
0H! DAIL 11/11/98
AOJP DATE 24/12/98

APPILN. ID 69632/98 I111111 1111
PCT NUMBER PCT/US98/07176 1I11I1111111l1i1i111111i 1111111111111

AU9869632

(51) lnternatiptial Patent Classification 6:

G06F 19/00, G07F 17/32, A63F 9/22
Al1(11) International Publication Number:

(43) International Publication Date:

I 1r)

WO 98/47091

22 October 1998 (22.10,98)

(21) International Application Number:

(22) International Filing Date:

Priority Data:
08/834,027 11 April 19~

PCT/US98/07 176

9 April 1998 (09.04.98)

97 (11.04.97)

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CHI, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,
GH, GM, OW, HU, ID, IL, IS, 2?P, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SID, SE, SG, ST, SK, SL, TJ,
TM, TR, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), E,''-asian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Einopean patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, ON, ML, MR, NE, SN, TD, TG),

Published
bith international sear'ch report.

(71) Applicant: TRANSACTOR NETWORKS, INC. [US/US];
2650 18th Street, San Francisco, CA 94110 (US).

(72) Inventors: MARTINEZ, Ronald; 2650 19th Street, San Fran-
cisco, CA 94110 (US SCHNEIER,.druce; 101 East Min-
nehaha Parkway, MiD. tpolis, MN 55419 GUERIN,
Greg; 955 East Southt.n Avenue #254, Teirpe, AZ 85282
(US).

(74) Agents: LAURIE, Ronald, S. et al.; Skadden, Arps, Slate,
Meagher Flom, LLP, Suite 220, 525 Ur .tv Avenue,
Palo.,i o, CA 94301 (US).

(54) Title: VIRTUAL PROPERTY SYSTEM

(57) Abstract

A system of property ownership and transfer that can
be used in connection with a computer network. The systern
permits limited edition, digital objects to be created and
exchanged for value.

WO 98/47091 P'CT/I S98/07176

VIRTUAL PROPERTY SYSTEM

Field of the Invention

The present invention relates to computer networks and, more particularly, to a system

of property ownership and transfer implemented in connection with a computer network.

Background of the Invention

In recent years, the use of computer networks for communication and data processing

has become increasingly widespread. The increased availability and use of computer networks

has created possibilities for new kinds of business and interactions. For example, many people

now conduct business transactions, such as banking or retail transactions, over the Internet or

private computer networks. Others use the Internet to participate in interactive, multi-party

games that could not have existed before the advent of computer networks.

Computer network users generally attempt to exploit the unique features inherent in

communications over computer networks. Owners of valuable data or "content," such as

software developers or entertainment companies, take advantage of the relative ease and speed

of data replication and transmission over computer networks to inexpensively distribute their

data to vast audiences. Retailers and advertisers utilize the relative cost-effectiveness and

ready searchability (as compared to conventional publishing media) of data published on the

World Wide Web to make information available to vast bodies of potential customers.

Multinational businesses use the medium to allow immediate and inexpensive communication

among employees in various parts of the world.

In each of the above situations, technical challenges must be overcome. Content

providers generally seek mechanisms to ensure receipt of payment for any copies of their

content which are distributed, and to ensure the integrity of the data transmission. Retailers

desire mechanisms for conducting secure commercial transactions over the Internet. Those

communicating at a distance often require security and confidentiality of data transmission,

and means of authenticating the origin of data received.

I

SUBSTITUTE SHEET (RULE 26)

WO 98/,17091 PCTVUS98107176

These challenges generally are overcome by applying common cryptographic tech-

niques to eliminate data security or privacy concerns, while still allowing users to take

advantage of the unique features of the new medium. For example, common cryptographic

techniques are available to allow authentication of the sender of a digital message, and to

ensure that such a message is opened only by the intended recipient. Data metering systems

provide a mechanism for content providers to charge for use of their data. A software

provider may also use a conventional "digital signature" to sign code th s being distributed

to users, thereby allowing users to rely on the quality of the code received.

In some cases, however, it is desirable to eliminate certain perceived "advantages" or

inherent features of the new medium, and extend familiar limitations of the physical world into

the electronic realm. In the case of digital cash, for example, it is necessary to prohibit
"counterfeiting." This is accomplished by introducing digital equivalents of the security

features that protect against counterfeit paper currency.

Traditional features and limitations of ownership and property rights are also some-

times desirable within the computer network environment. In an interactive game environ-

ment, for example, users might purchase or otherwise obtain "property" which can be

voluntarily or involuntarily transferred to other users. This game "property" may represent a

physical item that, in the context of the game, should not be counterfeited or duplicated

readily. Thus, for example, the seller of a game object should not be able to retain a usable

copy of the sold item.

Previously, there was no adequate, reliable and sufficiently secure system for establish-

ing traditional features of ownership and property rights in the digital realm. Accordingly,

there is a need for an improved system of property ownership and transfer that can be

implemented in connection with a computer network.

Summary of the Invention

The present invention involves a system of property ownership and transfer that can be

implemented in connection with a computer network.

2

SUBSTITUTE SHEET (RULE 26)

WO 98/4709! i'CI'7US98/07176

Certain embodiments of the present invention offer many advantages, including

without limitation the following;

enabling a traditional property rights system in a computer network environment;

enabling a system of property ownership and transfer in connection with a

computer network;

enabling new types of interactive, multiparty computer games;

allowing persistent digital property used in connection with a computer network to

be transferred offline or online; and,

establishing mechanisms for tracking ownership of virtual property

These and many other advantages of certain embodiments of the present invention will

become apparent to those skilled in the art from the present patent application.

Brief Description of the Drawings

FIG. I is an overview of an embodiment of a virtual property system according to the

present invention.

FIG. 2 illustrates the basic relationships among elements of an embodiment of a virtual

property system according to the present invention.

FIG. 3 illustrates a consumer !ogin scenario used in connection with an embodiment of

a virtual property system according to the present invention.

FIG. 4 illustrates a web purchase scenario used in connection with an embodiment of a

virtual property system according to the present invention.

FIG. 5 illustrates an account checking procedure used in connection with an embodi-

ment of a virtual property system according to the present invention.

FIG. 6 illustrates a procedure for posting a newly created object for sale in connection

with an embodiment of a virtual property system according to the present invention.

3

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

FIG. 7 illustrates a procedure for posting a previously acquired object for resale in

connection with an embodiment of a virtual property system according to the present

invention.

FIG. 8 illustrates the structure of a limited edition digital object used in connection

with an embodiment of a virtual property system according to the present invention.

FIG. 9 illustrates aspects of a procedure according to FIG. 6

Detailed Description of Preferred Embodiment(s)

Overview

A preferred embodiment of a property ownership and transfer system according to the

present invention is illustrated in FIG. 1 and FIG. 2 and referred to herein as a "Transactor"

system. The illustrated Transactor system involves a database 10, a Transactor server

end-users 30, a Transactor broker 40, and an application service provider a game server)

End users 30 comprise end-user computers (or "terminals") 3 1, 32, and 33, and end-user

individuals 35, 36, 37, and 38.

The illustrated Transactor system may include any number of end-users and/or end-

user terminals; an additional terminal and an additional user labeled are included in FIG.

1 to illustrate this fact. Database I 0 and Transactor server 20 may each comprise a plurality

of databases and servers, respectively. Embodiments of the system optionally may include any

number of Transactor brokers and application service providers with any number of associated

end users.

The application service provider may be a general Internet service provider AOL,

CompuServe, Pacific Bell), a game specific service provider Mpath, Heat, 'TEN), an

open network market-specific service, a closed or private network service, or any other

service provided over a computer network. For illustrative purposes only, the below discus-

sion emphasizes the example of a Transactor system in which the application service provider

comprises a game server, and the end-users comprise game clients.

4

SUBSTITUTE SHEET (RULE 26)

WO 98/47O69! PCT/US98/07176

End users 30 interact with one another and with game server 50 over a computer

network the Internet) 60 in a virtual world an interactive environment governed by

a prescribed set of rules) provided by game server 50 and supported by Transactor server

In this virtual world, digital property can be owned by, used, and transferred among end users.

