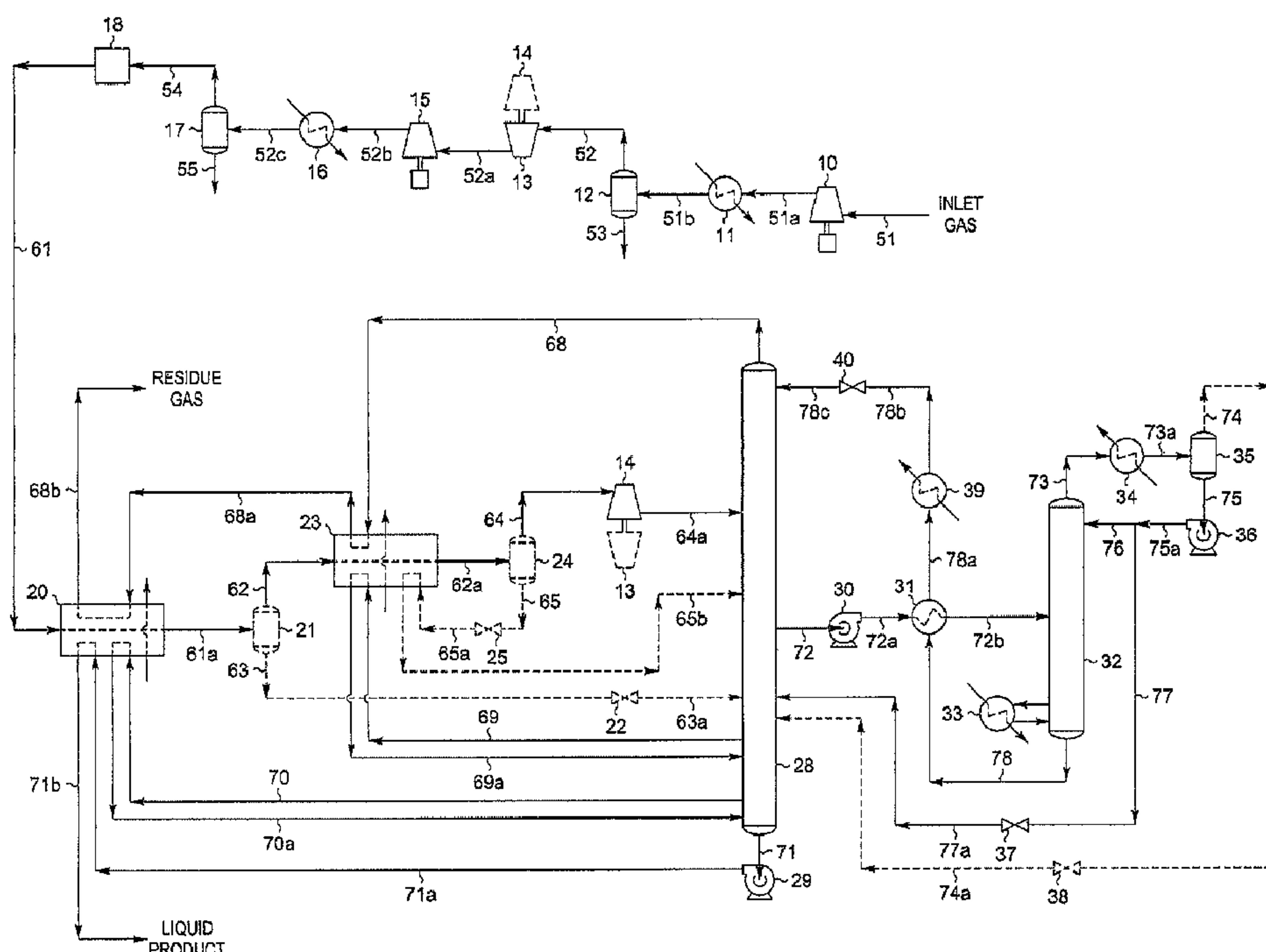


(86) Date de dépôt PCT/PCT Filing Date: 2010/12/29
(87) Date publication PCT/PCT Publication Date: 2011/07/21
(45) Date de délivrance/Issue Date: 2017/08/01
(85) Entrée phase nationale/National Entry: 2012/07/05
(86) N° demande PCT/PCT Application No.: US 2010/062402
(87) N° publication PCT/PCT Publication No.: 2011/087884
(30) Priorités/Priorities: 2010/01/14 (US61/295,119);
2010/12/28 (US12/979,563)

(51) Cl.Int./Int.Cl. *F25J 3/00* (2006.01)

(72) Inventeurs/Inventors:

PIERCE, MICHAEL C., US;
WILKINSON, JOHN D., US;
HUDSON, HANK M., US


(73) Propriétaire/Owner:

ORTLOFF ENGINEERS, LTD., US

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : TRAITEMENT D'UN GAZ RENFERMANT DES HYDROCARBURES

(54) Title: HYDROCARBON GAS PROCESSING

(57) Abrégé/Abstract:

(57) **Abrege/Abstract.** A process and an apparatus are disclosed for recovering ethane, ethylene, and heavier hydrocarbon components from a hydrocarbon gas stream. The stream is cooled, expanded to lower pressure, and supplied to a first fractionation tower at a mid-

(57) Abrégé(suite)/Abstract(continued):

column feed position. A distillation liquid stream is withdrawn from the first fractionation tower below the feed position of the expanded stream, heated, and directed into a second fractionation tower that produces an overhead vapor stream and a bottom liquid stream. The overhead vapor stream is cooled to condense it, with a portion of the condensed stream directed to the second fractionation tower as its top feed and the remainder directed to the first fractionation tower at a lower column feed position. The bottom liquid stream from the second fractionation tower is cooled and directed to the first fractionation tower as its top feed.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

(43) International Publication Date
21 July 2011 (21.07.2011)

(10) International Publication Number
WO 2011/087884 A1

(51) International Patent Classification:
F25J 3/00 (2006.01)

(81) **Designated States** (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number: PCT/US2010/062402

(22) International Filing Date:
29 December 2010 (29.12.2010)

