United States Patent

Kirby et al.

[15] **3,663,208**

[45] May 16, 1972

[54]		HUM-NICKEL ALLOY STEEL INING COPPER	2,880,085 3,152,934	3/1959 10/1964	Kirkby		
[72]	[2] Inventors: Henry William Kirby; Arthur Hogg, both of Sheffield, England		FC	DREIGN PA	ATENTS OR APPLICATIONS		
			212,628	1/1958	Australia75/128 G		
[73]	Assignee:	Firth Brown Limited, Sheffield, England	D.:				
[22]] Filed: June 19, 1969		Primary Examiner—Hyland Bizot Attorney—Buell, Blenko & Zeisenheim				
[21]	Appl. No.:	834,878					
[30] [52] [51] [58]	June 20, 19 U.S. Cl Int. Cl	eign Application Priority Data 968 Great Britain	compressor tially of: 0.0 0.1-1.5 pe 0.2-4.0 pr 0.10-0.60 pr to 7.0 percepercent bor	and turbing 2-0.25 percent man percent nice percent varient cobalt, ron, at leas	ABSTRACT the temperature applications, such as formed discs in gas turbines consists essentrated carbon, 0.05–1.5 percent silicon, inganese, 7.0–12.0 percent chromium, ekel, 0.2–5.0 percent molybdenum, addium, 0.05–0.70 percent molybdenum, up up to 5.0 percent copper, 0.002–0.03 to 0.010 percent but less than 0.050 perlance, apart from incidental impurities		
	U	NITED STATES PATENTS		12	Claims, No Drawings		
2,793	,113 5/19	57 Rait75/128 V					

A CHROMIUM-NICKEL ALLOY STEEL CONTAINING COPPER

BACKGROUND OF THE INVENTION

This invention concerns improvements in or relating to alloy steels for high temperature applications, and in particular to alloy steels suitable for use in the fabrication of compressor and turbine discs in gas turbines and in similar applications.

SUMMARY OF THE INVENTION

According to the present invention there are provided alloy steels having the following percentage weight composition:

In cases where optimum creep resistance is required combined with high proof, plain and notched tensile strength, compositions in the following ranges, in percentages by 30 weight, are preferred:

Carbon	0.03 - 0.10
Silicon	0.10 - 0.80
Manganese	0.50 – 1.0
Chromium	9.0 - 11.0
Nickel	0.2 - 1.0
Molybdenum	1.5 - 3.0
Vanadium	0.2 - 0.5
Niobium	0.3 - 0.6
Cobalt	3.0 - 5.0
Copper	1.0 - 3.0
Boron	0.005 - 0.020
Nitrogen	at least 0.010 but less than
· ·	0.050 the balance being iron
	and incidental impurities.

DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) 45

Typical examples of such a composition are as follows:

	Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5
С	0.05	0.07	0.06	0.07	0.04
Si	0.45	0.50	0.45	0.40	0.20
Mn	0.80	0.80	0.85	0.90	0.75
Cr	10.5	9.0	10.7	10.5	10.1
Ni	0.5	0.4	0.4	0.5	0.3
Mo	1.5	1.5	1.6	1.6	1.5
V	0.22	0.20	0.21	0.21	0.22
Nb	0.45	0.60	0.46	0.46	0.48
Co	4.0	4.0	4.2	4.2	4.2
Cu	2.0	1.35	1.8	2.9	2.0
В	0.010	0.010	0.010	0.012	0.009
N ₂	0.025	0.020	0.025	0.012	0.031

Iron and incidental impurities: Balance

Following are the results which have been obtained as a result of the application of the standard tests to alloy steels of 65 such composition:

	(1) Tensile tests					
• • • • • • • • • • • • • • • • • • •	Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5	=0
(a) Room temperature: 0.1% proof stress (tons/sq.					-	70
in.) Ultimate tensile strength	66	64	. 66	67	63	
(tons/sq. in.)	77	74	78	. 77	76	
Percentage elongation	20	16	17	14	16	
Reduction of area (percent) N.T.S. (tons/sq. in.)	60 127	54 118	62 127	59 131	67 110	75