End users can also transfer digital property while offline not in communication with the

game or Transactor servers). Transactor server 20 communicates with Transactor broker

over the Internet 60 or, optionilly, by a direct communications link.

As illustrated in FIG. 2, other optional participants in the illustrated Transactor system

include Transactor-enabled vendors web sites) 70, a consumer's credit account holder

80, and a consumer's bank account 90. Transactor-enabled vendors preferably are accessible

via the Internet 60, as are consumer's credit account holder 80 and consumer's bank account

The illustrated Transactor entities can be categorized broadly as clients and/or servers.

Some entities may act as both a client and a server at the same time, but always as one or the

other with regard to other specific entities. For example, a game server acts as a client to a

Transactor server, but as a server to its game clients.

The main categories of computing entities in the overall Transactor hierarchy are:

Transactor servers;

Transactor clients;

game servers; and

game clients (who are implicitly also Transactor clients).

It should be noted that these computing entities do not necessarily map directly onto

individuals, companies, or organizations. An individual, for example, may have more than one

Transactor account. Similarly, a game company may set up game servers with more than one

Transactor account.

1. Transactor Servers

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

As described further below, Transactor servers provide transaction and ownership

authentication >o their clients, who may be other Transactor servers, game servers, game users

(which are game clients acting through a game server) and Transactor users (which are not

acting through any game server). Transactor servers operate on Transactor user accounts and

encapsulated Transactor objects; they need not know the details of any particular game world

that may exist.

The Transactor servers essentially define a marketplace in which safe transactions may

occur, and existence and ownership may be asserted and verified under rules "Transactor

Laws of Nature") defined for the Transactor system as a whole. The primary purpose of the

Transactor system is to provide a safe marketplace for objects and owners outside the scope of

any game in which those objects and owners might participate. If a potential game does not

require its game objects to exist outside the scope of its game universe, then using Transactor

to determine authenticity and ownership is not necessary. It may, however, be more conve-

nient or easier to use Transactor services than to create a special-purpose property ownership

and transfer system for that game.

A given Transactor server is responsible for the objects and users defined in its own

database. A Transactor server trusts other Transactor servers for validation of all other

objects and users. It can, however, detect certain kinds of cheating that might occur in its

conversations with those other Transactor servers.

In some embodiments, a group of Transactor servers have secure access to a shared

distributed database. In such embodiments, the group of servers appears, for most purposes,

as a single large Transactor server acting on a single database.

2. Transactor Users

Transactor users are users that are in direct communication with a Transactor server,

rather than in communication through an intermediary game server. Thus, they are limited to

the core Transactor activities of creating objects, making transactions, and authenticating

ownership and existence. All other activities are performed through a game server.

3. Game Servers

6

SUBSTITUTE SHEET (RULE 26)

WO 98/4791 PCT/US98/07176

To a Transactor server, a game server is a Transactor user that performs transactions

and limited types of authentications verify game membership) Among themselves,

however, game servers define, in a conventional manner, a game niverse" or "virtual worla"

for their clients, and operate on a set of game objects using game rules that the gpme designer

defines for that game. A game universe includes all servers that run the game, the game

software's behavior, and tie rules that define possible behavior for that game.

4 Game users

Game users are the participants in a game universe that exists on one or more game

servers. Preferably, most Transactor operations on the game's owned objects are brokered by

the game server, acting on behalf of the game user. In such embodiments, the only time a

game user appears as a Transactor user is when object ownership must be authenticated or

changed. Even then, however, this activity may be brokered by the game server acting within

the scope of the game universe's possible actions.

The components of the illustrated Transactor system, along with their implementation

and use, are described in more detail herein. Prior to such description, however, basic

operations and transactions in an embodiment of a Transactor system are described.

Scenario Examples

This section describes various uses of a Transactor system in the form of exemplary

"scenarios," which are illustrated in FIGs. 3, 4, 5, 6, and 7. A scenario is an exemplary use of

Transactor technology to accomplish some purpose for a user. A user may be a consumer, a

vendor, or any other user of the Transactor technology, including an intermediate server

program that subscribes to Internet-based Transactor services; for convenience, the user is

referred to consistently in these scenarios as a consumer.

The illustrated scenarios are representative examples only. Other scenarios and their

implementation will be apparent to those of ordinary skill in the art based on the present

disclosure. The scenarios refer to the elements of the Transactor system illustrated in FIGs. 1

and 2, along with certain details and components described further herein.

The Login Scenario (FIG. 3)

7

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

FIG 3 describes a process in which a user logs on, and optionally registers as a

Transactor user, in an exemplary embodiment of a Transactor system. As illustrated in FIG. 3,

the following steps take place:

In step I (illustrated at 102), the consumer user 35) logs onto the Internet

In step 2 (at 104), the consumer logs onto a Transactor enabled service provider (or

onto a Transactor server).

At this point, there are several possibilities. The consumer may decide to register as a

Transactor user (step 3, at 106). Alternatively, the consumer may decide not to register as a

Transactor user and, consequently, leave the site (step 14, at 128). Alternatively, the

consumer may already be a registered Transactor user (step 8, at 118) and have no need to

register as a Transactor user.

Assuming the consumer decides to register as a Transactor user, the consumer fills out

a registration form (step 4, at 108), identifying his or her charge account and bank account

information When the consumer has entered the requested information, the information is

submitted to a Transactor server (step 5, at 110). The Transactor server creates a new

account and issues private data user key, password) to the consumer (step 6, at 112).

The consumer receives and stores the keys and other data, and obtains the Transactor client

software by download or mail) (step 7, at 114).

After the consumer has become a registered Transactor user (after completing step 7

or step the consumer logs into the client-side Transactor object manager (which is

described further herein and abbreviated "TOM") as a valid user (step 9, at 116).

After logging in as a valid user, the consumer has a variety of options The consumer

may decide (Step 10) to make a purchase (illustrated at 120 and in FIG. The consumer

may decide (step 11) to check his Transactor account (illustrated at 122 and in FIG. The

consumer may decide (step 12) to post an object that he has created for sale (illustrated at 124

8

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

and in FIG The consumer may decide (step 13) to post a previously acquired object for

resale (illustrated at 126 and in FIG. 7).

The Consumer Web-Purchase Scenario (FIG. 4)

FIG 4 describes the process in which a user makes a simple purchase from a web sales

site and uses the new object on the network in an exemplary embodiment of a Transactor

system As illustrated in FIG. 4, the following steps take place:

In step 1 (at 202), a consumer user 35) decides to make a purchase. The

consumer's TOM sends (step 2, at 204) signals indicating an intent to purchase, along with the

appropriate user ID and product information, to the vendor's web site. The vendor's

Transactor broker module creates (step 3, at 206) a transaction record that incorporates

necessary vendor IDs, product information and vendor signatures with consumer's informa-

tion.

The vendor then sends (step 4, at 208) a transaction record, as described further

herein, to the Consumer's TOM for signature. The consumer's TOM confirms (step 5, at 210)

the vendor's signature and transaction record contents, and signs and forwards (step 6, at 212)

the transaction record to the Transactor server. The consumer's TOM also notifies (step 7, at

214) the vendor's server that the transaction has been signed and a record has been forwarded

to the Transactor server.

The Transactor server then validates (step 8, at 216) the Transaction record and

contents, issuing an OK transaction is valid) or a rejection (transaction is invalid). If the

validation is not OK, the operation is not performed and the user is so notified (step 9a, at

218). If the validation is OK, the Transactor changes (step 9b, at 220) the object's ownership

in the relevant database and determines all splits and fees for all accounts involved buyer,

reseller, maker, service provider); transactions for each account are then logged and new

account balances are computed.

The Transactor server then sends (step 10, at 222) a purchase OK to the vendor's

server, and the vendor's server receives (step 11, at 224) the OK and repackages the existing

unit with the consumer's ID.

