new
repository by comparing the new repository with the original repository. The system
then copies the Ul customizations, as determined from the created list, to the new

repository.

[0016] This copy in the new repository may contain Ul customizations and not
updates to Ul objects distributed by the enterprise application vendor conflicting with
updated Ul objects. Because the enterprise application vendor may have updated
an underlying Ul model used by the Ul customizations, the copied objects may not
function correctly. As a result, the system transforms the Ul customizations in the
new repository so that the transformed Ul customizations function with the new Ul
model. If a transformation is not possible, rules may be applied to determine how to
handle such objects. As an example, an administrator may be notified of the
problematic customizations. Administrators may also be able to select whether Ul
objects transformed by the system or delivered by the enterprise application vendor

are to be used for a particular screen, application, or other software component.

[0017] The disclosed system dramatically reduces the time and cost incurred by
companies when they upgrade enterprise software by minimizing additional effort
required to apply customizations to new releases of the enterprise software. The
system also enables administrators of such software to update aspects of the

WO 2005/091963 PCT/US2005/006955
4

enterprise applications other than the Ul, and selectively apply updates to the Ul at a
suitable time. As an example, an administrator may elect to update logic-related
aspects of an enterprise application to benefit from bug fixes, improved
performance, or other improvements implemented by the supplier of the enterprise
application. The administrator may choose to maintain Ul customizations relating to
the enterprise application, or "roll out" changes over time as training and user
documentation is completed. Alternatively, administrators may choose to test
whether their Ul customizations are compatible with a newer version of the
enterprise software before updating the Ul objects. Thus, the system enables
administrators to retain Ul customizations made to Uls so that a Ul designed to
function with a prior version of enterprise application logic continues to function with
new enterprise application logic. The system may, e.g., enable a business to
preserve Ul customizations made to an enterprise application when upgrading the
enterprise application. As an example, the system may preserve layout
customizations by incorporating the layout customizations in the upgraded version of

the enterprise application.

Figures

[0018] Turning now to the figures, Figure 1: is a block diagram illustrating an
embodiment of the system for preserving Ul customizations when upgrading an
enterprise application. The system may comprise multiple computing devices 102, a
network 104, and a computing device 110. The computing devices 102 may be
coupled to the network 104 via data communications links 106. The communication
links 106 may be, e.g., a part of an intranet (not shown). The intranet may be
coupled to a network 104, such as the Internet. The computing device 110 may be
a device that is not a part of the intranet of computing devices 102. The computing
device 110 may be coupled to the network 104 via a data communications link 112.
In an embodiment, the network 104 may be an intranet. The various computing
devices may be used to provide identical or different functions. As an example, a
computing device may function as a client that uses a repository of data stored on
another computing device that functions as a server. The computing devices may

change roles.

WO 2005/091963 PCT/US2005/006955
5

[0019] In an embodiment, a client computing device, such as a computing
device 102, may retrieve information from a server computing device, such as
computing device 110, relating to an upgrade the client computing device is to
perform on an enterprise application. Alternatively, information relating to the
upgrade may be delivered to a customer via other portable means, such as on any
form of electronic media including, e.g., DVD-ROM, CD-ROM, etc.

[0020] Figure 2 is a block diagram illustrating an embodiment of a computing
device of Figure 1. The illustrated computing device 200 comprises multiple
components. A repositories component 202 comprises multiple repositories that
each contain various objects including, e.g., code components, of the system, and
are further described below in greater detail. A merge component 204 performs
merge operations on objects of a repository. An example of a merge operation may
include creating a Ul screen containing three input text boxes as a resuilt of merging
a Ul screen containing one input text box with a Ul screen containing two input text
boxes. A transform component 206 performs transformations on objects of a
repository. An example of a transformation may include transforming a component
that uses a method of an application program interface to use another method of the
application program interface. Transformation of customized Ul objects is further
described below in relation to Figure 8. An application component 208 comprises
multiple components that may interact with components of repositories to provide an

enterprise application.

[0021] Figure 3 is a block diagram illustrating an embodiment of an application
of Figure 2. The application 302 comprises an applet component 304, a view
component 306, and a screen component 308. The application may further

comprise additional components, such as business logic components (not shown).

[0022] The applet component may comprise multiple applets that each are
visual representations of underlying business objects, and are associated with the
enterprise application. As an example, an applet may present a list box populated
with text from a database. As another example, an applet may display a chart based
on data stored in a database. Applets may be created and managed using tools,
such as a comprehensive multi-user application customization environment that

exploits a visual programming Ul.

