The invention relates to the improvement of the transport properties of albumin which is produced on an industrial scale, e.g. via the Cohn process or by means of recombinant processes, and is mixed, during the production process, with substances that saturate the binding points on the albumin and thus affect the binding properties and transport properties of the final product. A special embodiment of the invention relates to pasteurized and then octanoate-reduced human albumin for therapeutic use, especially in a detoxification treatment of human plasma, e.g. for the intravenous treatment of acute or chronic liver diseases, and as a dialysate in extracorporeal liver dialysis with albumin in the molecular adsorbent recirculating system (MARS) or in single-pass dialysis.

Detoxification efficiency (DTE) of 8 commercially available HSA 20% preparations

![Graph showing mean DTE (%) for 8 commercially available HSA 20% preparations]
Fig. 1: Detoxification efficiency (DTE) of 8 commercially available HSA 20% preparations.
Fig. 2: Detoxification efficiency (DTE)
HSA inprocess controls
Fig. 3: Mini-MARS test setup
Fig. 4: Detoxification efficiency (DTE) of HSA in the dialysate circuit
Fig. 5 Detoxification efficiency (DTE):
HSA in the plasma pool, time point t0 (gray) and t1 (black)
OCTANOATE-REDUCED HUMAN ALBUMIN

[0001] The invention relates to improvement of the transport properties of an albumin produced on an industrial scale, for example by the Cohn Process or by recombinant methods, with substances that saturate the binding sites on the albumin and therefore impair the binding and transport properties of the final product being added to the albumin in the course of its production. A special embodiment of the invention relates to pasteurized and then octanoate-reduced human albumin for therapeutic use, in particular in detoxification therapy of human plasma for example for intravenous therapy of acute or chronic liver diseases and as dialyse for extracorporeal hepatic dialysis with albumin in the MARS system (Molecular Adsorbent Recirculating System) or in “single-pass” dialysis.

[0002] Albumin is the commonest protein in the blood plasma. It makes a significant contribution to the osmotic pressure of plasma and is therefore an important factor for regulating the volume of plasma and tissue fluid. The commonest clinical use of albumin is therefore as plasma volume expander.

[0003] Within the last 10 years, however, albumin has found increasing therapeutic use as a transport protein on account of its physiological properties.

[0004] Albumin is the principal transport protein in human plasma. It binds a broad spectrum of compounds and metabolites, for example steroids, bile acids, fatty acids and amino acids, heavy metals and pharmacological substances, for example warfarin. The substances bind primarily to two subdomains of the albumin, Sudlow I (bilirubin, warfarin) and Sudlow II (tryptophan, octanoate, fatty acids), with heavy metals mainly binding to the N-terminus (Peters et al. “All about albumin”; 1996; Academic Press).

[0005] Detoxification therapy utilizes the transport function of albumin. The main indications comprise the intravenous treatment of patients with chronic or acute liver diseases, for detoxification (e.g. hyperbilirubinemia) and for improvement of diuresis in patients with liver diseases and ascites (Gentilini et al., 1999) or in patients with nephrotic syndrome (Gines et al., 1998), as well as in combination therapy with antibiotics in patients with bacterial peritonitis (Sort et al., 2000).

[0006] In clinical therapy with MARS (Molecular Adsorbent Recirculating System) hepatic dialysis or so-called “single-pass” dialysis, the binding of toxic metabolites (e.g. bile acids, bilirubin) or medicinal products (e.g. phenytoin) to albumin is utilized for detoxification in patients with acute or chronic liver disease. Through extracorporeal dialysis against albumin, the patient’s blood is detoxified and patients’ survival rate is increased significantly (Heemann et al., 1999).

[0007] In the course of many production processes, substances are added to albumin that bind to the latter and, through occupying these binding sites, also lower the binding capacity of albumin to other substances in the final product. Thus, before pasteurization for example, as a rule a stabilizer such as octanoate (caprylate) or N-acetyl-tryptophan is added to albumin, to prevent the denaturation or polymer formation of albumin during the pasteurization process. In other methods of production, which do not necessarily envisage a pasteurization step, for example in the production of recombinant albumin, octanoate for example is added in order to prevent polymer formation during storage.

[0008] Shanbrom (U.S. Pat. No. 5,919,907, priority: 22.12.1997) notes that stabilizers such as octanoate occupy binding sites in pasteurized albumin, and proposes an alternative production process, which avoids the addition of octanoate, replacing the virus inactivation process of pasteurization with an iodine treatment. An albumin produced in this way is said to be especially suitable for the treatment of hyperbilirubinemia.