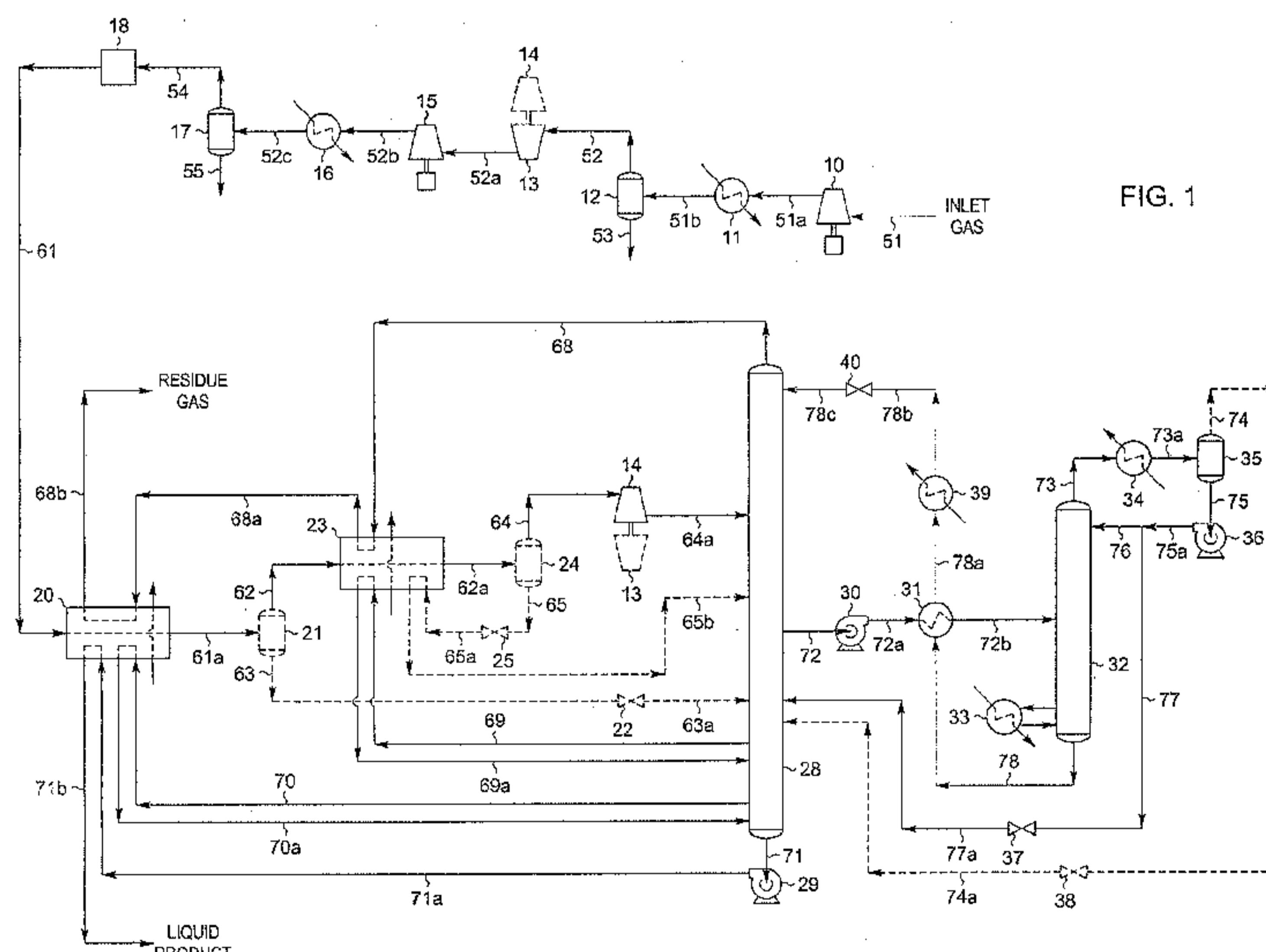
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/295,119 14 January 2010 (14.01.2010) US
12/979 563 28 December 2010 (28.12.2010) US

(71) *Applicant (for all designated States except US): ORT-LOFF ENGINEERS, LTD. [US/US]; 415 West Wall, Suite 200, Midland, TX 79701 (US).*

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): **PIERCE, Michael**,
C. [US/US]; 1650 Parkdale Circle North, Erie, CO 80516
(US). **WILKINSON, John, D.** [US/US]; 4113 Tanforan
Avenue, Midland, TX 79707 (US). **HUDSON, Hank, M.**
[US/US]; 2508 W. Sinclair Avenue, Midland, TX 79705
(US).


(74) Agent: **RUSSO, Alicia, A.**; Fitzpatrick, Cella, Harper & Scinto, 1290 Avenue Of The Americas, New York, NY 10104-3800 (US).

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: HYDROCARBON GAS PROCESSING

WO 2011/087884 A1

(57) Abstract: A process and an apparatus are disclosed for recovering ethane, ethylene, and heavier hydrocarbon components from a hydrocarbon gas stream. The stream is cooled, expanded to lower pressure, and supplied to a first fractionation tower at a mid-column feed position. A distillation liquid stream is withdrawn from the first fractionation tower below the feed position of the expanded stream, heated, and directed into a second fractionation tower that produces an overhead vapor stream and a bottom liquid stream. The overhead vapor stream is cooled to condense it, with a portion of the condensed stream directed to the second fractionation tower as its top feed and the remainder directed to the first fractionation tower at a lower column feed position. The bottom liquid stream from the second fractionation tower is cooled and directed to the first fractionation tower as its top feed.

HYDROCARBON GAS PROCESSING

SPECIFICATION

BACKGROUND OF THE INVENTION

[0001] This invention relates to a process for the separation of a hydrocarbon bearing gas stream containing significant quantities of components more volatile than methane (e.g., hydrogen, nitrogen, etc.) into two fractions: a first fraction containing predominantly methane and the more volatile components, and a second fraction containing the recovered desirable ethane/ethylene and heavier hydrocarbon components.

[0002] Ethylene, ethane, propylene, propane, and/or heavier hydrocarbons can be recovered from a variety of gases, such as natural gas, refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite. Hydrocarbon bearing gas typically contains components more volatile than methane (e.g., hydrogen, nitrogen, etc.) and often unsaturated hydrocarbons (e.g., ethylene, propylene, etc.) and aromatic hydrocarbons

(e.g., benzene, toluene, etc.) in addition to methane, ethane, and hydrocarbons of higher molecular weight such as propane, butane, and pentane. Sulfur-containing gases and carbon dioxide are also sometimes present.

[0003] The present invention is generally concerned with the recovery of ethylene, ethane, and heavier (C_2+) hydrocarbons from such gas streams. Recent changes in ethylene demand have created increased markets for ethylene and derivative products. In addition, fluctuations in the prices of both natural gas and its natural gas liquid (NGL) constituents have increased the value of ethane and heavier components as liquid products. These market conditions have resulted in the demand for processes which can provide high ethylene and ethane recovery and more efficient recovery of all these products. Available processes for separating these materials include those based upon cooling and refrigeration of gas, oil absorption, and refrigerated oil absorption. Additionally, cryogenic processes have become popular because of the availability of economical equipment that produces power while simultaneously expanding and extracting heat from the gas being processed. Depending upon the pressure of the gas source, the richness (ethane, ethylene, and heavier hydrocarbons content) of the gas, and the desired end products, each of these processes or a combination thereof may be employed.

[0004] The cryogenic expansion process is now generally preferred for natural gas liquids recovery because it provides maximum simplicity with ease of startup, operating flexibility, good efficiency, safety, and good reliability. U.S. Patent Nos. 3,292,380; 4,061,481; 4,140,504; 4,157,904; 4,171,964; 4,185,978; 4,251,249; 4,278,457; 4,519,824; 4,617,039; 4,687,499; 4,689,063; 4,690,702; 4,854,955;

4,869,740; 4,889,545; 5,275,005; 5,555,748; 5,566,554; 5,568,737; 5,771,712; 5,799,507; 5,881,569; 5,890,378; 5,983,664; 6,182,469; 6,578,379; 6,712,880; 6,915,662; 7,191,617; 7,219,513; reissue U.S. Patent No. 33,408; and co-pending application nos. 11/430,412; 11/839,693; 11/971,491; 12/206,230; 12/689,616; 12/717,394; 12/750,862; 12/772,472; 12/781,259; 12/868,993; 12/869,007; and 12/869,139 describe relevant processes (although the description of the present invention in some cases is based on different processing conditions than those described in the cited U.S. Patents and applications).

