

(12) STANDARD PATENT

(11) Application No. AU 2001237147 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Thermal expansion compensation for modular printhead assemblies

(51)⁷ International Patent Classification(s)
B41J 002/14 **B41J 025/304**

(21) Application No: **2001237147** (22) Date of Filing: **2001.03.06**

(87) WIPO No: **WO01/66354**

(30) Priority Data

(31) Number **PQ6059** (32) Date **2000.03.06** (33) Country **AU**

(43) Publication Date: **2001.09.17**

(43) Publication Journal Date: **2001.11.29**

(44) Accepted Journal Date: **2005.02.03**

(71) Applicant(s)
Silverbrook Research Pty. Ltd.

(72) Inventor(s)
Silverbrook, Kia

(74) Agent / Attorney
Silverbrook Research Pty. Ltd., 393 Darling Street, Balmain, NSW, 2041

(56) Related Art
JP 10-181015
JP 10-128974
WO 99/65690

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 September 2001 (13.09.2001)

PCT

(10) International Publication Number
WO 01/66354 A1

(51) International Patent Classification⁷: B41J 2/14, 25/304

(74) Agent: SILVERBROOK, Kia: Silverbrook Research Pty Ltd, 393 Darling Street, Balmain, New South Wales 2041 (AU).

(21) International Application Number: PCT/AU01/00238

(22) International Filing Date: 6 March 2001 (06.03.2001)

(25) Filing Language: English

(26) Publication Language: English

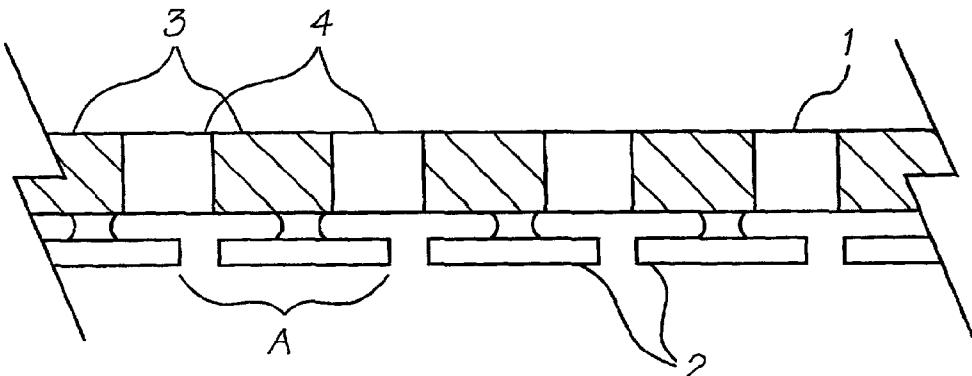
(30) Priority Data: PQ 6059 6 March 2000 (06.03.2000) AU

(71) Applicant (for all designated States except US): SILVERBROOK RESEARCH PTY LTD [AU/AU]; 393 Darling Street, Balmain, New South Wales 2041 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SILVERBROOK, Kia [AU/AU]; Silverbrook Research Pty Ltd, 393 Darling Street, Balmain, New South Wales 2041¹ (AU).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THERMAL EXPANSION COMPENSATION FOR MODULAR PRINthead ASSEMBLIES

WO 01/66354 A1

(57) Abstract: A printhead assembly for an ink jet printer that has an elongate support member (1) that attaches to the printer and a printhead (2) that mounts to the support member (1). The printhead has an array of ink ejection nozzles formed in a substrate material. The support member (1) is formed from a number of materials (3, 4) having different coefficients of thermal expansion. The support member materials (3, 4) are selected and structurally configured so that the effective coefficient of thermal expansion of the support member as a whole substantially matches that of the nozzle substrate material. The support member (1) is also structurally configured so that it does not bow with temperature change.

- 1 -

Title

Thermal Expansion Compensation for Modular Printhead Assemblies.

Field of the Invention

The present invention relates to modular printheads for digital printers and in
5 particular to pagewidth inkjet printers.

Co-Pending Applications

Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications filed by the applicant or assignee of the present invention on 24 May 2000:

10	PCT/AU00/00578	PCT/AU00/00579	PCT/AU00/00581	PCT/AU00/00580
	PCT/AU00/00582	PCT/AU00/00587	PCT/AU00/00588	PCT/AU00/00589
	PCT/AU00/00583	PCT/AU00/00593	PCT/AU00/00590	PCT/AU00/00591
	PCT/AU00/00592	PCT/AU00/00584	PCT/AU00/00585	PCT/AU00/00586
	PCT/AU00/00594	PCT/AU00/00595	PCT/AU00/00596	PCT/AU00/00597
15	PCT/AU00/00598	PCT/AU00/00516	PCT/AU00/00517	PCT/AU00/00511

Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending application, PCT/AU00/01445 filed by the applicant or assignee of the present invention on 27 November 2000. The disclosures of these co-pending applications are incorporated herein by cross-reference. Also incorporated by 20 cross-reference, is the disclosure of a co-filed PCT application, PCT/AU01/00239 (deriving priority from Australian Provisional Patent Application No. PQ6058).

