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METHODS AND APPARATUS FOR ENCODING LDPC CODES

Related Applications

The present application is a continuation-in-part of
pending U.S. Patent Application S.N. 09/975,331, filed October
10, 2001 which claims the benefit of U.S. Provisional Patent
Application S.N. 60/298,480 filed June 15, 2001 which is titled
"METHOIDS AND APPARATUS FOR PERFORMING LDPC CODE ENCODING AND
DECODING"; in addition, the present application claims the
benefit of U.S. Provisional Patent Application S.N. 60/404,810
filed August 20, 2002 titled "METHODS AND APPARATUS FOR ENCODING
LDPC CODES". Each of the preceding listed patent applications is

hereby expressly incorporated by reference.

Field Of the Invention .

The present invention is directed to methods and
apparatus for encoding data for the purpose of detecting and/or
correcting errors in binary data, e.g., through the use of
parity check codes such as low density parity check (LDPC)

codes.

Background

Error correcting codes are ubiquitous in
communications and data storage systems. Recently considerable
interest has grown in a class of codes known as low-density

parity-check (LDPC) codes.

LDPC codes are often represented by bipartite graphs,
called Tanner graphs, in which one set of nodes, the variable

nodes, correspond to bits of the codeword and the other set of
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nodes, the constraint nodes, sometimes called check nodes,
correspond to the set of parity-check constraints which define
the code. Edges in the graph connect variable nodes to
constraint nodes. A variable node and a constraint node are
said to be neighbors if they are connected by an edge in the
graph. For simplicity, we generally assume that a pair of nodes

is connected by at most one edge.

A bit sequence associated one-to-one with the variable
nodes is a codeword of the code if and only if, for each
constraint node, the bits neighboring the constraint (via their

association with variable nodes) sum to zero modulo two, i.e.,

they comprise an even number of ones.

In some cases a codeword may be punctured. This
refers to the act of removing or puncturing certain bits from
the codeword and not actually transmitting them. When encoding
an LDPC code, however, bits which are to be punctured are still
determined. Thus, puncturing has little or no impact on the
encoding process. For this reason we will ignore the

possibility of puncturing in the remainder of this application.

The decoders and decoding algorithms used to decode
LDPC codewords operate by exchanging messages within the graph
along the edges and updating these messages by performing
computations at the nodes based on the incoming messages. Such
algorithms are generally referred to as message passing
algorithms. Each variable node in the graph is initially
provided with a soft bit, termed a received value, that
indicates an estimate of the associated bit’s value as
determined by observations from, e.g., the communications
channel. The encoding process, which is the focus of this
application, also operates in part along the edges of the graph

but the connection is less precise.

2-
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The number of edges attached to a node, i.e., a

variable node or constraint node, is referred to as the degree
of the node. A regular graph or code is one for which all
variable nodes have the same degree, j say, and all constraint
nodes have the same degree, k say. In this case we say that the
code is a (j,k) regular code. These codes were originally
invented by Gallager (1961). In contrast to a "regular" code,
an irregular code has constraint nodes and/or variable nodes of
differing degrees. For example, some variable nodes may be of

degree 4, others of degree 3 and still others of degree 2.

While irregular codes can be more complicated to
represent and/or implement, it has been shown that irregular
LDPC codes can provide superior error correction/detection

performance when compared to regular LDPC codes.

While encoding efficiency and high data rates are
important, for an encoding and/or decoding system to be
practical for use in a wide range of devices, e.g., consumer
devices, it is important that the encoders and/or decoders be
capable of being implemented at reasonable cost. Accordingly,
the ability to efficiently implement encoding/decoding schemes
used for error correction and/or detection purposes, e.g., in

terms of hardware costs, can be important.

An exemplary bipartite graph 100 determining a (3,6)
regular LDPC code of length ten and rate one-half is shown in
Fig. 1. Length ten indicates that there are ten variable nodes
V,-Vy9, each identified with one bit of the codeword X;-Xio. The
set of variable nodes V;-Vip is generally identified in Fig. 1 by
reference numeral 102. Rate one half indicates that there are
half as many check nodes as variable nodes, i.e., there are five
check nodes C;-Cs identified by reference numeral 106. Rate one
half further indicates that the five constraints are linearly

independent, as discussed below.
23-
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While Fig. 1 illustrates the graph associated with a
code of length 10, it can be appreciated that representing the
graph for a codeword of length 1000 would be 100 times more

complicated.

An alternative to the Tanner graph representation of
LDPC codes is the parity check matrix representation such as
that shown in Fig. 2. 1In this representation of a code, the
matrix H 202, commonly referred to as the parity check matrix,
includes the relevant edge connection, variable node and
constraint node information. In the matrix H, each column
corresponds to one of the variable nodes while each row
corresponds to one of the constraint nodes. Since there are 10
variable nodes and 5 constraint nodes in the exemplary code, the
matrix H includes 10 columns and 5 rows. The entry of the
matrix corresponding to a particular variable node and a
particular constraint node is set to 1 if an edge is present in
the graph, i.e., if the two nodes are neighbors, otherwise it is
set to 0. For example, since variable node V; is connected to
constraint node C; by an edge, a one is located in the uppermost
lefthand corner of the matrix 202. However, variable node Vs is
not connected to constraint node C; so a 0 is positioned in the
fifth position of the first row of matrix 202 indicating that
the corresponding variable and constraint nodes are not
connected. We say that the constraints are linearly independent

if the rows of H are linearly independent vectors over GF[Z2Z].

In the case of a matrix representation, the codeword X
which is to be transmitted can be represented as a vector 206
which includes the bits X;—-X, of the codeword to be processed. A
bit sequence X;-Xn is a codeword if and only if the product of

the matrix 206 and 202 is equal to zero, that is: Hx=0.

-4-
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Brief Description of the Figures:

Figure 1 illustrates a bipartite graph representation

of an exemplary regular LDPC code of length ten.