[0005] In a typical cryogenic expansion recovery process, a feed gas stream under pressure is cooled by heat exchange with other streams of the process and/or external sources of refrigeration such as a propane compression-refrigeration system. As the gas is cooled, liquids may be condensed and collected in one or more separators as high-pressure liquids containing some of the desired C₂+ components. Depending on the richness of the gas and the amount of liquids formed, the high-pressure liquids may be expanded to a lower pressure and fractionated. The vaporization occurring during expansion of the liquids results in further cooling of the stream. Under some conditions, pre-cooling the high pressure liquids prior to the expansion may be desirable in order to further lower the temperature resulting from the expansion. The expanded stream, comprising a mixture of liquid and vapor, is fractionated in a distillation (demethanizer or deethanizer) column. In the column, the expansion cooled stream(s) is (are) distilled to separate residual methane, hydrogen, nitrogen, and other volatile gases as overhead vapor from the desired C₂ components, C₃ components, and heavier hydrocarbon components as bottom liquid product, or to

separate residual methane, C₂ components, hydrogen, nitrogen, and other volatile gases as overhead vapor from the desired C₃ components and heavier hydrocarbon components as bottom liquid product.

[0006] If the feed gas is not totally condensed (typically it is not), the vapor remaining from the partial condensation can be passed through a work expansion machine or engine, or an expansion valve, to a lower pressure at which additional liquids are condensed as a result of further cooling of the stream. The pressure after expansion is essentially the same as the pressure at which the distillation column is operated. The combined vapor-liquid phases resulting from the expansion are supplied as feed to the column.

[0007] In the ideal operation of such a separation process, the residue gas leaving the process will contain substantially all of the methane and more volatile components in the feed gas with essentially none of the heavier hydrocarbon components, and the bottoms fraction leaving the demethanizer will contain substantially all of the heavier hydrocarbon components with essentially no methane or more volatile components. In practice, however, this ideal situation is not obtained because the conventional demethanizer is operated largely as a stripping column. The methane product of the process, therefore, typically comprises vapors leaving the top fractionation stage of the column, together with vapors not subjected to any rectification step. Considerable losses of ethylene and ethane occur because the top liquid feed contains substantial quantities of C₂+ components and heavier hydrocarbon components, resulting in corresponding equilibrium quantities of C₂+ components in the vapors leaving the top fractionation stage of the demethanizer.

This problem is exacerbated if the gas stream(s) being processed contain relatively large quantities of components more volatile than methane (e.g., hydrogen, nitrogen, etc.) because the volatile vapors rising up the column strip C₂+ components from the liquids flowing downward. The loss of these desirable C₂+ components could be significantly reduced if the rising vapors could be brought into contact with a significant quantity of liquid (reflux) capable of absorbing the C₂+ components from the vapors.

[0008] A number of processes have been developed to use a cold liquid that is predominantly methane as the reflux stream to contact the rising vapors in a rectification section in the distillation column. Typical process schemes of this type are disclosed in U.S. Patent Nos. 4,889,545; 5,568,737; and 5,881,569, and in Mowrey, E. Ross, "Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber", Proceedings of the Eighty-First Annual Convention of the Gas Processors Association, Dallas, Texas, March 11-13, 2002. Unfortunately, these processes require the use of a compressor to provide the motive force for recycling the reflux stream to the demethanizer, adding to both the capital cost and the operating cost of facilities using these processes. In addition, the cold methane reflux creates temperatures within the distillation column that are -112°F [-80°C] and colder. Many gas streams of this type contain significant quantities of nitrous oxides (NO_X) at times, which can accumulate in cold sections of a processing plant as NO_X gums (commonly referred to as "blue ice") at temperatures lower than this. "Blue ice" can become explosive upon warming, and has been identified as the cause of a number of deflagrations and/or explosions in processing plants.

[0009] Other processes have been developed that use a heavy (C₄-C₁₀ typically) hydrocarbon absorbent stream to reflux the distillation column. Examples of processes of this type are U.S. Patent Nos. 4,318,723; 5,546,764; 7,273,542; and 7,714,180. While such processes generally operate at temperatures warm enough to avoid concerns about "blue ice", the absorbent stream is typically produced from the distillation column bottoms stream, with the result that any aromatic hydrocarbons present in the feed gas will concentrate in the distillation column. Aromatic hydrocarbons such as benzene can freeze solid at normal processing temperatures, causing frequent disruptions in the processing plant.

[0010] In accordance with the present invention, it has been found that ethane recovery in excess of 88% can be obtained without requiring any temperatures to be lower than -112°F [-80°C]. The present invention is particularly advantageous when processing feed gases containing more than 10 mole % of components more volatile than methane.

[0011] For a better understanding of the present invention, reference is made to the following examples and drawings. Referring to the drawings:

[0012] FIG. 1 is a flow diagram of gas processing plant in accordance with the present invention; and

[0013] FIG. 2 is a flow diagrams illustrating alternative means of application of the present invention to a gas stream.

[0014] In the following explanation of the above figures, tables are provided summarizing flow rates calculated for representative process conditions. In the tables appearing herein, the values for flow rates (in moles per hour) have been rounded to

the nearest whole number for convenience. The total stream rates shown in the tables include all non-hydrocarbon components and hence are generally larger than the sum of the stream flow rates for the hydrocarbon components. Temperatures indicated are approximate values rounded to the nearest degree. It should also be noted that the process design calculations performed for the purpose of comparing the processes depicted in the figures are based on the assumption of no heat leak from (or to) the surroundings to (or from) the process. The quality of commercially available insulating materials makes this a very reasonable assumption and one that is typically made by those skilled in the art.

[0015] For convenience, process parameters are reported in both the traditional British units and in the units of the Système International d'Unités (SI). The molar flow rates given in the tables may be interpreted as either pound moles per hour or kilogram moles per hour. The energy consumptions reported as horsepower (HP) and/or thousand British Thermal Units per hour (MBTU/Hr) correspond to the stated molar flow rates in pound moles per hour. The energy consumptions reported as kilowatts (kW) correspond to the stated molar flow rates in kilogram moles per hour.

DESCRIPTION OF THE INVENTION

[0016] FIG. 1 illustrates a flow diagram of a process in accordance with the present invention. In the simulation of the FIG. 1 process, inlet gas enters the plant at 100°F [38°C] and 77 psia [531 kPa(a)] as stream **51**. If the inlet gas contains a

concentration of sulfur compounds and/or carbon dioxide which would prevent the product streams from meeting specifications, the sulfur compounds and/or carbon dioxide are removed by appropriate pretreatment of the feed gas (not illustrated).

[0017] The inlet gas is compressed to higher pressure in three stages before processing (compressors **10** and **15** driven by an external power source and compressor **13** driven by work expansion machine **14**). Discharge coolers **11** and **16** are used to cool the gas between stages, and separators **12** and **17** are used to remove any water or other liquids that condense from the gas stream as it is cooled. The cooled compressed gas stream **54** leaving separator **17** is dehydrated in dehydration unit **18** to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccant has typically been used for this purpose.

[0018] The dehydrated gas stream **61** at 100°F [38°C] and 560 psia [3,859 kPa(a)] enters heat exchanger **20** and is cooled by heat exchange with cool residue gas (stream **68a**), liquid product at 28°F [-2°C] (stream **71a**), demethanizer reboiler liquids at 13°F [-11°C] (stream **70**), and propane refrigerant. Note that in all cases exchanger **20** is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof. (The decision as to whether to use more than one heat exchanger for the indicated cooling services will depend on a number of factors including, but not limited to, inlet gas flow rate, heat exchanger size, stream temperatures, etc.) The cooled stream **61a** enters separator **21** at 40°F [4°C] and 550 psia [3,790 kPa(a)] where the vapor (stream **62**) is separated from the condensed liquid (stream **63**). The separator liquid (stream **63**) is expanded to the operating pressure (approximately 175 psia [1,207 kPa(a)]) of

fractionation tower **28** by expansion valve **22**, cooling stream **63a** to 16°F [-9°C] before it is supplied to fractionation tower **28** at a lower column feed point.