WO 2005/091963 PCT/US2005/006955
6

[0023] The view component may comprise multiple views that each identify
applets and their relationships that together present or collect information. As an
example, a view may present an "opportunity” applet and a "contacts" applet. The
opportunity applet may enable a user to select an opportunity available to the user
(e.g., potential customer X, potential customer Y, etc.). The contacts applet may
enable a user to view contact information (e.g., name, telephone number, electronic
mail address, etc.). When an opportunity applet and a contacts applet are jointly
identified for a view along with their relationship, the system may cause the contacts
applet to be populated or refreshed when the user selects an opportunity. As an
example, when the user selects potential customer X, the contacts applet may

display contacts associated with potential customer X.

[0024] The screen component may comprise multiple screens that identify and
collate multiple views. As an example, a marketing screen may comprise three
views corresponding to contact information, news information, and order history of a
customer. Each view may comprise multiple applets, as described above.

[0025] Figure 4 is a block diagram illustrating an embodiment of a repositories
component of Figure 2. The repositories component 400 comprises an original
repository 402, a new repository 404, and an other repository 406, such as a
repository containing a customer's customizations. These repositories may be used
during merge and transformation operations while upgrading an énterprise
application. The repositories may contain aspects of enterprise applications, such
as logic, text, Ul objects, and, more generally, any aspect of a software application
that can be represented electronically. As an example, the original repository may
contain objects relating to an enterprise application delivered before an upgrade, the
new repository may contain objects relating to the enterprise application delivered as
a part of the upgrade, and the other repository may objects customized or built by a

customer.

[0026] Figure 5 is a block diagram illustrating interactions between components
of the system for preserving Ul customizations while upgrading an enterprise
application in an embodiment. Components of a repositories component 500
interact with components of an application component 508. Specifically, applet
component 510, view component 512, and screen component 514 each interact with

WO 2005/091963 PCT/US2005/006955
7

original repository 502, new repository 504, and other repository 506 to provide an
enterprise application. As an example, when the enterprise application is defined by
components originally delivered by the vendor of the enterprise application,
components newly delivered by the vendor, and customizations made by the
business, the enterprise application may be defined by the illustrated interactions.
These interactions are illustrated using lines connecting all the illustrated
components. An interaction may involve using an object of a repository. As an

example, an enterprise application may comprise applets from several repositories.

[0027] In an embodiment, the interactions between the application's
components may only be with a single repository that contains some objects from
some of the other repositories iliustrated. As an example, a "merged and
transformed" repository (not shown) may contain some objects from each of the
original repository, new repository, and other repository, and the application's
components may interact only with the merged and transformed repository.

[0028] Figure 6 is a block diagram illustrating interactions between components
of the system for preserving customizations when upgrading an enterprise
application in an embodiment. In the illustrated embodiment, an enterprise
application is defined by applets that are newly delivered by a vendor of the
enterprise application, screens that were both originally delivered by the vendor and
customized by the business, and views that were originally delivered by the vendor,
newly delivered by the vendor, and customized by the business. These interactions
are illustrated using lines connecting the various illustrated components.
Specifically, applet component 610 has interactions with new repository 604. View
component 612 has interactions with original repository 602, new repository 604,
and other repository 606. Screen component 614 has interactions with original

repository 602 and other repository 606.

[0029] In an embodiment, the interactions between the application's
components may only be with a single repository that contains some objects from
some of the other repositories illustrated. As an example, a "merged and
transformed" repository (not shown) may contain objects that could be used by the
enterprise application from each of the original repository, new repository, and other

repository. l.e., the merged and transformed repository may contain objects that will

WO 2005/091963 PCT/US2005/006955
8

be used by the enterprise application after it has been upgraded. The enterprise
application's components may interact only with the merged and transformed

repository.

[0030] Figure 7 is a flow diagram illustrating an embodiment of a routine for
preserving Ul customizations during an upgrade. Before the routine is performed,
an administrator may request the system to perform a pre-merge operation to
identify all Ul objects the enterprise application uses (not shown). The pre-merge
operation identifies all Ul objects in use by analyzing all components of the
enterprise application including, e.g., applets, views, and screens. The pre-merge
operation may then identify all such Ul objects for the administrator. The pre-merge
operation may also then receive indications from the administrator relating to which
Ul objects to preserve (i.e., not replace with newer components distributed by the
vendor of the enterprise application upgrade). As an example, a "wizard"-like Ul
may be provided for the administrator to indicate the Ul objects to be preserved.
Alternatively, a list of Ul objects may be presented to the administrator (e.g., in an
"object list"), from which the administrator can select Ul objects to be preserved.
Alternatively, a list of applications may be presented to the administrator, from which
the administrator may select enterprise applications that are being used, and the
routine may automatically select customized Ul objects to preserve from the used
enterprise applications. Upon completing this pre-merge operation, the system may

begin performing the illustrated routine.