9

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PI'CT/US98/07176

The vendor's server then sends (step 12, at 226) the object to the consumer or sends

notification of where to download the object via FTP. The sale is logged as complete.

Finally, the consumer's TOM server receives (step 13, at 228) notice of the sale and

downloads the object according to the instructions received in step 12. When the object is

subsequently used online, a Transactor server will verify the ownership of the object.

The Consumer Account-Check Scenario (FIG.

FIG. 5 describes the process in which a consumer checks his Transactor account. As

illustrated in FIG. 5, the following steps take place:

In step 1 (at 302), a consumer user 35) decides to check his Transactor account.

The consumer's TOM sends (step 2, at 304) intent-to-purchase account information

(with appropriate user IDs) to the Transactor Server, either directly or via a Transactor

enabled web site or broker server. The TOM may operate independently or through other

Transactor enabled client software. The Transactor server then sends (step 3, at 306) a

validation challenge to the consumer's TOM, and the consumer's TOM responds (step 4, at

308) to the validation challenge. The Transactor server receives the response (step 5, at 310).

If the validation is not OK, the operation is not performed and the user is notified of

the failure (step 6a, at 312).

If the validation is OK, the Transactor server allows (step 6b, at 314) the client

software Java applets) to download the consumer's account information (not persistent).

The consumer's TOM downloads (step 7, at 316), decrypts and displays account information

using applets (or other client software) embedded in the web page (part of broker module,

described herein).

The consumer then reviews (step 8, at 318) account information (along with other

communications from the Transactor server, if any have been received) and logs off or

proceeds to other Transactor activity.

The Sale of Created Object Scenario (FIG. 6)

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

FIG. 6 describes the process in which a registered Transactor user posts an object that

he created for sale. As illustrated in FIG. 6, the following steps take place:

In step 1 (at 402), a registered Transactor user user 35) decides to post an object

that he has created for sale. The user the (step 2, at 404) logs into the TOM to "package" his

object, the TOM enters (step 3, at 406) the user ID AIA]AI) into the object package

fields, and the user inputs data regarding, for example, price, revenue model, and number

available,

The user logs on (step 4, at 408) to a Transactor Server directly or a Transactor-

enabled service provider, and is validated by a Transactor Server. The user then uploads (step

5, at 410) the packaged object and fields with instructions for the Transactor Server to create

a new product.

The Transactor Server then verifies (step 6, at 412) that it received the data correctly,

and proceeds to create a product, giving it a unique product ID (B1B1B1). The Transactor

Server then sends (step 7, at 414) the unique product ID, and other product-related informa-

tion, back to the user.

When copies of the product are sold, the Transactor Server will verify (step 8, at 416)

buyer's (37) Transactor User status and the existence of available unsold units for the buyer-

designated product ID.

If the validation of user ID or product ID is not OK, the operation is not performed

and the user is so notified (step 9, at 418).

If the user ID and product ID are OK (step 9b, at 420) to produce a new unit of the

product, the Transactor Server creates a new unique unit ID and assigns ownership of that

unit to the buyer in its internal ownership databases. The Transactor Server then packages

(step 10, at 422) the unit ID with ownership information and the digital product itself,

encrypts portions of the resulting data, and sends the result to the user or informs the user

where the packaged object may be downloaded. The Transactor Server also updates (step 11,

at 424) all relevant accounts, computes and distributes splits.

The Sale of Previously Acquired Object Scenario (FIG. 7).

11

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/' 'S98/07176

FIG 7 describes the process in which a registered Transactor user posts a previously

acquired object for sale. i.s illustrated in FIG. 7, the following steps take place:

In step I (at 502), the Consumer decides to post a previously acquired object for

resale. Using the TOM, the Consumer then indicates (step 2, at 504) the asking price for the

object and sends posting (and appropriate IDs including TOM signature) to the Transactor

Server.

The Transactor Server then sends (step 3, at 506) a validation challenge to the

Consumer's TOM. The Consumer's TOM responds (step 4, at 508) to the validation

challenge. The Transactor Server receives (step 5, at 510) the response.

If the validation is not OK, the operation is not performed and the user is so notified

(step 6a, at 512).

If the validation is OK, the Transactor Server includes (step 6b, at 514) the object

posting in a log of objects currently for sale "classifieds The object, or a pointer to the

object, is stored at a Broker Server for resale.

Another valid Transactor user, for example Consumer 36, logs on (step 7, at 516) to a

Transactor enabled web site and activates her TOM to search for an object to purchase.

Consumer 36 searches (step 8, at 518) the Transactor "classifieds" by object name, universe,

price, or any other conventional search criteria to find the desired object.

Consumer 36 then locates (step 9, at 520) the object posted by Consumer 35 and

decides to make a purchase. The TOM for Consumer 36 then sends (step 10, at 522) its intent

to purchase (and appropriate IDs) to the Broker Server via the Transactor-enabled web site.

The purchase process continues (step 11, at 524) as in FIG 4, with the Broker Server acting

as vendor.

Limited Edition Digital Object

The Transactor system allows for the ownership and sale of limited edition digital

objects An exemplary limited edition digital object (a "LEDO") 600 is illustrated in FIG. 8.

12

SUBSTITUTE SHEET (RULE 26)

WO 98/47091
PCT'/US98/07176

As shown in FIG. 8, LEDO 600 comprises a payload 606, a unit ID 602, and an owner

ID 604 Each of these elements are illustrated in corresponding dashed boxes. Examples of

LEDOs for use in game environment in connection with an embodiment of a Transactor

system comprise tools, characters, keys, spells, levels, abilities, behaviours. A variety of

additional types of LEDOs for use with embodiments of a Transactor system will be apparent

to those skilled in the art from the present disclosure In this example, each LEDO has a

unique, immutable unit ID, an owner ID indicating the current owner of the object and a

payload comprising binary data which defines the object characteristics.

Unit ID 602 is assigned to the unit during object creation and incorporated in the

LEDO during the initial object purchase. The owner ID 604 is assigned to the user during

User Registration and incorporated in the LEDO during object purchase. Payload 606

comprises data which defines the object textures, data pointers, AI, object attributes). In

preferred embodiments, the objects are persistent such that they are accessible both when the

user is in communication with a server a game server) and when the user is not in

communication with the server.

The number of LEDOs of a particular type can be closed or limited the product

run is capped at a predetermined number) or open-ended. The unit ID for each LEDO is

assigned at its creation and is unique. The unit ID is immutable in the sense that a change in

the unit ID for a particular LEDO can be detected and, in preferred embodiments, the LEDO

loses functionality it cannot be used in the relevant game world) if it has been altered.

Additional Aspects of the Sale of Created Object Scenario (FIG. 9)

FIG. 9 describes the process in which a registered Transactor user posts an object that

he has created for sale in accordance with the previous description in FIG. 6. The following

description of the steps in this process uses the FIG. 6 reference numerals and step numbers,

along with the FIG. 9 reference numerals:

In step 1 (at 402), a registered Transactor user user 35) decides to post an object

that he has created for sale. The user the (step 2, at 404) logs into the TOM to "package" his

object, the TOM enters (step 3, at 406) the user ID (e.g AIAIAI) into the object package

13

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

fields, and the user inputs data regarding, for example, price, revenue model, and number

available

The user logs on (step 4, at 408) to a Transactor Server directly or a Transactor-

enabled service provider, and is validated by a Transactor Server.

Steps I through 4 above are further illustrated in FIG. 9 by User 35 (identified by code

A1A1AA), digital object 700 a file containing binary data), transactor package 710

which wraps the object as described herein, and data fields 720. fields 720 include a

product ID field 722 for the identification code associated with the)Ject (in this case,

B I B lB a seller ID field 724 for entering an identification code associated with the seller of

the object (in this case, AIA1A1), an owner ID field 726 for enwuring an identification code

associated with the owner of the object (in this case, A1A1A), a price field 728 for entering

the requested price for the object (in this case, a maker ID field 730 for indicating the

identity of the maker of the object (in this case, AIA1A, the owner), a revenue model field

732 to indicate financial terms associated with the sale oftne object (in this case, a straight

sale), a total available field 734 indicating the total number of objects of this type that are

available for sale, and an FTP field 736 indicating the delivery details for the object. In this

case, for example, the field shows a URL for a web site from which the buyer can download

his purchased object. The object is encrypted so that it can only be "unpacked" (opened) by

the buyer

The user then uploads (step 5, at 410) the packaged object and fields with instructions

for the Transactor Server (illustrated at 740) to create a new product.