Figure 2 is a matrix representation of the code

graphically illustrated in Fig. 1.

Figure 3 is a graphical representation of a small LDPC
code which is used as the basis of a much larger LDPC code to

present an example in accordance with the present invention.

Figure 4 illustrates the parity check matrix
representation of the small LDPC code graphically illustrated in
Fig. 3.

Figure 5 illustrates one possible pre-preprocessing

for encoding the exemplary LDPC code illustrated in Fig. 3.
Figure 6 illustrates the process for encoding an
information block given pre-computed matrices in Fig. 5 for the

exemplary LDPC code illustrated in Fig. 3.

Figure 7 illustrates a system for performing a serial

LDPC encoding operation illustrated in Fig. 6.

Figure 8'graphically illustrates the effect of making
three copies of the small LDPC graph shown in Fig.3.

Figure 9 illustrates the parity check matrix

representation of the LDPC graph illustrated in Fig. 8.

Fig. 10 illustrates the result of the copying process

used in accordance with the present invention.

.5.
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Figure 11 illustrates the effect of replacing the 3x3
identity matrices shown in Fig. 9 with cyclic permutation
matrices in accordance with one exemplary embodiment of the

present invention.

Figure 13 illustrates a possible pre-processing step
for encoding the exemplary LDPC code illustrated in Fig. 11 in

accordance with the present invention.

Figure 14 illustrates the process for encoding an
information block given the pre-computed matrices for the
exemplary LDPC code illustrated in Fig. 11 in accordance with

the present invention.

Figure 15 illustrates an LDPC encoding process as a

sequence of operations.
Figure 16 illustrates an LDPC encoder implemented in
accordance with the present invention that vectorizes the

encoder of Fig. 7.

Summary of the Invention:

The present invention is directed to methods and
apparatus for performing encoding operations on binary data,
e.g., multi-bit words. The methods and apparatus of the present
invention allow for encoding of LDPC graphs that possesé a
certain hierarchical structure in which a full LDPC graph
appearé to be, in large part, made up of multiple copies, 2,
e.g., of a Z times smaller graph. The Z graph copies may be
identical. For purposes of explaining the invention, we will
refer to the smaller graph as the projected graph. We refer to
the Z parallel edges as vector edges, and Z parallel nodes as
vector nodes. In U.S. Patent Application S.N.09/975,331 titled

"Methods and Apparatus for Performing LDPC Code Encoding and
-6-
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Decoding", filed October 10, 2001, which is hereby expressly
incorpprated by reference, we describe the benefits that such a
structure lends to a decoder implementation. A key observation
is that all operations may be done in parallel across all copies
of the projected graph. The Z copies are not disjoint, however,
they are combined to form one large graph, Z times larger than
the projected graph. This is accomplished by interconnecting the
7 copies of the projected graph in a controlled manner.
Specifically, we allow the Z edges within a vector edge to
undergo a permutation, or exchange, between copies of the
projected graph as they go, e.g., from the variable node side to
the constraint node side. In the vectorized message passing
(decoding) process corresponding to the Z parallel projected
graphs this exchange is implemented by permuting messages within
a vector message as it is passed from one side of the vectorized
graph to the other. The encoding process exploits the same
idea, but the specification of the sequence of operations is
somewhat different. 1In the encoding process all operations are
performed on bit vectors rather than message vectors as in the

decoding process.

Consider indexing the projected LDPC graphs by
1,9,.,%. In the strictly parallel graph variable nodes in graph
j are connected only to constraint nodes in graph j. 1In
accordance with the present invention, we take one vector edge,
including one corresponding edge each from each graph copy, and
allow a permutation within the Z edges, e.g., we permit the
constraint nodes corresponding to the edges within the vector
edge to be permuted, e.g., re-ordered. The re-ordering may be
performed as rotations. For purposes of explaining the
invention henceforth we will refer to the permutations, e.g.,

re-orderings, within the vector edges as rotations.

A graph may be represented by storing information

describing the projected graph and information describing the
-7-



10

15

20

25

30

35

WO 2004/019268 PCT/US2002/040573
rotations. Alternatively, the description of the graph may be
embodied as a circuit that implements a function describing the
graph connectivity. Thus, in accordance with the present
invention, a relatively large graph can be represented, e.g.,

described, using relatively little memory.

Accordingly, the graph representation technique of the
present invention facilitates parallel, e.g., vectorized, graph
implementations. Furthermore, the graph representation
techniques of the present invention can be used to support
encoding of regular or irregular graphs, with or without state
variables (punctured nodes). Note that normally all nodes
belonging to a vector node will have the same degree, so degree

information is required only for one projected graph.

In various embodiments, the encoder is made
programmable thereby allowing it to be programmed with multiple
graph descriptions, e.g., as expressed in terms of a stored
sequence of bit vector read/write and rotation information or in
terms of an implemented function. Accordingly, the encoders of
the present invention can be programmed to encode a large number
of different codes, e.g., both regular and irregular. In some
particular embodiments the encoder is used for a fixed graph or
for fixed degrees. In such embodiments the graph description
information may be preprogrammed or implicit. In such cases the
encoder may be less flexible than the programmable embodiments

but the resources required to support programmability are saved.

Before presenting encoders for encoding large
vectorized LDPC graphs, we will discuss general concepts and
techniques relating to graph vectorization. The vectorization
discussion will be followed by a presentation of exemplary
vectorized LDPC encoders that embody the present invention.