[0031] The routine begins at block 702. At block 704, the routine calls a
subroutine to perform a three-way merge of a prior release of an enterprise
application repository, a customer's customizations of the repository, and a new
version of the repository. The merge subroutine creates a repository containing
objects of all three repositories. The merge may result in conflicts. As an example,
when multiple objects with identical attributes (e.g., names, unique identifiers, or
other identifiers used for objects) are found, a conflict results. When a conflict
results, the routine may identify the conflicts for resolution by an administrator. The
routine may resolve conflicts as indicated by the administrator. As an example, the
routine may select an object indicated by the administrator to be preferable or

compatible with the enterprise application.

WO 2005/091963 PCT/US2005/006955
9

[0032] At block 706, the routine renames and deactivates merged Ul objects
previously indicated as needing to be preserved. The merged repository contains
objects from a prior release of an enterprise application repository, a customer's
customizations of the repository, and a new version of the repository. However, for
Ul objects indicated by the administrator to be preserved, the system may not need
the associated objects from the enterprise application repository or the new version
of the repository. By renaming and deactivating the Ul objects, the Ul objects may
not be capable of being used by the enterprise application.

[0033] At block 708, the routine copies customized Ul objects from the
repository containing the customer's customizations into the new repository. By
performing this step, the customized Ul objects may continue to be used by the
enterprise application. As an example, when code in the enterprise application
instantiates or references a particular customized Ul object, the customized Ul
object will continue to be used instead of a replacement Ul object delivered by the

vendor.

[0034] At block 710, for each copied customized Ul object, the routine calis a
subroutine to transform customized Ul objects in the new repository. Transformation
may need to be performed because, e.g., an object copied at block 708 may
reference an outdated Ul or logic object, or may call a method of an application
program interface that has been modified or removed. The routine passes an
indication of the customized U! object to the transform subroutine. The transform
subroutine is further described below in relation to Figure 8. At block 712, the

routine returns to its caller.

[0035] Figure 8 is a flow diagram illustrating an embodiment of a subroutine for
transforming customized objects. The subroutine performs applet-, view-, and
screen-specific transformations to customized Ul objects. The subroutine begins at

block 802 where it receives an indication of a customized Ul object as a parameter.

[0036] At block 804, the subroutine determines whether the customized Ul
object is an applet. If so, the subroutine continues at block 806. Otherwise, the

subroutine continues at block 808.

[0037] At block 806, the subroutine performs applet-specific transformations.
Applet-specific transformations may include, e.g., modifying attributes of applets

WO 2005/091963 PCT/US2005/006955
10

such as position, size, data source, etc. These transformations may be performed
to ensure that the applet continues to function with other changes incorporated into
the enterprise application, such as use of a grid for providing values instead of text
boxes positioned in a view. As an example, a customized applet may reference a
position relative to a window (e.g., top left of a view). When an updated view uses a
grid for collecting or presenting user input rather than text boxes in a view, applets
referencing a position may malfunction. To prevent this malfunction, the
transformation may involve converting a positional reference to a grid reference.
The subroutine then continues at block 816.

[0038] At block 808, the subroutine determines whether the customized Ul
object is a view. If so, the subroutine continues at block 810. Otherwise, the

subroutine continues at block 812.

[0039] At block 810, the subroutine performs view-specific transformations.
View-specific transformations may include, e.g., modifying attributes of views such
as position, size, background, etc. These transformations may be performed to
ensure that the view continues to function with other changes incorporated into the
enterprise application, such as to ensure that a look and feel defined by a template

are carried into the view. The subroutine then continues at block 816.

[0040] In an embodiment, view-specific transformations may include creating
hierarchical data structures comprising categorized views for views delivered by the
vendor and views created by the customer. The hierarchical data structure may be
used to categorize views. When a view cannot be categorized (as may be the case
for customized views), the subroutine may attempt to determine a category for the
view based on the view's meta properties. As an example, a view referencing a
contact-related applet may be categorized as a contact-related view. The subroutine
may then merge the hierarchical data structures, wherein the merging includes
placing nodes of all hierarchical data structures as descendant nodes of
corresponding parents of the merged data structure. As an example, if node B is a
child of node A in data structure 1, and node C is a child of node A in data structure
2, then node A will have as children nodes B and C in the merged data structure.
The merged data structure is then stored in a database. Subsequent use of views

may use this categorization.