The Transactor Server (740) then verifies (step 6, at 412) that it received the data

correctly, and proceeds to create a product (illustrated at 750), giving it a unique product ID

(B I B 1 B shown in data field 762. The Transactor Server then sends (step 7, at 414) the

ur: -le product ID, and other product-related information, back to the user.

When copies of the product are sold, the Transactor Server will verify (step 8, at 416)

buyer's (in this case, user 37) Transactor User status and the existence of available unsold

units for the buyer-designated product ID.

If the validation of user ID or product ID is not OK, the operation is not performed

and the user is so notified (step 9, at 418).

14

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

If the user ID and product ID are OK (step 9b, at 420) to produce a new unit of the

product, the Transactor Server creates a new unique unit ID (illustrated at data field 768 and,

in this case, DIDIDI) and assigns ownership of that unit from the seller (A 1AI A, illustrated

in data field 764) to the buyer (C C 1Cl illustrated in data field 766) in its internal ownership

5 databases and in tl'e new object (relevant data is illustrated in data fields 760). The Transactor

Server then packages (step 10, at 422; also illustrated at 770) the unit ID with ownership

ir. -mation and the digital product itself, encrypts portions of the resulting data, and sends the

result to the user or informs the user where the packaged object (illustrated at 770) may be

downloaded. The Transactor Server also updates (step 11, at 424) all relevant accounts,

computes and distributes splits.

Trust Relationships

The illustrated Transactor system is predicated upon various trust relationships among

the Transactor entities illustrated in FIGs. 1 and 2 These trust rela.'onships are as follows:

1. Transactor Servers

A Transactor Server trusts other Transactor Servers to correctly authenticate objects

and accounts which are outside its own knowledge. This trust is mutual.

A Transactor Server does not trust a Transactor User. Accordingly, a Transactor

Server does not trust a game Server. All transactions and authentication must be valid

according to the Transactor protocol rules, or a transaction request will be rejected. Both

participants in any transaction are independently authenticated by the Transactor Server.

2. 7Tansactor Users

A Transactor User trusts all Transactor Servers to give correct information about

transactions, objects, and accounts.

A Transactor User does not trust another Transactor User, except to the extent

authenticated by a Transactor Server.

3. Game Servers

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

Game Servers, like other Transactor Users, trust their Transactor Servcrs to perform

valid ownership transfers, and to correctly authenticate user-accounts and object ownership.

Game Servers also trust the Transactor Server to authenticate game objects themselves

detect data tampering), but only insofar as the originally registered game object was itself

5 correct in the game universe. That is, if the originally registered game object was flawed or

illegal for the game universe, it will be "correct" as far as the Transactor Server is concerned,

but will be "incorrect" when the game server tries to use it.

Game servers need not trust their game users. In some embodiments, however, game

servers may trust game users without a Transactor server authentication.

Game servers trust other game servers that help create the game universe.

4. Game U sers

Game users trust game servers to "play a fair game" follow the rules of the game

universe). Game servers that do not play a fair game are unlikely to be successful in the game

market, but there is no final Transactor arbiter of what constitutes a "fair game."

A game user need not trust another game user, except insofar as confirmed by the

game server for the given game universe.

Transactor Brokering

This section includes a description of how, in an embodiment of a Transactor system

according to the present invention, objects may be bought, sold, and traded using a mutually

trusted third party (a broker) in order to effect transactions in other than real-time. For

illustrative purposes, this is described in terms of a "game," the rules of which define a model

of conventional real-world brokering and agency. A typical problem involving a game, game-

players, and ownership transfer is first presented. This example is followed by a brief analysis

of a "simple solution," which can be used in simple embodiments of a Transactor system.

Finally, there is a discussion of brokers, their actions, rules, and how this solves the basic

ownership-transfer problem when implemented in more complex embodiments of a Transactor

system.

16

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

1. An7 Exemplarv Game Scenario and Imnplementlcion P]roblem

This example involves a simple multi-player game, running on a server machine The

players own some Transactor objects, which reside on their own machines. A few players

decide to play a game using some (but not all) of their owned objects, using the game server

to run the "game world."

The rules of this game allow game objects (encapsulated as Transactor objects and

initially existing on the player's machines) to be involuntarily "plundered" by the brute force or

trickery of any player, as well as voluntarily traded away, or simply lost or dropped. In this

game, possession equals ownership. Lost or dropped objects not picked up by another player

are "owned" by the game (or game service provider). A Transactor server is contacted and a

transaction (a Transactor ownership transfer) made each time a game-object changes owner-

ship, it is plundered, traded away, !ost, dropped).

To begin playing the game, users upload (or otherwise identify) their objects to the

game server, which authenticates ownership and validity with the Transactor server. During

play, an object changes hands, so an ownership transfer occurs, and the Transactor server is

again contacted, with all the overhead such an ownership change entails. Each transaction

also requires the owner's client machine to participate, since that is where the user's digital

keys, required for ownership transfer, reside

The basic problem is how a game server or anyone else in the above scenario can truly

enforce transferring ownership involuntarily; that is, without the active assent of the object's

original owner. Under ordinary circumstances, the owner cannot be compelled to use or

disclose his private key and, without it, ownership cannot be taken away. Even if the game-

client software running on the player's machine automatically responded to a game server

request to transfer ownership, the user could have hacked the software to not permit owner-

ship transfers. Thus, in conventional circumstances, the game server would have no way to

enforce ownership transfer to the object's new owner.

One conceivable solution might be to have the game server certify to the Transactor

server that a new player is the actual owner, and to somehow confirm that it really is the game

17

SUBSTITUTE SHEET (RULE

WO 98/47091 PCT/US98/07176

server requesting this. This approach appears simple, but would require greater underlying

complexity in the overall Transactor system. There would then be two kinds of transactions, a

voluntary kind where both participants willingly state that a transaction should occur (normal

sale or trade), and one where a third participant (the game server) says that a transaction

should occur, even if the owner doesn't agree. This arrangement would also require that

Transactor servers trust all game servers, thus opening up potential holes in the overall system

security model and greatly expanding the required trust relationships in the overall system. It

would also require that Transactor servers distinguish a game-server account from other kinds

of accounts, and treat them differently.

In a large game with a persistent universe, this apparent solution would force the

Transactor servers to process huge numbers of transactions (one for every trade, steal,

plunder, or take), and require that the game servers certify that each involuntary trade was

legal (to guard against fiaud or hacking). All this network traffic must occur in real-time, or

at least with an asynchronous capability. But that asynchronicity can propagate to any depth,

since objects may rapidly change owners again before a prior ownership transfer has com-

pleted. This quickly leads to a large "roll-back" problem that a game server must handle on its

own.

2. The "Simnle Sohuion

In some embodiments, to solve the above-described problem, a game player gives a

"power of attorney" privilege to a game server during game play, and rescinds it when the

game ends or the player withdraws from play. Under these "powers of attorney," the game

server takes ownership of every object brought into play, keeping track of the "true" owner.

The game server then runs the game according to its rules for who owns what and how they

got it, and finally resolves end-game ownership by transferring the objects to their most recent

game-level owners.

During game play, the game server must tag each object with it's current "designated

owner," starting with the ID of the original owner. The game server still owns the object, as

far as the Transactor system is concerned, so the designated owner is just a part of how the

game is played. The tag is simply the Transactor user-ID of whoever has game-level owner-

18

SUBSTITUTE SHEET (RULE 26)

WO 98/47091
PiCT/US98/07176

ship of the object. Plundered objects are tagged with the user-ID of the plunderer Objects

traded voluntarily are tagged with the new owner's ID. Lost or dropped objects are tagged

with the Transactor user-ID of the game itself the game service provider's ID) When a

player withdraws and takes his objects out of play, the game server (which owns all in-play

objects) transfers actual Transactor-level ownership to the player. If a player's connection

goes out, the game server maintains the "designated owner" tags, subject to plundering by

other players within the game context.