Vectorizing LDPC graphs

-8-
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For purposes of gaining an understanding of

vectorizing LDPC graphs consider a "small' LDPC code with parity
check matrix H. The small graph, in the context of a larger
vectorized graph, will be referred to as the projected graph.
Let ¥ denote a subset (usually a group) of ZxZ permutation
matrices. We assume that the inverses of the permutations in ¥
are also in ¥ . Given the small, projected, graph we can form a
Z -times larger LDPC graph by replacing each element of H wiph a
ZxZ matrix. The 0 elements of H are replaced with the zero
matrix, denoted 0. The | elements of H are each replaced with
a matrix from ¥ . In this manner we "1lift’ an LDPC graph to one
Z times larger. The complexity of the representation comprises,
roughly, the number of bits required to specify the permutation
matrices, |E,| log|¥| plus the complexity required to represent
H, where |E,| denotes the number Is in H and |¥| denotes the
number of distinct permutations in ¥. E.g., if ¥ 1is the space
of cyclic permutations then |Y|=Z. 1In practice we might have,

e.g., Z=16 for n=1000 .

6, 0 o, o, o, 0 0
6, 6, 0,6 0 0 o, O
6, 6,6 0 o, 0 0 o
0 oo 0 0 o, o, o

S — = -
—— O
SO — =
OO
—_—0 O
—_—0 = O
——0 O

=

Il

Example: Lifting a small parity check matrix, the

o i=1.,6 are elements of ¥ shown here indexed in from the

1

variable node side.

The subset ¥ can in general be chosen using various
criteria. One of the main motivations for the above structure
is to simplify hardware implementation of decoders and encoders.
Therefore, it can be beneficial to restrict ¥ to permutations
that can be efficiently implemented in hardware, e.g., in a
switching network. |

9.
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Parallel switching network topologies is a well
studied subject in connection with multiprocessor architectures
and high speed communication switches. One practical example of
a suitable architecture for the permutation subset ¥ is a class
of multi-layer switching networks including, e.g., omega
(perfect shuffle) / delta networks, log shifter networks, etc.
These networks offer reasonable implementation complexity and
sufficient richness for the subset ¥ . Additionally multi-layer
switching networks scale well e.g., their complexity rises as N
log N where N is the number of inputs to the network, which
makes them especially suitéble for massively parallel LDPC
decoders. Alternatively, in decoders of the present invention
with relatively low levels of parallelism and small Z the subset

¥ of permutations can be implemented in a single layer.

An LDPC graph is said to have “multiple edges” if any
pair of nodes is connected by more than one edge. A multiple
edge is the set of edges connecting a pair of nodes that are
connected by more than one edge. Although it is generally
undesirable for an LDPC graph to have multiple edges, in many
cases it may be necessary in the construction of vectorized
graphs that the projected graph possesses multiple edges. One
can extend the notion of a parity check matrix to allow the
matrix entries to denote the number of edges connecting the
associated pair of nodes. The codeword definition is still the
same: the code is the set of 0,1 vectors x satisfying Hx=0
modulo 2. When vectorizing a projected graph with multiple
edges, in accordance with the invention, each edge within the
multiple edge is replaced with a permutation matrix from Y and
these matrixes are added to yield the extended parity check
matrix of the full code. Thus, a j>1 in the parity check matrix
H of the projected graph will be ‘lifted’ to a sum Ox + Ok +..t

Ok+j-1, of permutation matrixes from ¥ . Usually, one will choose

-10-
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the elements of the sum so that each entry of ox + Oks1 4.t Okig-1

is either 0 or 1, i.e., the full graph has no multiple edges.

The above described lifting appears to have one
limitation. Under the above construction both the code length
and the length of the encoded data unit must be multiples of Z.

This apparent limitation is easily overcome, however. A

_ description of the method used to overcome this limitation can

be found in U.S. Patent Application S.N. 09/975,331 which is
hereby expressly incorporated by reference and will not be

repeated here.

The invention lifts the encoding process analogously,
replacing bit operations in the original algorithm to bit vector

operations in the lifted algorithm.

At one or more points in the encoding processing,
after being read out of memory, the Z bit vectors are subject to
a permutation operation, e.g., a re-ordering operation. The
re-ordering operation may be a rotation operation, or rotation
for short. These rotation operations generally correspond to
the rotations associated to the vector edges which interconnect
the 7 copies of the projected graph to form the single large
graph. In the case of encoding, however, some of the required
rotations are apparent only after appropriate preprocessing of

the LDPC representation.

The rotation may be implemented using a simple
switching device that connects, e.g., the bit memory to the bit
vector processing unit and re-orders those bits as they pass
from the memory to the bit vector processing unit. In such an
exemplary embodiment, one of the bits in each bit vector read
from memory is supplied to a corresponding one of the Z parallel
processing units, within a bit vector processor, as determined

by the rotation applied to the bit vector by the switching
-11-
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device. A rotation operation as implemented by the switching
device may also or alternatively be applied to the bit vector

prior to its being written into memory and after processing.

The stored or computed description of the encoding
process for the projected graph may include, e.g., information
on the order in which bits in corresponding to a projected graph
are to be read out of and/or written in to memory during
encoding processing. The bits of the entire large graph are
stored in multiple rows, each row corresponding to a different
copy of the small graph, the rows being arranged to form columns
of bits. Each column of bits represents a bit vector, which can
be accessed as a single unit. The number of columns will
typically be at least as large as the number of variable nodes
in the projected graph, but often it will be larger, the
additional columns being used for temporary storage in the

encoding process.

It is generally possible to decompose the encoding
operation for lifted graphs into a sequence of elementary
operations where each elementary operation consists of one of,
e.g., reading a column of bits and rotating it, X-ORing that
column bit-wise with some accumulated bit vector (possibly 0),
and writing the result into some column in memory (usually
additional rotation prior to writing is not required). As
indicated above, to facilitate the encoding process it may be
desirable or necessary to have more memory columns available
then those required to store the codeword. In summary, the
invention comprises the use of an encoding structure consisting
of a switch to rotate bit vectors together with a bit-vector
processor capable of performing the elementary operations
described above and a control structure to control the sequence

of operations performed, thereby specifying an encoding.

-12-
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Numerous additional advantages, features and aspects
of the encoding techniques and encoders of the present invention

will be apparent from the detailed description which follows.