[0009] Gehring (WO 2004/071524, priority 13.02.2003) also points to the problem of reduction of the binding capacity of albumin by bound pasteurization stabilizers. In consequence, patients receiving infusions of albumin with its binding capacity for medicinal products reduced in this way are exposed, on administration of pharmaceutical active substances, to an appreciably increased concentration of free (i.e. not bound to albumin) active substance, which of course means that the patient has an increased risk of excessive pharmacological effects and side effects. It is therefore proposed to use an albumin for which pasteurization is replaced with the SD (solvent/detergent) method, so that by avoiding the need to add a pasteurization stabilizer, occupation of binding sites is also avoided.

[0010] Chen (JBC, 1967) notes that fatty acids, including octanoate, can be removed from albumin with activated carbon, and especially effectively at low pH, in particular pH 3.4.

[0011] Olsen et al. (BMC Clin Pharm, 2004) show that pharmaceutical albumins have a markedly reduced binding capacity for a number of medicinal products, which is attributed to occupations of binding sites of the albumin by pasteurization stabilizers such as octanoate or N-acetyl-DL-tryptophan. It was shown that after adding these stabilizers to unloaded albumin the binding capacity could be reduced to that of a pharmaceutical albumin (octanoate-loaded) and that conversely an octanoate-loaded pharmaceutical preparation of albumin could be converted by treatment with activated carbon to a form that did not differ, with respect to binding behavior, from unloaded albumin.

[0012] There is an increasing medical need for albumin in indications that make use of the transport function of albumin. Albumin can still only be produced economically on a large scale from plasma. The Cohn Process is mainly used for this. Therapeutic proteins purified from plasma must be treated with effective methods of virus inactivation, before they can be administered to humans. The oldest reliable virus inactivation process still in use, so far with no known case of infection due to a plasma preparation treated in this way, is pasteurization. Therefore a large proportion of the albumin on the market still undergoes pasteurization during its production. As stabilizers such as octanoate are added during pasteurization, albumin obtained in this way is less suitable for transport functions than stabilizer-free or stabilizer-reduced albumin, because its binding capacity is reduced by bound stabilizers. The same applies to albumin produced by other methods, which does not necessarily undergo pasteurization, for example in the production of recombinant albumin, where stabilizers such as octanoate are added in order to prevent polymer formation during storage.

[0013] The present invention therefore has the aim of providing medicinal products based on albumin for certain indications, where the mode of action of the medicinal product in the particular indications is based on the transport functions of albumin, i.e. on the binding of other substances to albumin, starting from albumin preparations to which substances were added during their production process, which occupy and...
therefore block the binding sites in the albumin produced in this way, with the result that the use of said albumin in the particular indications is less efficient.

[0014] A stabilizer-free or stabilizer-reduced albumin has, in the aforementioned indications, a considerably higher detoxification efficiency and binding capacity for toxins (active metabolites) than conventional albumin. The invention describes, along with the planned field of application, the production of the novel product and detection of product improvement by novel methods of analysis (analysis of the improvement of albumin transport and binding properties with ESR (electron spin resonance spectroscopy) (Mathies et al., 2000). In ESR, by loading albumin with a spin probe (e.g. 16-doxylpalmitic acid) to represent a fatty acid, the transport function and binding capacity of the albumin for fatty acids are measured in the presence of ethanol. From the ESR signal it is possible to calculate the ratio of loading capacity to unloading capacity (DTE = Detoxification efficiency (Mathies et al. 2002, Transfusion Apheres Sci.)). The more firmly a substance binds to albumin, the higher the DTE ratio.

[0015] The use of stabilizer-free or stabilizer-reduced albumin in detoxification has not been described previously. By determining the transport parameters by ESR, it could be shown that in the commercial production of albumin based on the Cohn process, addition of octanoate as required in the production process causes a marked reduction in the transport properties of albumin. If the octanoate is removed from albumin produced in this way, which can be done for example by treatment with activated carbon in acid conditions, this restores the original transport properties and hence restores the detoxification efficiency of a native serum albumin.

[0016] The method is mainly suitable for the use of albumin preparations produced on a large scale, to which substances are added during their production process which occupy and hence block the binding sites in the albumin produced in this way, and when these substances are removed to the greatest possible extent the binding capacity of these albumin preparations is improved or restored, for the production of a medicinal product whose pharmacological mechanism of action depends on the binding of other substances to the albumin that is used. For example, >50%, or for example >75%, or for example >95% of the substance originally bound to albumin is removed. In particular, albumins produced in this way are suitable for the production of a medicinal product for the detoxification of human plasma.

[0017] A preferred embodiment of the invention relates to albumin preparations whose binding capacity is above that of plasma albumin. In these albumin preparations, not only the stabilizers optionally added during the production process, but also the substances that bind naturally to albumin in the plasma, have been reduced or removed completely. These albumin preparations reach DTE ratios of for example more than 100% (100% = plasma albumin), for example more than 200%, for example more than 250%.