This arrangement requires only that game players trust the game server, which is

already required as described above. No additional trust is required between game servers and

Transactor servers. All transactions still involve only two equal parties. The Transactor

server need not distinguish between game-server ID's and ordinary-user ID's, nor treat any

user in a special way.

One downside to this arrangement is that, if a game is played and no objects change

"true" owners, there is an initial ownership transfer from the players to the game server, plus a

closing transfer back to the original owner. In embodiments employing this "simple solution,"

there is no way to avoid this, because without it the game server has no enforceable authority

to transfer objects that are in play. Fortunately, this activity is largely confined to game

startings and endings.

These "power-of-attorney" transfers can occur asynchronously at the beginning of the

game, but players will probably want them to occur synchronously at game-end. Mid-game

"cash-outs" that remove objects from play (assuming the game rules allow this) can be

performed asynchronously, to minimize impact on game play. In some embodiments, servers

spawn sub-processes or call on concurrent server-side programs to perform cash-outs

synchronously, rather than burdening the game-program with such non-game details.

In some embodiments, a game server provides "free parking" to game players who

want to keep their objects on the server and avoid most uploading and downloading. The

server retains ownership of the objects, but they are not active in any game. These "parked

objects" are not available to the player for out-of-game trading, but can be reacquired by the

player at any time

19

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCTUS98' 7:"6

3. Brokers and Brokertin

The term broker in this description refers to any mutually trusted third party who acts

on behalf of two other parties to effect some pre-determined action. A broker is trusted to act

on behalf of the original authority, but only within the boundaries defined at the time of the

brokering agreement, and only for specific designated objects. In order to actually complete a

transaction, both participants in the brokered transaction must trust the brokering agent to act

on their behalf. Thus, a broker is a mutually trusted intermediary in a transaction that occurs

between two other individuals, neither one of whom need trust the other.

As described below, a Transactor Server provides a means by which an individual may

grant trust to another individual in the Transactor system. This will become clear from the

following description of a "brokering game."

In a "Brokering Game," a broker is an agent. Its actions result in a safe trustworthy

transaction between two other parties, who are the "players" in the Brokering Game.

A broker operates on an object, acting as intermediary in transferring ownership

between the original owner and the buyer. Users (players) in the Brokering Game participate

voluntarily, and willingly transfer ownership of their objects to the broker with the understand-

ing that they will get them back if the broker does not sell the object.

The Game Universe of the Brokering Game consists of all the objects that a given

broker has for sale or trade, and the identity of each object's original owner (the "designated

owner"). The Brokering Universe may also contain requests by players for the broker to seek

out and obtain a certain kind or class of object. These requests would require a more

sophisticated Brokering Game program.

There may be any number of different Brokering Game Universes running at once, on

any number of different servers from different providers. They need not communicate with

one another directly, since each is only responsible for its own objects and players (users).

Any particular instance of the Brokering Game may charge a fee to "play". That is, it

may charge a fee in order to broker a transaction. This fee is different from the Maker's Fee

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

computed by the Transactor Server. Fees are defined by whoever creates a particular

Brokering Game.

Brokers are typically connected through the Internet to a number of other brokers

(although they need not be). These brokers may communicate requests to one another in

order to complete transactions. These inter-broker communication protocols are yet to be

defined, but must be standardized for all brokers.

Brokers that do not communicate directly with other brokers behave as simple public

or private store-fronts for the sale of their users' objects (sort of a "consignment store"). This

may entail a web connection (HTTP server) in addition to the brokering services, or it may be

a "closed game" in which only registered users can log on and participate. That is a decision

to be made by the game designer. It is not a Transactor rule or law.

The basic rules of the Brokering Game, or of any other game which acts as a broker

for its users, are as follows.

All objects actively being brokered must ,rst have their

Transactor-ownership transferred to the broker itself. This confers the power to

sell the object on the brokering agent and have the ownership transferred to the

buyer immediately, without requiring the original owner to participate directly or

in real-time.

The broker can own objects that are not actively being

brokered because one or more criteria of the brokering agreement have lapsed.

For example, an agreement may place an end-date beyond which the object cannot

be sold. Since the user will probably not be logged in at that exact moment, the

broker must immediately take the object out of active brokering "play", and hold

it in "parking" or "escrow" until the user reclaims the object. The broker can't

simply email the object back to the owner, because the owner's keys are required

for the ownership transfer.

Players must trust the broker to return unsold objects on

demand, or according to some predetermined criteria, such as after an expiration

21

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

date. This requires that the broker keep a record of the original owner, along with

all necessary relevant Transactor informnation about the owner, and the criteria of

the brokering agreement. The broker must return these objects as requested by

the original owner, as authenticated by a Transactor Server.

Brokers must notify the original owner with all due haste

when an object has been sold. This is more than just a courtesy to players, since

the original owner may be a game server that requires some real-time notification

of a sales transaction in order to run its game in something approaching real time.

Brokers should also notify the original owner when one of the limiting

criteria of the brokering agreements lapses, when the brokering agreement itself

expires, or some other criterion takes the object out of active brokering "play."

The basic rules of brokering given above define a fundamental set of ground rules by

which brokers act for users. But they are not limited just to game servers that only play the

Brokering Game. If any game implements these rules using a game-as-broker design, it can

act as a broker on behalf of all its users, for whatever purpose the game designers choose.

One important such purpose is to implement "plundering" (also called "stealing") and

borrowing within a Game Universe.

Plundering is a game rule that allows a game user to gain ownership of a Transactor

object simply by taking it (possession equals ownership). Normally Transactor objects are

useless to those who would simply take them copy the file), because the object itself is

encrypted under the owner's key, and because a Transactor server would disallow the object's

use except by the owner. If, however, a game universe acts as a broker, then it owns all

objects that are in play, and no Transactor server is needed to "change owners". Instead, the

game servers maintain a "designated owner," which starts out as the object's original

Transactor owner, but may be altered according to the game rules for plundering when

another user encounters the object. Since the game server is acting as a broker, the player

who brings the object into play must voluntarily transfer ownership to the game server, fully

agreeing that the game-play rules determine who will eventually get actual Transactor-certified

ownership of the object. If the game design allows objects to be taken out of play, then the

22

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

most recent "designated owner" receives actual Transactor-certified ownership of the object,

and receives the object from the game-as-broker, not from the object's original owner.

Borrowing is a game rule or rules that define how an object may be used by someone

other than its owner, and perhaps how ownership of the borrowed object may be transferred

without the owner's direct permission should the borrower "lose" the object. As with

plundering, the game server acts as a broker and actually owns the object as far as a

Transactor server is concerned. Thus, any rules that the game designer makes will be carried

out on objects already owned. Also as with plundering, there is a "designated owner" who

can take the object out of play and become the "actual owner" the Transactor-certified

owner). A borrower would typically be prevented from taking the object out of play by the

game rules. If this is not done, then there is no difference in fact between a borrower and a

plunderer (since possession would equal ownership), and a borrower would simply be a

plunderer to whom you gave the object voluntarily rather than involuntarily.

Other games that involve brokering comprise the following:

Sales: More than just a neutral broker, a Sales a,'ent would earn its fee by actively

seeking out buyers for the goods it has been charged with selling. Like any broker, it owns

the goods it is trying to sell, at least according to an authenticating Transactor server. The

"designated owner" is the individual who wants the goods sold, and to whom ownership will

revert according to the agreed-upon rules and constraints, should the item not be sold.

Collectors and Searchers: A collector agent would seek out sellers of goods

described or designated to it by its users. It would then buy or trade to acquire those goods,

according to the instructions it was given by a particular user. A Collector agent may have

several users who all want the same object. The arbitration rules for deciding who actually

gets an object are for the designer to define. They are not a Transactor law or rule. First-

come first-served is one example of such a rule. Highest finder's-fee is another. Bribery

might be another. These are all valid Collector rules in the Transactor universe.