[0019] The vapor (stream **62**) from separator **21** is further cooled in heat exchanger **23** by heat exchange with cold residue gas (stream **68**), demethanizer side reboiler liquids at -10°F [-23°C] (stream **69**), flashed liquids (stream **65a**), and propane refrigerant. The cooled stream **62a** enters separator **24** at -42°F [-41°C] and 535 psia [3,686 kPa(a)] where the vapor (stream **64**) is separated from the condensed liquid (stream **65**). The separator liquid (stream **65**) is expanded to slightly above the tower operating pressure by expansion valve **25**, cooling stream **65a** to -63°F [-53°C] before it is heated to -40°F [-40°C] in heat exchanger **23**. The heated stream **65b** is then supplied to fractionation tower **28** at a lower mid-column feed point.

[0020] The vapor (stream **64**) from separator **24** enters work expansion machine **14** in which mechanical energy is extracted from this portion of the high pressure feed. The machine **14** expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream **64a** to a temperature of approximately -105°F [-76°C]. The typical commercially available expanders are capable of recovering on the order of 80-85% of the work theoretically available in an ideal isentropic expansion. The work recovered is often used to drive a centrifugal compressor (such as item **13**) that can be used to compress the inlet gas (stream **52**), for example. The partially condensed expanded stream **64a** is thereafter supplied as feed to fractionation tower **28** at an upper mid-column feed point.

[0021] The demethanizer in tower **28** is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The demethanizer tower consists of two sections: an upper absorbing (rectification) section that contains the trays and/or packing to provide the necessary contact between the vapor portion of the expanded stream **64a** rising upward and cold liquid falling downward to condense and absorb the C₂ components, C₃ components, and heavier components from the vapors rising upward; and a lower, stripping (demethanizing) section that contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section also includes one or more reboilers (such as the reboiler and side reboiler described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product, stream **71**, of methane and lighter components. Stream **64a** enters demethanizer **28** at an intermediate feed position located in the lower region of the absorbing section of demethanizer **28**. The liquid portion of the expanded stream commingles with liquids falling downward from the absorbing section and the combined liquid continues downward into the stripping section of demethanizer **28**. The vapor portion of the expanded stream rises upward through the absorbing section and is contacted with cold liquid falling downward to condense and absorb the C₂ components, C₃ components, and heavier components.

[0022] A portion of the distillation liquid (stream **72**) is withdrawn from an intermediate region of the stripping section in fractionation column **28**, below the feed position of expanded stream **64a** in the lower region of the absorbing section but

above the feed position of expanded liquid stream **63a** in the stripping section. Withdrawing the distillation liquid at this location provides a liquid stream that is predominantly C₂-C₅ hydrocarbons containing very little of the volatile components (e.g., methane, hydrogen, nitrogen, etc.) and little of the aromatic hydrocarbons and heavier hydrocarbon components. This distillation vapor stream **72** is pumped to higher pressure by pump **30** (stream **72a**) and then heated from -25°F [-32°C] to 77°F [25°C] and partially vaporized in heat exchanger **31** by heat exchange with the hot depropanizer bottom stream **78**. The heated stream **72b** then enters depropanizer **32** (operating at 265 psia [1,828 kPa(a)]) at a mid-column feed point.

[0023] The depropanizer in tower **32** is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The depropanizer tower consists of two sections: an upper absorbing (rectification) section that contains the trays and/or packing to provide the necessary contact between the vapor portion of the heated stream **72b** rising upward and cold liquid falling downward to condense and absorb the C₄ components and heavier components; and a lower, stripping (depropanizing) section that contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward. The depropanizing section also includes one or more reboilers (such as reboiler **33**) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the bottom liquid product, stream **78**, of C₃ components and lighter components. Stream **72b** enters depropanizer **32** at an intermediate feed position located between the absorbing section and the stripping section of

depropanizer **32**. The liquid portion of the heated stream commingles with liquids falling downward from the absorbing section and the combined liquid continues downward into the stripping section of depropanizer **32**. The vapor portion of the heated stream rises upward through the absorbing section and is contacted with cold liquid falling downward to condense and absorb the C₄ components and heavier components.

[0024] The overhead vapor (stream **73**) from depropanizer **32** enters reflux condenser **34** and is cooled by propane refrigerant from 59°F [15°C] to -33°F [-36°C] to condense it before entering reflux separator **35** at 260 psia [1,793 kPa(a)]. If there is any uncondensed vapor (stream **74**), it is expanded to the operating pressure of demethanizer **28** by expansion valve **38** and returned to demethanizer **28** at a lower column feed point. In the simulation of FIG. 1, however, all of the overhead vapor is condensed and leaves reflux separator **35** in liquid stream **75**. Stream **75** is pumped by pump **36** to a pressure slightly above the operating pressure of depropanizer **32**, and a portion (stream **76**) of stream **75a** is then supplied as top column feed (reflux) to depropanizer **32** to absorb and condense the C₄ components and heavier components rising in the absorbing section of the column. The remaining portion (stream **77**) contains the C₃ and lighter components stripped from distillation liquid stream **72**. It is expanded to the operating pressure of demethanizer **28** by expansion valve **37**, cooling stream **37a** to -44°F [-42°C] before it is returned to demethanizer **28** at a lower column feed point, below the withdrawal point of distillation liquid stream **72**.

[0025] The bottom liquid product from depropanizer **32** (stream **78**) has been stripped of the C₃ and lighter components, and is predominantly C₄-C₅ hydrocarbons.

It leaves the bottom of depropanizer **32** at 230°F [110°C] and is cooled to -20°F [-29°C] in heat exchanger **31** as described earlier. Stream **78a** is further cooled to -35°F [-37°C] with propane refrigerant in heat exchanger **39** (stream **78b**) and then expanded to the operating pressure of demethanizer **28** in expansion valve **40**. The expanded stream **78c** is then supplied to demethanizer **28** as reflux, entering at the top feed location at -35°F [-37°C]. The C₄-C₅ hydrocarbons in stream **78c** act as an absorbent to capture the C₂+ components in the vapors flowing upward in the absorbing section of demethanizer **28**.

[0026] In the stripping section of demethanizer **28**, the feed streams are stripped of their methane and lighter components. The resulting liquid product (stream **71**) exits the bottom of tower **28** at 24°F [-4°C] and is pumped to higher pressure in pump **29**. The pumped stream **71a** is then heated to 93°F [34°C] in heat exchanger **20** as described previously. The cold residue gas stream **68** leaves demethanizer **28** at -32°F [-35°C] and passes countercurrently to the incoming feed gas in heat exchanger **23** where it is heated to 32°F [0°C] (stream **68a**) and in heat exchanger **20** where it is heated to 95°F [35°C] (stream **68b**) as it provides cooling as previously described. The residue gas product then flows to the fuel gas distribution header at 165 psia [1,138 kPa(a)].