WO 2005/091963 PCT/US2005/006955
11

[0041] At block 812, the subroutine determines whether the customized Ul
object is a screen. If so, the subroutine continues at block 814. Otherwise, the
subroutine continues at block 816. At block 814, the subroutine performs screen-
specific transformations. Screen-specific transformations may include modifying
attributes of screens such as position, size, background, etc. These transformations
may be performed to ensure that the screen continues to function with other
changes incorporated into the enterprise application, such as to ensure that a look
and feel defined by a template are carried into the screen. The subroutine then

continues at block 816.

[0042] in an embodiment, the subroutine may perform some but not all of the
transformations. As an example, only view and applet transformations may be

performed.

[0043] At block 816, the subroutine identifies and resolves issues that may arise
relating to the transformation including, e.g., checking if fields are mapped, checking
to see if references are valid, etc. If the subroutine is unable to resolve such issues,
the subroutine may flag such problems for an administrator to handle. Alternatively,
the subroutine may attempt to resolve the problems itself based on various rules.
The rules may be specified by the enterprise application vendor, customer,
administrator, or others. The rules may include an indication to, e.g., always

preserve the customer's customizations.

[0044] At block 818, the subroutine compiles the application, at which point the
upgrade process may be complete. The administrator may then run and visually
verify the new application, and may then selectively apply new Ul objects. At block

820, the subroutine returns to its caller.

[0045] The result of the upgrade process is an upgraded version of the
application that incorporates the features of the new release with customizations

made to the prior release by the customer or others.

Application Program Interface

[0046] The system may expose an application program interface ("API") relating
to its components. The APl may expose methods, properties, and events, which

may be categorized into various classes. An upgrade preparation class may

WO 2005/091963 PCT/US2005/006955
12

comprise methods, properties, and events for constructing and using hierarchical
data structures for views and screens. A grid preparation class may comprise
methods, properties, and events for transforming applets to use ‘a grid. An applet
patch class may comprise methods, properties, and events for transforming applets
to use new objects delivered by the vendor of the enterprise application.

[0047] From the foregoing, it will be appreciated that specific embodiments of
the invention have been described herein for purposes of illustration, but that various
modifications may be made without deviating from the spirit and scope of the

invention.

WO 2005/091963 PCT/US2005/006955
13
CLAIMS

We claim:

1. A method performed by a computing system for preserving
customizations while upgrading an enterprise application, comprising:
merging multiple pre-merge repositories into a merged repository;
determining a list of objects in a repository that have been customized;
deactivating the customizéd objects;
copying the customized objects from a pre-merge repository into the merged
repository; and

transforming a copied customized object.

2. The method of claim 1 wherein the determining includes analyzing

objects in a pre-merge repository.

3. The method of claim 1 wherein the determining includes analyzing
objects in the merged repository.

4, The method of claim 1 wherein the transforming comprises:
determining a type of copied customized object;

performing a transformational function based on the determined type; and
identifying and resolving issues relating to the transformation.

5. The method of claim 4 wherein the type is an applet.

6. The method of claim 5 wherein the transformational function enables

the applet to function in a grid.
7. The method of claim 4 wherein the type is a view.

8. The method of claim 7 wherein the transformational function creates a

categorization for views.

WO 2005/091963

9.

10.

PCT/US2005/006955
14

The method of claim 4 wherein the type is a screen.

The method of claim 1 wherein the determining includes comparing a

present state of an object with a state of the object as delivered by a vendor of the

object.

11.

The method of claim 1 wherein the transformed customized object

functions with an updated enterprise application.

12.

A system for preserving user interface customizations when upgrading

an enterprise application, comprising:

a component that merges multiple pre-merge repositories into a merged

repository;

a component that deactivates customized user interface objects;

a component that copies the customized user interface objects from a pre-

merge repository into the merged repository; and

a component that transforms at least one of the user interface objects,

13.

14.

15.

16.

object.

17.

wherein the transformation is dependent on a type of the copied
customized object.

The system of claim 12 wherein the type is an applet.

The system of claim 12 wherein the type is a view.

The system of claim 12 wherein the type is a screen.

The system of claim 12 wherein the deactivation includes renaming an

The system of claim 12 wherein the deactivation includes deactivating

objects indicated by a user.

WO 2005/091963 PCT/US2005/006955
15

18. The system of claim 12 wherein the enterprise application uses objects

from multiple repositories.