		(1) Tensile tests				
		Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex.
5	(b) 500° C.: 0.1% proof stress (tons/sq. in.) Ultimate tensile strength	47	46	47	47	45
	(tons/sq. in.)	60	58	60	60	58
	Percentage elongation	14	15	12	16	15
	Reduction of area (percent) _	45	52	40	64	67
^	·		(2)	Creep te	sts	
0	T.P.S. for 32 tons/sq. in. at 550° C. in 100 hours	0. 130	0. 170	0. 127	0. 150	0. 135

In cases where higher proof and tensile strength are required together with a better impact strength and good creep resistance compositions falling within the following percentage weight ranges are preferred:

••	Carbon	0.10 - 0.20
20	Silicon	0.10 - 0.80
	Manganese	0.50 - 1.0
	Chromium	9.0 – 11.0
	Nickel	1.5 - 3.5
	Molybdenum	1.5 - 3.0
	Vanadium	0.20 - 0.50
25	Niobium	0.10 - 0.40
	Cobalt	2.0 – 3.5
	Copper	up to 2.0
	Boron	0.005 - 0.020
	Nitrogen	at least 0.010 but less than
	_	0.050 the balance being iron
30		and incidental impurities.

DESCRIPTION OF THE PREFERRED EMBODIMENTS (2)

Typical examples of this second preferred type of composition are as follows:

35		Ex. 6	Ex. 7	Ex. 8	Ex. 9	Ex. 10
40	C	0.15	0.16	0.11	0.16	0.18
	Si	0.35	0.18	0.51	0.49	0.32
	Mn	0.70	0.63	0.72	0.66	0.87
	Cr	10.0	9.6	11.0	10.1	10.1
	Ni	2.5	2.4	2.3	2.3	2.4
	Mo	2.5	2.8	2.0	3.0	3.0
45	V	0.35	0.35	0.31	0.37	0.38
	Nb	0.25	0.15	0.11	0.20	0.23
	Co	3.0	2.9	2.9	3.0	3.1
	Cu	0.25	0.40	0.30	0.25	0.25
	B	0.010	0.009	0.006	0.005	0.006
	N ₂	0.020	0.016	0.023	0.028	0.024

Iron and incidental impurities: the balance.

T.P.S. for 32 tons/sq. in. at 500° C. in 100 hours....

		(1) Tensile tests				
	·	Ex. 6	Ex. 7	Ex. 8	Ex. 9	Ex. 10
55 (8	Room temperature: 0.1% proof stress (tons/sq.					
	in.)Ultimate tensile strength	72	73	64	70	72
	(tons/sq. in.)	95	90	83	96	98
	Percentage elongation Percentage reduction of	21	20	18	19	20
50	area	61	59	59	60	60
(1	N.T.S. (tons/sq. in.)	156	159	136	159	164
	0.1% proof stress (tons/sq. in.) Ultimate tensile strength	50	49	43	50	51
	(tons/sq. in.)	70	70	62	73	74
5	Percentage elongation Percentage reduction of	19	15	16	17	19
	area	53	53	65	66	64
	N.T.S. (tons/sq. in.)	118	117 .			- -
	- -	(2) In		sts Char ft./lbs.)	ру V N	otch
0	Room temperature	20	16	10	12	21
	100° C	55	50	50	30	41
	200° C	70	65	75	50	65
			(3) (Creep te	sts	

0.140

0.150

0.150 0.160

0.130

We claim:

1. An alloy consisting essentially of the following elements in the stated weight percentages:

Carbon	0.03 - 0.10	5
Silicon	0.10 - 0.80	,
Manganese	0.50 - 1.0	
Chromium	9.0 – 11.0	
Nickel	0.2 - 1.0	
Molybdenum	1.5 - 3.0	
Vanadium	0.2 - 0.5	10
Niobium	0.3 - 0.6	10
Cobalt	3.0 - 5.0	
Copper	1.0 - 3.0	
Boron	0.005 - 0.020	
Nitrogen	at least 0.010 but less than 0.050 Iron and incidental impurities:	
	the balance.	15

2. An alloy consisting essentially of the following elements in the stated weight percentages:

3. An alloy according to claim 1 consisting essentially of the following elements in the stated weight percentages:

Carbon	0.05	
Silicon	0.45	
Manganese	0.80	
Chromium	10.5	
Nickel	0.5	
Molybdenum	1.5	
Vanadium	0.22	
Niobium	0.45	
Cobalt	4.0	
Copper	2.0	
Boron	0.010	
Nitrogen	0.025	
Iron and incidental impurities: the		•

4. An alloy according to claim 1 consisting essentially of the following elements in the stated weight percentages:

	e de la companya de l
Carbon	0.07
Silicon	0.50
Manganese	0.80
Chromium	9.0
Nickel	
	0.4
Molybdenum	1.5
Vanadium	0.20
Niobium	0.60
Cobalt	4.0
Copper	
	1.35
Boron	0.10
Nitrogen	0.20
Iron and incidental impurities	s: the balance.

