(54) Title: 2'-4'-DIFLUORO-2'-METHYL SUBSTITUTED NUCLEOSIDE DERIVATIVES AS INHIBITORS OF HCV RNA REPLICATION

(57) Abstract: The present disclosure relates to compounds of Formula (I): Also disclosed are pharmaceutical compositions comprising compounds of Formula (I), methods of using the compounds of Formula (I) and/or compositions comprising the compounds of Formula (I) for the treatment of HCV.
2',4'-DIFLUORO-2'-METHYL SUBSTITUTED NUCLEOSIDE DERIVATIVES AS INHIBITORS OF HCV RNA REPLICATION

FIELD OF THE INVENTION

The invention relates to nucleoside derivatives as inhibitors of HCV replicon RNA replication. In particular, the invention is concerned with the use of purine and pyrimidine nucleoside derivatives as inhibitors of subgenomic Hepatitis C Virus (HCV) RNA replication and pharmaceutical compositions containing such compounds.

Hepatitis C virus is the leading cause of chronic liver disease throughout the world. Patients infected with HCV are at risk of developing cirrhosis of the liver and subsequent hepatocellular carcinoma and hence HCV is the major indication for liver transplantation. Only two approved therapies are currently available for the treatment of HCV infection (R. G. Gish, Sem. Liver. Dis., 1999, 19, 35). These are interferon-a monotherapy and, more recently, combination therapy of the nucleoside analogue, ribavirin (Virazole), with interferon-a.

Many of the drugs approved for the treatment of viral infections are nucleosides or nucleoside analogues and most of these nucleoside analogue drugs inhibit viral replication, following conversion to the corresponding triphosphates, through inhibition of the viral polymerase enzymes. This conversion to the triphosphate is commonly mediated by cellular kinases and therefore the direct evaluation of nucleosides as inhibitors of HCV replication is only conveniently carried out using a cell-based assay. For HCV the availability of a true cell-based viral replication assay or animal model of infection is lacking.

Hepatitis C virus belongs to the family of Flaviridae. It is an RNA virus, the RNA genome encoding a large polyprotein which after processing produces the necessary replication machinery to ensure synthesis of progeny RNA. It is believed that most of the non-structural proteins encoded by the HCV RNA genome are involved in RNA replication. Lohmann et al. [V. Lohmann et al, Science, 1999, 285, 110-113] have described the construction of a Human Hepatoma (Huh7) cell line in which subgenomic HCV RNA
molecules have been introduced and shown to replicate with high efficiency. It is believed that the mechanism of RNA replication in these cell lines is identical to the replication of the full length HCV RNA genome in infected hepatocytes. The subgenomic HCV cDNA clones used for the isolation of these cell lines have formed the basis for the development of a cell-based assay for identifying nucleoside analogue inhibitors of HCV replication.

SUMMARY OF THE INVENTION

The compounds of Formula I are useful for the treatment of diseases mediated by the Hepatitis C Virus (HCV) and for pharmaceutical compositions comprising such compounds. The application provides a compound of Formula I

![Chemical Structure](image_url)

wherein:

- R^1 is H, lower haloalkyl, or aryl, wherein aryl is phenyl or naphthyl, optionally substituted with one or more lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy, halo, lower haloalkyl, -N(R$_{1a}$)$_2$, acylamino, -SO$_2$N(R$_{1a}$)$_2$, -COR$_{1b}$, -SO$_2$(R$_{1c}$)$_2$, -NHSO$_2$(R$_{1c}$)$_2$, nitro or cyano;
 - each R_{1a} is independently H or lower alkyl;
 - each R_{1b} is independently -OR$_{1a}$ or -N(R$_{1a}$)$_2$;
 - each R_{1c} is lower alkyl;
- R^{2a} and R^{2b} are (i) independently H, lower alkyl, -(CH$_2$)$_2$N(R$_{1a}$)$_2$, lower hydroxyalkyl, -CH$_2$SH, -(CH$_2$)$_2$S(=O)$_2$Me, -(CH$_2$)$_3$NHC(=NH)NH$_2$, (1H-indol-3-yl)methyl, (1H-indol-4-yl)methyl, -(CH$_2$)$_m$C(=0)R$_{1b}$, aryl and aryl lower alkyl, wherein aryl may optionally be substituted with one or more hydroxy, lower alkyl, lower alkoxy, halo, nitro or cyano; (ii) R^{2a} is H and R^{2b} and R^4 together form (CH$_2$)$_3$; (iii) R^{2a} and R^{2b} together form (CH$_2$)$_m$; or, (iv) R^{2a} and R^{2b} both are lower alkyl;
The application provides a method for treating a Hepatitis C Virus (HCV) infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Formula I.

The application provides a composition comprising a compound of Formula I and a pharmaceutically acceptable excipient.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of Formula I have been shown to be inhibitors of subgenomic Hepatitis C Virus replication in a hepatoma cell line. These compounds have the potential to be efficacious as antiviral drugs for the treatment of HCV infections in human.

The term "alkyl" as used herein denotes a straight or branched chain hydrocarbon residue containing 1 to 12 carbon atoms. Preferably, the term "alkyl" denotes a straight or branched chain hydrocarbon residue containing 1 to 7 carbon atoms. Most preferred are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert.-butyl or pentyl. The alkyl may be unsubstituted or substituted. The substituents are selected from one or more of cycloalkyl, nitro, amino, alkyl amino, dialkyl amino, alkyl carbonyl and cycloalkyl carbonyl.
The term "cycloalkyl" as used herein denotes an optionally substituted cycloalkyl group containing 3 to 7 carbon atoms, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

The term "alkoxy" as used herein denotes an optionally substituted straight or branched chain alkyl-oxy group wherein the "alkyl" portion is as defined above such as methoxy, ethoxy, n-propyloxy, i-propyloxy, n-butyloxy, i-butyloxy, tert.-butyloxy, pentyloxy, hexyloxy, heptyloxy including their isomers.

The term "alkoxyalkyl" as used herein denotes an alkyl group as defined above which is bonded to an alkyl group as defined above. Examples are methoxymethyl, methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, propyloxypropyl, methoxybutyl, ethoxybutyl, propyloxybutyl, butyloxybutyl, tert.-butyloxybutyl, methoxypentyl, ethoxypentyl, propyloxpentyl including their isomers.

The term "alkenyl" as used herein denotes an unsubstituted or substituted hydrocarbon chain radical having from 2 to 7 carbon atoms, preferably from 2 to 4 carbon atoms, and having one or two olefinic double bonds, preferably one olefinic double bond. Examples are vinyl, 1-propenyl, 2-propenyl (allyl) or 2-butenyl (crotyl).

The term "alkynyl" as used herein denotes an unsubstituted or substituted hydrocarbon chain radical having from 2 to 7 carbon atoms, preferably 2 to 4 carbon atoms, and having one or where possible two triple bonds, preferably one triple bond. Examples are ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl or 3-butynyl.

The term "hydroxyalkyl" as used herein denotes a straight or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a hydroxy group. Examples are hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, hydroxyisopropyl, hydroxybutyl and the like.

The term "haloalkyl" as used herein denotes a straight or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. Examples are 1-fluoromethyl, 1-chloromethyl, 1-bromomethyl, 1-iodomethyl,
trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl, l-fluoro ethyl, 1-chloroethyl, 1-bromoethyl, 1-iodoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-dichloroethyl, 3-bromopropyl or 2,2,2-trifluoroethyl and the like.

The term "alkythio" as used herein denotes a straight or branched chain (alkyl)S- group wherein the "alkyl" portion is as defined above. Examples are methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio or tert.-butylthio.

The term "aryl" as used herein denotes an optionally substituted phenyl and naphthyl (e.g. 1-naphthyl, 2-naphthyl or 3-naphthyl). Suitable substituents for aryl can be selected from those named for alkyl, in addition however, halogen, hydroxy and optionally substituted alkyl, haloalkyl, alkenyl, alkynyl and aryloxy are substituents which can be added to the selection.

The term "heterocyclyl" as used herein denotes an optionally substituted saturated, partially unsaturated or aromatic monocyclic, bicyclic or tricyclic heterocyclic systems which contain one or more hetero atoms selected from nitrogen, oxygen and sulfur which can also be fused to an optionally substituted saturated, partially unsaturated or aromatic monocyclic carbocycle or heterocycle.

Examples of suitable heterocycles are oxazolyl, isoxazolyl, furyl, tetrahydrofuryl, 1,3-dioxolanyl, dihydropyranyl, 2-thienyl, 3-thienyl, pyrazinyl, isothiazolyl, dihydrooxazolyl, pyrimidinyl, tetrazolyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, pyrrolidinonyl, (N-oxide)-pyridinyl, 1-pyrrolyl, 2-pyrrolyl, triazolyl e.g. 1,2,3-triazolyl or 1,2,4-triazolyl, 1-pyrazolyl, 2-pyrazolyl, 4-pyrazolyl, piperidinyl, morpholinyl (e.g. 4-morpholinyl), thiomorpholinyl (e.g. 4-thiomorpholinyl), thiazolyl, pyridinyl, dihydrothiazolyl, imidazolidinyl, pyrazolinyl, piperazinyl, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl, thiazole e.g. 1,2,3-thiadiazolyl, 4-methylpiperazinyl, 4-hydroxypiperidin-l-yl.

Suitable substituents for heterocyclyl can be selected from those named for alkyl, in addition however, optionally substituted alkyl, alkenyl, alkynyl, an oxo group (=0) or aminosulphonyl are substituents which can be added to the selection.
The term "acyl" ("alkylcarbonyl") as used herein denotes a group of formula C(=0)R wherein R is hydrogen, an unsubstituted or substituted straight or branched chain hydrocarbon residue containing 1 to 7 carbon atoms or a phenyl group. Most preferred acyl groups are those wherein R is hydrogen, an unsubstituted straight chain or branched hydrocarbon residue containing 1 to 4 carbon atoms or a phenyl group.

The term halogen stands for fluorine, chlorine, bromine or iodine, preferable fluorine, chlorine, bromine.

