(12) UK Patent Application (19) GB (11) 2 103 455


A

- (21) Application No 8122640
- (22) Date of filing 22 Jul 1981
- (43) Application published 16 Feb 1983
- (51) INT CL³ H04N 1/00 7/12
- (52) Domestic classification H4P DCFT H4F D12X D30B D30K D3 EM
- (56) Documents cited
 - None

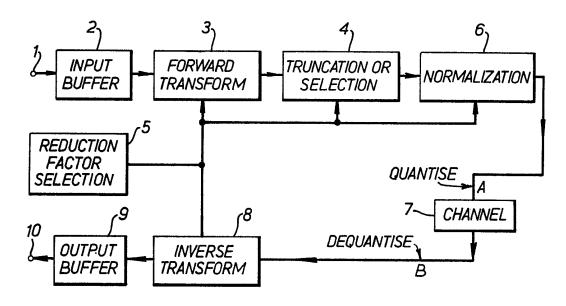
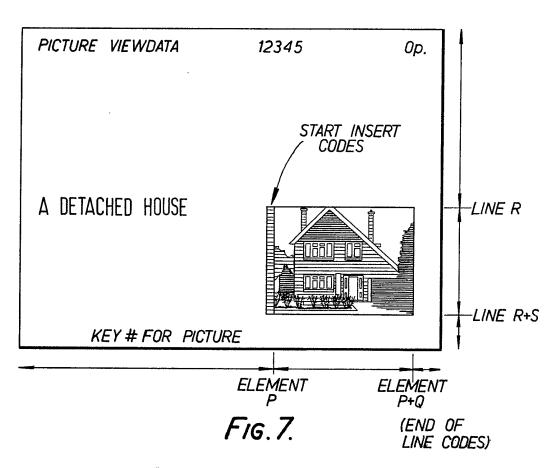
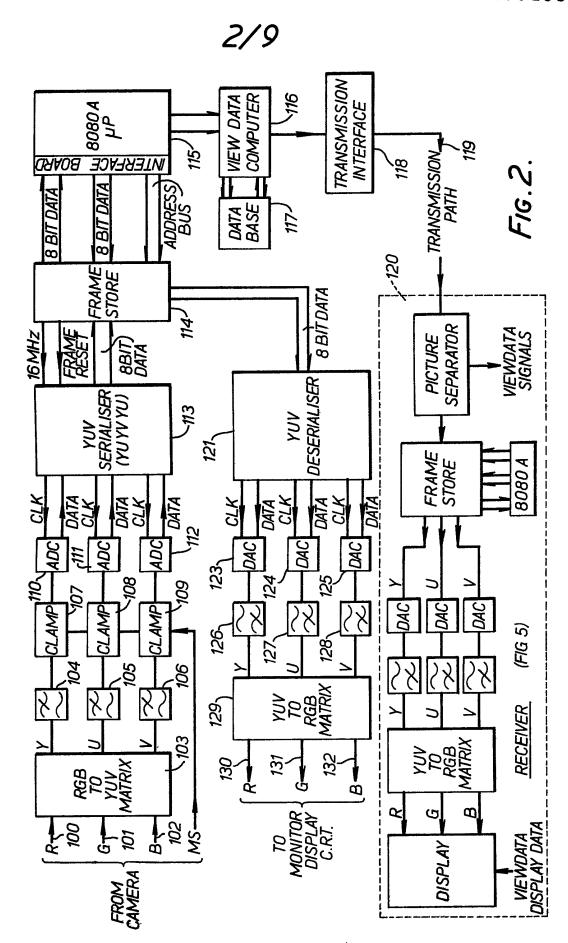
H4R

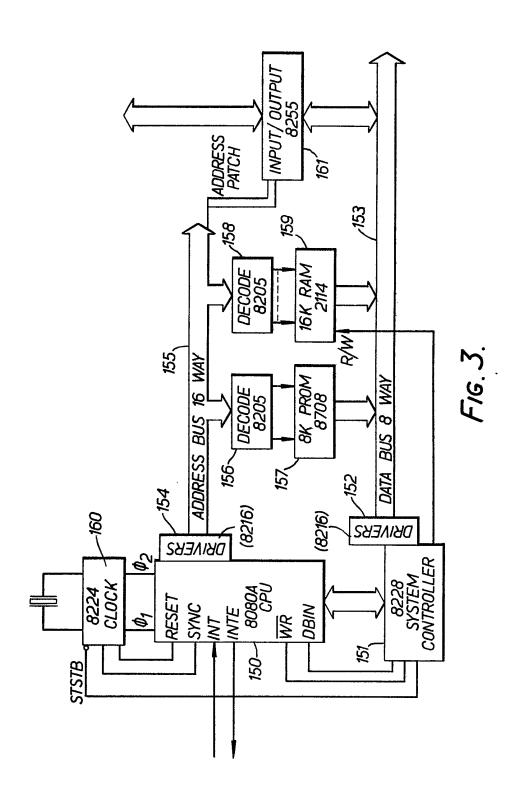
- (58) Field of search H4P H4F
- (71) Applicants
 Post Office
 (Great Britain),
 23 Howland Street,
 London W1P 6QH
- (72) Inventors
 Richard Charles Nicol
 Brian Alan Fenn
 King Ngi Ngan
 Roger John Clarke