Detailed description of the invention:

The encoding process for an LDPC code is a mapping
from input information bits to an LDPC codeword. As discussed
above, there are many possible forms this mapping can take. The
present invention is directed towards a general purpose encoding
device enabling fast parallel encoding of the class of LDPC
codes supported by the decoder presented in application U.S.
Patent Application S.N. 09/975,331. In that application, a
certain structured class of LDPC codes was considered and a
decoder architecture proposed for them. In this application
certain features of the decoder architecture reappear as part of

an encoder structure.

For purposes of explaining the invention, we now
describe a general purpose approach to encoding LDPC codes. The
method is described in detail in a paper by Thomas J. Richardson
and Ruediger L. Urbanke, titled "Efficient Encoding of Low
Density Parity Check Codes" printed in the IEEE Trans. on
Information Theory, pp. 638-656, Vol. 47, Number 2, Feb. 2001.

For purposes of discussion we assume that an mxn
parity check matrix, has m<n and has rank m, that is, the rows
are linearly independent. When this is not the case redundant

rows can be removed without changing the code.

We first describe certain operations which are part of
the process of designing an encoder. It should be appreciated
that this pre-processing computation is typically performed in
software as part of code design and is not part of the actual

implementation of the encoder.
-13-
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The first step in the design of an encoder according
to our current method is to rearrange rows and columns to put

the matrix H in approximate lower triangular form.

ABT
#=|¢nE,

where A is (m-g)x(n-m), B is (m-g)xg, T is (m-g)x(m-g), C is
gx(n-m), D is gxg, and E is gx(m-g). The matrix T is lower

triangular with all diagonal entries equal to 1. Multiplying H
from the left by

[E;" ?]

we get

A B T
~ET'A+C—-ET'B+DO

Define ¢=(-ET"'B+D)and assume that ¢ is non-singular. The

matrix ¢~ is computed and saved. The case where ¢ is not
invertible is handled as follows. Assuming the rows of H are
linearly independent one can permute columns inside the

submatrix

A . . .
[Cﬁg} to ensure that ¢ is invertible. If the rows of H are not

linearly independent then some of the rows of H may be removed,
SO thaf the remaining rows are linearly independent, without
changing the definition of the code. Note that all of the above
computation is independent of the data to be encoded is not part
of the encoding process per se. These steps are normally

performed once as part of encoder design and need not be

-14-
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repeated during encoder use. Let us now consider how data is

encoded into a codeword.

Let x=(s,p1,p2) denote a codeword where s denotes the
systematic part, p; and p, combined denote the parity part, p: has
length g and p; has length (m-g). The encoding problem is to
find p; and ps given s. The defining equation Hx'=0" splits

naturally in to two equations

As" +Bp! +Tp; =0
(-ET'A+C)s" +(-ET"'B+D)p; =0

From the above equation we conclude that pf==—¢”(—ET4A:kCﬁT. We
remark that (-ET"'A+C)s’ can be computed efficiently since all
matrices are sparse and, given A4s", we find T'4s" efficiently by

solving Tz=4s' for z using block substitution. The matrix ¢!

will be dense in general but g is made small by design and this

matrix is precomputed, as discussed above. Thus, one efficiently

obtains pf. One can now easily and efficiently solve for p{ by

solving Tp) =-4s" - Bp, .
An example is presented in Fig. 6 and Fig. 7.

The above description gives a method for encoding any
LDPC code. It will be appreciated that many constructions of
LDPC codes give rise to other natural encoding mechanisms, e.g.

RA codes.

The basic idea underlying our parallelized encoder is
to take encoding methods for binary codes, such as described
above, and “1lift” them along with the parity check matrices into

parallel an encoding engine for the “vectorized” LDPC codes.

-15-



10

15

20

25

30

WO 2004/019268 PCT/US2002/040573

In a previously filed U.S. Patent Application S.N.
09/975,331 titled "Methods and Apparatus for Decoding LDPC
Codes" which is hereby expressly incorporated by reference we
described and motivated a structured “vectorized” class of LDPC
graphs. The motivation there was to provide for a highly
efficient decoder architecture. This application describes a
corresponding architecture suitable for encoding the same class
of codes. As in the decoder case, the advantages gained are
that encoding operations may be performed efficiently and in
parallel and the architecture allows the specification of the

particular LDPC code to be programmable.

We will now present a simple example of a small LDPC
graph and its representation which will be used subsequently in
explaining the invention. The discussion of the LDPC graph will
be followed by a description of an LDPC encoder which can be

used to encode the small graph.

Fig. 3 illustrates a simple irregular LDPC code in the
form of a graph 400. The code is of length five as indicated by
the 5 variable nodes V; through Vs 402. Four check nodes C;
through C, 406 are coupled to the variable nodes 402 by a total
of 12 edges 404.

Fig. 4 illustrates, using matrices 502, 504, the LDPC
code shown in Fig. 3, in parity check matrix form. As discussed
above, edges are represented in the permutation matrix H 502

using 1's. Bit x; is associated to variable node V;.

Figs. 6 and 7 illustrates the encoding process for the
LDPC code shown in Fig. 3. As described earlier, the encoding
preprocessing step requires rearranging the rows and columns of
the parity check matrix H shown in Fig. 4 into some lower

triangular form. One exemplary way of rearrangement is
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illustrated in Fig. 6, by swapping row 2 and row 4 in the

original matrix.

Matrix H 701 shows the different components after
rearrangement. For purpose of annotation, let us define a sub-
matrix (rl, r2; cl, c2) to be the matrix comprising all the
entries with row index in [rl, r2] and column index in [cl, c2]
in the original matrix. Matrix A 702 is the sub-matrix (1, 3;
1, 1) of matrix H 701. Matrix B 703 is the sub-matrix (1, 3; 2,
2) of matrix H. Matrix T 704 is the sub-matrix (1, 3; 3, 5) of
matrix H, which is of lower triangular form. Matrix C 705 is
the sub-matrix (4, 4; 1, 1) of matrix H. Matrix D 706 is the
sub-matrix (4, 4; 2, 2) of matrix H. Matrix E 707 is the sub-

matrix (4, 4; 3, 5) of matrix H. Derivation of ¢=(-ET'B+D)by
Gaussian elimination is illustrated in 708, where ¢ 709 and its

inverse ¢~' 710 are obtained.