19. The system of claim 12 wherein the component that transforms creates
a hierarchical data structure relating to categories of objects.

20. A computer-readable medium containing a data structure for
preserving customizations when upgrading an enterprise application, the computer-
readable medium comprising:

multiple pre-merge repositories, wherein the pre-merge repositories combrise

user interface objects;

a merge repository, wherein the merge repository comprises user interface

objects from the pre-merge repositories; and

a hierarchical data structure.

21. The computer-readable medium of claim 20 wherein a user interface

object is an applet.

22. The computer-readable medium of claim 20 wherein a user-interface

object is a view.

23. The computer-readable medium of claim 20 wherein a user-interface

object is a screen.

24. The computer-readable medium of claim 20 wherein the hierarchical

data structure comprises categories of user interface objects.

25. A method performed by a computing system for preserving
customizations when upgrading an enterprise application, comprising:
receiving an indication of user interface objects to preserve during the
upgrading;
merging multiple pre-merge repositories into a merged repository;

copying the indicated user interface objects into the merged repository; and

WO 2005/091963 PCT/US2005/006955
16
transforming a user interface object.

26. The method of claim 25 wherein the transforming comprises:
determining a type of the copied user interface object;
performing a transformational function based on the determined type; and

identifying and resolving issues relating to the transformation.
27. The method of claim 26 wherein the type is an applet.

28. The method of claim 27 wherein the transformational function enables

the applet to function in a grid.
29. The method of claim 26 wherein the type is a view.

30. The method of claim 29 wherein the transformational function creates
a categorization for views.

31. The method of claim 26 wherein the type is a screen.

32. A method performed by a computing system for preserving user
interface customizations while upgrading an enterprise application, comprising:

merging multiple pre-merge repositories into a merged repository;

determining a list of user interface objects in a repository that have been
customized;

deactivating the customized user interface objects;

copying the customized user interface objects from a pre-merge repository
into the merged repository; and

transforming at least one of the user interface objects.

33. The method of claim 32 wherein the determining includes analyzing

objects in a pre-merge repository.

WO 2005/091963 PCT/US2005/006955
17

34. The method of claim 32 wherein the determining includes analyzing

objects in the merged repository.
35. The method of claim 32 wherein the transforming comprises:
determining a type of user interface object;
performing a transformational function based on the determined type; and
identifying and resolving issues relating to the transformation.

36. The method of claim 35 wherein the type is an applet.

37. The method of claim 36 wherein the transformational function enables

the applet to function in a grid.
38. The method of claim 35 wherein the type is a view.

39. The method of claim 38 wherein the transformational function creates

a categorization for views.

40. The method of claim 35 wherein the type is a screen.

41. The method of claim 32 wherein the determining includes comparing a
present state of an object with a state of the object as delivered by a vendor of the

object.

42. The method of claim 32 wherein the transformed user interface objects
function with an updated enterprise application.

WO 2005/091963 PCT/US2005/006955
1/8

102 102 102

Computing Device 1 Computing Device 2 ©oe Computing Device n

1086

108 106

104

112

110

Computing Device 1

FIG. 1

WO 2005/091963 PCT/US2005/006955

2/8
Computing Device 200
202 204 206
Repositories Merge Transform
208
Application

FIG. 2

WO 2005/091963

Application

3/8

PCT/US2005/006955

302

304

306

308

Applet

View

Screen

FIG. 3

WO 2005/091963 PCT/US2005/006955
4/8

Repositories 400

402 404 406

Original New Other

FIG. 4

WO 2005/091963 PCT/US2005/006955
5/8
Repositories 500
502 504 506
Original New Other
Application / 508
510 512 514
Applet View Screen

FIG. 5

WO 2005/091963 PCT/US2005/006955
6/8
Repositories 600
602 604 606
Original New Other
Application \ 608
610 612 614
Applet View Screen

FIG. 6

WO 2005/091963

7/8

702
(Start)

704

Merge

708

Rename and deactivate

merged Ul objects

708

Copy customized UI objects

710

Transform customized
UI objects

712
(Return)

FIG. 7

PCT/US2005/006955

WO 2005/091963 PCT/US2005/006955
8/8

Transform customized Ul objects

S 802
(tm) (object)

806

Perform applet-specific
transformations

810

Perform view-specific
transformations

Y

814

Perform screen-specific
transformations

Y

Screen?

Niq

816

Identify and resolve issues
relating to preserving layout

818

Compile application

820
C Return)

FIG. &

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