- 2 -

Background of the Invention.

Recently, inkjet printers have been developed which use printheads manufactured by micro electro mechanical systems (MEMS) techniques. Such printheads have arrays of microscopic ink ejector nozzles formed in a silicon chip using MEMS manufacturing 5 techniques.

Printheads of this type are well suited for use in pagewidth printers. Pagewidth printers have stationary printheads that extend the width of the page to increase printing speeds. Pagewidth printers are able to print more quickly than conventional printers because the printhead does not traverse back and forth across the page.

10 To reduce production and operating costs, the printheads are made up of separate printhead modules mounted adjacent each other on a support beam in the printer. To ensure that there are no gaps or overlaps in the printing, it is necessary to accurately align the modules after they have been mounted to the support beam. Once aligned, the printing from each module precisely abuts the printing from adjacent modules.

15 Unfortunately, the alignment of the printhead modules at ambient temperature will change when the support beam expands as it heats up to the operating temperature of the printer. Furthermore, if the printhead modules are accurately aligned when the support beam is at the equilibrium operating temperature of the printer, then unacceptable misalignments in the printing may occur before the beam reaches the operating temperature.

20 Even if the printhead is not modularized thereby making the alignment problem irrelevant, the support beam and printhead may bow and distort the printing because of the different thermal expansion characteristics.

Summary of the Invention.

Accordingly, the present invention provides a printhead assembly for a printer, the printhead assembly including:

- an elongate support member for attachment to the printer;
- 5 a printhead adapted to mount the support member, the printhead having an array of ink ejector nozzles formed in a substrate material; wherein,
 - the support member is formed from a plurality of different materials having different coefficients of thermal expansion and configured such that the effective coefficient of thermal expansion of the support member is substantially equal to the coefficient of thermal
 - 10 expansion of the substrate material.

In some embodiments, the support member is a laminar beam with any odd number of longitudinally extending layers of at least two different materials wherein layers of the same material are symmetrically disposed about the central layer. In a particularly preferred form, the laminar beam has three longitudinally extending layers where the two outer layers are a first material and the central layer is a second material.

15 In other embodiments, the printhead is made up of a plurality of printhead modules adapted to mount to the support member at respective mounting points spaced along the support member; and

the support member is a composite beam made up of segments of at least two different materials arranged end to end, wherein,

- 20 between any two of the mounting points of the printhead modules there is at least part of at least two of the segments such that the effective coefficient of thermal expansion of the support member between the points is substantially equal to the coefficient of thermal expansion of the substrate material.

- 4 -

Preferably, the substrate material is silicon and the arrays of ink ejector nozzles are formed using MEMS techniques.

In some preferred forms, one of the materials is invar, and at least one of the other materials has a coefficient of thermal expansion greater than that of silicon.

5 It will be appreciated that the use of a composite support member made from at least two different materials having different coefficients of thermal expansion provide an effective coefficient of thermal expansion that is substantially the same as silicon.

Forming the composite beam by bonding different segments of material end to end will prevent bowing as long as the segment combinations repeat in accordance with the 10 module mounting 'pitch' or spacing. Each combination of different materials extending between the mounting points of the printhead modules must have generally the same effective coefficient of thermal expansion as silicon. Simply ensuring that the effective coefficient of thermal expansion of the whole beam is about the same as silicon will not ensure that the modules remain aligned as the coefficient between any two adjacent 15 mounting points may be higher or lower than silicon, thus causing misalignment.

Brief Description of the Drawing.

A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawing in which:

Figure 1 is a schematic longitudinal cross section of a first embodiment of a printhead 20 assembly according to the present invention; and,

Figure 2 is a schematic longitudinal cross section of a second embodiment of a printhead assembly according to the present invention.

- 5 -

Detailed Description of the Preferred Embodiment.

Referring to Figure 1, the printhead assembly has a support beam 1 supporting a plurality of printhead modules 2 each having a silicon MEMS printhead chip. The support beam 1 is a hot rolled three-layer laminate consisting of two different materials. The outer layers 3 and 4 are formed from invar which typically has a coefficient of thermal expansion of about 1.3×10^{-6} metres per degree Celsius. The coefficient of thermal expansion of silicon is about 2.5×10^{-6} metres per degree Celsius and therefore the central layer 5 must have a coefficient of thermal expansion greater than this in order to give the support beam as a whole a coefficient of thermal expansion substantially equal to that of silicon.

10 It will be appreciated that the effective coefficient of thermal expansion of the support beam will depend on the coefficient of thermal expansion of both metals, the Young's Modulus of both metals and the thickness of each layer. In order to prevent the beam from bowing, the outer layers 3 and 4 should be the same thickness.

Referring to Figure 2, the printhead assembly shown as an elongate support beam 1 supporting the printhead modules 2. Each printhead module has a silicon MEMS printhead chip.