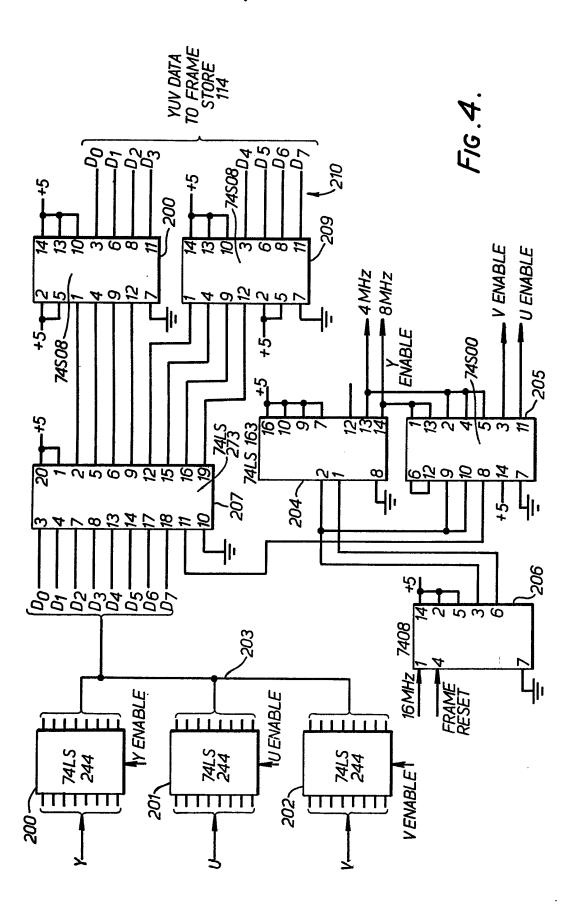
- (74) Agents
 Abel and Imray,
 Northumberland House,
 303-306 High Holborn,
 London WC1V 7LH
- (54) Method of transmitting an image and apparatus for carrying out the method
- (57) An image is digitally sampled at a first plurality of points and the samples are subjected 3 to a two-dimensional unitary transform to produce a second plurality of transform coefficients, the second plurality being smaller than the first plurality and being obtained either by selection or truncation 4 of the transform to provide only the coefficients containing the lower frequency components of the image. The transform coefficients are transmitted 7 and on receipt converted by the inverse transform 8 matched to the reduced number of coefficients to produce a second plurality of image samples. Suitable transforms include the Hadamard and the discrete cosine performed by a microprocessor. The image transmission is described as part of a viewdata system.

GB 2 103 455 A

1/9


FIG. 1.



FIE 1

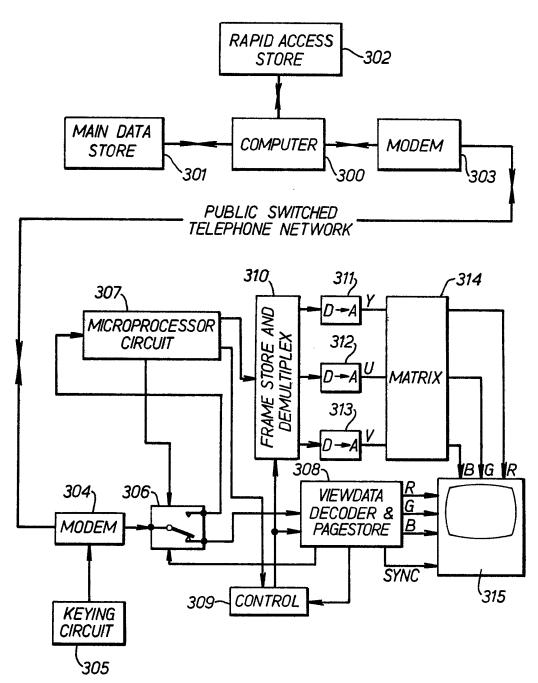
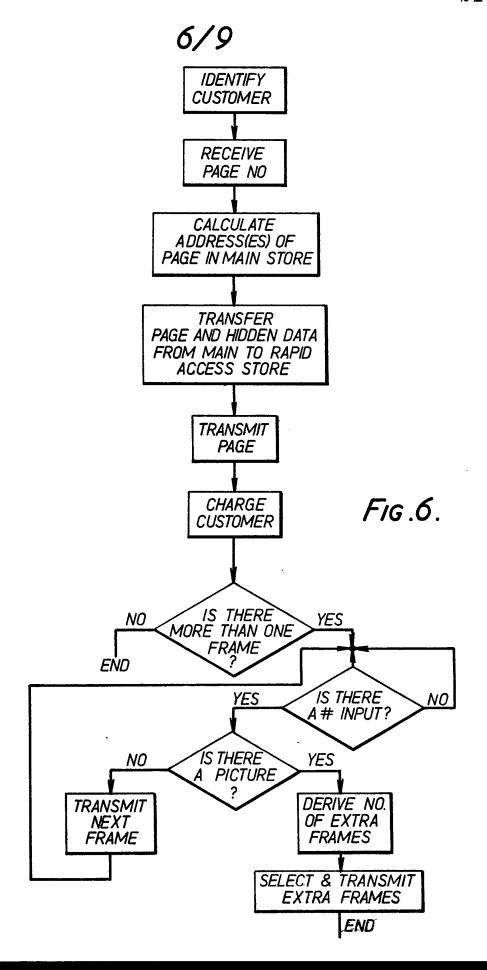



FIG.5.

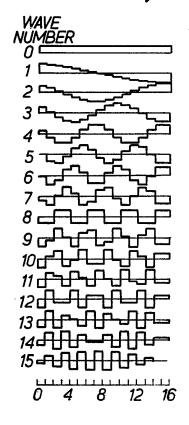


Fig. 8.

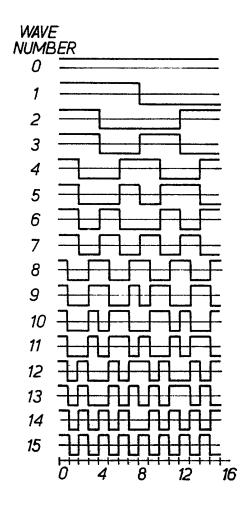


FIG.9.

	<u>MATRIX</u>								<u>SEQUENCY</u>
N=8	[+	+	+	+	+	+	+	+	0
	+	-	+		+	-	+		7
	+	+	-	-	+	+	_	-	3
	+	_	_	+	+	-	_	+	4
	+	+	+	+	-	_	_	-	1
	+	_	+	-	-	+	_	+	6
	+	+	_		-	-	_	+	2
	_+	-	-	+	_	+	+		5

F1G. 10.