In the pictorial representation of the compounds given throughout this application, a thickened tapered line () indicates a substituent which is above the plane of the ring to which the asymmetric carbon belongs and a dotted line () indicates a substituent which is below the plane of the ring to which the asymmetric carbon belongs.

Compounds of formula I exhibit stereoisomerism. These compounds can be any isomer of the compound of formula I or mixtures of these isomers. The compounds and intermediates of the present invention having one or more asymmetric carbon atoms may be obtained as racemic mixtures of stereoisomers which can be resolved.

Compounds of formula I exhibit tautomerism that means that the compounds of this invention can exist as two or more chemical compounds that are capable of facile interconversion. In many cases it merely means the exchange of a hydrogen atom between two other atoms, to either of which it forms a covalent bond. Tautomeric compounds exist in a mobile equilibrium with each other, so that attempts to prepare the separate substances usually result in the formation of a mixture that shows all the chemical and physical properties to be expected on the basis of the structures of the components.

The most common type of tautomerism is that involving carbonyl, or keto, compounds and unsaturated hydroxyl compounds, or enols. The structural change is the shift of a hydrogen atom between atoms of carbon and oxygen, with the rearrangement of bonds. For example, in many aliphatic aldehydes and ketones, such as acetaldehyde, the keto form is the predominant one; in phenols, the enol form is the major component.
Compounds of formula I which are basic can form pharmaceutically acceptable salts with inorganic acids such as hydrohalic acids (e.g. hydrochloric acid and hydrobromic acid), sulphuric acid, nitric acid and phosphoric acid, and the like, and with organic acids (e.g. with acetic acid, tartaric acid, succinic acid, fumaric acid, maleic acid, malic acid, salicylic acid, citric acid, methanesulphonic acid and p-toluene sulphonic acid, and the like). The formation and isolation of such salts can be carried out according to methods known in the art.

Inhibitors of HCV

The application provides a compound of Formula I

![Chemical Structure](image)

wherein:

- R^1 is H, lower haloalkyl, or aryl, wherein aryl is phenyl or naphthyl, optionally substituted with one or more lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy, halo, lower haloalkyl, -N(R^{1a})$_2$, acylamino, -SO$_2$N(R^{1a})$_2$, -COR1b, -SO$_2$N(R^{1c})$_2$, -NHSO$_2$N(R^{1c})$_2$, nitro or cyano;
- each R^{1a} is independently H or lower alkyl;
- each R^{1b} is independently -OR1a or -N(R^{1a})$_2$;
- each R^{1c} is lower alkyl;
- R^{2a} and R^{2b} are (i) independently H, lower alkyl, -(CH$_2$)$_2$N(R^{1a})$_2$, lower hydroxyalkyl, -CH$_2$SH, -(CH$_2$)$_2$S(=O)Me, -(CH$_2$)$_3$NHC(=NH)NH$_2$, (1H-indol-3-yl)methyl, (1H-indol-4-yl)methyl, -(CH$_2$)$_m$C(=O)R1b, aryl and aryl lower alkyl, wherein aryl may optionally be substituted with one or more hydroxy, lower alkyl, lower alkoxy, halo, nitro or cyano; (ii) R^{2a} is H and R^{2b} and R^{4} together form (CH$_2$)$_3$; (iii) R^{2a} and R^{2b} together form (CH$_2$)$_m$; or, (iv) R^{2a} and R^{2b} both are lower alkyl;
- R^3 is H, lower alkyl, lower haloalkyl, phenyl or phenyl lower alkyl;
-8-

R4 is H, lower alkyl, or R2b and R4 together form (CH\textsubscript{2})\textsubscript{3};
R5 is H, C(=0)R1c, C(=0)R1b, P(=0)(OR1)(OR1a), or P(=0)(OR1)(NR4R7);
R6 is H, methyl, or halo;
R7 is C(R2aR2b)COOR3

m is 0 to 3;
n is 4 or 5;
p is 0 to 2; and
r is 1 to 6;
or a pharmacologically acceptable salt thereof.

The application provides a compound of Formula I, wherein R4 is H.

The application provides a compound of Formula I, wherein R6 is H or Br.

The application provides a compound of Formula I, wherein R6 is H.

The application provides a compound of Formula I, wherein R6 is Br.

The application provides a compound of Formula I, wherein R4 is H and R6 is H or Br.

The application provides a compound of Formula I, wherein R4 is H and R6 is Br.

The application provides a compound of Formula I, wherein R1 is naphthyl or phenyl.

The application provides a compound of Formula I, wherein R1 is naphthyl.

The application provides a compound of Formula I, wherein R1 is phenyl.

The application provides a compound of Formula I, wherein R1 is phenyl and R4 is H.

The application provides a compound of Formula I, wherein R1 is phenyl, R6 is H, and R4 is H.
The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl and \(R^4 \) is H.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H and \(R^6 \) is H.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl and \(R^3 \) is isopropyl.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H, \(R^6 \) is H, and \(R^3 \) is isopropyl.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H, \(R^6 \) is H, \(R^{2a} \) is H, and \(R^3 \) is isopropyl.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H, \(R^6 \) is H, \(R^{2a} \) is H, \(R^{2b} \) is methyl, and \(R^3 \) is isopropyl.

The application provides a compound of Formula I, wherein \(R^5 \) is H.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl and \(R^5 \) is H.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H, \(R^5 \) is H.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H, \(R^6 \) is H, and \(R^5 \) is H.

The application provides a compound of Formula I, wherein \(R^1 \) is naphthyl, \(R^4 \) is H, \(R^6 \) is H, \(R^{2a} \) is H, and \(R^5 \) is H.
The application provides a compound of Formula I, wherein R₄ is naphthyl, R⁵ is H, R⁶ is H, R₇ is isopropyl, and R⁸ is H.

5

The application provides a compound of Formula I, wherein R₄ is naphthyl, R⁵ is H, R⁶ is H, R₇ is H, R₈ is methyl, R₉ is isopropyl, and R¹₀ is H.

The application provides a compound of Formula I, wherein R⁵ is C(=0)R¹¹.

10

The application provides a compound of Formula I, wherein R₄ is naphthyl, R⁵ is H, R⁶ is H, R₇ is H, R₈ is methyl, R₉ is isopropyl, and R¹₀ is C(=0)CH₃CH₃.

The application provides a compound of Formula I, wherein R⁵ is P(=0)(OR¹¹)(NR⁴R⁷).

20

The application provides a compound of Formula I, wherein R₄ is naphthyl, R⁵ is H, R⁶ is H, R₇ is H, R₈ is methyl, R₉ is isopropyl, and R¹₀ is P(=0)(OR¹¹)(NR⁴R⁷).

The application provides a compound of Formula I, wherein R¹¹ is ethyl.

The application provides a compound of Formula I, wherein R₄ is naphthyl.

25

The application provides a compound of Formula I, wherein R₄ is naphthyl, R⁵ is H, R⁶ is H, R₇ is H, R₈ is methyl, R₉ is isopropyl, R¹₀ is P(=0)(OR¹¹)(NR⁴R⁷), and R¹¹ is naphthyl.

The application provides a compound of Formula I, wherein R⁴ is H and R⁷ is CH(CH₃)C(=0)OCH(CH₃)₂.

30

The application provides a compound of Formula I, wherein R₄ is H, R⁵ is H, R⁶ is H, R₇ is H, R₈ is methyl, R₉ is isopropyl, R¹₀ is P(=0)(OR¹¹)(NR⁴R⁷), R¹¹ is naphthyl, R⁴ is H and is R⁷ is CH(CH₃)C(=0)OCH(CH₃)₂.
The application provides a compound selected from the group consisting of:

- (S)-2-\{[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-\[((S)-l-isopropoxycarbonyl-ethylamino)-(naphthalen-2-yloxy)-phosphoryloxy\]-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-methyl-3-propionyloxy-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{(S)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{(R)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{(R)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{(S)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino\} -propionic acid isopropyl ester;

- (S)-2-\{(S)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino\} -propionic acid isopropyl ester;
(S)-2-{(R)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino}-propionic acid isopropyl ester;

(S)-2-[(S)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-iuran-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester;

(S)-2-[(S)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-iuran-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester;

(S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-iuran-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester; and

(S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-iuran-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester.

The application provides a method for treating a Hepatitis C Virus (HCV) infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Formula I.

5 The application provides the above method, further comprising administering an immune system modulator or an antiviral agent that inhibits replication of HCV, or a combination thereof.

10 The application provides the above method, wherein the immune system modulator is an interferon or chemically derivatized interferon.

The application provides the above methods, wherein the antiviral agent is selected from the group consisting of a HCV protease inhibitor, a HCV polymerase inhibitor, a HCV
helicase inhibitor, a HCV primase inhibitor, a HCV fusion inhibitor, and a combination thereof.

The application provides a method for inhibiting replication of HCV in a cell comprising administering a compound of Formula I.

The application provides a composition comprising a compound of Formula I and a pharmaceutically acceptable excipient.

The application provides a use of the compound of Formula I in the manufacture of a medicament for the treatment of HCV.

The application provides a compound, composition, or method as described herein.

Compounds

Examples of representative compounds encompassed by the present invention and within the scope of the invention are provided in the following Table. These examples and preparations which follow are provided to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

In general, the nomenclature used in this Application is based on AUTONOMTM v.4.0, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. If there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. In addition, if the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.

TABLE I depicts examples of compounds according to generic Formula I.