The support beam 1 is formed from two different materials 3 and 4 bonded together end to end. Again, one of the materials has a coefficient of thermal expansion less than that of silicon and the other material has one greater than that of silicon. The length of each 20 segment is selected such that the printhead spacing, or printhead pitch A, has an effective coefficient of thermal expansion substantially equal to that of silicon.

It will be appreciated that the present invention has been described herein by way of example only. Skilled workers in this field would recognize many other embodiments and variations which do not depart from the scope of the invention.

CLAIMS:

1. A printhead assembly for a printer, the printhead assembly including:
 - an elongate support member for attachment to the printer;
 - a printhead adapted to mount to the support member, the printhead having an array of ink ejector nozzles formed in a substrate material; wherein,
 - the support member is formed from at least two different materials having different coefficients of thermal expansion and configured such that the effective coefficient of thermal expansion of the support member is substantially equal to the coefficient of thermal expansion of the substrate material.
- 10 2. A printhead assembly according to claim 1, wherein the support member is a laminar beam with any odd number of longitudinally extending layers of at least two different materials wherein layers of the same material are symmetrically disposed about the central layer.
- 15 3. A printhead assembly according to claim 2, wherein the odd number is three.
4. A printhead assembly according to claim 1, wherein the printhead is made up of a plurality of printhead modules adapted to mount to the support member at respective mounting points spaced along the support member; and
20 the support member is a composite beam made up of segments of at least two different materials arranged end to end, wherein,
between any two of the mounting points of the printhead modules there is at least part of at least two of the segments such that the effective coefficient of thermal expansion of

- 7 -

the support member between the points is substantially equal to the coefficient of thermal expansion of the substrate material.

5. A printhead assembly according to any one of the preceding claims wherein the substrate material is silicon and the arrays of ink ejector nozzles are formed using MEMS techniques.

6. A printhead assembly according to any one of the preceding claims wherein one of the materials is invar, and at least one of the other materials has a coefficient of thermal expansion greater than that of silicon.

1/2

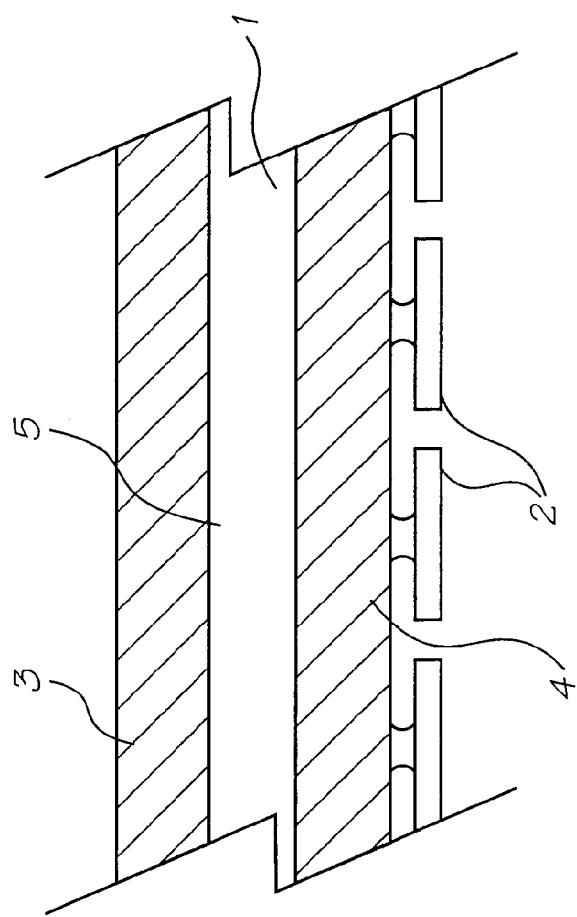


FIG. 1

2/2

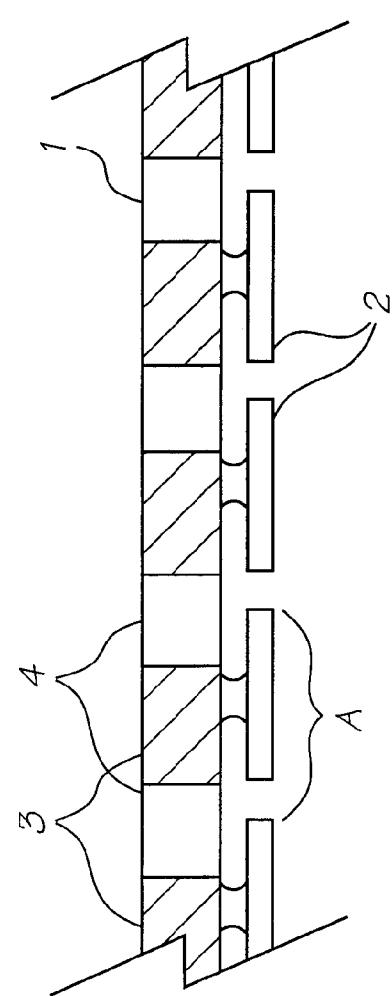


FIG. 2