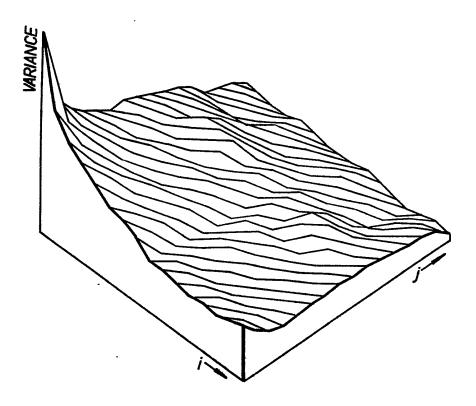
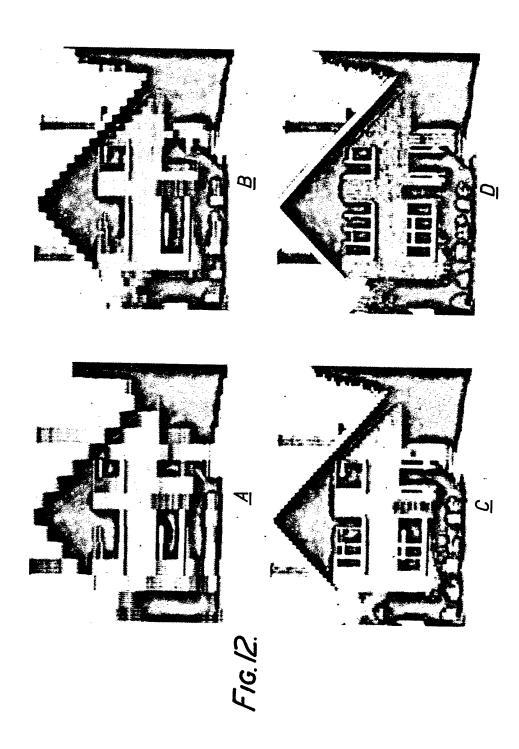



FIG. //.

9/9

GB 2 103 455 A 1

SPECIFICATION

5

Method of transmitting an image and apparatus for carrying out the method

This invention relates to a method of transmitting an image and to apparatus for carrying out the method.

It has been proposed to transmit coded
alphanumeric and graphical data using the line periods at the start of television frames which do not carry video information so that access to a certain number of pages of information is available to television viewers having suitably modified television receivers. This information system is known by the name Teletext. A similar system has been proposed in which information from a much larger data base is accessible via the public switched telephone network. This system is known by the term Viewdata and a service based on it has been started by the Post Office.

Although the Teletext and Viewdata systems have a graphics capability enabling them to produce simple drawings in a display page, it would clearly be a useful improvement to provide facilities for the display of pictures with the alphanumeric information. However, a difficulty arises in the transmission of pictures in a digital format similar to that used for Teletext and Viewdata information in that to provide a picture of the same resolution as a normal television picture would require between 300 and 500 times as much transmission time as is needed for a page of alphanumeric information, and this is clearly unacceptable.

One way in which to reduce both the time necessary to transmit the information and the storage required to display it is to decrease the area of the picture and as a result the number of picture elements in it. For example, a picture 1/4 of the height of the screen and 1/4 of its width would occupy a sixteenth of the area and would therefore need only 1/16th of the time for its transmission compared with that for a full screen picture. By the use of sophisticated data compression techniques it is possible to reduce the transmission time further so that such a picture could be transmitted in the time required for 8 text pages and the storage needed reduced similarly.

lt would be possible to start with a relatively small
picture and produce the video signals directly from
it, but this would require elaborate optical equipment to ensure that the timing of the resulting video
signals is such as to produce the required small
image in a page of Teletext or viewdata information.
It is clearly preferable to use a full screen image and
select the picture elements to be transmitted by a
suitable sub-sampling process, but such a process
can give rise to aliasing problems as a result of the
original image containing frequency components of
too high a frequency relative to the sub-sampling
frequency.

This could be overcome by band limiting the video signal derived from the original picture, but such band limiting has the effect of degrading the image 65 produced subsequently from the samples and it

moreover has the disadvantage that it is not effecttive in a vertical direction where the aliasing problems may still occur.

For achieving the compression of data represent-70 ing transmitted images it is known to subject the image to a two-dimensional transform such as, for example, a Fourier transform applied in two dimensions, and to transmit data representing the transformed image. at the receiver the received data is 75 subjected to the inverse transform which restores the original image. The quantity of data that must be transmitted to produce an image of given definition is less using transform coding than would be the case if direct transmission of the image had been used. Details of such transforms and their use in transmitting images may be found in, for example, "Digital Image Processing" by W. K. Pratt, published by Wiley Interscience, 1978, and in a paper entitled "Hadamard Transform Image Coding" by W. K. 85 Pratt, J. Kane and H. C. Andrews, published in the Proceedings of the IEEE, Volume 57, No. 1, January

It is an object of the present invention to provide an improved method and an apparatus for the 90 transmission of an image.

1968, pages 58 to 68.

According to one aspect of the present invention there is provided a method of transmitting an image including producing an original video signal containing a first plurality of samples representing an original image, subjecting the original video signal to at least the lower frequency part of a two-dimensional unitary transformation matched in terms of size of sample array to the first plurality of samples and, if necessary, selecting the coefficients of the trans-

100 formed video signals, so that a set consisting of a second plurality of transform coefficients containing only the lower frequency components of the original video signal is produced, transmitting the set of transform coefficients, subjecting the transmitted set

105 of coefficients to a second transformation, having the inverse effect to the two-dimensional unitary transformation and matched in terms of size of sample array to the number of coefficients in the set, to produce an output video signal having a second

110 plurality of samples, the second plurality being smaller than the first plurality, and regenerating an image having fewer picture elements than the original image from the output video signal.

According to a second aspect of the present inven115 tion there is provided apparatus for transmitting an
image including source means for producing an
original video signal containing a first plurality of
samples and representing an original image, first
processing means responsive to the original video

120 signal to produce a set of output signals representing a set of transform coefficients fewer in number than the first plurality and containing only the lower frequency components of the original video signal, the coefficients being produced by a two-

125 dimensional unitary transformation matched in terms of size of sample array to the first plurality of samples, a channel for transmitting the set of output signals from the first processing means, second processing means responsive to the transmitted output 130 signals to subject the set of transform coefficients to a second transformation having the inverse effect to the two-dimensional unitary transformation and matched in terms of size of sample array to the number of coefficients in the set, to produce an output video signal having a second plurality of samples, the second plurality being smaller than the first plurality, and a display device for producing an image having fewer picture elements than the original image from one output video signal.

Since a Hadamard transformation is one example of a suitable two-dimensional unitary transformation for use in the invention, the term "frequency" as employed in the statements of invention above and in the following description should be taken to 15 include "sequency" as defined later.

The particular feature of the invention which produces the effect of low pass filtering of the original image in the two dimensions of the unitary transformation lies in the production or selection of only 20 those coefficients of the transformation which correspond to the lower frequency components of the original video signal and the use of an inverse transformation matched in terms of size of sample array to the lower number of coefficients.