<table>
<thead>
<tr>
<th>Compound no.</th>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
</table>
I-1
(S)-2-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino]-propionic acid isopropyl ester

I-2
(S)-2-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy)-(naphthalen-1-yl oxy)-phosphorylamino]-propionic acid isopropyl ester

I-3
(S)-2-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy)-(naphthalen-2-yl oxy)-phosphorylamino]-propionic acid isopropyl ester

I-4
(S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-[(S)-1-isopropoxycarbonyl-ethylamino)-(naphthalen-2-yl oxy)-phosphoryloxy]-4-methyl-tetrahydro-furan-2-ylmethoxy)-(naphthalen-2-yl oxy)-phosphorylamino]-propionic acid isopropyl ester

I-5
(S)-2-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-4-methyl-3-propionyloxy-tetrahydro-furan-2-ylmethoxy)-(naphthalen-1-yl oxy)-phosphorylamino]-propionic acid isopropyl ester
<table>
<thead>
<tr>
<th></th>
<th>Molecular Structure</th>
<th>Chemical Formula and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-6</td>
<td></td>
<td>(S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-naphthalen-2-yloxy]-phosphorylamino]-propionic acid isopropyl ester</td>
</tr>
<tr>
<td>I-7</td>
<td></td>
<td>(S)-2-[(R)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-naphthalen-2-yloxy]-phosphorylamino]-propionic acid isopropyl ester</td>
</tr>
<tr>
<td>I-8</td>
<td></td>
<td>(S)-2-[(R)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-naphthalen-1-yloxy]-phosphorylamino]-propionic acid isopropyl ester</td>
</tr>
<tr>
<td>I-9</td>
<td></td>
<td>(S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-naphthalen-1-yloxy]-phosphorylamino]-propionic acid isopropyl ester</td>
</tr>
<tr>
<td>I-10</td>
<td></td>
<td>(S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy]-phosphorylamino]-propionic acid isopropyl ester</td>
</tr>
<tr>
<td>I-11</td>
<td></td>
<td>(S)-2-[(R)-[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy]-phosphorylamino]-propionic acid isopropyl ester</td>
</tr>
</tbody>
</table>
The methods discussed above are described in more details below:

(S)-2-[(S)-{(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

(S)-2-[(S)-{(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

(S)-2-[(R)-{(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

(S)-2-[(R)-{(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

(S)-2-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

In the below General Schemes, R^1 can be H, lower haloalkyl, or aryl, wherein aryl can be phenyl or naphthyl, optionally substituted with one or more lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy, halo, lower haloalkyl, -N(R^1a)_2, acylamino, -S=O(S=O(R^1a)_2, -COR^1b, -SO_2(R^1c), -NHSO_3(R^1c), nitro or cyano, each R^1a can be independently H or lower alkyl, each R^1b can be independently -OR^1a or -N(R^1a)_2, each R^1c can be lower alkyl, R^2a and R^2b are (z) independently H, lower alkyl, -(CH_2)_pMe, -(CH_2)_pNHC(=NH)NH_2, (1H-indol-3-yl)methyl, (1H-indol-4-yl)methyl, -(CH_2)_mC(=0)R^1b and aryl and aryl lower alkyl, wherein aryl may optionally be substituted with one or more hydroxy, lower alkyl, lower alkoxy, halo, nitro or cyano; (z) R^2a can be H and R^2b and R^4 together form (CH_2)_3; (Hi) R^2a and R^2b together form (CH_2)_n; or, (zv) R^2a and R^2b both are lower alkyl, R^3 can be H, lower alkyl, lower haloalkyl, phenyl or phenyl lower alkyl, R^4 can be H, lower alkyl, or R^2b and R^4 together form (CH_2)_3, R^5 can be H, C(=0)R^1c, C(=0)R^1b, P(=0)(OR^1b)(OR^1a), or P(=0)(OR^1b)(NR^6R^7), R^6 can be H, methyl, or halo, R^7 can be C(R^2aR^2b)COOR^3, m can be 0 to 3, n can be 4 or 5, p can be 0 to 2, and r can be 1 to 6.

Scheme 1.
Nucleoside 7 can also be smoothly converted into 5'-halogen intermediate 8 by reaction with NCS, NBS, or NIS under appropriate conditions (Scheme 2).

Scheme 2.

Phosphoramidate compounds of the present invention can be prepared by condensation of nucleoside 7 or 8 with a suitably substituted phosphochloridate compound 11 in the presence of a strong base (Scheme 3). The condensation can be carried out on the unprotected nucleoside 7 or 8. The coupled product 12 in formula I can be further derivatized.
into product 13. Both compound 12 or 13 in formula I are obtained as a mixture of two diastereomers initially under the coupling reaction and can be separated into their corresponding chiral enantiomers by chiral column, chiral HPLC, or chiral SFC chromatography.

Scheme 3.

\[\text{Cl-P-Cl} \quad \text{R}^1 \text{OH} \quad \text{NEt}_3, \text{ether} \quad \text{rt, 18 h} \]

\[\begin{align*}
9 & \quad \rightarrow \quad 10 \\
7 \text{ or } 8 & \quad \rightarrow \quad 11 \\
\end{align*} \]

R\(^6\) = H, Cl, Br, I

Dosage and Administration:

As shown in above Table the compounds of formula I have the potential to be efficacious as antiviral drugs for the treatment of HCV infections in humans, or are metabolized to a compound that exhibit such activity.
In another embodiment of the invention, the active compound or its derivative or salt can be administered in combination with another antiviral agent, such as an anti-hepatitis agent, including those of formula I. When the active compound or its derivative or salt are administered in combination with another antiviral agent the activity may be increased over the parent compound. This can easily be assessed by preparing the derivative and testing its anti-HCV activity according to the method described herein.

Administration of the active compound may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D) and may include oral, topical parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal and suppository administration, among other routes of administration.

The 4'-F substituted nucleoside derivatives as well as their pharmaceutically useable salts, can be used as medicaments in the form of any pharmaceutical formulation. The pharmaceutical formulation can be administered enterally, either orally, e.g. in the form of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions, syrups, or suspensions, or rectally, e.g. in the form of suppositories. They can also be administered parenterally (intramuscularly, intravenously, subcutaneously or intrasternal injection or infusion techniques), e.g. in the form of injection solutions, nasally, e.g. in the form of nasal sprays, or inhalation spray, topically and so forth.

For the manufacture of pharmaceutical preparations, the 4'-substituted nucleoside derivatives, as well as their pharmaceutically useable salts, can be formulated with a therapeutically inert, inorganic or organic excipient for the production of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions or suspensions.

The compounds of formula I can be formulated in admixture with a pharmaceutically acceptable carrier. For example, the compounds of the present invention can be administered orally as pharmacologically acceptable salts. Because the compounds of the present invention are mostly water soluble, they can be administered intravenously in physiological saline solution (e.g., buffered to a pH of about 7.2 to 7.5). Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose. Of course, one of ordinary
skill in the art may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity. In particular, the modification of the present compounds to render them more soluble in water or other vehicle, for example, may be easily accomplished by minor modifications (salt formulation, esterification, etc.) which are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.

For parenteral formulations, the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those which aid dispersion may be included. Of course, where sterile water is to be used and maintained as sterile, the compositions and carriers must also be sterilized. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.

Suitable excipients for tablets, coated tablets, dragees, and hard gelatin capsules are, for example, lactose, corn starch and derivatives thereof, talc, and stearic acid or its salts.

If desired, the tablets or capsules may be enteric-coated or sustained release by standard techniques.

Suitable excipients for soft gelatine capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols.

Suitable excipients for injection solutions are, for example, water, saline, alcohols, polyols, glycerin or vegetable oils.

Suitable excipients for suppositories are, for example, natural and hardened oils, waxes, fats, semi-liquid or liquid polyols.
Suitable excipients for solutions and syrups for enteral use are, for example, water, polyols, saccharose, invert sugar and glucose.

The pharmaceutical preparations of the present invention may also be provided as sustained release formulations or other appropriate formulations.

The pharmaceutical preparations can also contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for adjustment of the osmotic pressure, buffers, masking agents or antioxidants.

The pharmaceutical preparations may also contain other therapeutically active agents known in the art.

The dosage can vary within wide limits and will, of course, be adjusted to the individual requirements in each particular case. For oral administration, a daily dosage of between about 0.01 and about 100 mg/kg body weight per day should be appropriate in monotherapy and/or in combination therapy. A preferred daily dosage is between about 0.1 and about 500 mg/kg body weight, more preferred 0.1 and about 100 mg/kg body weight and most preferred 1.0 and about 100 mg/kg body weight per day. A typical preparation will contain from about 5% to about 95% active compound (w/w). The daily dosage can be administered as a single dosage or in divided dosages, typically between 1 and 5 dosages per day.

In certain pharmaceutical dosage forms, the pro-drug form of the compounds, especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred. One of ordinary skill in the art will recognize how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a target site within the host organism or patient. One of ordinary skill in the art will also take advantage of favorable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to targeted site within the host organism or patient to maximize the intended effect of the compound.

Indications and Method of Treatment
The compounds of the invention and their isomeric forms and pharmaceutically acceptable salts thereof are useful in treating and preventing HCV infection.

The application provides a method for treating a Hepatitis C Virus (HCV) infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of any one of Formula I.

The application provides a method for inhibiting replication of HCV in a cell comprising administering a compound of any one of Formula I.

Combination Therapy

The compounds of the invention and their isomeric forms and pharmaceutically acceptable salts thereof are useful in treating and preventing HCV infection alone or when used in combination with other compounds targeting viral or cellular elements or functions involved in the HCV lifecycle. Classes of compounds useful in the invention include, without limitation, all classes of HCV antivirals.