[0018] One embodiment of the invention relates to the use of albumin preparations produced on a large scale after removal of albumin-bound pasteurization stabilizers. Preferred pasteurization stabilizers are in this case octanoate and/or N-acetyl-tryptophan.

[0019] A further embodiment of the invention relates to the use of albumin preparations produced on a large scale after removal of albumin-bound substances which prevent polymer formation of albumin, in particular the removal of octanoate.

[0020] The invention relates equally to liquid and to freeze-dried albumin preparations.

[0021] Albumin preparations according to the invention are for example administered parenterally, for example intravenously. One embodiment of the invention relates to the use of an albumin produced according to the invention in extracorporeal plasma dialysis, for example MARS dialysis or "single-pass" dialysis.

[0022] The albumin preparations produced according to the invention are suitable in particular for the production of a medicinal product for the treatment of chronic or acute liver diseases (e.g. chronic hepatic cirrhosis with ascites, acute hepatic intoxication with encephalopathy (hepatic coma)), for detoxification of medicinal products (e.g. warfarin overdose) or metabolites (e.g. hyperbilirubinemia) and for improvement of diuresis in patients with liver diseases and ascites (Gentilini et al., 1999) or in patients with nephrotic syndrome (Gines et al., 1998), and for combination therapy with antibiotics in patients with bacterial peritonitis (Sort et al., 2000).

DRAWINGS

[0023] FIG. 1: Detoxification efficiency (DTE) of 8 different commercially available albumin preparations

[0024] FIG. 2: Variation in detoxification efficiency (DTE) of intermediates in the production process of a commercially available albumin preparation

[0025] FIG. 3: Mini-MARS experimental dialysis setup

[0026] FIG. 4: Dialysate containing the albumin used for detoxification flows in countercurrent to the plasma circuit.

[0027] FIG. 5: Detoxification efficiency (DTE) of HSA in the dialysate circuit

[0028] FIG. 6: The DTE increases with decreasing octanoate content.

[0029] FIG. 7: Detoxification efficiency (DTE) of HSA in the plasma circuit

[0030] The largest increase in DTE (“Detoxification of plasma albumin”) occurs with octanoate-free albumin in the dialyze circuit.

EXAMPLES

Example 1

Analysis of the Transport Parameters and Detoxification Efficiency of Commercial Albumins

[0031] In a first step, 8 different commercially available albumin products were investigated by ESR for their transport properties. The results of these investigations (FIG. 1) confirmed the results of Mathies et al., 2000. The commercial albumins vary considerably in their transport quality and their detoxification efficiency (DTE), which even in the best products was only approx. 40% compared to plasma serum albumin (100%).

Example 2

Octanoate Stabilization as the Cause of the Impairment of Transport Parameters

[0032] Intermediates in the production of a commercially available albumin preparation were investigated by ESR. Addition of 5% octanoate in step 3 of the production process and, less pronounced, adjustment to 16 mM octanoate and N-acetyl tryptophan in step 5, were identified as decisive
steps in the production process that lead to a marked reduction in detoxification efficiency in comparison with normal plasma (FIG. 2).

Example 3

Production of Albumin from which Octanoate has Been Removed

[0033] 150 ml “Human-Albumin 20% Behring”, low-salt, Product No. 444 (regular commercial product) was diluted with 150 ml WFI. Then the pH was adjusted to pH 3.0 by adding 1 M hydrochloric acid. Next, 3 g activated carbon (1 g per 100 ml of diluted albumin solution) was added, stirring for 60 minutes at room temperature. The solution was filtered on a deep bed filter and a 0.2 μm membrane filter. The pH value was then adjusted to pH 7 by adding 1 M sodium hydroxide solution. The albumin solution was practically free from sodium caprylate, i.e. <95% of the original albumin-bound octanoate (analysis by gas-chromatographic determination after derivatization with DMSO (head-space chromatography)). Finally the solution was filtered on a 0.2 μm membrane filter (sterile filtration).

Example 4

Analysis of the Binding and Transport Properties of Octanoate-Free Albumin by ESR and AbiC

[0034] The albumin from which octanoate was removed according to Example 3 and products containing octanoate were investigated by ESR and AbiC (determination of albumin binding capacity with dansyl sarcosine on albumin binding site Sudlow II (Klammt S, 2000)) in an experimental dialysis setup (Mini MARS, see FIG. 3). HSA preparations with 6.4 mM, 3.2 mM, 1.6 mM and without octanoate were used. The more octanoate was removed from the HSA, the higher the binding capacity determined in AbiC. The capacity measurements with AbiC confirmed the results of DTE measurement by ESR qualitatively (data not shown).