25 Preferably the two-dimensional unitary transformation is separable, that is to say it can be divided into orthogonal one-dimensional tranformations applied to the rows and then to the columns, or vice versa, of the image array. Suitable tranformations
 30 are described in Chapter 10 of the book "Digital Image Processing" referred to above, and include Fourier, sine, cosine, Hadamard and Haar transforms. Of these cosine and Hadamard are best suited to the present invention and result in the
 35 energy of the transformed image being concentrated in the upper left-hand corner of the transform array, that is the part containing the lower frequency components of the original video signal.

Whilst it would be possible to apply the transform 40 to the whole of the original image, say 256 × 256 pixels, the number of terms involved would mean that the transformation and its inverse would take a considerable time to perform and would need a large amount of data storage. This time could be 45 shortened and the data storage required reduced by dividing the image into blocks, for example, 16 blocks each of 64 × 64 pixels or 356 blocks each of 16 × 16 pixels, and applying the tranformations to the blocks separately. Such blockwise transformation 50 can result in the block structure being visible in the reproduced image in certain instances, for example where there is a large change in means brightness between blocks.

Suppose that a square original image 356 × 256
55 pixels were required to be reproduced as an image one-quarter the size in each direction, that is to say 64 × 64 pixels. The effect of the transformation on a block 64 × 64 pixels and the subsequent selection of coefficients would be to give an array of 16 × 16
60 tranform coefficients; the transformation itself would normally produce 64 × 64 transform coefficients if the transformation was such as to result in no loss of information, but it could be truncated so that the coefficients, other than the 16 × 16 wanted ones con-65 taining the lower frequency components are not

produced. After transmission the 16 × 16 array of coefficients is subjected to an inverse transformation matched to the 16 × 16 array and therefore producing a 16 × 16 array of pixels similar to the original block of 64 × 64 pixels but with a 4:1 reduction in the resolution of detail. Most conveniently the samples contained in the original video signal may be digital having for example, 8 bits per sample. In such a case the processing necessary to perform the transforma-75 tions could be carried out digitally using, for example, a suitably programmed microprocessor. For digital processing the Hadamard transform is advantageous since the basis functions of the transform are rectangular waves consisting of +1's and -1's. A disadvantage of a Hadamard transform is that it is difficult to use for array sizes other than powers of 2 which means that the size reductions possible are also limited to powers of 2. A discrete cosine transform does not suffer from this limitation, although it does introduce distortions in the final image around the vertical and horizontal edges, whereas such distortions are less marked with the Hadamard transform.

Since there is a difference between the size of the original array subjected to transformation and the transmitted array which is subjected to the inverse transform, it is necessary to normalise the coefficients to retain the energy invariance property of the transformation. This normalisation may be built into the basis functions of the transformations.

Because the transformation of the samples of the original video signal is concerned with processing the whole of a picture containing, say, 256×256 pixels and would require the computing power of a 100 large fast computer to be performed on-line for transmission as part of a viewdata signal; it is preferable to perform the transform calculations off-line and store the resulting transform coefficients, or just the selected coefficients, ready for transmission 105 when required. A relatively slow microcomputer would be all that was necessary to produce the transform coefficients off-line. Storing just the selected coefficients ready for transmission has the advantage of requiring the minimum quantity of 110 data storage capacity in a computer data-base for storing a picture of a given size.

The recording of the transform coefficients may be arranged so that they are transmitted in such a way that the coefficients containing the lowest frequen115 cies are transmitted first and the higher frequencies are transmitted later. The result of such transmission would be that the image reproduced initially from the transmitted coefficients would be complete but of very low resolution, the resolution improving as 120 further coefficients were transmitted and the additional information incorporated in the reproduced image. Alternatively, the coefficients could be stored on a block-by-block basis and the image built up one block at a time.

125 Although reference has been made to the processing of an original image containing 356 × 356 pixels, the original image could have a different format, for example, 64 × 256 or 256 × 64 pixels. Such an image could be divided into 64 × 64 pixel blocks in 130 the same way and the transformed coefficients relat-

ing to these blocks transmitted. In a viewdata system capable of accommodating different sizes and shapes of picture, the hidden information associated with the first frame of the page would specify how 5 many blocks were contained in the picture or how many additional frames of data were required to provide the picture information; for a description of the use of hidden information see British Patent Specification No. 1 581 136. When the first frame of 10 the page has been received by the viewdata terminal and displayed, the customer will be invited to press the "hash" (#) key to obtain the picture. The extra frames will then be transmitted when the hash key is pressed and the image blocks for display generated 15 and stored at the receiver. The first frame of the page would include "start insert" codes in each line of the picture insert and the picture data itself contains "end of the line" codes so that the picture is preceisely located. In another example the picture 20 information is transmitted automatically without it

As explained above, the Hadamard transform can
25 be used only for orders of 2ⁿ, n integral, and it is
preferable to use this transform because it is much
easier to implement by digital computing techniques
than is the discrete cosine transform, for example.
The system may be arranged so that the Hadamard
30 transform is used if the image size permits and the
discrete cosine tranform if other sizes are required.
The processing means may be such as to handle the
different transforms selectively on receipt of suitable
control signals transmitted with the image informa35 tion.

being necessary to press any key, in which case the

later references to pressing the "hash" key and the

consequences of such pressing may be ignored.

In order that the invention may be fully understood and readily carried into effect it will now be described with reference to accompanying drawings, of which:—

40 FIGURE 1 is a functional diagram of one example of the apparatus according to the invention;

FIGURE 2 is a block diagram of circuitry suitable for constructing the apparatus of Figure 1;

FIGURE 3 is a diagram of the microprocessor cir-45 cuits of Figure 2;

FIGURE 4 shows the circuit of the YUV serialiser of Figure 2;

FIGURE 5 is a block diagram of a viewdata system showing one example of how the apparatus of Fig-50 ures 1 and 2 may be incorporated in it;

FIGURE 6 is a flow diagram of the selection of picture information in a viewdata system;

FIGURE 7 is a typical display of a viewdata page including a picture occupying 1/9th of the area of the page:

FIGURE 8 shows the basis functions of a discrete cosine transform;

FIGURE 9 shows the basis functions of a Hadamard transform;

60 FIGURE 10 shows a Hadamard transform matrix of order 8;

FIGURE 11 is a representation of a plot of the logarithm of the energy (variance) distribution in a transformed image; and

65 FIGUREs 12 A, B, C and D show the progressive

formation of an image as transform coefficients containing higher spatial frequencies are used.