For combination therapies, mechanistic classes of agents that can be useful when combined with the compounds of the invention include, for example, nucleoside and non-nucleoside inhibitors of the HCV polymerase, protease inhibitors, helicase inhibitors, NS4B inhibitors and medicinal agents that functionally inhibit the internal ribosomal entry site (IRES) and other medicaments that inhibit HCV cell attachment or virus entry, HCV RNA translation, HCV RNA transcription, replication or HCV maturation, assembly or virus release. Specific compounds in these classes and useful in the invention include, but are not limited to, macrocyclic, heterocyclic and linear HCV protease inhibitors such as telaprevir (VX-950), boceprevir (SCH-503034), narlaprevir (SCH-9005 18), ITMN-191 (R-7227), TMC-435350 (a.k.a. TMC-435), MK-7009, BI-201335, BI-2061 (ciluprevir), BMS-650032, ACH-1625, ACH-1095 (HCV NS4A protease co-factor inhibitor), VX-500, VX-8 13, PHX-1766, PHX2054, IDX-136, IDX-3 16, ABT-450 EP-0 13420 (and congeners) and VBY-376; the Nucleosidic HCV polymerase (replicase) inhibitors useful in the invention include, but are not limited to, R7128, PSI-785 1, IDX-184, IDX-102, R1479, UNX-08 189, PSI-6130, PSI-938 and PSI-879 and various other nucleoside and nucleotide analogs and HCV inhibitors including (but not limited to) those derived as 2'-C-methyl modified nucleos(t)ides,
4'-aza modified nucleos(t)ides, and 7'-deaza modified nucleos(t)ides. Non-nucleosidic HCV polymerase (replicase) inhibitors useful in the invention, include, but are not limited to, HCV-796, HCV-371, VCH-759, VCH-916, VCH-222, ANA-598, MK-3281, ABT-333, ABT-072, PF-00868554, BI-207127, GS-9190, A-837093, JKT-109, GL-59728 and GL-60667.

In addition, compounds of the invention can be used in combination with cyclophyllin and immunophyllin antagonists (e.g., without limitation, DEBIO compounds, NM-811 as well as cyclosporine and its derivatives), kinase inhibitors, inhibitors of heat shock proteins (e.g., HSP90 and HSP70), other immunomodulatory agents that can include, without limitation, interferons (-alpha, -beta, -omega, -gamma, -lambda or synthetic) such as Intron A, Roferon-A, Canferon-A300, Advaferon, Infergen, Humoferon, Sumiferon MP, Alfaferone, IFN-β, Feron and the like; polyethylene glycol derivatized (pegylated) interferon compounds, such as PEG interferon-a-2a (Pegasys), PEG interferon-a-2b (PEGIntron), pegylated IFN-a-

conl and the like; long acting formulations and derivatizations of interferon compounds such as the albumin-fused interferon, Albuferon, Locteron, and the like; interferons with various types of controlled delivery systems (e.g., ITCA-638, omega-interferon delivered by the DUROS subcutaneous delivery system); compounds that stimulate the synthesis of interferon in cells, such as resiquimod and the like; interleukins; compounds that enhance the development of type 1 helper T cell response, such as SCV-07 and the like; TOLL-like receptor agonists such as CpG-10101 (actilon), isotorabine, ANA773 and the like; thymosin a-1; ANA-245 and ANA-246; histamine dihydrochloride; propagermanium; tetrachlorodecaoxide; ampligen; IMP-321; KRN-7000; antibodies, such as civacir, XTL-6865 and the like and prophylactic and therapeutic vaccines such as InnoVac C, HCV E1E2/MF59 and the like. In addition, any of the above-described methods involving administering an NS5A inhibitor, a Type I interferon receptor agonist (e.g., an IFN-a) and a Type II interferon receptor agonist (e.g., an IFN-γ) can be augmented by administration of an effective amount of a TNF-a antagonist. Exemplary, non-limiting TNF-a antagonists that are suitable for use in such combination therapies include ENBREL, REMICADE, and HUMIRA.

In addition, compounds of the invention can be used in combination with antiprotozoans and other antivirals thought to be effective in the treatment of HCV infection such as,
without limitation, the prodrug nitazoxanide. Nitazoxanide can be used as an agent in combination with the compounds disclosed in this invention as well as in combination with other agents useful in treating HCV infection such as peginterferon α-2a and ribavirin.

Compounds of the invention can also be used with alternative forms of interferons and pegylated interferons, ribavirin or its analogs (e.g., tarabavirin, levoviron), microRNA, small interfering RNA compounds (e.g., SIRPLEX-140-N and the like), nucleotide or nucleoside analogs, immunoglobulins, hepatoprotectants, anti-inflammatory agents and other inhibitors of NS5A. Inhibitors of other targets in the HCV lifecycle include NS3 helicase inhibitors; NS4A co-factor inhibitors; antisense oligonucleotide inhibitors, such as ISIS-14803, AVI-4065 and the like; vector-encoded short hairpin RNA (shRNA); HCV specific ribozymes such as heptazyme, RPI, 13919 and the like; entry inhibitors such as HepeX-C, HuMax-HepC and the like; alpha glucosidase inhibitors such as celgosivir, UT-231B and the like; KPE-02003002 and BIVN 401 and IMPDH inhibitors. Other illustrative HCV inhibitor compounds include those disclosed in the following publications: U.S. Pat. Nos. 5,807,876; 6,498,178; 6,344,465; and 6,054,472; PCT Patent Application Publication Nos. WO97/40028; WO98/40381; WOOO/56331, WO02/04425; WO03/007945; WO03/010141; WO03/000254; WO01/32153; WO00/06529; WO00/18231; WO00/10573; WO00/13708; WO01/85172; WO03/037893; WO03/037894; WO03/037895; WO02/100851; WO02/100846; WO99/01582; WO00/09543; WO02/18369; W098/17679; W000/056331; W098/22496; WO99/07734; WO05/073216; WO05/073195 and W008/021927.

Additionally, combinations of, for example, ribavirin and interferon, may be administered as multiple combination therapy with at least one of the compounds of the invention. The present invention is not limited to the aforementioned classes or compounds and contemplates known and new compounds and combinations of biologically active agents. It is intended that combination therapies of the present invention include any chemically compatible combination of a compound of this inventive group with other compounds of the inventive group or other compounds outside of the inventive group, as long as the combination does not eliminate the anti-viral activity of the compound of this inventive group or the anti-viral activity of the pharmaceutical composition itself.
Combination therapy can be sequential, that is treatment with one agent first and then a second agent (for example, where each treatment comprises a different compound of the invention or where one treatment comprises a compound of the invention and the other comprises one or more biologically active agents) or it can be treatment with both agents at the same time (concurrently). Sequential therapy can include a reasonable time after the completion of the first therapy before beginning the second therapy. Treatment with both agents at the same time can be in the same daily dose or in separate doses. Combination therapy need not be limited to two agents and may include three or more agents. The dosages for both concurrent and sequential combination therapy will depend on absorption, distribution, metabolism and excretion rates of the components of the combination therapy as well as other factors known to one of skill in the art. Dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules may be adjusted over time according to the individual's need and the judgment of the one skilled in the art administering or supervising the administration of the combination therapy.

The application provides a method for treating a Hepatitis C Virus (HCV) infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of any one of Formula I.

The application provides the above method, further comprising administering an immune system modulator or an antiviral agent that inhibits replication of HCV, or a combination thereof.

The application provides the above method, wherein the immune system modulator is an interferon or chemically derivatized interferon.

The application provides the above methods, wherein the antiviral agent is selected from the group consisting of a HCV protease inhibitor, a HCV polymerase inhibitor, a HCV helicase inhibitor, a HCV primase inhibitor, a HCV fusion inhibitor, and a combination thereof.

EXAMPLES
Abbreviations used in this application include: acetyl (Ac), acetic acid (HO Ac), azo-bis-isobutyrylnitrile (AIBN), 1-N-hydroxybenzotriazole (HOBr), atmospheres (Atm), high pressure liquid chromatography (HPLC), 9-borabicyclo[3.3.1]nonane (9-BBN or BBN), methyl (Me), tert-butyl-methylcarbonyl (Boc), acetonitrile (MeCN), di-tert-butyl pyrocarbonate or boc anhydride (BOC₂O), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), benzoyl (Bz), benzyl (Bn), m-chloroperbenzoic acid (MCPBA), butyl (Bu), methanol (MeOH), benzyloxy carbonyl (cbz or Z), melting point (mp), carbonyl dimidazole (CDI), MeS₂O₂⁻ (mesyl or Ms), 1,4-diazabicyclo[2.2.2]octane (DABCO), mass spectrum (ms) diethylamino sulfur trifluoride (DAST), methyl t-butyl ether (MTBE), dibenzylideneacetone (DBa), N-carboxyanhydride (NCA), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), N-bromosuccinimide (NBS), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), N-methylmorpholine (NMM), N-methylpyrrolidone (NMP), 1,2-dichloroethane (DCE), pyridinium chlorochromate (PCC), N,N'-dicyclohexylcarbodiimide (DCC), pyridinium dichromate (PDC), dichloromethane (DCM), propyl (Pr), diethyldiazodicarboxylate (DEAD), phenyl (Ph), di-iso-propylazodicarboxylate (DIPEA), pyridine (pyr), di-iso-butylaluminumhydride (DIBAL-H), room temperature, rt or RT, N,N-dimethyl acetamide (DMA), tert-butylmethylsilyl or tert-BuMe₂Si (TBDMS), 4-N,N-dimethylaminopyridine (DMAP), triethylamine (Et₃N or TEA), N,N-dimethylformamide (DMF), triflate or CF₃SO₂⁻ (Ts), dimethyl sulfoxide (DMSO), trifluoro acetic acid (TFA), 1,1'-bis-(diphenylphosphino)ethane (dppe), 2,2,6,6-tetramethylheptane-2,6-dione (TMHD), 1,1'-bis-(diphenylphosphino)ferrocene (dpf), thin layer chromatography (TLC), ethyl acetate (EtOAc), tetrahydrofuran (THF), diethyl ether (Et₂O), trimethylsilyl or Me₃Si (TMS), ethyl (Et), i²-toluene sulfonic acid monohydrate (TsOH or pTsOH), lithium hexamethyl disilazane (LiHMDS), 4-μ-C₆H₄SO₂⁻ or tosyl (Ts), iso-propyl (i-Pr), N-urethane-N-carboxyanhydride (UNCA), ethanol (EtOH). Conventional nomenclature including the prefixes normal (n), iso (i-), secondary (sec-), tertiary (tert-) and neo have their customary meaning when used with an alkyl moiety. (J. Rigaudy and D. P. Klesney, *Nomenclature in Organic Chemistry*, IUPAC 1979 Pergamon Press, Oxford.)