[0027] A summary of stream flow rates and energy consumption for the process illustrated in FIG. 1 is set forth in the following table:

Table I

(FIG. 1)

Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]

<u>Component</u>	<u>Stream 61</u>	<u>Stream 62</u>	<u>Stream 63</u>	<u>Stream 64</u>	<u>Stream 65</u>
Hydrogen	833	823	10	814	9
Methane	2,375	2,225	150	1,980	245
Ethylene	115	95	20	60	35
Ethane	944	710	234	349	361
Propylene	212	112	100	23	89
Propane	597	293	304	51	242
Butylene/Butadiene	135	36	99	2	34
i-Butane	78	23	55	2	21
n-Butane	166	39	127	2	37
Pentanes+	46	5	41	0	5
Totals	5,577	4,431	1,146	3,348	1,083

<u>Component</u>	<u>Stream 72</u>	<u>Stream 73</u>	<u>Stream 75</u>	<u>Stream 76</u>	<u>Stream 77</u>
Hydrogen	0	0	0	0	0
Methane	186	298	298	112	186
Ethylene	89	142	142	53	89
Ethane	836	1,336	1,336	500	836
Propylene	129	194	194	73	121
Propane	353	482	482	180	302
Butylene/Butadiene	239	24	24	9	15
i-Butane	111	18	18	7	11
n-Butane	396	16	16	6	10
Pentanes+	220	0	0	0	0
Totals	2,569	2,515	2,515	941	1,574

<u>Component</u>	<u>Stream 78</u>	<u>Stream 68</u>	<u>Stream 71</u>
Hydrogen	0	833	0
Methane	0	2,352	23
Ethylene	0	45	70
Ethane	0	109	835
Propylene	8	4	208
Propane	51	21	576
Butylene/Butadiene	224	22	113
i-Butane	100	12	66
n-Butane	386	29	137
Pentanes+	220	4	42
Totals	995	3,501	2,076

Recoveries*

Ethylene	60.81%
Ethane	88.41%
Propylene	98.22%
Propane	96.57%
Butanes+	84.03%

Power

Inlet Gas Compression	6,072 HP	[9,982 kW]
Refrigerant Compression	5,015 HP	[8,245 kW]
Total Compression	11,087 HP	[18,227 kW]

* (Based on un-rounded flow rates)

Other Embodiments

[0028] In accordance with this invention, it is generally advantageous to design the absorbing (rectification) section of the demethanizer to contain multiple theoretical separation stages. However, the benefits of the present invention can be achieved with as few as two theoretical stages. For instance, all or a part of the reflux liquid (stream 78c) and all or a part of the expanded stream 64a can be combined (such as in the piping to the demethanizer) and if thoroughly intermingled, the vapors and liquids will mix together and separate in accordance with the relative volatilities of the various components of the total combined streams. Such commingling of the

two streams, shall be considered for the purposes of this invention as constituting an absorbing section.

[0029] FIG. 2 displays another embodiment of the present invention that may be preferred in some circumstances. In the FIG. 2 embodiment, a portion (stream **66**) of vapor stream **64** from separator **24** is expanded to an intermediate pressure by expansion valve **26** and then combined with cooled depropanizer bottoms stream **78b** to form a combined stream **79**. The combined stream **79** is cooled in heat exchanger **27** (stream **79a**) by the cold demethanizer overhead stream **68**, then expanded to the operating pressure of demethanizer **28** by expansion valve **40**. The expanded stream **79b** is then supplied as reflux to the top feed position of demethanizer **28**. The remaining portion (stream **67**) of vapor stream **64**) is expanded to the tower operating pressure by work expansion machine **14**, and the expanded stream **67a** is supplied to the upper mid-column feed position on demethanizer **28**.

[0030] Feed gas conditions, plant size, available equipment, or other factors may indicate that elimination of work expansion machine **14**, or replacement with an alternate expansion device (such as an expansion valve), is feasible. Although individual stream expansion is depicted in particular expansion devices, alternative expansion means may be employed where appropriate. For example, conditions may warrant work expansion of the reflux stream (stream **78b** or stream **79a**).

[0031] When the inlet gas is leaner, separator **21** in FIGS. 1 and 2 may not be justified. In such cases, the feed gas cooling accomplished in heat exchangers **20** and **23** in FIGS. 1 and 2 may be accomplished without an intervening separator. The decision of whether or not to cool and separate the feed gas in multiple steps will

depend on the richness of the feed gas, plant size, available equipment, etc.

Depending on the quantity of heavier hydrocarbons in the feed gas and the feed gas pressure, the cooled feed stream **61a** leaving heat exchanger **20** and/or the cooled stream **62a** leaving heat exchanger **23** in FIGS. 1 and 2 may not contain any liquid (because it is above its dewpoint, or because it is above its cricondenbar), so that separator **21** and/or separator **24** shown in FIGS. 1 and 2 are not required.

[0032] The expanded liquid (stream **65a** in FIGS. 1 and 2) need not be heated before it is supplied to the lower mid-column feed point on the distillation column. Instead, all or a portion of it may be supplied directly to the column. Any remaining portion of the expanded liquid may then be heated before it is fed to the distillation column.

[0033] In accordance with the present invention, the use of external refrigeration to supplement the cooling available to the inlet gas from other process streams may be employed, particularly in the case of a rich inlet gas. The use and distribution of separator liquids and demethanizer side draw liquids for process heat exchange, and the particular arrangement of heat exchangers for inlet gas cooling must be evaluated for each particular application, as well as the choice of process streams for specific heat exchange services.

[0034] In accordance with the present invention, the splitting of the vapor feed for the FIG. 2 embodiment may be accomplished in several ways. In the process of FIG. 2, the splitting of vapor occurs following cooling and separation of any liquids which may have been formed. The high pressure gas may be split, however, prior to

any cooling of the inlet gas or after the cooling of the gas and prior to any separation stages. In some embodiments, vapor splitting may be effected in a separator.

[0035] It will also be recognized that the relative amount of feed found in each branch of the split vapor feed of the FIG. 2 embodiment will depend on several factors, including gas pressure, feed gas composition, the amount of heat which can economically be extracted from the feed, and the quantity of horsepower available. More feed to the top of the column may increase recovery while decreasing power recovered from the expander thereby increasing the compression horsepower requirements. Increasing feed lower in the column reduces the horsepower consumption but may also reduce product recovery. The relative locations of the mid-column feeds may vary depending on inlet composition or other factors such as desired recovery levels and amount of liquid formed during inlet gas cooling. Moreover, two or more of the feed streams, or portions thereof, may be combined depending on the relative temperatures and quantities of individual streams, and the combined stream then fed to a mid-column feed position.

[0036] The present invention provides improved recovery of C₂ components, C₃ components, and heavier hydrocarbon components per amount of utility consumption required to operate the process. An improvement in utility consumption required for operating the demethanizer process may appear in the form of reduced power requirements for compression or re-compression, reduced power requirements for external refrigeration, reduced energy requirements for tower reboilers, or a combination thereof.

[0037] While there have been described what are believed to be preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto, e.g. to adapt the invention to various conditions, types of feed, or other requirements.

WE CLAIM:

1. In a process or the separation of a gas stream containing methane and more volatile components, C₂ components, C₃ components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C₂ components, C₃ components, and heavier hydrocarbon components, in which process

- (a) said gas stream is cooled under pressure to provide a cooled stream;
- (b) said cooled stream is expanded to lower pressure whereby it is further cooled; and
- (c) said further cooled stream is directed into a first distillation column and fractionated at said lower pressure whereby the components of said relatively less volatile fraction are recovered;

the improvement wherein

- (1) said further cooled expanded stream is directed to said first distillation column at a mid-column feed position;
- (2) a distillation liquid stream is withdrawn from a region of said first distillation column below said mid-column feed position;
- (3) said distillation liquid stream is heated, and thereafter directed into a second distillation column and fractionated into an overhead vapor stream and a bottom liquid stream;
- (4) said overhead vapor stream is cooled to condense substantially all of it, thereby forming a condensed stream;
- (5) said condensed stream is divided into a first portion and a second portion, whereupon said first portion is directed to said second distillation column at a top feed position;
- (6) said second portion is directed to said first distillation column at a lower column feed position below said region wherein said distillation liquid stream is withdrawn from said first distillation column;
- (7) said bottom liquid stream is cooled, thereby to supply at least a portion of the heating of step (3);

(8) said cooled bottom liquid stream is directed to said first distillation column at a top feed position;

(9) the quantities and temperatures of said feed streams to said second distillation column are effective to maintain the overhead temperature of said second distillation column at a temperature whereby said overhead vapor stream is predominantly C₃ hydrocarbon components and more volatile components, and said bottom liquid stream is predominantly C₄-C₅ hydrocarbon components, and

(10) the quantities and temperatures of said feed streams to said first distillation column are effective to maintain the overhead temperature of said first distillation column at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.