It is not proposed to discuss the theory of the transforms used beyond noting that they are similar to Fourier trnasforms in the production of linear functions of the samples in the row or column to provide values related to the amplitudes of different frequency components in the video signal represented by the samples. The reader is referred to the following publications for information relating to the theoretical basis of the transforms.

- Digital Image Processing, by W. K. Pratt published by Wiley Interscience, 1978, Chapter 10.
- Hadamard Transform Image Coding, by W. K.
 Pratt, J. Kane & H. C. Andrews, in Proc. IEEE, Vol. 67, No. 1, January 1969, pages 58-68.
 - A Fast Computational Algorithm for the Discrete Cosine Transform, by W-H Chen, C. H. Smith & S. C. Fralick, in IEEE Transactions on Communications, Vol. COM-25, No. 9, September 1977, pages 1004-1009.

85

Referring now to Figure 1, input information representing a rectangular block of an image to be transmitted is applied via terminal 1 to an input buffer store 2. In the block, which consists of 64 × 64 picture elements, each picture element is represented as an 8-bit byte. On this array of picture elements the forward transform is applied to produce a corresponding array of 64 × 64 transform coefficients. During the processing to generate these coefficients they are allocated 16 bits or 2 bytes each. The 64 × 64 array of coefficients is then subjected to

which takes into consideration the size of the reduc-100 tion factor required in producing the final image. Suppose that this reduction factor is 4:1, then the effect of the truncation or selection is to discard the all but a 16×16 array of coefficients. The selected coefficients are the ones containing the lower fre-

truncation or selection as indicated by the block 4

- 105 quency components of the original image and are also the ones likely to contain the greatest amount of energy in the transformed image. The selected transform coefficients are then normalised (divided by the reduction factor introduced by the selection) as indi-
- 110 cated by block 6 to compensate for the fact that the transform coefficients were constructed on the basis of a 64 \times 64 picture element array but that only a 16 \times 16 array of coefficients remains. In a viewdata the array of coefficients would be stored in a computer
- 115 data base, but this stage is not shown in Figure 1.

 The normalised, selected transform coefficients are then quantised at A. The quantised array of coefficients is then coded, transmitted via channel 7 and decoded at B for application to means 8 for perform-
- 120 ing the inverse transform. The quantising of transmitted information is chosen to enable the retention through the transmission path of the greatest amount of the image information, bearing in mind that the values of the coefficients will, in general,
- 125 vary from a maximum corresponding to the lowest image frequencies to a minimum corresponding to the highest remaining image frequencies. The inverse transform formed by the block 8 is matched to the 16×16 array of transform coefficients applied 130 to it and generates a 16×16 array of picture ele-

ments which are stored in output buffer store 9 for transmission to an output terminal 10.

The effect of the selection of transform coefficients by the block 4 is to apply a low pass filtering to the 5 image in such a way as to avoid possible aliasing resulting from the sub-sampling of the image involved in the reduction of the 64×64 picture element array to a 16 × 16 picture element array. The reduction factor can have any value which results in 10 suitable integral values for the transform matrices. In the case of the Hadamard transform the reduction factor must be a power of 2. On the other hand, if the discrete cosine transform is used, then a reduction factor of 3 could be achieved reducing a 60×60 15 picture element array to a 20 × 20 array, since the order of the discrete cosine transform need be only a multiple of 2.

The forward and inverse transforms are both two-dimensional unitary transforms which are pref-20 erably separable so that they can be applied as onedimensional transforms to the rows and columns of the arrays. It would be possible to use a Fourier transform, but this suffers from the disadvantage of requiring separate sine and cosine components so 25 that two arrays of transform coefficients would be required for each image. Since the most convenient way of performing the transforms is by digital computation the Hadamard transform has the advantage of requiring multiplication by +1 and -1 only in 30 addition to the summation processes (i.e. only addition and subtraction). The smallest Hadamard transform matrix is 2×2 and is

$$\sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

From this matrix can be built up any Hadamard matrix, since the Hadamard matrix of size 2ⁿ is equal to

$$\sqrt{\frac{1}{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ ---L & --- \\ H_{n-1} & -H_{n-1} \end{bmatrix}$$

35 Where H_{n-1} is the Hadamard matrix of size 2^{n-1} . As the Fourier transform is concerned with frequencies, it has been suggested that the number of sign changes in a row of a Hadamard matrix be termed the "sequency" of that row; the same term can be 40 applied to the columns of the matrix as well.

Another advantage of the Hadamard transform is that it is its own inverse.

In order to visualise the nature of the transform, Figure 9 shows the basis functions for the Hadamard 45 transform of order 16, and Figure 10 shows the transform matrix for a transform of order 8 with the sequency of the rows illustrated beside them.

Another transform which could be used which does not suffer from the disadvantage of the Fourier 50 transform or the size limitations of the Hadamard transform is the discrete cosine transform, and the discrete cosing transform of the function f(j), j = 0, 1,..., n-1 is defined as

$$F(k) = \frac{2c(k)}{N} \sum_{j=0}^{N-1} f(j)\cos \frac{(2j+1)k\pi}{2N}$$

$$k = 0, 1, ..., N-1$$
 (1)

and the inverse transform is

$$f(j) = \sum_{k=0}^{N-1} c(k)F(k)\cos \frac{(2j+1)k\pi}{2N}$$

$$j = 0, 1, ..., N-1 (2)$$

where

$$e(k) = \frac{1}{\sqrt{2}}$$
 for $k = 0$
= 1 for $k = 1, 2, ..., N-1$

To simplify the visualisation of this transform the 55 basis functions for one of order 16 are shown in Fig-

The operations set out in Figure 1 may be implemented by the apparatus shown in Figure 2. In Figure 2 red, green and blue video signals from a 60 television camera are applied via conductors 100, 101 and 102 to an RGB to YUV matrix circuit 103 which may be of conventional construction, designs for which may be found in many text-books on colour television. The signals R, G, B, Y, U and V have the 65 conventional meanings. The YUV signals output from the circuit 103 are transmitted via low pass filters 104, 105 and 106 and clamps 107, 108 and 109 to analogue to digital converters 110, 111 and 112 respectively. The digital outputs of the converters 70 110, 111 and 112 are applied via a YUV serialiser 113 which produces output signals in the sequence YU, UV, YU . . ., as 8-bit bytes of data which are stored in a frame store 114. The serialising of the data in this way is performed because the Y signal which carries 75 the brightness information of the image has roughly twice the bandwidth of the U and V colour difference signals and therefore requires twice as many samples per unit time to convey the picture information. The same restricted bandwidth is also used in the 80 vertical direction for the U and V signals by employing the same U and V signals samples for pairs of adjacent lines. In the frame store 114 three separate arrays of picture elements are stored, one for the Y signals, one for the U signals and one for the V signals. These arrays typically have 64×64 elements for 85 the Y signals and 32×32 elements for the U and V signals.