General Conditions

Compounds of the invention can be made by a variety of methods depicted in the illustrative synthetic reactions described below in the Examples section.
The starting materials and reagents used in preparing these compounds generally are either available from commercial suppliers, such as Aldrich Chemical Co., or are prepared by methods known to those skilled in the art following procedures set forth in references such as Fieser and Fieser's *Reagents for Organic Synthesis*; Wiley & Sons: New York, 1991, Volumes 1-15; Rodd's *Chemistry of Carbon Compounds*, Elsevier Science Publishers, 1989, Volumes 1-5 and Supplemental; and *Organic Reactions*, Wiley & Sons: New York, 1991, Volumes 1-40. It should be appreciated that the synthetic reaction schemes shown in the Examples section are merely illustrative of some methods by which the compounds of the invention can be synthesized, and various modifications to these synthetic reaction schemes can be made and will be suggested to one skilled in the art having referred to the disclosure contained in this application.

The starting materials and the intermediates of the synthetic reaction schemes can be isolated and purified if desired using conventional techniques, including but not limited to, filtration, distillation, crystallization, chromatography, and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.

Unless specified to the contrary, the reactions described herein are typically conducted under an inert atmosphere at atmospheric pressure at a reaction temperature range of from about -78 °C to about 150 °C, often from about 0 °C to about 125 °C, and more often and conveniently at about room (or ambient) temperature, e.g., about 20 °C.

Various substituents on the compounds of the invention can be present in the starting compounds, added to any one of the intermediates or added after formation of the final products by known methods of substitution or conversion reactions. If the substituents themselves are reactive, then the substituents can themselves be protected according to the techniques known in the art. A variety of protecting groups are known in the art, and can be employed. Examples of many of the possible groups can be found in "Protective Groups in Organic Synthesis" by Green et al, John Wiley and Sons, 1999. For example, nitro groups can be added by nitration and the nitro group can be converted to other groups, such as amino by reduction, and halogen by diazotization of the amino group and replacement of the diazo group with halogen. Acyl groups can be added by Friedel-Crafts acylation. The acyl groups can then be transformed to the corresponding alkyl groups by various methods,
including the Wolff-Kishner reduction and Clemmenson reduction. Amino groups can be alkylated to form mono- and di-alkylamino groups; and mercapto and hydroxy groups can be alkylated to form corresponding ethers. Primary alcohols can be oxidized by oxidizing agents known in the art to form carboxylic acids or aldehydes, and secondary alcohols can be oxidized to form ketones. Thus, substitution or alteration reactions can be employed to provide a variety of substituents throughout the molecule of the starting material, intermediates, or the final product, including isolated products.

Preparative Examples

Preparation 1.

Preparation of intermediate chiral l-((2R,3R,4R,5S)-3-fluoro-4-hydroxy-5-(iodomethyl)-3-methyl-tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione

![Chemical Structure]

Chiral l-((2R,3R,4R,5S)-3-fluoro-4-hydroxy-5-hydroxymethyl-3-methyl-tetrahydrofuran-2-yl)-IH-pyrimidine-2,4-dione (6.14 g, 23.6 mmol), PP₃ (9 g, 34.4 mmol), imidazole (2.4 g, 34.4 mmol) and dry THF (100 mL) were added into a 3-neck flask bottle (500 mL), the mixture was stirred at 20 °C under nitrogen atmosphere for 20 min. Then I₂ (6.6 g, 26 mmol) dissolved in dry THF (100 mL) was added into the mixture dropwise at 20 °C during 30 min, after addition, the whole mixture was stirred at 20 °C under nitrogen atmosphere for 18 hrs. TLC showed that the SM was consumed, then water (50 mL) was added into it, the mixture was extracted by EA (150 mL×3), organic layer was washed with brine, dried over Na₂SO₄, removed solvent by reduced pressure, residue was purified by silica gel chromatography column (DCM : MeOH = 100 : 1 to 50 : 1) to afford the title compound as a white solid (8.2 g, 94%).

LC-MS (M+H)⁺ = 371.0
Preparation 2.

Preparation of intermediate chiral 1-((2R,3R,4R)-3-fluoro-4-hydroxy-3-methyl-5-methylene-tetrahydrofuran-2-yl)pyrimidine-2,4(IH,3H)-dione

M.W. 242.21 C10H11FN2O4

Chiral 1-((2R,3R,4R,5S)-3-fluoro-4-hydroxy-5-(iodomethyl)-3-methyl-tetrahydrofuran-2-yl)pyrimidine-2,4(IH,3H)-dione (8.2 g, 22 mmol) was dissolved in MeOH (100 mL) and NaOMe (3.73 g, 69 mmol) was added into it under nitrogen atmosphere, after addition, the mixture was heated to 65 °C and stirred under nitrogen atmosphere for 14 hrs, TLC showed that the SM was consumed, then the mixture cooled to r.t., IR-120 (H) ion exchange resin was added into it to adjust the pH to 8, filtered and removed solvent by reduced pressure, the crude product was purified by silica gel chromatography column (DCM : MeOH = 15 : 1) to afford the title compound as a white solid (3.3 g, 59%).

LC-MS (M+H)+ = 243.1

Preparation 3.

Preparation of intermediate chiral benzoic acid (3R,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-fluoro-4-methyl-2-methylene-tetrahydro-furan-3-yl ester

M.W. 346.32 C17H15FN2O5
To a mixture of chiral l-((2R,3R,4R)-3-fluoro-4-hydroxy-3-methyl-5-methylene-
tetrahydrofuran -2-yl)pyrimidine-2,4(lH,3H)-dione (18.3 g, 75.6 mmol) and DMAP (27.7 g, 227 mmol) in anhydrous THF (900 mL) at 0 °C was added BzCl (15.9 g, 113.4 mmol) dropwise. The reaction mixture was stirred at 0 °C for 0.5 h, then sat. NaHCO₃ was added to quench the reaction. The mixture was extracted with EA (300 mL×3). The combined organic extract was washed with H₂O, brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography column (DCM : MeOH = 160 : 1 to 120 : 1) to give the title compound as a white solid (17 g, 65%).

LC-MS (M+H)⁺ = 347.1

Preparation 4.

Preparation of intermediate chiral (2R,3S,4R,5R)-5-(2,4-dioxo-3,4-
dihydropyrimidin-1(2H)-yl)-2,4-difluor-0-2-(iodomethyl)-4-methyl-tetrahydrofuran-3-
yl benzoate

![Chemical Structure]

M.W. 492.22 Ci₇H₁₅F₂IN₂O₅

To a mixture of chiral benzoic acid (3R,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-
pyrimidin-1-yl)-4-fluoro-4-methyl-2-methylene-tetrahydro-furan-3-yl ester (17 g, 49 mmol) and AgF (31 g, 245 mmol) in anhydrous THF (600 mL) at 0 °C was added a THF solution (600 mL) of I₂ (24.8 g, 98 mmol) dropwise. After the addition was completed, the reaction mixture was warmed to room temperature and stirred for 3 h. TLC analysis indicated that the starting material was completely consumed and the formation of the desired product. The reaction was quenched by aqueous Na₂S₂O₃ solution (5%, 300 mL). The mixture was extracted by EA (350 mL×3). The combined organic extract was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel chromatography column (DCM : MeOH = 120 : 1) to give the title compound as a white solid (11 g, 45%).
Preparation 5.

Preparation of intermediate chiral (2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,4-difluoro-0-2-benzoylmethyl-4-methyl-tetrahydrofuran-3-yl benzoate

Chiral (2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,4-difluoro-0-2-(iodomethyl)-4-methyl-tetrahydrofuran-3-yl benzoate (0.56 g, 1.15 mmol), sodium benzoate (0.825 g, 5.73 mmol) and 18-crown-6 (0.03 g, 0.115 mmol) were suspended in DMSO (20 mL), the solution was heated to 100 °C and stirred under nitrogen atmosphere for 18 h, then cooled to r.t., water (30 mL) was added into it, the mixture was extracted by EA (30 mL×3), the organic layer was washed with H₂O, brine and H₂O, removed solvent by reduced pressure, the residue was purified by silica gel column chromatography (PE : EA = 1 : 2) to afford the title compound as a colorless oil (0.34 g, 61%).

LC-MS (M+Na)⁺ = 509.1

Preparation 6.

Preparation of intermediate chiral l-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-(hydroxymethyl)-3-methyl-tetrahydrofuran-2-yl)pyrimidine-2,4(lH,3H)-dione
Chiral (2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,4-difluor-0-2-benzoylmethyl-4-methyl-tetrahydrofuran-3-yl benzoate (0.34 g, 0.7 mmol) was dissolved into methanol, and a solution of ammonia in methanol (7 N, 20 mL) was added. The reaction mixture was stirred at room temperature for overnight. The mixture was concentrated, and the residue was purified by silica gel column chromatography (DCM : MeOH = 20 : 1) and pre-HPLC to afford the title compound as a white solid (0.074 g, 38%).

Preparation 7.

Preparation of intermediate chiral 5-bromo-1-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-hydroxymethyl-3-methyl-tetrahydro-furan-2-yl)-IH-pyrimidine-2,4-dione

In a 2 mL microwave vial, chiral 1-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-(hydroxymethyl)-3-methyl-ter tetrahydrofuran-2-yl)pyrimidine-2,4(IH,3H)-dione (70 mg, 0.252 mmol), and NBS (67.2 mg, 0.377 mmol), were dissolved in DMF (0.7 ml). The mixture was capped and heated under microwave irradiation at 80°C for 10 min. LC/MS
analysis indicated the starting material was completely consumed and the formation of the desired production as the only major product. The solvent was evaporated, and the residue was purified by a 2x4g silica gel cartridge, eluted with 0-70% EtOAc in hexanes to provide the title compound as a white solid (94 mg, 90%)

\[\text{MS (M)}^+ = 358; \text{H NMR (300 MHz, CD}_3\text{OD): 5(ppm) 8.41 (s, 1H), 6.40-6.35 (d, 1H), 4.28-4.18 (m, 1H), 3.80-3.76 (d, 2H), 1.45-1.37 (d, 3H)} \]

Example 1.