2. The process according to claim 1 wherein said gas stream is cooled sufficiently to partially condense it; and

(a) said partially condensed gas stream is separated thereby to provide a vapor stream and at least one liquid stream;

(b) said vapor stream is expanded to said lower pressure and is supplied to said first distillation column at said mid-column feed position;

(c) at least a portion of said at least one liquid stream is expanded to said lower pressure and is supplied to said first distillation column at a lower mid-column feed position below said mid-column feed position; and

(d) said distillation liquid stream is withdrawn from a region of said first distillation column below said mid-column feed position and above said lower mid-column feed position.

3. The process according to claim 1 wherein said cooled stream is divided into first and second streams; and

(a) said second stream is expanded to said lower pressure and is supplied to said first distillation column at said mid-column feed position;

(b) said first stream is expanded to an intermediate pressure and thereafter combined with said cooled bottom liquid stream to form a combined stream;

- (c) said combined stream is cooled and thereafter expanded to said lower pressure; and
- (d) said expanded cooled combined stream is directed to said first distillation column at said top feed position.

4. The process according to claim 2 wherein

- (a) said vapor stream is divided into first and second streams;
- (b) said second stream is expanded to said lower pressure and is supplied to said first distillation column at said mid-column feed position;
- (c) said first stream is expanded to an intermediate pressure and thereafter combined with said bottom liquid stream to form a combined stream;
- (d) said combined stream is cooled and thereafter expanded to said lower pressure; and
- (e) said expanded cooled combined stream is directed to said first distillation column at said top feed position.

5. The process according to claim 2 or 4 wherein said expanded at least a portion of said at least one liquid stream is heated and thereafter supplied to said first distillation column at said another lower mid-column feed position below said mid-column feed position.

6. The process according to claim 1, 2, 3, or 4 wherein

- (1) said overhead vapor stream is cooled sufficiently to partially condense it;
- (2) said partially condensed overhead vapor stream is separated thereby to provide a residual vapor stream and said condensed stream; and
- (3) said residual vapor stream is directed to said first distillation column at another lower column feed position below said region wherein said distillation liquid stream is withdrawn from said distillation column.

7. The process according to claim 5 wherein

- (1) said overhead vapor stream is cooled sufficiently to partially condense it;
- (2) said partially condensed overhead vapor stream is separated thereby to provide a residual vapor stream and said condensed stream; and

(3) said residual vapor stream is directed to said first distillation column at another lower column feed position below said region wherein said distillation liquid stream is withdrawn from said first distillation column.

8. In an apparatus for the separation of a gas stream containing methane and more volatile components, C₂ components, C₃ components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C₂ components, C₃ components, and heavier hydrocarbon components, in said apparatus there being

(a) a first cooling means to cool said gas stream under pressure connected to provide a cooled stream under pressure;

(b) an expansion means connected to receive at least a portion of said cooled stream under pressure and expand it to a lower pressure, whereby said stream is further cooled; and

(c) a first distillation column connected to receive said further cooled stream, said first distillation column being adapted to separate said further cooled stream into said volatile residue gas fraction and said relatively less volatile fraction;

the improvement wherein said further cooled expanded stream is directed to said first distillation column at a mid-column feed position, and said apparatus includes

(1) liquid withdrawing means connected to said first distillation column to receive a distillation liquid stream from a region of said first distillation column below said mid-column feed position;

(2) heat exchange means connected to said liquid withdrawing means to receive said distillation stream and heat it;

(3) second distillation column connected to said heat exchange means to receive said heated distillation liquid stream and fractionate it into an overhead vapor stream and a bottom liquid stream;

(4) second cooling means connected to said second distillation column to receive said overhead vapor stream and cool it sufficiently to substantially condense it, thereby forming a condensed stream;

(5) dividing means connected to said second cooling means to receive said condensed stream and divide it into at least a first portion and a second portion;

(6) said dividing means connected to said second distillation column to supply said first portion to said second distillation column at a top feed portion;

(7) said dividing means being further connected to said first distillation column to supply said second portion to said first distillation column at a lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream;

(8) said heat exchange means being further connected to said second distillation column to receive said bottom liquid stream and cool it, thereby to supply at least a portion of the heating of step (2), said heat exchange means being further connected to said first distillation column to supply said cooled bottom liquid stream to said first distillation column at a top feed position;

(9) first control means adapted to regulate the quantities and temperatures of said feed to streams to said second distillation column to maintain the overhead temperature of said second distillation column at a whereby said overhead vapor stream is predominantly C₃ hydrocarbon components and more volatile components, and said bottom liquid stream is predominantly C₄-C₅ hydrocarbon components; and

(10) second control means adapted to regulate the quantities and temperatures of said feed streams to said first distillation column to maintain the overhead temperature of said first distillation column at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.

9. The apparatus according to claim 8 wherein said apparatus includes

(a) said first cooling means being adapted to cool said gas stream under pressure sufficiently to partially condense it;

(b) separating means connected to said first cooling means to receive said partially condensed gas stream and separate it into a vapor stream and at least one liquid stream;

(c) said expansion means being connected to said separating means to receive said vapor stream and expand it to said lower pressure, said expansion means being further connected to

said first distillation column to supply said expanded vapor stream to said first distillation column at said mid-column feed position;

(d) another expansion means connected to said separating means to receive at least a portion of said at least one liquid stream and expand it to said lower pressure, said another expansion means being further connected to said first distillation column to supply said expanded liquid stream to said first distillation column at a lower mid-column feed position below said mid-column feed position; and

(e) said liquid withdrawing means connected to said first distillation column to receive a distillation liquid stream from a region of said first distillation column below said mid-column feed position and above said lower mid-column feed position.

10. The apparatus according to claim 8 wherein said apparatus includes

(a) another dividing means connected to said first cooling means to receive said cooled stream and dividing it into first and second streams;

(b) said expansion means being connected to said another dividing means to receive said second stream and expand it to said lower pressure, said expansion means being further connected to said distillation column to supply said expanded second stream to said first distillation column at said mid-column feed position;

(c) another expansion means connected to said first dividing means to receive said first stream and expand it to an intermediate pressure;

(d) combining means connected to said another expansion means said heat exchange means to receive said expanded first stream and said cooled bottom liquid stream and form a combined stream;

(e) third cooling means connected to said combining means to receive said combined stream and cool it; and

(f) further expansion means connected to said third cooling means to receive said cooled combined stream and expand it to said lower pressure, said further expansion means being further connected to said first distillation column to supply said expanded cooled combined stream to said first distillation column at said top feed position.