The microprocessor circuit 115 is connected to the frame store 114 and is programmed to perform the 90 transform on the three arrays of picture elements in the store 114 to produce three arrays of the same sizes as the picture element arrays but of transform coefficients resulting from a one-dimensional application of the transform, for example on the rows of 95 the arrays. The microprocessor circuit 115 then performs the transform a second time, this time on the columns of the arrays of the transform coefficients to complete the two-dimensional transform and produce three further arrays of transform coefficients in 100 the frame 114. The final arrays of transform coeffi-

cients are then transmitted to a viewdata computer 116 where they are combined with alphanumeric

data in a data base 117 in which are recorded the data accessible to the viewdata customers. The selection of the smaller arrays, e.g. of 16 × 16 coefficients for the Y signal and 8×8 coefficients for each 5 of the U and V signals is performed by the microprocessor circuit 115 and may even be combined with the transform program so that coefficients which are not to be used are not calculated. A transmission interface 118 forming part of a viewdata system 10 receives the frames of information from the data base 117 which are required by a particular viewdata customer and transmits them via a transmission path 119 to a receiver 120 which may be as shown in Figure 5. The viewdata receiver 120 will also include 15 a keyboard and pulse generating circuits enabling a customer to send numerical messages for selecting desired pages in the viewdata computer 116 and the computer 116 will have means for receiving these messages and acting on them. None of these details 20 is shown in Figure 2 since they are not pertinent to the invention. In the receiver the received picture data is stored in a frame store like the store 114, and the picture data are processed in the same way as for the monitor display which will be described later, 25 except that a YUV deserialiser is not used, the frame store in the receiver being connected to produce the

Y, U and V signals on separate channels. The receiver includes a second microprocessor circuit which is connected to the frame store and performs 30 the inverse transform on the three arrays of received transform coefficients. As with the forward transform the inverse transform is applied twice, once along the columns and once along the rows, to produce three arrays of picture elements respectively 35 representing the Y, U and V signals of the lower definition image similar to that originally stored in

the frame store 114.

To produce the monitor display the 8-bit bytes of data are read from the store 114 and applied to a 40 YUV deserialiser 121. The Y, U and V signals now in parallel channels are converted back to analogue form by converters 123, 124 and 125 respectively and the resulting analogue singals after filtering in filters 126, 127 and 128 are applied to a conventional 45 YUV to RGB matrix circuit 129 to produce on conductors 130, 131 and 132 the red, green and blue colour component signals for generating a monitor display of the lower definition picture.

Figure 3 is a diagram of the microprocessor cir-50 cuits shown in Figure 2 and includes an 8080A CPU 150 connected to an 8228 system controller 151 and via this and driver circuits 152 of type 8216 to an 8-way data bus 153. In addition the CPU 150 is connected via further drivers 154 of type 8216 to a 55 16-way address bus 155. The address bus 155 is connected to decoders 156 of type 8205 from which address signals for unit 157 containing 8K bytes of PROM are generated. The PROM circuits of type 8708 are connected to feed their data to the data bus 60 153. A further decoder 158 is connected to the address bus 155 and to 16K bytes of RAM 159 of type 2114. Data input and output to the RAM 159 is provided via the data bus 153. Read-Write signals for the RAM 159 are provided by the system controller 151. 65 The data bus 153 is also connected to an inputoutput device 161.

The 8080A CPU 150 requires an external clock which is provided by unit 160 of type 8224. A particular combination of the conductors of the address bus 155 is connected to the input/output circuit 161 of type 8255, which is used to address the input/output circuit. The circuit 161 is connected to the frame stores in Figure 2; the address bus 155 is connected to address decoders associated with the frame stores and the data bus 153 is connected to the storage elements themselves. All of the circuitry shown in Figure 3 is obtainable from the Intel Corporation and details of the power supplies and signal timing are published in the data books published by the Intel Corporation for the particular circuit types. The details of the program for the microprocessor are not given since these are quite straightforward involving the selection of the array elements in turn from the frame store, the performance of multiplications and additions required by the transform and the transfer back to the frame store of the corresponding result. The papers "Hadamard Transform Image Coding" and "A Fast Computational Algorithm for the Discrete Cosine Transform" refer-90 red to above disclose computational techniques for implementing the transforms which can readily be converted to programs for the microprocessor.

121 of Figure 2 may be basically of similar construction, and the circuit of the serialiser 113 is shown in Figure 4. The digital outputs from the analogue to digital converters 110 to 112 (Fig. 2) in 8-bit parallel from are applied respectively to tri-state buffer stores 200, 201 and 202 from which the signals are 100 applied in sequence to a common 8-bit bus 203 in response to Y enable, U enable and V enable signals. Y enable, U enable and V enable signals are generated by a 4-bit counter 204 and a gating circuit 205 as shown in Figure 4. The counter 204 is driven by a 16 105 MHz clock signal obtained from the frame store 114 via gates in an integrated circuit 206. The bus 203 drives buffer stores 207 the output of which are connected to two blocks of four gates 208 and 209 having eight parallel output conductors 210 connected 110 as the data input to the frame store 114 in Figure 2. The operation of the tri-state buffer stores 200, 201 and 202 by the Y enable, U enable and V enable signals is such that the Y, U and V data bytes appear in the sequence YU, YV, YU, YV, etc., on the output

The YUV serialiser 113 and the YUV deserialiser

Although the image transmission apparatus and method described above can be used generally, it is particularly suited to the transmission of pictures in a viewdata system and the modifications required to 120 a viewdata system to provide the picture transmission will now be described with reference to Figures 5, 6 and 7. It is not proposed to describe in detail construction and operation of the viewdata system itself, since a practical system is now being operated 125 by the British Post Office and suitably modified television receivers and apparatus for adding to existing television receivers are currently available on the market.