23

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 Pi'CT/US98/07176

Gambling/Gaming: A casino or gambling house acts as a broker for its patrons. It

may charge a fee, or it may take a cut of winnings, or any other arrangement Tile objects

wagered can be private currency or barterable objects, depending on the house rules.

The above rules of brokering can be altered to give different fundamental play

experiences. For example, if the "designated owner" concept was eliminated, then all objects

brought into play would be in one large pool of unowned objects. A raffle or other gambling

situation might then distribute objects based on some game-play rules, or just randomly. In

this game, players would be willing to relinquish all ownership claims to an object in the hope

of getting some better object brought into play by someone else. The game broker would

retain ownership of all unclaimed or unwanted objects. Users would have no expectation of

getting any of their own objects back.

Some brokering agreements may ignore the "return on demand" rule, and only return

objects to their owners when the brokering agreement expires. Certain commercial operations

such as auction houses might need this rule variation, to guarantee to bidders that an object

remained "in play" until all bids were in or the brokering agreement expired. This would apply

for real-time as well as delayed auctions. These agreements will also probably have a

minimum price that the object must be sold for, just as real-world auctions do.

Services, Capabilities and Support Modules

Services, capabilities, and support modules used in an embodiment of a Transactor

system according to the present invention are set forth below, along with a description of how

these elements interact to produce the desired outcome.

It will be apparent to those skilled in the art, based on the present disclosure, that

embodiments of Transactor server and client software may be implemented in many computer

languages such as, for example, or Java, and that embodiments may be implemented in

a manner that is portable across Window/Windows NT and selected UNIX environments.

I. Transactor Elements and Services

24

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

A Transactor system according to the present invention can be broken down into

several elements and services. The primary division is into client-side elements (termed tools)

and server-side elements (termed services). Some elements, such as embedded applets, can be

viewed as lying somewhere between these two elements, because they originate from and

communicate with a server yet run and operate on a client machine.

A tool is a distinct identifiable program or capability residing on a client's computer. It

is invoked directly by a user to accomplish a specific purpose. It is more like a tool in a Word

toolbar, rather than like a command-line tool in Unix.

Publicly accessible server-side elements appear simply as services on a network, with

no specific requirement that they be implemented as separate server processes on a particular

server machine or cluster of machines. A particular service may be provided by a class or

thread within a single server program, or by a distinct server process on a machine, or by a

group of server machines, or even or by a distributed self-updating service like the Internet's

Domain Name System (DNS). As long as the client users and other servers know how to

obtain the service, the details of providing it can vary.

In addition to supplying or integrating with Transactor services, a typical Transactor

merchant will also need to supply other conventional vendor services as appropriate a

sales mechanism or metaphor, a stocking mechanism, billing).

2 Transactor Client-Side Tools

Transactor client-side tools, discussed below, reside on and run from the client's

machine. Preferably, they are not embedded in web pages. A wide variety of techniques for

constructing the below tools will be apparent to those skilled in the art, based on the present

disclosure.

Object Manager: The object manager collects objects into lists and groups,

examines or browses objects, including unowned ones, etc. This is the "root" Transactor tool

from which all other actions (owner acceptance, wrapping, unwrapping, etc.) can be per-

formed.

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 I'CT/US98/07176

Owner Acceptor: The owner acceptor accepts a password or pass-phrase

typed in, applies it to a Transactor "keychain", and allows use of resulting Transactor keys, if

successful. In some embodiments, this tool is implemented as an inherent part of the Object

Manager.

Object Trader: The object trader enables an accepted owner to engage in

object trading (selling or buying) directly with another Transactor user. In some embodi-

ments, this tool is implemented as an inherent part of the Object Manager.

Wrapper: The wrapper wraps a raw digital object (which may be an existing

digital object in the user's possession or a digital object newly created by the user) with an

owner s Transactor info, resulting in a Transactor object.

Unwrapper: The unwrapper unwraps an owned object, resulting in a raw digital

object and a separate file holding the data from the Transactor fields.

3 Transactor Server-Side Services

These services are provided to both end-user clients as well as to other distributed

servers that need intermediate access to the service vendor-servers subscribing to the

Transactor services). A wide variety of techniques for implementing the below services will

be apparent to those skilled in the art, based on the present disclosure.

User Registrar: The user registrar register new users, issuing Transactor

ID's (TID's);

allows registered users to edit their info; and responds to a Bookkeeper's requests to validate

TID's. It does not validate objects or ownership, only the identity of users.

Bookkeeper: The bookkeeper receives, confirms, and logs all transactions

and transfers of objects; maintains accounts (distributes splits to other users, etc.); and

performs collect-and-forward transactions to other mercantile servers (bank-cards and bank-

deposits)

Object Registrar: The object registrar register new objects, issuing Object

ID's (OlD's),

26

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

validates objects and ownership thereof, for Bookkeeper; and performs ownership transfers in

support of Bookkeeper

4 Vendor's Server-Side Services

In some embodiments, a Transactor vendor will have utilize a Storekeeper

service, which keeps an inventory list; keeps a sales log of transactions; and communicates

with the User Registrar, Bookkeeper, and Object Registrar.

Transactor Support Modules:

The above tools and services are built upon a common set of support modules. A

module should be treated as a related s,,t of facilities or capabilities, not necessarily as a

software-design element corresponding to a library, package, or class The core support

modules are:

S Database Module

S Cryptography/Security Module

S Transactor-field Module

Logging Module

S Financial Module

Not all client-side tools or networked services will use every support module, but they

all use the same module whenever there is a need for shared data. For example, all parts of

Transactor use the same cryptography and Transactor-field modules (and the same revision-

level thereof); otherwise any exchange would appear as gibberish to one side or the other.

Networking software may be provided either as a standard library as for C or

or as a standard part of the language system as for Java).

Database Module:

All information about transactions, users, objects, etc. is kept in databases. Because

some information is very valuable or sensitive, while other information may change at a rapid

27

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/!'398/07176

Sate. several actual databases preferably are maintained, rather than a single all-encompassing

database

Cryptography/Security Module:

This module is responsible for encrypting and decrypting all Transactor objects and

communications It is also responsible for generating unique cryptography keys, Transactor

ID's, and Object ID's. Finally, it validates a password or pass-phrase entered by a user to gain

access to the Transactor "key-chain" file it provides client-side key-management

functions)

Transactor-Field Module:

This module allows other modules to read or write the Transactor fields of a given

object's Transactor wrapper independent of any actual game or other use. This module also

performs wrap and unwrap of raw digital objects.

Financial Module:

Using the values from an object's Transactor fields, as received from the Transactor-

Field Module, this module computes splits, fees, etc, for all the participants in a sales transac-

tion according to an object's predetermined Revenue Model. This module also distributes

those amounts to each user account in the database, and writes entries in the log. This module

also interfaces to third-party "bankware" to perform payments and billing of all user accounts.

A policy is defined so as to determine when, how often, at what amount, what activity level,

etc. to actually initiate a banking transaction involving the bankware.

A Revenue Model is a server-side software element that d-termines how revenues

accrue to Owners, Makers, etc. In some embodiments, it is preferr'.. to define several

standard Revenue Models In some embodiments, a "plug-in" type architecture for additional

Revenue Model components is also used.

Logging Module:

28

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

A log provides a complete serialized list of every change to any Transactor database.

This acts not only as a backup in case of database corruption, but also as an independent

accounting audit trail for all transactions. The Logging module maintains several such logs,

serving different purposes as outlined in more detail later. Most logging occurs on the server-

S' side, but a client-side Logging Module is responsible for logging a user's transaction history in

the local transaction log. This is purely for user information purposes.