Fig. 7 illustrates the actual encoding process given
an information block s=[l] 801 and pre-computed matrices shown in

Fig. 6. Standard multiplication of a vector by a matrix allows

computation of 4s 802, T 'As 803, ET'As 804, ET 'As+Cs 805,
p, =¢"(ET'4s+Cs) 806, Bp, 807, Bp +As 808, and p,=T"'(Bp, +4s)
809. Note that multiplication by T is performed using back

substitution as described earlier. The final result, the coded

bits x=[p,,p,,s] are shown in vector 810.

Multiplication of a binary vector by a binary matrix
can be decomposed into a sequence of simple operations. For
example, consider multiplying a binary matrix U (mxn) with a
binary vector v (nxl) in a hardware processor. We assume that,
prior to multiplication, the vector v is available at some
physical location, e.g. memory, starting at index s, and the

result is to be stored at location starting at index t. Assume
-17-



15

20

25

30

WO 2004/019268 PCT/US2002/040573
row i,i€[0,m-1] of matrix U has nonzero entries, i.e. 1’s, at

columns indexed as [,/ l... Define two instructions --(0 a b)

5,290 ik
and (1 a b) -- as follows: (0 a b) instructs the processor to
read out the value at location b and write it to location a; (1
a b) instructs to read out the value at location b and add it
to, i.e. x-or with the current value at, location a. In other
words, the second operation accumulates the value at location a;
the first, overwrites. Now, the multiplication of vector v by U

can be decomposed into the following sequence of those two

simple operations: (0 t s+/y), (1 t s+l,),..., (1 t s+, ); (0 t+1
s+l,), (1 t+l s+l ,), ..., (1 t+1 s+l ); .5 (0 t4m=1 s+/,,), (1 t+m-1
stl,3)s «ooy (1 t4m=-1 s+l ,, ). The total number of instructions is

the same as the number of non-zero entries in the matrix.

Fig. 8 illustrates the encoding process as a sequence
of those two simple operations corresponding to the LDPC code
shown in Fig. 3. An exemplary memory 902 stores information
bits, coded bits, and intermediate variables. In Fig. 8,

location 0 of the memory 902 is assigned to store the single

information bit s; location 1 is assigned to store parity bit p;;

locations 2 to 4 are assigned to store parity bits p,.
Additional memory space is provided to hold intermediate values.
The exemplary memory 902 provides locations 5 to 7 to store the

value of As and later that of Bp, +4s; it provides locations 9 to

11 to store T 'As; it provides locations 12 to store ET'4s .

With respect to the above allocation of memory 902,
the encoding process illustrated in Fig. 7 as matrix
multiplication with vectors is decomposed into a sequence of
operations (0 a b) and (1 a b) listed in Table 904. For
clarity, table 904 shows the sequence of instructions, one per
row, together with their respective matrix multiplication

counterparts. For example, multiplication A4s is decomposed to
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two instructions: (0 5 0) followed by (0 7 0). Table 906 shows
the contents of memory locations 0 through 11 at the time an
instruction shown in the corresponding row on table 904 is
executed. The result of executing of instruction on table 904
is shown in the next row of table 906. Suppose we encode the
same information bits as in Fig. 6 by storing s=[l] into location
0, as illustrated in the first row of Table 906. Operations
executing instruction (0 5 0) followed by instruction (0 7 0)
gives result A4s =(101) in locations from 5 to 7, as shown in row
three of block 906. This is the same result as its counterpart
in Fig. 6. Table 906 illustrates the complete encoding process
in terms of the content of memory locations 0 through 11 as the

sequence of elementary instructions in table 904 is executed.

The sequence instructions of 904 instructions are
readily translated into hardware implementation.
Straightforward modifications may be made during hardware
implementation, e.g., to comply with the memory operation

constraints of the utilized hardware.

Fig. 8 illustrates an exemplary implementation of a
general LDPC encoder 1000. Unit operation processor 1010
performs one of three possible operations indicated by a
received instruction. Unit operation prbcessor 1010 either

clears a sum bit, xors a sum bit with an a bit read from memory

or outputs a sum bit to the memory 1006. Operations to be

performed are selected by operation on the control module 1010
and specified to the unit operation processor in the form of one
or more instructions. The read/write control module 1004
specifies the order in which encoding memory 1006 is accessed.
Timing of the form of both the operation control module 1010 and
the read/write control module 1006 are controlled by encoder
control module 1002, which determines the data flow of the

encoder through timing control signal. Encoding memory 1006 is
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a dual port memory block which can be written into or read from

independently using a SIMD read or write instruction.

We will now discuss in further detail the impact of

vectorization on encoding techniques.

Given a vectorized LDPC graph one can vectorize the
encoding process as follows. The encoder operates as if it were
encoding Z copies of the projected LDPC code synchronously and
in parallel. Control of the encoding process corresponds to the
projected LDPC graph and may be shared across the Z copies.
Thus, we describe the encoder as operating on bit vectors, each
vector having Z elements. One deviation from purely disjoint
parallel encoding of the Z projected graphs is that bits are
re-ordered within a bit vector during the encoding process. We
refer to this re-ordering operation as a rotation. The rotation
implements the permutation operations defined by ¥ . Because of
the rotations, the processing paths of the Z copies of the
projected graph mix, thereby linking them to form a single large
graph. Control information which specifies the rotations is
needed in addition to the control information required for the
projected graph. Fortunately, the rotation control information

can be specified using relatively little memory.