115 data conductors 210.

Referring now to Figure 5 which shows in block 130 diagram form a modified viewdata system, the viewdata transmitter consists of a suitably programmed computer 300 having a main data store 301 and a rapid access store 302. The computer 300 has as an input/output port a modem 303 by which the compu-5 ter 300 is connected to the public switched telephone network.

The receiver for the viewdata system is connected to the public switched telephone network through a modem 304 to which is connected a keying circuit 10 305 enabling the customer to transmit messages to the computer 300. The output data from the modem 304 is applied to a switching circuit 306 controlled by signals from a microprocessor circuit 307 and a viewdata decoder and page store 308. The switching 15 circuit 306 has two outputs, one of which is applied as an input to the microprocessor circuit 307 and the other of which is applied as an input to the viewdata decoder and page store 308. A control circuit 309 receives inputs from both the microprocessor circuit 20 307 and the viewdata decoder and page store 308. The switching circuit 306 has two outputs, one of which is applied as an input to the microprocessor circuit 307 and the other of which is applied as an input to the viewdata decoder and page store 308. A 25 control circuit 309 receives inputs from both the microprocessor circuit 307 and the viewdata decoder and page store 308 and applies control signals to a frame store and demultiplexer 310 which is connected to receive output signals from the microp-30 rocessor circuit 307. The frame store and demultiplex circuit 310 has three digital outputs which are applied respectively to three digital to analogue converters 311, 312 and 313 respectively for producing analogue output signals representing the Y, U and V 35 components of a colour television signal. These Y, U and V signals are converted to red, green and blue signals by a matrixing circuit 304 and are applied to a colour television receiver 315 for producing a display. The viewdata decoder and page store 308 also 40 produces red, green and blue video signals which are applied to the receiver 315 and it also provides a

synchronising signal for the receiver 315. In the normal viewdata operation of the circuit shown in Figure 5 in which digitally coded 45 alphanumeric information is received from the computer 300 and is displayed as pages of alphanumeric and/or graphical data on the screen of the receiver 315, the switching circuit 306 is in the lower position shown in Figure 5 in which the output of the modem 50 304 is applied directly to the viewdata decoder and page store 308 which operates in the normal manner for viewdata signals to produce the required video signals generating a display on the receiver 315. When, however, a viewdata page containing picture 55 information is selected by the customer, the alphanumeric data will include instructions to the customer to depress the hash key on his keyboard if he wishes to receive the picture. The depression of this key results in the viewdata decoder and page 60 store 308 switching over the circuit 306 so that the signals received from the computer 300 are applied to the microprocessor 307. The microprocessor circuit 307 is basically of the construction shown in Figure 3. When the computer 300 receives the signal 65 indicating that the hash key was pressed, it causes

the transmission of the frames of information representing the picture to be included in the viewdata page. The first frame of this viewdata page includes "hidden" data amongst which is recorded the number of additional frames needed to store the picture. This hidden data was transmitted to the rapid access store 302 of the computer 300 with the remainder of the first frame when selected from the main store 307 and causes the computer 300 to select the appropriate number of following frames and transmit the data to the receiver. This data is stored in the frame store 310 which carries out the inverse transformation described above and produces the Y, U and V signals representing the elements of the picture to be produced.

75

80

90

Figure 6 shows a flow diagram of the selection operations performed by the computer 300 in selecting the additional frams containing picture information for transmission to a customer. From a study of Figure 6 it will be apparent that the operation of the computer 300 will follow that outlined above. The modifications to the flow diagram to represent a system in which the picture data are produced without the need to press the "hash" key will also be apparent.

In order to explain how the picture information is combined with the alphanumeric and graphic information to produce a common display of a page including the picture on the screen of the receiver 315, attention is directed to Figure 7 which shows an example of a page having a picture occupying 1/9th of the area, being 1/3rd of the height and 1/3rd of the width of the frame. The timing is controlled by the line scan of the screen, and in normal viewdata 100 operation the video signals are generated by a character generator in response to the coded information which is selected synchronously with the description of the raster on the screen. At the lefthand side of the picture each line section is preceded 105 by a "start insert" code which does not cause any visible information to be displayed, but causes the lines of video information of the picture to be selected from the frame store 310 and the appropriate video signals applied to the receiver 315; this is 110 part of the function of the control unit 309. Of course, if there is no picture information available, for example, because the particular receiver does not contain the necessary circuitry, then there will be no display in the screen and instead of a picture there 115 will simply be a blank area. At the ends of the lines of the picture the control circuits encounter "end of line" codes and returns generation of video signals to the viewdata decoder and page store 308. This allows the picture to unfold line by line as the

120 data is received. This multiplexing of alphanumeric/graphical data with the picture data continues until all of the picture data have been read when the control unit 309 notes that further picture information is not available in that display raster and 125 it then awaits the occurrence of the "start insert" codes in the next frame. Every time a new text page is called a "form-feed" character is used to clear the text from the screen. This same character is also used to clear the picture store when a text page 130 associated with a picture insert is requested.

Although the picture insert shown in Figure 7 is of the same shape as the television frame, it is not necessary for it to be so; it could be tall and thin or low and wide if the particular picture to be displayed 5 were such as to require it, for example, of a person standing up or of a ship. Such pictures would be divided into square blocks as described above.

Figure 11 shows a representation of a plot of the logarithm of the energy or variance of an image sub-10 jected to a discrete cosine transform and shows how the energy is concentrated in one corner of the transform array, this being the corner corresponding to the lower frequency components. The coefficient selection process provided in accordance with the 15 present invention would involve the selection of values corresponding to the lower values of i and j which would result in the small amount of energy contained in the higher frequency components being discarded. Figure 11 illustrates particularly 20 clearly that little information is lost by discarding the higher frequency components.