11. The apparatus according to claim 9 wherein
 - (a) another dividing means connected to said separating means to receive said vapor stream and divide it into first and second streams;
 - (b) said expansion means being connected to said another dividing means to receive said second stream and expand it to said lower pressure, said expanded second stream to said first distillation column at said mid-column feed position;
 - (c) further expansion means connected to said first dividing means to receive said first stream and expand it to an intermediate pressure;
 - (d) combining means connected to said further expansion means and said heat exchange means to receive said expanded first stream and said cooled bottom liquid stream and form a combined stream;
 - (e) third cooling means connected to said combining means to receive said combined stream and cool it; and
 - (f) additional expansion means connected to said third cooling means to receive said cooled combined stream and expand it to said lower pressure, said additional expansion means being further connected to said first distillation column to supply said expanded cooled combined stream to said first distillation column at said top feed position.
12. The apparatus according to claim 8 wherein
 - (1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;
 - (2) a separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;
 - (3) said dividing means is adapted to be connected to said separating means to receive to said condensed stream; and
 - (4) said separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column feed position

below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.

13. The apparatus according to claim 9 wherein

(1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;

(2) another separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;

(3) said dividing means is adapted to be connected to said another separating means to receive said condensed stream; and

(4) said another separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.

14. The apparatus according to claim 10 wherein

(1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;

(2) a separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;

(3) said second dividing means is adapted to be connected to said separating means to receive said condensed stream; and

(4) said separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.

15. The apparatus according to claim 11 wherein

(1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;

(2) another separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;

(3) said dividing means is adapted to be connected to said another separating means to receive condensed stream; and

(4) said another separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.

16. The apparatus according to claim 9, 11, 13, or 15 wherein a heating means is connected to said second expansion means to receive said expanded liquid stream and heat it, said heating means being further connected to said first distillation column to supply said heated expanded liquid stream to said first distillation column at said lower mid-column feed position.