5. An alloy according to claim 1 consisting essentially of the following elements in the stated weight percentages:

		65
Carbon	0.06	05
Silicon	0.45	
Manganese	0.85	
Chromium	10.7	
Nickel	0.4	
Molybdenum	1.6	
Vanadium	0.21	70
Niobium	0.46	
Cobalt	4.2	
Copper	1.8	
Boron	0.010	
Nitrogen	0.025	
Iron and incidental impurit	ies: the balance.	75

6. An alloy according to claim 1 consisting essentially of the following elements in the stated weight percentages:

	Carbon	0.07	
5	Silicon	0.40	
-	Manganese		
		0.90	
	Chromium	10.5	
	Nickel	0.5	
	Molybdenum	1.6	
	Vanadium	0.21	
10	Niobium	0.46	
	Cobalt	4.2	
	Copper		
		2.9	
	Boron	0.012	
	Nitrogen	0.012	
	Iron and incidental impurities: the balance.		

7. An alloy according to claim 1 consisting essentially of the following elements in the stated weight percentages:

	Carbon	0.04
20	Silicon	0.04
		0.20
	Manganese	0.75
	Chromium	10.1
	Nickel	0.3
	Molybdenum	1.5
	Vanadium	0.22
25 .	Niobium	0.48
	Cobolt	
		4.2
	Copper	2.0
	Boron	0.009
	Nitrogen	0.031
	Iron and incidental impurities: the	halance
30		outunee.

8. An alloy according to claim 2 consisting essentially of the following elements in the stated weight percentages:

35	Carbon	0.15
	Silicon	0.35
	Manganese	0.70
40	Chromium	10.0
	Nickel	2.5
	Molybdenum	2.5
	Vanadium	0.35
	Niobium	0.25
	Cobalt	3.0
	Copper	0.25
	Boron	0.010
	Nitrogen	0.020
	Iron and incidental impuritie	s the halance
45		o. the balance,

9. An alloy according to claim 2 consisting essentially of the following elements in the stated weight percentages:

50	Carbon	0.16	
	Silicon	0.18	
	Manganese	0.63	
	Chromium	9.6	
	Nickel	2.4	
55	Molybdenum	2.8	
	Vanadium	0.35	
55	Niobium	0.33	
	Cobalt	2.9	
	Copper		
	Boron	0.40	
	Nitrogen	0.009	
	Iron and inside at 1	0.016	
60	Iron and incidental impurities: the balance.		

10. An alloy according to claim 2 consisting essentially of the following elements in the stated weight percentages:

· ·	
Carbon	0.11
Silicon	0.51
Manganese	
Chromium	0.72
	11.0
Nickel	2.3
Molybdenum	2.0
Vanadium	0.31
Niobium	
Cobalt	0.11
	2.9
Copper	0.30
Boron	0.006
Nitrogen	0.023
Iron and incidental impurities: the	ne balance.

11. An alloy according to claim 2 consisting essentially of
the following elements in the stated weight percentages:

Carbon	0.16	
Silicon	0.49	5
Manganese	0.66	J
Chromium	10.1	
Nickel	2.3	
Molybdenum	3.0	
Vanadium	0.37	
Niobium	0.20	
Cobalt	3.0	10
Copper	0.25	
Boron	0.005	
Nitrogen	0.028	
Iron and incidental impuritie	s: the balance.	

12. An alloy according to claim 2 consisting essentially of the following elements in the stated weight percentages:

Carbon	0.18
Silicon	0.32
Manganese	0.87
Chromium	10.1
Nickel	2.4
Molybdenum	3.0
Vanadium	0.38
Niobium	0.23
Cobalt	3.1
Соррег	0.25
Boron	0.006
Nitrogen	0.024
Iron and incidental impuritie	