[0035] These HSA preparations were then dialyzed against plasma loaded with the following toxins:

[0036] 10 mg/dl (127 μmol/l) bromosulphthalain (BSP) and 20 mg/l phenytoin as binding sites II ligands and 10 mg/dl (256 μmol/l) chenodeoxycholic acid (bile acid) and 500 μg/l diazepam as binding sites I ligands were added to 1000 ml of pooled heparinized human plasma.

[0037] The less octanoate was contained in the dialysate, the higher the DTE (FIG. 4). Furthermore, it was shown that also the DTE in the plasma could be restored by octanoate purified albumin in the dialysis circuit over time. This resulted in the largest increase in DTE of the albumin in the plasma circuit (“Detoxification of albumin” by using octanoate-free albumin in the dialysis circuit (FIG. 5)).

Example 5

Stabilization of Albumin after Removal of Octanoate

[0038] The stability of the albumin preparation after removal of octanoate according to Example 3 was investigated, after lyophilization or freeze-drying, with respect to aggregate formation according to the specifications of the European Pharmacopeia (4.0 Edition 2002), carrying out exclusion chromatography using a Tosoh Haas TSK 300 SWXL column. Aggregate formation was then calculated in accordance with the European Pharmacopeia.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Date</th>
<th>% aggregate content in the lyophilizate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of a lyophilizate from octanoate-free albumin according to Example 3</td>
<td>Aug. 01, 2005</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Aug. 26, 2005</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Oct. 06, 2005</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Nov. 09, 2005</td>
<td>3.0</td>
</tr>
</tbody>
</table>

[0039] Thus, it could be shown that after removal of the octanoate added e.g. to prevent aggregation, stabilization with respect to aggregate formation can be achieved by freeze-drying of the octanoate-free albumin.

1. -12. (canceled)

13. An albumin preparation, wherein more than about 50% of substances bound to the albumin are removed during production of the albumin preparation, and wherein the binding capacity of the albumin preparation is improved compared to an albumin preparation in which said more than about 50% of substances are not removed during production.

15. An albumin preparation according to claim 13, wherein the albumin preparation is freeze-dried.

16. The albumin preparation of claim 13, wherein the pharmaceutical activity of the preparation depends on the binding of other substances to albumin.

17. A method for treating a chronic or acute liver disease, comprising administering to a patient in need thereof an effective amount of the preparation of claim 16.

18. A method for improving diuresis in a patient with liver disease, comprising administering to a patient in need thereof an effective amount of the preparation of claim 16.

19. A method for improving diuresis in a patient with ascites, comprising administering to a patient in need thereof an effective amount of the preparation of claim 16.

20. A method for improving diuresis in a patient with nphrotic syndrome, comprising administering to a patient in need thereof an effective amount of the preparation of claim 16.

21. A method for treating bacterial peritonitis, comprising administering to a patient in need thereof an effective amount of the preparation of claim 16 in combination with one or more antibiotics.

22. A method for detoxifying human plasma, comprising administering to a patient in need thereof an effective amount of the preparation of claim 16.

23. The method of claim 22, comprising detoxification of a pharmacological substance.

24. The method of claim 22, comprising detoxification of a metabolite.

25. The method of claim 22, wherein the preparation is administered intravenously.

26. The method of claim 22, wherein the pharmaceutical composition is administered during extracorporeal plasma dialysis.
27. The method of claim 26, wherein the extracorporeal plasma dialysis is carried out as MARS (Molecular Adsorbent Recirculating System) or as “single-pass” dialysis.

28. An albumin preparation, wherein, during the production process, substances blocking binding sites of albumin are added and more than about 50% of said substances are subsequently removed, and wherein the binding capacity of the albumin preparation is improved compared to an albumin preparation in which said substances blocking binding sites are added but the more than about 50% of said substances are not subsequently removed.

29. The albumin preparation of claim 28, wherein the substances blocking binding sites are pasteurization stabilizers.

30. The albumin preparation of claim 29, wherein the pasteurization stabilizers are octanoate and/or N-acetyl-tryptophan.

31. The albumin preparation of claim 28, wherein the substances blocking binding sites are substances that reduce polymer formation of albumin.

32. The albumin preparation of claim 31, wherein the substances that reduce polymer formation of albumin comprise octanoate.

33. The albumin preparation of claim 28, wherein the pharmaceutical activity of the preparation depends on the binding of other substances to albumin.

34. A method for detoxifying human plasma, comprising administering to a patient in need thereof an effective amount of the preparation of claim 33.

* * * * *