Additional Features of Modules

1. The Crvptojraphy/ecurit Module

Cryptography provides several features within Transactor: data invisibility, data

integrity, authentication, etc. Data invisibility means that the data is not visible to any but an

authorized user/owner. This is accomplished with encryption Data integrity means that data

can be determined as being in an untampered form. This is a complished with secure hashing

and digital signatures. Authentication means that two parties who do not trust each other can

each determine that the other entity is who it claims to be. This is accomplished with

authenticating protocols that may employ encryption, hashing, digital signatures, etc.

This module is responsible for encryption and decryption of objects and other data, as

well as creation of cryptography keys. A Transactor ID and an Object ID are part of the

authentication system and, preferably, are uniquely identifiable and cryptographically secure.

User ID's may simply be sequentially assigned numbers, from a pre-determined range allotted

to a particular Transactor server. Uniqueness is the only requirement. Object ID's may

include a sequentially assigned number, as well as hashed information about the object's

contents, maker, registration time, etc. These values are essentially impossible to forge or

fake, nor do they allow an altered or forged object or user to be improperly recognized as

valid. Since the user and object databases contain every known ID, all objects and users can

always be verified.

A Transactor user's data may change over time, such as from a change of address.

This does not alter the originally issued Transactor ID. The registered user simply enters the

new data, while using the same ID originally calculated and assigned.

29

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

A Transactor object does nol change over time, so its Object ID (or a related message

digest or hash) can always be recalculated to verify that it has not been tampered with. This is

how objects can be verified as unaltered even without transferring their entire contents to the

Transactor Bookkeeper service.

The fact that objects are, in this sense, immutable once registered does not prevent

time-varying properties from accruing to the object. It only prevents that variable property

from being verified by the Bookkeeper. For example, a game weapon may have a variable

power level, but that variable must be kept outside the "wrapper" provided for Transactor

object validation. The weapon itself may defi.ie internal constants that limit valid power

levels, and these would be inside the wrapper to prevent tampering. Thus, the worst effect

from tampering is to gain a full power level.

One variable property that the Bookkeeper does track is existence was the object

destroyed). Destroyed objects are still kept in the database, but are marked as destroyed (or

are moved to a separate "destroyed" database). This makes such objects recognizable but

unusable. An administrator may enact a relirement policy that removes the majority of a

destroyed object's data after some period of time, to keep database size manageable. As long

as Object ID's, message digests, or hashes are retained so an object can be recognized as

destroyed, the object's entire original data-package need not be preserved.

2. The Transactor-Field Module

Every Transactor digital object preferably contains several data fields in the object

itself that identify the object and its owner, its original creator, the revenue model, and how

sales splits are computed. The Transactor registered-object database holds the correct values

of all unalterable fields, so any tampered field can Je easily identified and set right.

Other Transactor modules use the. Transactor-field values to determine how to handle

the object, or how to handle transactions involving the object. This module provides uniform

access to all readable fields, and constrained but uniform access to writable fields. For

example, anyone can read the Current Owner field and retrieve the ID kept there, but only the

accepted and verified owner can write to that field. But even the owner can't do everything.

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

An owner can set a new price, but can't change the Maker or Split fields. The latter can only

be changed by the original Maker.

3. The Financial Module

The Financial Module acts as the intermediary between Transactor transactions and

actual banking or payment-system (bankware) transactions. This module's main purpose is to

calculate and distribute the fee splits designated by the object being sold. In the simplest case,

this is basically a "calculate and forward" module, and every Transactor transaction immedi-

ately results in one or more bankware transactions. Such a simple implementation might not

even need to keep any account-balance information of its own, instead relying entirely on the

bank-maintained accounts to determine a user's balances.

A more sophisticated Financial Module might instead maintain its own "summary"

accounts for every user, and only perform bankware transactions at the end of the day, and

only for those accounts whose resulting daily balance was larger than some predefined amount

more than $2.00 credit or deficit), or had gone longer than 30 days without a transaction.

By aggregating the bankware transactions in this way, users and vendors are spared the

overhead of large numbers of tiny banking transactions. The detailed transaction logs and the

corresponding reporting tools provide a complete audit trail to determine every detail that

went into any aggregated banking transaction.

In such a "summary account" system, the user's current account balance is either a

positive or negative amount. At the end of each day (or other policy-defined billing period),

the current balance is zeroed out, and translated into an appropriate credit deposit or debit

charge against the user's designated outside financial accounts. That is, a single bankware

transaction occurs. If the amount is small enough, it is simply carried forward to the next

billing period and no bankware transactions are performed for that user's account. The

precise details of "small enough", as well as other particulars such as a small balance carried

for a long enough period of time, will be determined by further research or an arbitrary

decision in the design. In any case, these parameters must be tunable.

31

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

There are advantages and disadvantages to any particular Financial Module design,

anywhere along the continuum between the two possible methods presented above. These

benefits and risks must be completely enumerated and analyzed in further Financial Module

design. In particular, issues of security, expected server load, and customer or bank liability

will be considered, along with any legal or financial responsibility requirements.

I? Revenme Model is a software element that calculates how ownership transfers

generate revenue for sellers or makers. A Revenue Model is designated by an [D in the

Transactor object itself, designated when the object was created by its maker. The Revenue

Model software component is passed information about the object, the sale price, etc. and is

responsible for calculating how much of the sale price goes to seller, maker, broker, etc.

These values are then returned to the main Financial Module for actual disbursement. Thus,

the Revenue M/lodel software component has no knowledge or interaction with accounts,

bankware, etc. It only calculates shares in a revenue stream.

The above variations in underlying design should not be interpreted as uncertainty in

the Transactor design or bankware interfaces. Rather, they should be treated as available

options or modules determined either by the vendor who installs a Transactor system, or as

required to support different payment options that may operate under different constraints

credit-cards, debit-accounts, DigiCash).

4. The Logging MA'odule

Depending on the capabilities of the database selected (for example, Oracle), most data

collected and processed by the different Transactor services is kept in redundant form The

primary storage faciliti,. are the various databases. Redundant information is kept by time-

stamping and logging every transaction that alters any database. This log acts as both an

accounting audit trail and as a backup mechanism.

As an audit trail, the log can be searched (off-line using yet-to-be-defined tools) to

discover reascms for problems like, for example, account balance disparities or contested

purchases. It also clearly shows the time at which each transaction was made.

32

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

As a backup mechanism, the log can be used to restore the databases should they

become corrupted. This is accomplished by starting with a valid backup database and

sequentially applying every logged alteration. The result is an up-to-date database. In the

safest setup, all log files are kept on a different physical hard disk than the database files.

Note that separately implemented logging facilities may be eliminated as redundant, as

ft lit tolerance services of the Oracle database may more easily or simply meet these require-

ments. However, the logging module is nonetheless described here to illuminate the required

functionality.

Rules of Logging

Log-files must always be secured they hold sensitive or valuable data

Data is only appended to a log-file, never deleted.

Every log-entry is automatically time-stamped with its entry-time into the log.

Every transaction is logged, both valid and invalid ones.

One log entry may correspond to several changes in the databases.

Log-file formats should be compact binary, not ASCII text).

Note that even rejected transactions are logged, since they indicate some kind of

problem (data loss, theft attempt, etc.). To prevent the log file from growing too large, the

Logging Module can switch to another log-file at any time, under administrative direction

(manually, at a scheduled time midnight), etc.). A log-file switch is performed using the

algorithm outlined below. Log entries received during the switch are queued up and eventu-

ally written to the new log-file. The logger must never overwrite, truncate, or delete a file

itself If it fails to create a new empty unique log-file, it will refuse to switch log files.

Log-files need not be kept forever. They can be moved off-line after some period of

time and retained only until their backup media is reused. The scheduling of this should be

one of the policies determined by the Transactor administrators or owners, and implemented

as a configuration option of the Transactor software.

33

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

Since log-files contain valuable sensitive data, they must be kept secure at all times,

even when off-line. Log files may be encrypted to protect against possible snooping. This

option must only alter the data written to the log, not any other aspect of its nature.