Preparation of (S)-2-[[2S,3S,4R,5R]-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino]-propionic acid isopropyl ester

![Chemical Structure](image)

I-1

M.W. 547.45 C22H28F2N3O9P

Step A.

(S)-isopropyl 2-aminopropanoate hydrochloride (Oakwood, 500 mg, 2.98 mmol) and phenyl phosphorodichloridate (Aldrich, 662 mg, 2.98 mmol) was suspended in anhydrous DCM (25 mL). The reaction was cooled to -78 oC. Triethylamine (604 mg, 830 µl, 5.97 mmol) was added dropwise. The reaction mixture was stirred at -78 oC for 1 h, then allowed to warmed up to room temperature and stirred for overnight. The solvent was removed, the residue was washed with dry ether. The filtrate was concentrated to give crude (2S)-isopropyl 2-(chloro(phenoxy)phosphorylamino)propanoate as a light yellow oil (0.8 g, 88%) and used without further purification.

Step B.

To a solution of chiral l-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-(hydroxymethyl)-3-methyltetrahydrofuran-2-yl)pyrimidine-2,4(lH,3H)-dione (42 mg, 151 µmol) prepared in
Preparation 6 in THF (8.00 ml) was added a THF solution (Aldrich, 1 M) of tert-butylmagnesium chloride (377 µl, 377 µmol) dropwise. The mixture was stirred at room temperature for 15 min. followed by the addition of THF solution (0.5 M) of (2S)-isopropyl 2-(chloro(phenoxy)phosphorylamino)propanoate (755 µl, 377 µmol). The reaction mixture was stirred at room temperature for 1 hr, followed by the addition of THF solution (Aldrich, 1 M) of tert-butylmagnesium chloride (189 µl, 189 µmol) and THF solution (0.5 M) of (2S)-isopropyl 2-(chloro(phenoxy)phosphorylamino)propanoate (378 µl, 189 µmol). The reaction mixture was then stirred at room temperature for 2 h. Methanol (2 mL) was added to quench the reaction. The mixture was purified by flash chromatography (silica gel, 0-15% MeOH in DCM) and dried in vacuo to give the title compound as a light-yellow solid (18 mg, 22%).

LC-MS (M+H)+ = 548.1

Example 2

Preparation of (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy)-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

Step A.

Naphthalen-1-ol (Aldrich, 1.5 g, 10.4 mmol) and phosphorus(V) oxychloride (Aldrich, 1.6 g, 0.97 ml, 10.4 mmol) were suspended in anhydrous ether (37.5 mL), and the temperature was cooled to -78 °C. Triethylamine (1.05 g, 1.45 ml, 10.4 mmol) was added dropwise and the reaction mixture was stirred at -78 °C for 1 h. The reaction mixture was warmed up to room temperature and stirred for overnight. The mixture was filtered, and the filtrate was concentrated to give crude naphthalen-1-yl phosphorodichloridate as a light yellow oil (2 g, 74%) and used for the next step without further purification.
Step B.

(S)-isopropyl 2-aminopropanoate hydrochloride (Oakwood, 1.28 g, 7.64 mmol) and
naphthalen-1-yl phosphorodichloridate (2 g, 7.66 mmol) was suspended in anhydrous DCM
(35 mL). The reaction was cooled to -78 °C. Triethylamine (1.55 g, 2.13 mL, 15.3 mmol)
was added dropwise. The reaction mixture was stirred at -78 °C for 1 h, then warmed up to
room temperature and stirred for 5 h. The solvent was removed, and the residue was washed
with dry ethyl ether and filtered. The filtrate was concentrated to give crude (2S)-isopropyl
2-(chloro(naphthalen-1-yloxy)phosphorylamino)propanoate as a light yellow oil (2.5 g, 92%)
and used without further purification.

Step C.

To a solution of chiral l-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-(hydroxymethyl)-3-
methyltetrahydrofuran-2-yl)pyrimidine-2,4(lH,3H)-dione (150 mg, 539 µmol) prepared in
Preparation 6 in THF (24 ml) was added a THF solution (Aldrich, 1 M) of tert-
butylmagnesium chloride (1.35 mL, 1.35 mmol) dropwise. The mixture was stirred at room
temperature for 15 min, followed by the addition of THF solution (0.5 M) of (2S)-isopropyl
2-(chloro(naphthalen-1-yloxy)phosphorylamino)propanoate (2.7 mL, 1.35 mmol). The
reaction mixture was stirred at room temperature for 1 h, then additional THF solution
(Aldrich, 1 M) of tert-butylmagnesium chloride (0.68 mL, 0.68 mmol) and THF solution (0.5
M) of (2S)-isopropyl 2-(chloro(naphthalen-1-yloxy)phosphorylamino)propanoate (1.35 mL,
0.68 mmol) were added. The reaction mixture was then stirred at room temperature for 3 h.
Methanol (6 mL) was added to quench the reaction, The mixture was purified by flash
chromatography (silica gel, 0-15% MeOH in DCM) and dried in vacuo to give the title
compound as a white solid (0.2 g, 62%).

LC-MS (M-H)+ = 596.0

Example 3

Preparation of (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-
2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxyl-(naphthalen-2-yl-oxy)-
phosphorylamino]-propionic acid isopropyl ester
Step A.
Naphthalen-2-ol (Aldrich, 2 g, 13.9 mmol) and phosphorus(V) oxychloride (Aldrich, 2.13 g, 1.29 ml, 13.9 mmol) were suspended in anhydrous ether (50 mL), and the temperature was cooled to -78 °C. Triethylamine (1.4 g, 1.93 ml, 13.9 mmol) was added dropwise and the reaction mixture was stirred at -78 °C for 1 h. The reaction mixture was warmed up to room temperature and stirred for overnight. The mixture was filtered, and the filtrate was concentrated to give crude naphthalen-2-yl phosphorodichloridate as a light yellow oil (2.5 g, 69%) and used for the next step without further purification.

Step B.
(S)-isopropyl 2-aminopropanoate hydrochloride (Oakwood, 500 mg, 2.98 mmol) and naphthalen-2-yl phosphorodichloridate (724 mg, 2.98 mmol) was suspended in anhydrous DCM (25 mL). The reaction was cooled to -78 °C. Triethylamine (604 mg, 830 µl, 5.97 mmol) was added dropwise. The reaction mixture was stirred at -78 °C for 1 h, then allowed to warmed up to room temperature and stirred for 5 h. The solvent was removed, and the residue was washed with dry ethyl ether and filtered. The filtrate was concentrated to give crude (2S)-isopropyl 2-(chloro(naphthalen-2-yloxy)phosphorylamino)propanoate as a light yellow oil (0.8 g, 75%) and used without further purification.

Step C.
To a solution of chiral 1-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-(hydroxymethyl)-3-methyltetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (60 mg, 216 µmol) prepared in
Preparation 6 in THF (8 ml) was added a THF solution (Aldrich, 1 M) of tert-butylmagnesium chloride (539 µl, 539 µmol) dropwise. The mixture was stirred at room temperature for 15 min. followed by the addition of THF solution (0.5 M) of (2S)-isopropyl 2-(chloro(naphthalen-2-yloxy)phosphorylamino)propanoate (1.08 mL, 539 µmol). The reaction mixture was stirred at room temperature for 1 h, then additional THF solution (Aldrich, 1 M) of tert-butylmagnesium chloride (270 µl, 270 µmol) and THF solution (0.5 M) of (2S)-isopropyl 2-(chloro(naphthalen-2-yloxy)phosphorylamino)propanoate (0.54 mL, 270 µmol) were added. The reaction mixture was then stirred at room temperature for 18 h. Methanol (2 mL) was added to quench the reaction, The mixture was purified by flash chromatography (silica gel, 1-18% MeOH in DCM) and dried in vacuo to give the title compound as a white solid (75 mg, 58%).

LC-MS (M-H)^+ = 596.1

Example 4

Preparation of (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-[(S)-l-isopropoxycarbonyl-ethylamino)-(naphthalen-2-yloxy)-phosphoryloxy]-4-methyl-tetrahydro-furan-2-ylmethoxy]-[(naphthalen-2-yloxy)-phosphorylamino]-propionicacid isopropyl ester

In the method described for the preparation of (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-[(naphthalen-2-yloxy)-phosphorylamino]-propionicacid isopropyl ester in
Example 3 Step C, (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-[(S)-l-isopropoxycarbonyl-ethylamino)-(naphthalen-2-yloxy)-phosphoryl oxy]-4-methyl-tetrahydro-iuran-2-ylm ethoxy]-{(naphthalen-2-yl)-phosphorylamino]-propionicacid isopropyl ester was obtained as the second product: white solid, 8 mg (4%).

LC-MS (M+H)^+ = 917.2

Example 5
Preparation of (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-4-methyl-3-propionyloxy-tetrahydro-furan-2-ylmethoxy]-{(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

To a solution of (S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylm ethoxy]-{(naphthalen-1-yloxy)-phosphorylamino]-propionicacid isopropyl ester prepared in Example 2 (86 mg, 144 \(\mu \)mol) in THF (10 mL) were added propionyl chloride (66.6 mg, 720 \(\mu \)mol) and DMAP (87.9 mg, 720 \(\mu \)mol). The reaction mixture was stirred at room temperature for 5 h. The mixture was diluted with ethyl acetate, washed with water, brine. The organic layer was separated, dried over MgSO\(_4\), and concentrated. The residue was purified by flash chromatography (silica gel, 40 g, 0-15% MeOH in DCM) to give the title compound as white solid (45 mg, 48%).