While various permutations can be used for the
rotations in accordance with the present invention, the use of
cyclic permutations is particularly interesting because of the
ease with which such permutations can be implemented. For
simplicity we will now assume that ¥ comprises the group of
cyclic permutations. In this case, our large LDPC graphs are
constrained to have a quasi-cyclic structure. For purposes of
this example, let N be the number of variable nodes in the

graph and let M Dbe the number of constraint nodes in the graph.
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First, we assume that both Nand M are multiples of Z, N=nZand

M =mZwhere Z will denote the order of the cycle.

Let us idehtify nodes through the use of a double
index. Thus, variable node v,; is the i*" variable node from the

i®™™ copy of the projected graph. Since ¥ is the group of cyclic

permutations, variable node v,; is connected to a constraint node
¢,, if and only if variable node V,;.4z, 15 connected to a

constraint node ¢, mazs fOr k=1..Z.

The techniques of the present invention for
representing a large graph using a much smaller graph
representation and rotation information will now be explained
further in reference to Figs. 9 through 16 which relate to
vectorization of the exemplary graph 400 in accordance with the
invention. The techniques of the invention described with
reference to these figures can be applied to much larger LDPC

graphs.

In accordance with the present invention, a larger
graph can be generated by replicating, i.e., implementing
multiple copies, of the small graph shown in Fig. 3 and then
performing rotation operations to interconnect the various copies
of the replicated graph. For discussion purposes, we refer to
the small graph within the larger graph structure as the

projected graph.

Fig. 9 is a graph 1100 illustrating the result of
making 3 parallel copies of the small graph illustrated in Fig.
3. Variable nodes 1102', 1102'' and 1102''' correspond to the
first through third graphs, respectively, resulting from making
three copies of the Fig. 3 graph. In addition, check nodes
1106', 1106'' and 1106''' correspond to the first through third
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graphs, respectively, resulting from making the three copies.
Note that there are no edges connecting nodes of one of the
three graphs to nodes of another one of the three graphs.
Accordingly, this copying process, which "1lifts" the basic graph

by a factor of 3, results in three disjoint identical graphs.

Fig. 10 illustrates the result of the copying process
discussed above using matrices 1202 and 1204. Note that to make
three copies of the original Fig. 3 graph each non-zero element
in the matrix 502 is replaced with a 3x3 identity matrix. Thus,
each one in the matrix 502 is replaced with a 3x3 matrix having
1's along the diagonal and 0's everywhere else to produce the
matrix 1202. Note that matrix 1202 has 3 times the number of
edges that matrix 502 had, 12 edges for each one of the 3 copies
of the basic graph shown in Fig. 3. Here, variable xij

corresponds to variable node Vij.

Let us briefly discuss how to modify the Fig. 8
encoder 1000 to encode the (Z=3) parallel graphs now defined.
The unit operation processor 1010 will be made a vector unit
operation processor, able to process 3 identical operations
simultaneously in parallel. All outputs from the unit operation
processor 1008 will be vectorized, thereby carrying 3 times the
data previously carried. Encoding memory 1006 will be made 3
times wider, capable of writing or reading 3 bits in parallel
using at the direction of a single SIMD instruction. Outputs
from these memories will now be 3-bit wide vectors. The output
buffer 908 will also be suitably vectorized with all processing
suitably parallelized. However, the unit operation control,
ordering control and encoder control module will remain the same

as or similar to the like named elements of Fig. 8.

Let us now consider the introduction of rotations into
our example. This can be illustrated by replacing each of the

3x3 identity matrixes shown in Fig. 9 with 3x3 cyclic
22.
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permutation matrices as shown in Fig. 11. Note that there are
three possibilities for the cyclic permutation matrix used in
Fig. 11. It is possible to indicate the particular permutation
matrix to be substituted for an identity matrix by indicating
whether the permutation matrix has a "1" located in the first,
second or third position in the first row of the permutation
matrix. For example, in the case of matrix 1302, beginning at
the top left and proceeding to the bottom right corner the
rotations could be specified by the sequence (2, 2, 3, 3, 1, 1,
1, 3, 2, 1, 2, 3).

We discussed above how to vectorize encoder 900 to
encode Z parallel copies of the projected graph. By introducing
switches into the message paths to perform rotations, we encode

the LDPC code defined in Fig. 11.

The vector encoding process can be further appreciated
by applying the general LDPC encoding procedure previously
described in the present document. Instead of working on binary
data, the encoder in accordance with the present invention works
on a vector of Z bits, corresponding Z parallel copies of the
bit in the projected graph. Parity check matrix H comprises
entries of ZxZ all zero matrix or ZxZ cyclic permutation matrix
represented by o*,ke€[0,Z-1]. Multiplication of cyclic matrix o*
with a Z-bit binary vector is equivalent to right-shifting the
vector by k bits. In the field of GF(2%), the encoding process
can be treated the same as the binary data case, with the
exception that when testing the invertability of ¢,we first

bring the matrix back into binary representation.

Figs. 13 and 14 illustrate an exemplary encoding
process for the LDPC code shown in Fig. 11. The encoding
preprocessing step rearranges the rows and columns of the parity

check matrix H into some lower triangular form. One exemplary
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rearrangement H’ 1501 is illustrated in Fig. 13 H’ 1501 is
obtained by permuting rows 2 and 4 of the original matrix H’

1302.

In constructing an encoder, preprocessing extracts and
stores certain information. Matrix A 1502 is the sub-matrix
(1, 3; 1, 1) of matrix H’ 1501. Matrix B 1503 is the sub-matrix
(1, 3; 2, 2). Matrix T 1504 is the sub-matrix (1, 3; 3, 5),
which is of lower triangular form. Matrix C 1505 is the sub-
matrix (4, 4; 1, 1). Matrix D 1506 is the sub-matrix (4, 4; 2,
2). Matrix E 1507 is the sub-matrix (4, 4; 3, 5). Derivation

of ¢=(-ET"'B+D) by Gaussian elimination is illustrated in 1508

and 1509; its inverse ¢~' 1510 is then computed.