As described above with reference to Figures 5, 6 and 7, the transmission of the picture information takes place block by block and in each block the dis-25 play of the picture is effected line by line along with the already displayed alphanumeric/graphical information on the page, and this means that the customer must wait for a short while, for example, 20 seconds between the depression of the hash key 30 and the complete display of the picture or the page. If the customer is searching for a particular page, he may find that this 20 seconds delay in producing the picture is irksome and to overcome this it would be possible for the picture information to be transmit-35 ted in a different way so that the image is produced firstly as a vague image of very low resolution and the resolution is then progressively improved until it reaches its maximum value when all of the picture information has been transmitted. This is possible

- 40 by modifying the order of transmission of transform coefficients since these coefficients contain particular frequency components of the picture being transmitted. The modification required is one which has the result that, instead of each block of transform
- 45 coefficients being transmitted, the coefficients containing the lowest frequency components of all the blocks are transmitted first and then the coefficients containing the next lowest components follow and so on progressively until the coefficients con-
- 50 taining the highest frequencies are transmitted. An indication of the effect which such transmission would have is shown in Figure 12 which illustrates the gradual build-up of an image using an 8 × 1 Hadamard transform, that is to say a transform effec-
- 55 tive along the rows of picture elements only. Image A is the first image received, B the second, C the fourth and D the eighth and final image. In this example the picture is divided horizontally into 16 blocks each of 8 elements so that the horizontal
- 60 definition in the first image is 16 elements, that in B 32, that in C 64 and that in D 128 elements in a line. If the transform were to be carried out in both row and column directions the picture would first be displayed as image consisting of 16 × 16 blocks, each of 65 uniform colour and brightness. As the image was

1. A method of transmitting an image including producing an original video signal containing a first

CLAIMS

32, then 64×64 and finally 128×128 .

plurality of samples representing an original image. subjecting the original video signal to at least the lower frequency part of a two-dimensional unitary transformation matched in terms of size of sample

built-up the number of blocks would increase to 32 imes

- array to the first plurality of samples and, if necessary, selecting the coefficients of the transformed video signals, so that a set consisting of a second plurality of transform coefficients containing only the lower frequency components of the original
- video signal is produced, transmitting the set of transform coefficients, subjecting the transmitted set of coefficients to a second transformation, having the inverse effect to the two-dimensional unitary transformation and matched in terms of size of sam-
- ple array to the number of coefficients in the set, to produce an output video signal having a second plurality of samples, the second plurality being smaller than the first plurality, and regenerating an image having fewer picture elements than the original 90 image from the output video signal.
 - 2. A method according to claim 1, wherein the first-mentioned transformation is truncated so that only the second plurality of transform coefficients is produced.
- 3. A method according to claim 1 or 2 wherein each of the first-mentioned and its inverse transformation is formed by two orthogonal onedimensional transforms multiplied together.
- 4. A method according to claim 3 wherein the 100 one-dimensional transformation are Hadamard transformations.
 - 5. A method according to claim 3 wherein the one-dimensional transformations are discrete cosine transformations.
- 6. A method according to any preceding claim wherein the reproduced image has a fraction of the number of picture elements in each row and column of the original image.
- 7. A method according to claim 6 wherein the 110 reproduced image has 1/2N (N integral) of picture elements in each row and column of the original image.
- 8. A method according to any preceding claim wherein the original image is sub-divided into a 115 plurality of blocks and the image data in the blocks are transformed, transmitted and inversely transformed separately.
- 9. A method according to any preceding claim wherein the transform coefficients are normalised to 120 retain the energy invariance property of the transformations.
 - 10. A method according to any preceding claim, wherein the transformation and inverse transformation are performed digitally.
- 11. A method according to any preceding claim, wherein the set of transform coefficients is stored prior to transmission.
- 12. A method according to claim 11 when performed in conjunction with a viewdata system, so 130 that a small image is reproduced in a page of

alphanumeric data.

- 13. A method of transmitting an image substantially as described herein with reference to the accompanying drawings.
- 14. Apparatus for transmitting an image including source means for producing an original video signal containing a first plurality of samples and representing an original image, first processing means responsive to the original video signal to produce a 10 set of output signals representing a set of transform coefficients fewer in number than the first plurality and containing only the lower frequency components of the original video signal, the coefficients being produced by a two-dimensional unitary trans-15 formation matched in terms of size of sample array to the first plurality of samples, a channel for transmitting the set of output signals from the first processing means, second processing means responsive to the transmitted output signals to subject the set of transform coefficients to a second transformation having the inverse effect to the two-dimensional unitary transformation and matched in terms of size of sample array to the number of coefficients in the set, to produce an output video signal having a sec-25 ond plurality of samples, the second plurality being smaller than the first plurality, and a display device for producing an image having fewer picture elements than the original image from the output video signal.
- 30 15. Apparatus according to claim 14, wherein the first processing means is arranged to truncate the two-dimensional unitary transformation so that only the transform coefficients belonging to the set are produced.
- 35 16. Apparatus according to claim 14, wherein the first processing means is arranged to produce the transform coefficients resulting from the two-dimensional unitary transformation and then to select the coefficients belonging to the set.
- 40 17. Apparatus according to any of claims 14 to 16, wherein the first processing means is arranged to apply the two-dimensional unitary transformation to blocks of the original image separately and the second processing means is arranged to apply the
 45 inverse transformation separately to groups of transform coefficients derived from the blocks of the original image to produce corresponding blocks of the output image.
 - 18. Apparatus according to any of claims 14 to 17 wherein each of the two-dimensional unitary transformation and its inverse is performed as two one-dimensional transformations in succession applied respectively to the rows and columns of the image or its transform.
- 55 19. Apparatus according to claim 18 wherein the one-dimensional transformations are Hadamard transformations.
- 20. Apparatus according to claim 18 wherein the one-dimensional transformations are discrete cosine60 transformations.
- 21. Apparatus according to any of claims 14 to 20 wherein the first processing means is arranged to normalise the transform coefficients so as to retain the energy invariance property of the transformations.

- 22. Apparatus according to any of claims 14 to 21 including means for storing the set of transform coefficients prior to transmission through the channel.
- 23. Apparatus according to any of claims 14 to 22 including analogue to digital conversion means for converting the samples of the original video signal into digital form, and digital to analogue conversion means for producing an analogue output video
 75 signal from the second plurality of samples generated by the second processing means, the first and second processing means and the transmitting channel handling digital signals.
 - 24. Apparatus according to any of claims 14 to 23 incorporated to be included in a page of alphanumeric data.
 - 25. Apparatus for transmitting an image substantially as described herein with reference to the accompanying drawings.

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1983.

Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.