LC-MS (M-H)^+ = 652.1

Example 6
Preparation of chiral (S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-{(naphthalen-2-yloxy)-phosphorylamino]-propionicacid isopropyl ester
(S)-2-[[2S,3S,4R,5R]-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy](naphthalen-2-yl oxy)-phosphorylamino]-propionic acid isopropyl ester prepared in Example 3 (50 mg) was separated by chiral SFC chromatography to provide chiral (S)-2-[[2S,3S,4R,5R]-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-2-yl oxy)-phosphorylamino]-propionic acid isopropyl ester as a white solid (27 mg, 54%)

LC-MS (M-H)^+ = 596.1

Example 7

Preparation of chiral (S)-2-[[R]-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-2-yl oxy)-phosphorylamino]-propionic acid isopropyl ester
(S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-ylxylo)-phosphorylamino]-propionic acid isopropyl ester prepared in Example 3 (50 mg) was separated by chiral SFC chromatography to provide chiral (S)-2-[(R)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-2-ylxylo)-phosphorylamino]-propionic acid isopropyl ester as a white solid (12 mg, 24%).

LC-MS (M-H)^+ = 596.1

Example 8

Preparation of chiral (S)-2-[(R)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-1-ylxylo)-phosphorylamino]-propionic acid isopropyl ester

![Chemical Structure]

M.W. 597.51 C26H30F2N3O9P

(S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-ylxylo)-phosphorylamino]-propionic acid isopropyl ester prepared in Example 2 (100 mg) was separated by chiral SFC chromatography to provide chiral (S)-2-[(R)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-1-ylxylo)-phosphorylamino]-propionic acid isopropyl ester as a white solid (24 mg, 24%).

LC-MS (M-H)^+ = 596.1

Example 9
Preparation of chiral (S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester

M.W. 597.51 C26H30F2N3O9P

(S)-2-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester prepared in Example 2 (100 mg) was separated by chiral SFC chromatography to provide chiral (S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- (naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester as a white solid (53 mg, 53%)

LC-MS (M-H)+ = 596.1

Example 10

Preparation of chiral (S)-2-[(S)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]- phenoxy-phosphorylamino]-propionic acid isopropyl ester
(S)-2-\{[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-l-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino\} -propionic acid isopropyl ester prepared in Example 1 (0.18 g) was separated by chiral SFC chromatography to provide chiral (S)-2-{(S)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-l-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino} -propionic acid isopropyl ester as a white solid (60 mg, 33%).

LC-MS (M+H)⁺ = 548.0

Example 11
Preparation of chiral (S)-2-{(R)-[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-l-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino}-propionic acid isopropyl ester

LC-MS (M+H)⁺ = 548.0

Example 12
Preparation of chiral (S)-2-\{(S)-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-l-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino\} -propionic acid isopropyl ester prepared in Example 1 (0.18 g) was separated by chiral SFC chromatography to provide chiral (S)-2-{(S)-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-l-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phenoxy-phosphorylamino} -propionic acid isopropyl ester as a white solid (28 mg, 16%).
2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-
naphthalen-1-yl)phosphorylamino]-propionic acid isopropyl ester

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{P} \\
\text{H} & \quad \text{F} \\
\text{F} & \\
\text{HO} & \\
\text{F} & \\
\end{align*}
\]

1-12

M.W. 676.41 C\text{26}H\text{39}Br\text{2}N\text{3}O\text{7}P

Step A.

To a solution of chiral 5-bromo-1-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-
hydroxymethyl-3-methyl-tetrahydro-iuran-2-yl)-IH-pyrimidine-2,4-dione (50 mg, 0.14
mmol) prepared in Preparation 7 in THF (3 ml) at 0 °C was added a THF solution (Aldrich,
1 M) of \text{t}-butylmagnesium chloride (0.35 mL, 0.35 mmol) dropwise. The mixture was
stirred at 0 °C for 15 min, followed by the addition of THF solution (0.5 M) of \text{2S}-
isopropyl 2-(chloro(naphthalen-1-yl)oxyphosphorylamino)propanoate prepared in Example
2 Step B (0.7 mL, 0.35 mmol). The reaction mixture was warmed to room temperature and
stirred for 2 h. Methanol (2 mL) was added to quench the reaction. The mixture was purified
by flash chromatography (5-10% MeOH in DCM) to give (S)-2-[[2S,3R,4R,5R]-5-(5-
bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-
tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yl)oxy]-phosphorylamino]-propionic acid
isopropyl ester as a white solid (50 mg, 52%).

Step B.

(S)-2-[[2S,3R,4R,5R]-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-
difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-
phosphorylamino]-propionic acid isopropyl ester (50 mg) was separated by chiral SFC
cromatography to provide chiral (S)-2-[[2S,3R,4R,5R]-5-(5-bromo-2,4-dioxo-3,4-
dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-
ylmethoxy]-(naphthalen-1-ylxyoxy)-phosphorylamino]-propionic acid isopropyl ester as a
white solid (11 mg, 22%).
Example 13

Preparation of chiral (S)-2-[(S)-{(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester

M.W. 676.41 C_{26}H_{39}Br_{2}N_{5}O_{9}P

(S)-2-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester prepared in Example 16 (50 mg) was separated by chiral SFC chromatography to provide chiral (S)-2-[(S)-{(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester as a white solid (27 mg, 54%).

LC-MS (M)^+ = 676.0

Example 14

Preparation of chiral (S)-2-[(R)-{(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester
During the separation of (S)-2-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phosphorylamino]-propionic acid isopropyl ester (50 mg) by chiral SFC chromatography in Example 12 Step B, chiral (S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phosphorylamino]-propionic acid isopropyl ester was obtained as the second product: white solid (8 mg, 16%).

LC-MS (M)^+ = 676.0

Example 15

Preparation of chiral (S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-phosphorylamino]-propionic acid isopropyl ester

During the separation of (S)-2-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-
(naphthalen-2-yloxy)-phosphorylamino)-propionic acid isopropyl ester prepared in **Example 16** (50 mg) by chiral SFC chromatography, chiral (S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester was obtained as the second product: white solid (16 mg, 32%).

LC-MS (M)⁺ = 675.9

Example 16

Preparation of chiral (S)-2-[[2S,3S,4R,5R]-5-(5-bromo-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino] -propionic acid isopropyl ester

![Chemical structure](image)

M.W. 676.41 C_{26}H_{36}Br_{2}N_{2}O_{9}P

To a solution of chiral 5-bromo-l-((2R,3R,4S,5S)-3,5-difluoro-4-hydroxy-5-hydroxymethyl-3-methyl-tetrahydro-furan-2-yl)-1H-pyrimidine-2,4-dione (92 mg, 0.26 mmol) prepared in **Preparation 7** in THF (3 ml) at 0 °C was added a THF solution (Aldrich, 1 M) of tert-butylmagnesium chloride (0.64 mL, 0.64 mmol) dropwise. The mixture was stirred at 0 °C for 15 min, followed by the addition of THF solution (0.5 M) of (2S)-isopropyl 2-(chloro(naphthalen-2-yloxy)phosphorylamino)propanoate prepared in **Example 3 Step B** (1.29 mL, 0.64 mmol). The reaction mixture was warmed to room temperature and stirred for 2 h. Methanol (2 mL) was added to quench the reaction. The mixture was purified by flash chromatography (5-10% MeOH in DCM) to give the title compound as a white solid (56 mg, 32%).

LC-MS (M)⁺ = 676.0

Biological Examples

HCV Replicon Assay

This assay measures the ability of the compounds of formula I to inhibit HCV RNA replication, and therefore their potential utility for the treatment of HCV infections. The assay utilizes a reporter as a simple readout for intracellular HCV replicon RNA level. The *Renilla luciferase* gene was introduced into the first open reading frame of a genotype 1b replicon construct NK5.1 (N. Krieger *et al.*, *J. Virol.* **2001** 75(10):4614), immediately after the internal ribosome entry site (IRES) sequence, and fused with the neomycin phosphotransferase (NPTII) gene via a self-cleavage peptide 2A from foot and mouth disease virus (M.D. Ryan & J. Drew, *EMBO* **1994** 13(4):928-933). After in vitro transcription the RNA was electroporated into human hepatoma Huh7 cells, and G418-resistant colonies were isolated and expanded. Stably selected cell line 2209-23 contains replicative HCV subgenomic RNA, and the activity of *Renilla luciferase* expressed by the replicon reflects its RNA level in the cells. The assay was carried out in duplicate plates, one in opaque white and one in transparent, in order to measure the anti-viral activity and cytotoxicity of a chemical compound in parallel ensuring the observed activity is not due to decreased cell proliferation or due to cell death.

HCV replicon cells (2209-23), which express *Renilla luciferase* reporter, were cultured in Dulbecco's MEM (Invitrogen cat no. 10569-010) with 5% fetal bovine serum (FBS, Invitrogen cat. no. 10082-147) and plated onto a 96-well plate at 5000 cells per well, and incubated overnight. Twenty-four hours later, different dilutions of chemical compounds in the growth medium were added to the cells, which were then further incubated at 37°C for three days. At the end of the incubation time, the cells in white plates were harvested and luciferase activity was measured by using the *R. luciferase* Assay system (Promega cat no. E2820). All the reagents described in the following paragraph were included in the manufacturer's kit, and the manufacturer's instructions were followed for preparations of the reagents. The cells were washed once with 100 µL of phosphate buffered saline (pH 7.0) (PBS) per well and lysed with 20 µL of 1x *R. luciferase* Assay lysis buffer prior to incubation at room temperature for 20 min. The plate was then inserted into the Centro LB 960 microplate luminometer (Berthold Technologies), and 100 µL of *R. luciferase* Assay buffer was injected into each well and the signal measured using a 2-second delay, 2-second
measurement program. IC50, the concentration of the drug required for reducing replicon level by 50% in relation to the untreated cell control value, can be calculated from the plot of percentage reduction of the luciferase activity vs. drug concentration as described above.

WST-1 reagent from Roche Diagnostic (cat no. 1644807) was used for the cytotoxicity assay. Ten microliter of WST-1 reagent was added to each well of the transparent plates including wells that contain media alone as blanks. Cells were then incubated for 2 h at 37°C, and the OD value was measured using the MRX Revelation microtiter plate reader (Lab System) at 450 nm (reference filter at 650 nm). Again CC50, the concentration of the drug required for reducing cell proliferation by 50% in relation to the untreated cell control value, can be calculated from the plot of percentage reduction of the WST-1 value vs. drug concentration as described above.