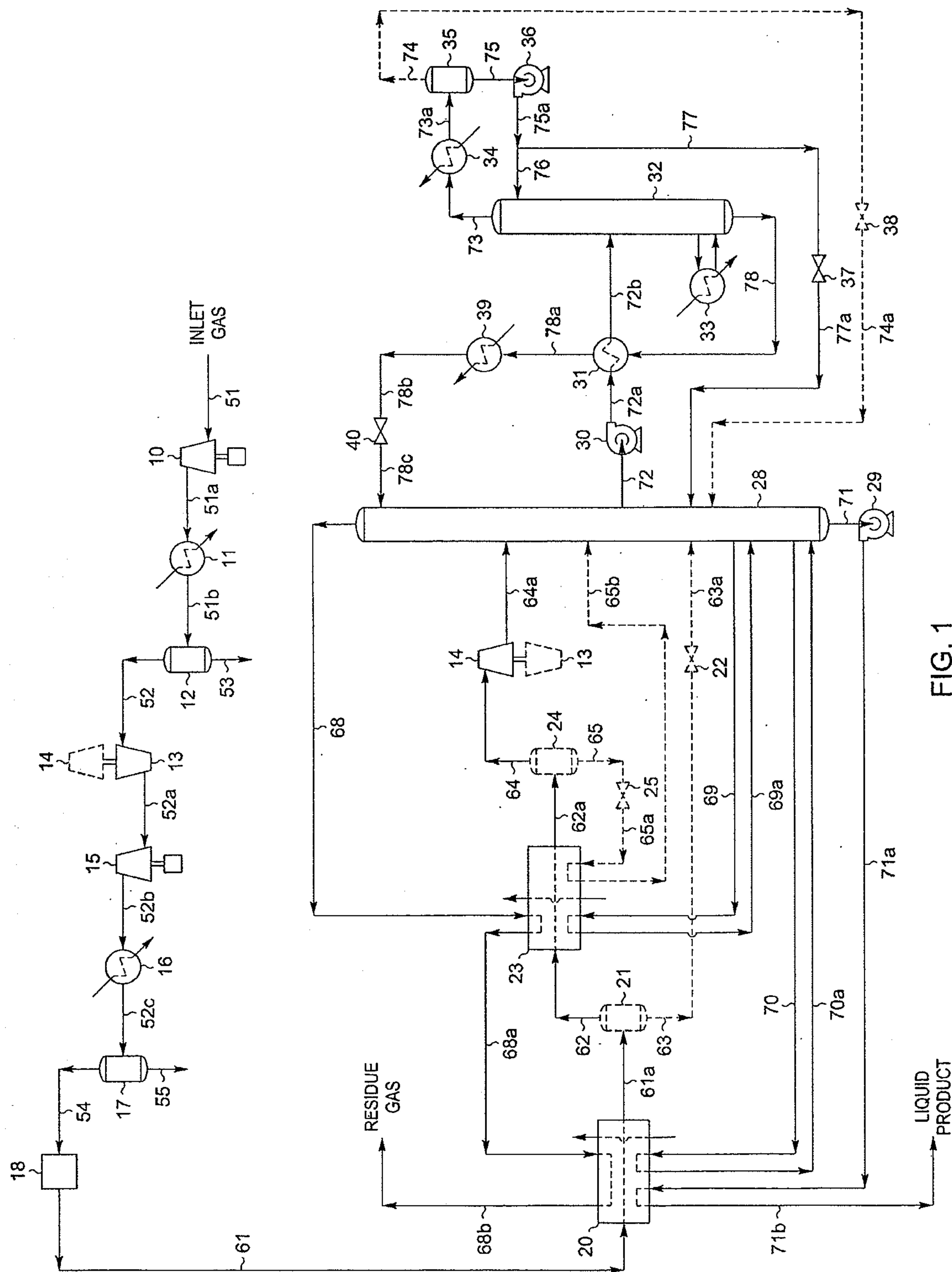
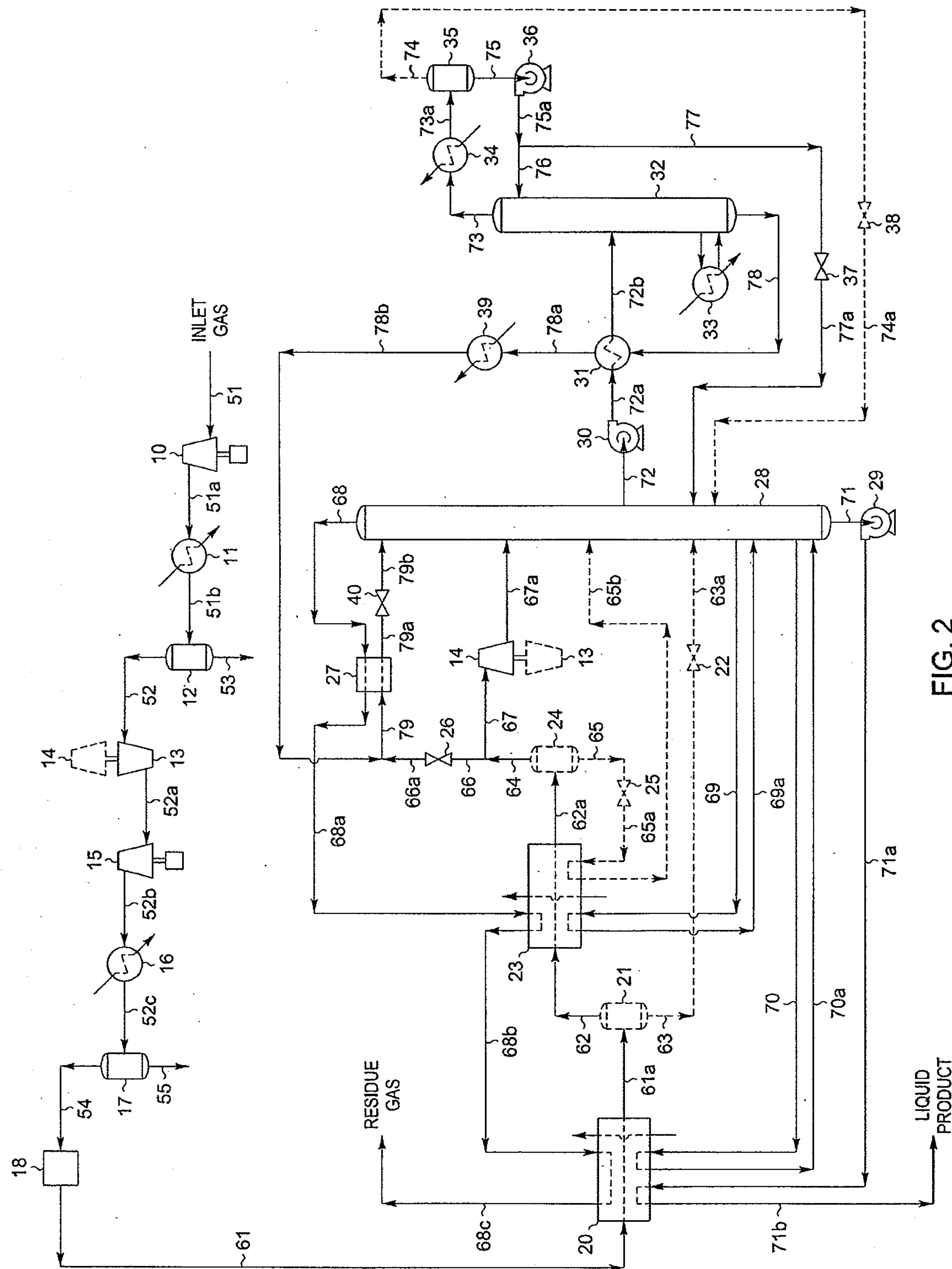
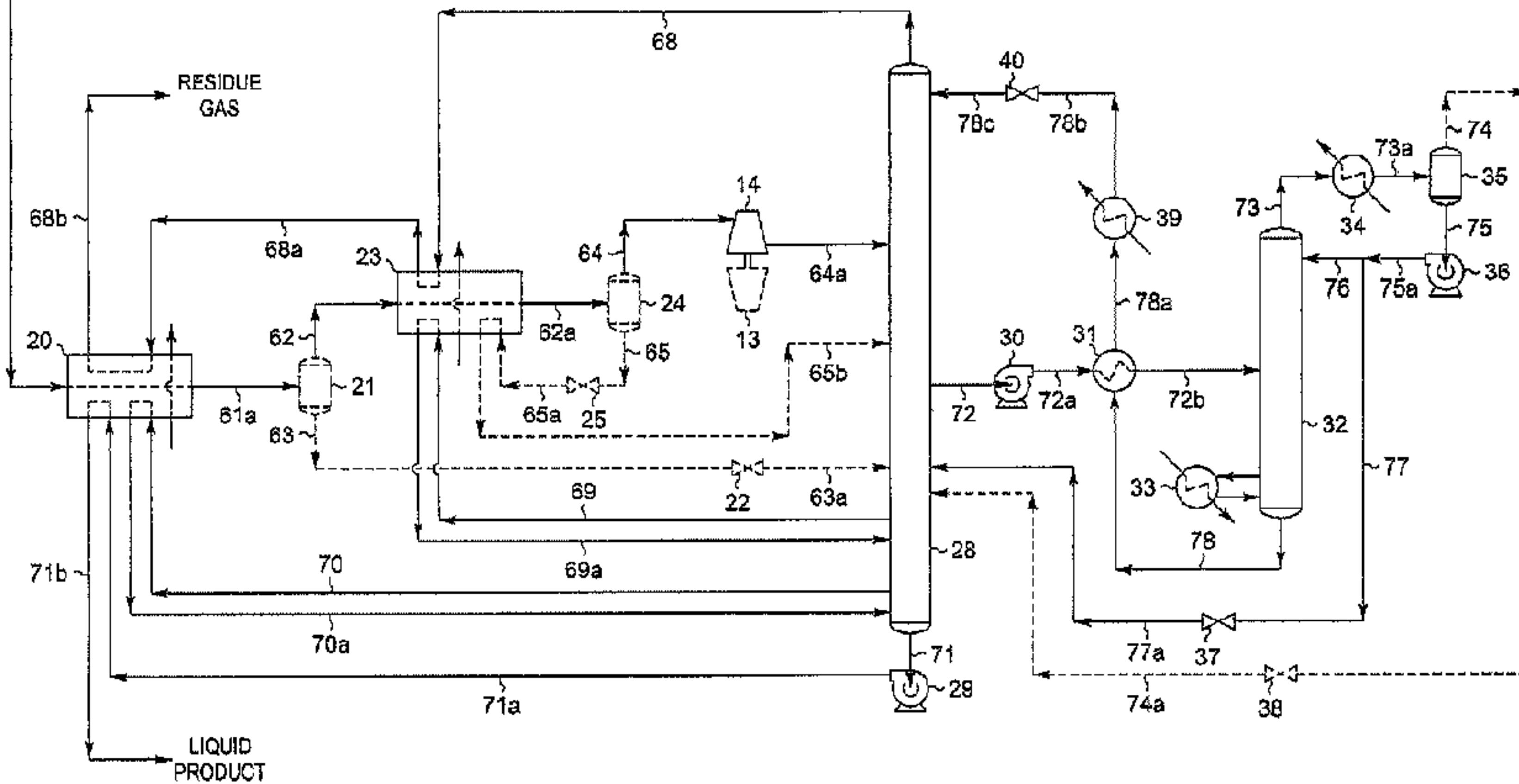
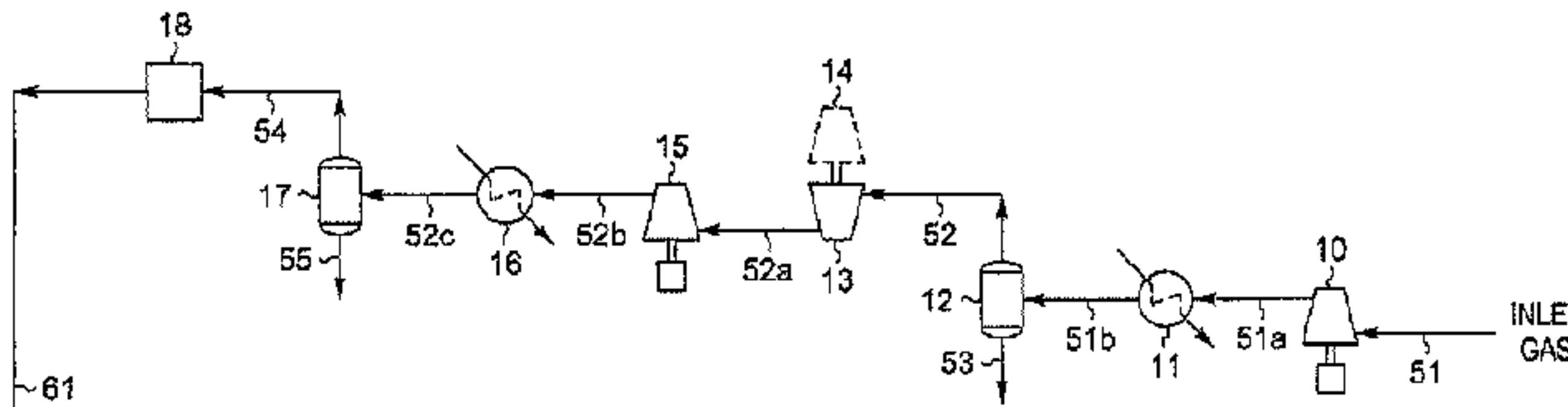





FIG. 1