Given the off-line pre-computed matrices, Fig. 14
illustrates the actual encoding process for an exemplary

information block s=[100] 1601. Matrix multiplication with
vector calculates vectors Cs 1602, As 1604, T 'As 1605, ET'4s

1606, ET'As+Cs 1607, p, =¢ '(ET"'As+Cs) 1608, Bp, 1609, Bp, +A4s

1610, and p,=T '(Bp,+A4s) 1611. The resulted codeword x=[s,p,,p,]

is shown in 1612.

Similar to binary matrix multiplication decomposition
described on page 21 of the present document and illustrated in
Fig. 7, we can as well decompose the above matrix operations in
the field of GF(2°) into a sequence of simple operations when
incorporating rotations, i.e. cyclic shifts. We define two
instructions - (0 a r b) and (1 a r b) - as follows:

(0 a r b) instructs the processor to read out the value at
location b, left cyclic-shift it by r, and write the result to
location a; (I a r b) instructs the processor to read out the
value at location b, left cyclic-shift it by r, and add the
result to the value at location a.
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Let us now consider how to decompose a multiplication
of matrix U (mxn) comprising entries of ZxXZ cyclic matrices or
zero matrices with a vector v (nxl) of Z-bit data. Assume prior
to multiplication, source data is held at locations s, s+1, ..,
s+n-1 in some memory of Z-bit data width; the result data is to
be stored at locations t, .., t+m-1 in the same memory. Assume

further that row i,ie[0,m—1] of matrix U has nonzero entries, i.e.
o*,kel0,Z-1], at columns [,/ ,,.,, , with cyclic-shift values
U sUipsesthy €[0,Z-1].  Given those assumptions, multiplication of U

with v is equivalent to the following sequence of operations:

(0 t uy, stlyy), (1t uyy stly,), o (1t uy, s+l ) (0 t+1 uy,
s+h), (1 t+1 wu,, s+l,), .y (L t+1 uyy s+l ) .5 (0 t4m-1 u,
S+h4JL (1 t+m-1 u,,, s+h42% ey (1 t4m=1 s+lkMP). The

total number of instructions is the same as the number of non-

zero entries in the matrix.

Fig. 15 illustrates the encoding process as a sequence
of operations (0 a r b) and (1 a r b) for the vector LDPC code
shown in Fig. 11. An exemplary memory 1702 stores information
bits, coded bits, and intermediate variables. The content of
each of the memory locations 0’ through 11’ is shown in row 1703
above the corresponding memory location. Memory is of Z-bit
data width, i.e., the accessing unit by a simple SIMD
instruction is a Z-bit vector and each memory location 0’
through 11’ holds Z bits. Location 0’ of the memory 1702 is
assigned to store the single information vector s; location 1’

is assigned to store parity vector p,;locations 2’ to 4’ are

assigned to store parity vectors p',. Additional memory space 1is
provided to hold intermediate values. The exemplary memory 1702

provides locations 5’ to 7’ to store the value of 4s and later
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that of Bp,+4s;it provides locations 9’ to 11’ to store T 'As ;

it provides locations 12’ to store ET 'As.

With respect to the above allocation of memory 1702,
the encoding process illustrated in Fig. 14 as matrix
multiplication with vectors is decomposed into a sequence of
operations (0 a ¥ b) or (1 a r b) listed in Table 1704. For
clarity, Table 1704 shows the sequence of instructions together
with their respective matrix multiplication counterparts. For
example, multiplication As is decomposed to two instructions: (O
51 0) followed by (0 7 0 0). Suppose we encode the same
information bits as in Fig. 14 by storing s=[100] into location
0, as illustrated in the first row of Table 906. Operations
executing instructions (0 5 1 0) and (0 7 0 0) give result A4s
=(001, 000, 100) in locations from 5’ to 7’, the same as its
counterpart in Fig. 14. Table 1706 illustrates the complete
encoding process in terms of the content of memory 1702 as the

sequence of instructions is executed.

It will be apparent to those skilled in the field that
the instructions listed in Table 1704 can be readily translated
into a hardware implementation. Numerous variations of the
instruction set are possible, including e.g. removing redundancy
in the instruction set, adding instructions in the instruction
set to avoid initializing the memory, or optimizing the
instruction set to conform to memory operation characteristics.
Such variations are to be considered within the scope of the

invention.

Figure 16 illustrates an encoder 1800 incorporating
various features of the present invention. Encoder 1800 fully
vectorizes, with rotations, encoder 1000. ©Note that the figure
indicates Z=4 whereas our example has Z=3, in general we may
have any Z>1 but in practice Z values of the form 2% for integer
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k are often preferable. Similarities between encoder 1800 and
encoder 1000 are apparent. In particular the encoder control
module 1802 and the operation control module 1812 function in
the same or similar manner as their respective counterparts 1002
and 1012 in encoder 1000. For example, to encoder LDPC code
defined in Figs. 12 and 13 the operation of these components
would be exactly the same as their counterparts in encoder 1000
when encoding the example code 400. The encoding memory 1806 is
a vectorized version of its counterparts 1006 in encoder 1000.
Whereas, in encoder 1000, the memories stored single bits, the
corresponding memories in encoder 1800 store sets, i.e., Z-bit
vectors. These vectors are written and read as single units
using SIMD instructions. Thus, the message identifiers sent to
the memory from the ordering control 1804, i.e., memory indices,
are equivalent or similar to those in encoder 1000. The
ordering control module 1804 has the additional role, beyoﬁd
that of its counterpart 1004 in encoder 1000, of storing and
providing the permutation, e.g., rotation, information. Recall
that, in encoding example 400, encoder 1000 stored in its
ordering module 1004 the sequence of single steps, which
together perform a series of matrix multiplications. Consider
using encoder 1800 to encode the code of Fig. 11. The ordering
module 1804 would store the same above sequence for accessing Z-
bit vectors during encoding, and also store the sequence which
describes the rotations associated to the same sequence of Z-bit
vectors. This sequence serves as the basis to generate the rot
signal which is used by the ordering module 1804 to cause the
switch 1816 to rotate vectors. The input buffer 1812 and output
buffer 1814 serve the same purpose as buffers 1012 and 1014
respectively, except that data is read and written as vectors.
The vector unit operation processor 1008 is the same as its
counterpart 1008 in encoder 1000, except it is operating on
(clearing, accumulating, or outputting) Z-bit vectors instead of

single bits.
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Numerous additional variations on the encoding
methods and apparatus of the present invention will be apparent
to those skilled in the art in view of the above description of

the invention. Such variations are to be considered within the

scope of the invention.
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What is claimed is:

1. An apparatus for performing encoding operations, the
apparatus comprising:

memory including a set of memory locations for storing
L sets of Z-bit vectors, where 7 is a positive integer greater
than one and L is a positive integer;

a vector unit operation processor including an
accumulator and output device for passing computed Z-bit vector
to the said memory in response to operation instructions; and

a switching device coupled to the memory and to the
vector unit operation processor, the switching device for
passing a Z-bit vector between said memory and said vector unit

operation processor in response to switch control information.

2. The apparatus of claim 1, further comprising:

an ordering control module coupled to said memory for
generating read and write indices; and

an operation control module coupled to said vector
unit operation processor for generating unit operation

instructions.

3. The apparatus of claim 2, wherein the ordering control
module is further coupled to said switch device for generating

said switch control information used to control the switching of

said at least one vector.

4. The apparatus of claim 1, wherein the switching device
includes circuitry for performing a vector rotation operation to

generate a rotated vector.

5. The apparatus of claim 2, wherein the ordering control

module stores information on the order of vectors are to be read

29.



WO 2004/019268 PCT/US2002/040573
out of the memory and information on the order of vectors are to

be written into the memory.

6. The apparatus of claim 2, wherein the ordering control
module further stores information on the rotation to be
performed on the read-out vectors from said memory by said

switch.

7. The apparatus of claim 2, wherein the ordering control
module sequentially generates index identifiers, each identifier
controlling the memory to access memory locations corresponding

to a vector as part of a single SIMD instruction.

8. The apparatus of claim 7, wherein each identifier is a

single memory address.

9. The apparatus of claim 2, wherein said operation control
module stores operation instructions, each instruction
controlling the operation at said vector unit operation

processor.

10. The apparatus of claim 9, wherein the operation control
module sequentially generates operation instructions, each
instruction controlling said vector unit operation processor to

perform instructed operations.

11. The apparatus of claim 2, fufther comprising an encoder
control module coupled to said ordering control module, the
encoder control module including means for supplying information
to said ordering control module used to control the order in
which each of the L vectors is to be read out of said memory,
their associated rotations, and the order to be written into

said memory.
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12. The apparatus of claim 11, wherein the encoder control

device is further coupled to said operation control module, the

encoder control device including means for supplying information

to said operation control module used to generate operation

instructions.

13. A method of performing encoding operations, the method
comprising:

storing L sets of Z-bit vectors in a memory device,
where Z is a positive integer greater than one and L is a
positive integer;

reading one of said sets of Z bit vectors from said
stored L sets of Z bit wvectors;

rotating the bits in said read one of said Z bit
vectors; and

operating a vector unit processor to perform a
plurality of combining operations to combine the bits of the
rotated Z bit vector with a Z-bit vector stored in said vector

unit processor to generate a new Z-bit vector.

14. The method of claim 13, further comprising:
storing said new Z bit vector in said memory device in the

place of one of the stored L sets of Z bit vectors.

15. The method of claim 14, wherein said combining operations
performed by said vector unit processor are exclusive OR

operations.

16. The method of claim 15 wherein said encoding method is a

low density parity check encoding method.

17. The method of claim 14, further comprising:
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executing a set of stored machine executable

instructions to control the rotation of the read Z bit vector.

18. The method of claim 14, further comprising:
using the executed set of stored machine executable
instructions to determine which one of said sets of stored Z bit

vectors is to be read from memory.

19. The method of claim 14, further comprising:
using the executed set of stored machine executable
instructions to determine when one of said sets of stored Z bit

vectors is to be read from memory.

20. The method of claim 19, further comprising:

using the executed set of stored machine executable
instructions to determine which one of the stored L sets of Z
bit vectors is to be replaced by storing the new Z bit vector in

said memory device.

21. The method of claim 19, further comprising:
resetting the Z bit vector stored in said vector unit

processor at the same time said new Z bit vector is stored.

22. The method of claim 14, further comprising:
resetting the Z bit vector stored in said vector unit

processor at the same time said new Z bit vector is stored.

23. The method of claim 14, further comprising:

using the executed set of stored machine executable
instructions to determine which one of the stored L sets of Z
bit vectors is to be replaced by storing the new Z bit vector in

said memory device.
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24. A method of performing encoding operétions, the method -
comprising:

storing L sets of Z-bit vectors in a memory device,
where Z is a positive integer greater than one and L is a
positive integer;

reading one of said sets of Z bit vectors from said
stored L sets of Z bit wvectors;

_ operating a vector unit processbr to perform a
plurality of combining operations to combine the bits of the
rotated Z bit vector with a Z-bit vector stored in said vector
unit processor tolgenerate a new Z-bit vector;

rotating the bits in said new Z bit vector; and
storing said rotated new Z bit vector in said memory

device in the place of one of the stored L sets of Z bit

vectors.

25. The method of claim 24,

wherein said combining operations performed by said vector
unit processor are exclusive OR operations; and

wherein said encoding method is a low density parity check

encoding method. .

26. The method of claim 25, further comprising:

executing a set of stored machine executable
instructions to control the rotation of the read Z bit vector
and to determine which one of the stored L sets of Z bit vectors

is to be replaced by storing said rotated new Z bit wvector in

said memory device.
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