Representative biological data is shown below in Table II.

<table>
<thead>
<tr>
<th>Compound</th>
<th>HCV Replicon IC50 (uM)</th>
<th>WST-1 Cytotoxicity CC50 (uM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>0.424</td>
<td>>100</td>
</tr>
<tr>
<td>I-2</td>
<td>0.1149</td>
<td>>100</td>
</tr>
<tr>
<td>I-3</td>
<td>0.15768</td>
<td>>100</td>
</tr>
<tr>
<td>I-4</td>
<td>7.19</td>
<td>>100</td>
</tr>
<tr>
<td>I-5</td>
<td>0.1515</td>
<td>67.8</td>
</tr>
<tr>
<td>I-6</td>
<td>0.05374</td>
<td>>100</td>
</tr>
<tr>
<td>I-7</td>
<td>0.20155</td>
<td>>100</td>
</tr>
<tr>
<td>I-8</td>
<td>1.02945</td>
<td>>100</td>
</tr>
<tr>
<td>I-9</td>
<td>0.06016</td>
<td>>100</td>
</tr>
<tr>
<td>I-10</td>
<td>0.17082</td>
<td>>100</td>
</tr>
<tr>
<td>I-11</td>
<td>1.30888</td>
<td>95.6</td>
</tr>
<tr>
<td>I-12</td>
<td>17.365</td>
<td>34.8</td>
</tr>
<tr>
<td>I-13</td>
<td>38.465</td>
<td>>100</td>
</tr>
<tr>
<td>I-14</td>
<td>9.641</td>
<td>50.8</td>
</tr>
<tr>
<td>I-15</td>
<td>13.175</td>
<td>38.5</td>
</tr>
<tr>
<td>I-16</td>
<td>77.61</td>
<td>>100</td>
</tr>
</tbody>
</table>

It will be understood that references herein to treatment extend to prophylaxis as well as to the treatment of existing conditions, and that the treatment of animals includes the treatment of humans as well as other mammals. Furthermore, treatment of an Hepatitis C Virus (HCV) infection, as used herein, also includes treatment or prophylaxis of a disease or
a condition associated with or mediated by Hepatitis C Virus (HCV) infection, or the clinical symptoms thereof.

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilized for realizing the invention in diverse forms thereof.

The foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity and understanding. It will be obvious to one of skill in the art that changes and modifications may be practiced within the scope of the appended claims. Therefore, it is to be understood that the above description is intended to be illustrative and not restrictive. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the following appended claims, along with the full scope of equivalents to which such claims are entitled.

All patents, patent applications and publications cited in this application are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual patent, patent application or publication were so individually denoted.
Claims

A compound of formula I

\[
\begin{align*}
R^1 & \text{ is } H, \text{ lower haloalkyl, or aryl, wherein aryl is phenyl or naphthyl, optionally substituted with one or more lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy, halo, lower haloalkyl, } -N(R^{1a})_2, \text{ acylamino, } -S0_2N(R^{1a})_2, \text{ -COR}^{1b}, \text{ -SO}_2(R^{1c}), \text{ -NHSO}_2(R^{1c}), \text{ nitro or cyano;}
\end{align*}
\]

- each \(R^{1a}\) is independently \(H\) or lower alkyl;
- each \(R^{1b}\) is independently \(-OR^{1a}\) or \(-N(R^{1a})_2\);
- each \(R^{1c}\) is lower alkyl;

\(R^{2a}\) and \(R^{2b}\) are (i) independently \(H\), lower alkyl, \(-(CH_2)_nN(R^{1a})_2\), lower hydroxyalkyl, \(-CH_2SH, -(CH_2)_nS(0)_pMe, -(CH_2)_nNHC(=NH)NH_2, (1H-indol-3-yl)methyl, (1H-indol-4-yl)methyl, -(CH_2)_mC(=0)R^{1b}\), aryl and aryl lower alkyl, wherein aryl may optionally be substituted with one or more hydroxy, lower alkyl, lower alkoxy, halo, nitro or cyano; (ii) \(R^{2a}\) is \(H\) and \(R^{2b}\) and \(R^4\) together form \((CH_2)_3\); (Hi) \(R^{2a}\) and \(R^{2b}\) together form \((CH_2)_n\); or, (iv) \(R^{2a}\) and \(R^{2b}\) both are lower alkyl;

\(R^3\) is \(H\), lower alkyl, lower haloalkyl, phenyl or phenyl lower alkyl;

\(R^4\) is \(H\), lower alkyl, or \(R^{2b}\) and \(R^4\) together form \((CH_2)_3\);

\(R^5\) is \(H\), \(C(=0)R^{1c}, C(=0)R^{1b}, P(=0)(OR)^1(NR^{1a}), \) or \(P(=0)(OR)^1(NR^4R^7)\);

\(R^6\) is \(H\), methyl, or halo;

\(R^7\) is \(C(R^{2a}R^{2b})\) COOR^3

\(m\) is 0 to 3;

\(n\) is 4 or 5;
2. The compound of claim 1, wherein R^4 is H.

3. The compound of claim 2, wherein R^6 is H or Br.

4. The compound of claim 3, wherein R^1 is naphthyl or phenyl.

5. The compound of claim 4, wherein R^{2a} is H.

6. The compound of claim 5, wherein R^{2b} is methyl.

7. The compound of claim 6, wherein R^3 is isopropyl.

8. The compound of claim 7, wherein R^5 is H.

9. The compound of claim 7, wherein R^5 is $C(=0)R^{1e}$

10. The compound of claim 9, wherein R^{1e} is ethyl.

11. The compound of claim 7, wherein R^5 is $P(=0)(OR^1)(NR^4R^7)$.

12. The compound of claim 11, wherein R^1 is naphthyl.

13. The compound of claim 12, wherein R^4 is H and is R^7 is $CH(CH_3)C(=0)OCH(CH_3)_2$.

14. A compound selected from the group consisting of:

(S)-2-{{(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2 H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy}-phenoxy-phosphorylamino} -propionic acid isopropyl ester;
(S)-24[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yl)-phosphorylamino]-propionic acid isopropyl ester;
(S)-24[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yl)-phosphorylamino]-propionic acid isopropyl ester;
(S)-24[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yl)-phosphorylamino]-propionic acid isopropyl ester;
(S)-24[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yl)-phosphorylamino]-propionic acid isopropyl ester;
(S)-24[(2S,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-methyl-3-propionyloxy-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yl)-phosphorylamino]-propionic acid isopropyl ester;
(S)-24[(2S,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yl)-phosphorylamino]-propionic acid isopropyl ester;
phosphorylamino]-propionic acid isopropyl ester;
(S)-2-[(S)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2 H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester;
(S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2 H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-1-yloxy)-phosphorylamino]-propionic acid isopropyl ester;
(S)-2-[(R)-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2 H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester; and
(S)-2-[(2S,3S,4R,5R)-5-(5-Bromo-2,4-dioxo-3,4-dihydro-2 H-pyrimidin-1-yl)-2,4-difluoro-3-hydroxy-4-methyl-tetrahydro-furan-2-ylmethoxy]-(naphthalen-2-yloxy)-phosphorylamino]-propionic acid isopropyl ester.

15. A compound according to any one of claims 1 to 14 for use as therapeutically active substance.

16. A pharmaceutical composition comprising a compound in accordance with any one of claims 1 to 14 and a therapeutically inert carrier.

17. The use of a compound according to any one of claims 1 to 14 for the treatment or prophylaxis of Hepatitis C Virus (HCV) infection.

18. The use of a compound according to any one of claims 1 to 14 for the preparation of a medicament for the treatment or prophylaxis of Hepatitis C Virus (HCV) infection.

19. A compound according to any one of claims 1 to 14 for the treatment or prophylaxis of Hepatitis C Virus (HCV) infection.

20. A method for treating a Hepatitis C Virus (HCV) infection comprising administering to a patient in need thereof a therapeutically effective amount of a compound of any one of claims 1-14.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07H19/06 A61K31/7072 A61P31/14

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07H A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2010/016251 Al (M.J. SOFIA, ET AL.) 21 January 2010 (2010-01-21) claims 1, 3, 5; examples 15, 25, 27, 28, 36, 39, 53, 54</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>M.J. SOFIA, ET AL.: "Discovery of a beta-D-2 '-deoxy-2 '-al pha-f 1uoro-2 '-beta-C-methyl uridine nucleotides de prodrug (PSI-7977) for the treatment of hepatitis C virus", JOURNAL OF MEDICINAL CHEMISTRY, vol. 53, no. 19, 16 September 2010 (2010-09-16), pages 7202-7218, XP055004442, American Chemical Society, Washington, DC, US ISSN: 0022-2623, DOI: 10.1021/jm100863x cited in the application on tables 1-5; compounds 12-49</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document(s) which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search: 11 April 2013

Date of mailing of the international search report: 18/04/2013

Name and mailing address of the ISA/Authorized officer

European Patent Office, P.B. 5818 Examini12
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

English, Russian
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2010016251 Al</td>
<td>21-01-2010</td>
<td>AR 066898 Al</td>
<td>23-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008232827 Al</td>
<td>09-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2682230 Al</td>
<td>09-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101918425 A</td>
<td>15-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6260023 A2</td>
<td>22-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2203462 A2</td>
<td>07-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 201239 A</td>
<td>24-03-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010532747 A</td>
<td>14-10-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012121903 A</td>
<td>28-06-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100016041 A</td>
<td>12-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120034801 A</td>
<td>12-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 579880 A</td>
<td>25-05-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 179445 Al</td>
<td>27-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200904453 A</td>
<td>01-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010016251 Al</td>
<td>21-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011257122 Al</td>
<td>20-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013029929 Al</td>
<td>31-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2008121634 A2</td>
<td>09-10-2008</td>
</tr>
</tbody>
</table>