实用新型名称

斜度测量仪

摘要

本实用新型提供一种斜度测量仪，其底座经旋转轴与基础板相连接使基础板可绕旋转轴旋转，旋转轴、标准量棒固定于基础板下端，立柱插装在基础板中心位置，立柱上设有可沿方型立柱轴向滑动的装表式表座，表式表座一端安装杠杆百分表，另一端有预紧装置。解决了现有技术检测精度较差且测量长度有限的不足，本实用新型经标准直角尺校准后，即可对垂直度、平行度测量，误差值由百分表直接读出，使用块规作为附件调整进行斜度测量，测量结果经计算得出，精度达到0.001。与现有技术相比，有益效果是：可方便的测量斜度和斜度误差，亦可做垂直度和平面度平行度检查，并且结构简单，操作简单，可靠性高，成本低。
1. 一种斜度测量仪，其特征在于：底座经旋转轴与基础板相连接，旋转轴、标准量棒固定于基础板下端；立柱插装在基础板中心位置；立柱上有可沿方型立柱轴向滑动的装套式表座，套式表座一端安装百分表，另一端有预紧装置。

2. 根据权利要求1所述斜度测量仪，其特征在于：套式表座上的预紧装置为在套式表座侧孔中安装的压紧弹簧和钢球和紧固螺钉。
斜度测量仪

技术领域
[0001] 本实用新型涉及应用于机械检查工作的一种斜度测量仪。

背景技术
[0002] 机械加工行业中，目前还没有斜度检查的专用量具，小件一般把工件放置在正弦规之上，预先把正弦规整至理论角度，使所测斜度面成水平位置，由水平误差换算斜度误差。对于大工件上的斜度检查一般使用角度游标尺，检测精度较差且测量长度有限。

发明内容
[0003] 为克服现有技术的上述不足，本实用新型提供一种可方便的测量斜度和斜度误差，亦可做垂直度和平面度平行度检测，并且结构简单，操作简单，可靠性高，成本低的斜度测量仪。
[0004] 本实用新型的技术方案在于：底座经旋转轴与基础板相连接使基础板可绕旋转轴旋转；旋转轴、标准量棒固定于基础板下端；立柱插装在基础板中心位置；立柱上有可沿方型立柱轴向滑动的装套式表座，套式表座一端安装百分表，另一端有预紧装置。
[0005] 所说的套式表座上的预紧装置为在套式表座侧孔中安装的压紧弹簧和钢球和紧固螺钉。
[0006] 本实用新型测量角度值时采用块规调整立柱倾角与被测角度一致，通过块规高度计算出被测角度实际数值；测量角度误差时采用块规调整基准斜度，杠杆百分表指示误差；可直接进行垂直度，平行度测量。
[0007] 本实用新型经标准直角尺校准后，即可对垂直度，平行度测量，误差值由百分表直接读出，使用块规作为附件调整进行斜度测量，测量结果经计算得出，精度达到0.001。与现有技术相比，本实用新型的有益效果是：可方便的测量斜度和斜度误差，亦可做垂直度和平面度平行度检查，并且结构简单，操作简单，可靠性高，成本低。

附图说明
[0008] 下面结合附图提供的实施例对本实用新型进一步详述。
[0009] 图 1 是本实用新型的结构示意图。
[0010] 图 2 是本实用新型校准示意图。
[0011] 图 3 是本实用新型的使用示意图。

具体实施方式
[0012] 图 1 中，旋转轴 11、标准量棒 12 通过螺栓 6 连接在基础板 10 上 V型槽处，基础板 10 可绕旋转轴 11 旋转与底座 13 成一角度（旋转轴 11 同时也为一标准量棒）。方型立柱 1 插装在基础板 10 中心位置，连接部位采用双斜面结构配合，并用螺钉 9 和垫片 8 紧固使其连接牢固，消除间隙。立柱 1 上装套式表座 2，套式表座 2 可沿立柱 1 轴向滑动，套式表
座 2 一端安装杠杆百分表 7 用于测量，另一端有预紧装置，预紧装置在套式表座侧孔中安装的压紧弹簧 4 和钢珠 3 和紧固螺钉 5，用紧固螺钉 5 压紧弹簧 4 和钢珠 3 于套式表座侧孔中，压紧力作用在立柱表面，起预紧力作用使套式表座 2 沿立柱 1 滑动顺畅。14 为螺钉。

技术要求：
[0013] 1. 两基准量棒（旋转轴 11 和标准量棒 12）等径误差 0.005，平行误差 0.005。
[0014] 2. 底座 13 上下表面平行度误差 0.005，立柱 1 同底面垂直度误差小于 0.005，立柱 1 直线度误差 0.001/400mm。
[0015] 4. 两基准量棒（旋转轴 11 和标准量棒 12）中心平面与底座上下表面平行度误差小于 0.005
[0016] 5. 套式表座 2 沿立柱 1 滑动顺畅。
[0017] 6. 旋转轴 11 与底座 13 配合松紧适宜。
[0018] 图 2 中所示为本实用新型的校准示意图。校准：将本实用新型和大理石台面同放置在检查平台上，将本实用新型的基础板 10 绕旋转轴 11 旋转至最底部使标准量棒 12 接触底座 13 上表面，百分表 7 表针贴上大理石台面的直角面压表 0.2 毫米，上下滑动套式表座 2，若表针不动则斜度仪合格，可以进行测量工作，若表针在上下位置由偏差则说明斜度仪未达到设计标准，参照技术要求研磨各配合部件至要求，经过校准后的斜度仪即可测量工件垂直度，方法与校准相同。
[0019] 图 3 中，所示为本实用新型的使用即测量示意。测量：将待测斜度工件同本实用新型同放置在测量平台上，先根据被测角度理论值计算块规高度，将块规嵌入标准量棒 12 与基础板 10 上表面之间，三者接触，再将百分表 7 表针在待测斜面上压表 0.2 ～ 0.5，上下滑动套式表座 2，观察百分表 7 读数变化，相应增加块规高度，调整至表针在上下位置变化量为零，通过测量块规实际高度即可计算出工件实际斜度 Sina = H / L。（L 为量棒中心距，H 为块规高度）
图 2