LoM-,'ile Swvitchover

A log may be 'reset' so that log-files do not grow too large. This does not actually

delete any data from the log. Instead, the logger switches to a new log-file, leaving the prior

log-file intact. Failure at any point aborts the log-switch, and logging continues in the original

file, with a log-entry made that a log-switch failed. This switch is accomplished as follows:

0) a memory-based queue is created to hold log-entries received during the

switch. Entries are time-stamped with their entry-time into the queue.

1) a new file is created under a temporary name. It will be automatically renamed

after a successful log-switch has occurred. Failing file creation, no log-switch occurs, so stop

now.

2) On successful file creation, a transfer time-stamp is made. This time-stamp

will be used in several following operations.

3) A "transfer entry" is written to the new log file, stamped with the transfer time-

stamp.

4) The prior log-file is written with an identical "transfer entry", and the file is

flushed to disk.

5) The prior log-file is closed.

6) The prior log-file is renamed by appending the transfer time-stamp to the

existing name, in an acceptable ASCII format no illegal characters for the machine),

7) The new log-file is renamed to the old log-file's name. Depending on the

platform, this may require closing the new log-file, renaming it, then reopening it and seeking

to the end.

8) The new log-file is written with a "linkage entry" noting the new name of the

prior log-file. This entry is time-stamped with the actual time of log-switch completion, not

the earlier transfer time.

9) All queued log-entries are appended to the new log-file.

34

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

After completion of the above steps, tile old log-file can be moved off-line, or to

backup media, or whatever. New log entries will be appended to the new log-file, which starts

out with at least two entries the transfer entry and the linkage entry. Any log-entries received

during switchover are also in the new log-file.

Transactions and Transaction Records

A Transactor transaction occurs whenever ownership of an object is transferred from

its current owner to a new owner. A transaction record is the collection of data that describes

all the entities involved in that transaction and the type of transaction requested. Transaction

records can be valid or invalid, solely depending on their contents. A critical Transactor

service is to recognize and prohibit all invalid transfers by rejecting invalid transaction records.

It is the Bookkeeper that performs this service, with support from the Object and User

Registrars.

A transaction record basically looks like this:

Type: Seller sold Buyer this Object on Date for Price, by time X; signed

by Seller, then Buyer.

This directly translates into a data representation format:

T: S sold B this 0 on D for P, by X; signed: SS, BB.

T is the type of transaction record, identifying the rest of the data for the Transactor

server. S is the Seller's TID, which must also be the original owner of the object. B is the

Buyer's TID, which will be the new owner of the object. 0 is the transferred object's unique

Object ID (OID), or some yet-to-be-determined unforgeable token representing the object

itself a message digest or secure hash). D is the date and time (expressed in GMT for

uniformity) at which the transaction occurred. P is the agreed-upon price, if it was a sale for

money as opposed to barter. X is an expiration-time a short time after the transaction record

is completed. Its purpose is explained below. The entire transaction record is then digitally

signed by the Seller SS, then by the Buyer BB. This collection of data is then sent to the

Bookkeeper service for validation and approval. If approved, the given object's ownership is

transferred to the buyer, and the new ownership is recorded in the database. If rejected, there

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

is no ownership transfer, but the Bookkeeper retains the record so it can detect patterns of

fraud or other difficulties.

The Seller constructs the transaction record and fills in all fields, then signs it. The

transaction record is then sent to the Buyer, who decrypts it, verifies the Seller's signature,

then signs it, encrypts it again, and sends it to the Bookkeeper service. These last steps

requires the Buyer's cooperation, so the Seller must trust the buyer to actually sign and

forward the transaction record. Without the expiration-time X, this would be a security flaw,

since Seller's are not required to trust Buyer's. Adding an expiration-time declares a deadline

after which the transaction record is automatically invalid, so the Seller is no longer entirely

dependent on the Buyer's good behavior. The Buyer must submit the transaction record to

the Transactor server before this deadline, otherwise it will be rejected, even if all other data is

correct. This deadline prevents the Buyer from holding the Seller's object "hostage" for an

indeterminate time, effectively preventing its sale or use elsewhere. After the deadline, the

Seller can sell the object to someone else without fear that a bogus delayed transaction record

will be sent in by an unscrupulous Buyer. A short deadline (say 30 seconds) can be used as

the initial time-out, but if network delays cause rejection, this can be automatically increased

by some increment up to some reasonable upper limit (say 3 minutes) that both Seller and

Buyer agree on first.

Because both the Buyer and the Seller sign the transaction record with their private

digital-signatures, neither one can later claim ignorance of the transaction and demand that

ownership be restored the protocol provides non-repudiation). If either one detects

cheating or improper data using its own knowledge, it can simply refuse to sign the transaction

record. Both signings are voluntary.

In preferred embodiments, rather than validating individual users or objects, only entire

transaction records are validated. If any part of the transaction record is invalid, the entire

transaction is rejected and a reason returned. If the complete transaction is validated, then

approval is given, and the clients then transfer the data.

When a transaction record is rejected, it can be for various reasons. Invalid ID's for

any participant is one reason, invalid signatures is another, and unintelligible data is yet

36

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

another. Some reasons may be embarrassing for either Buyer or Seller, such as "insufficient

fiunds", so not all reasons for rejection are sent to the clients, only some. A detailed design

must list all rejection reasons and which are sent to clients.

When a transaction record is accepted, the Bookkeeper tells the Financial Module to

calculate and distribute sales splits, fees, etc. It also updates the object and ownership

databases to reflect the resulting object transfer. All intelligible transaction records, whether

accepted or rejected, are logged to a transaction log-file Certain patterns of rejections may

send a security notification to an administrator, or take some other predefined action. Garbled

transaction-record attempts are not logged to the transaction log, but may append an entry to

a "problem with host H" file for later perusal and action by an administrator.

I Identifving Authentic Obiects

The value of 0 in a transaction record must be something more than just the OID of

the object. This is to prevent various fraud schemes whereby having an object's ID would be

equivalent to having the object. One way to avoid such problems is to have the 0 value be a

collection or composite of several values that not only identify the object, but also act as an

assurance that the object is really in S's possession, and really owned by S. One part of this

composite is the OID. The "assurance value" needs to be something that can only be

calculated by the object's true owner, such as a message-digest of the object's decrypted

contents (only possible for the owner and the Bookkeeper) combined with the values for B

and D to introduce unpredictability. Without the unpredictable values ofB1 D (and perhaps

some other random strings), a cheater could have precalculated the object's message-digest,

and it would never change even after the object was sold or destroyed. Thus, the main reason

for using a message-digest would be lost.

2. Transaction Types

Although entire transaction records are the only thing validated by the Bookkeeper,

each transaction record has a type identifier in it, and certain idiomatic patterns of data in the

records. Here are some obvious forms, although there are probably more that are useful.

37

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

All the following patterns have idiomatic values defined in the transaction record

formed as:

T: S sold B this O on D for P, by X; signed: SS, BB.

Only the idiomatic distinctions are pointed out, while all other fields retain their normal

meaning. In particular, the D field always contains the date/time of the request, and the

contents are always signed by at least one participant. Some fields have no meaning outside of

sales transactions, such as the price P, which is zero on all the following.

Verifyi a User (TID) S is the user making the request. B is the TID being checked. O

is all zeros. The record is only signed by SS. An "OK" response means that B is a valid TID.

Rejection may mean any error.

Validate an Owned Object S equals B, and is the user making the request. O is the

object identifier/digest. The record is only signed by SS. An "OK" response means that the

object is valid and is owned by S. Rejection may mean any error.

Validate an (hnowned Obhect S is all zeros. B is the user making the request. O is the

object identifier/digest. The record is only signed by BB. An "OK" response means that the

object itself is valid, but its ownership is undetermined. This prevents non-owners from

inferring another user's owned objects by probing with valid Object ID's Rejection may mean

any error.

Special Object Properties and Situations

The Transactor software system is a flexible general-purpose system for establishing

ownership and for conveying products and payments. It is not limited to real-world monetary

transactions, nor to purely digital objects. Following are some specialized features that are

available, in some embodiments, as options to Transactor service providers.

1. Preview Objects

When an ordinary user is offering an owned object for sale or trade, it is useful for the

buyer to examine the on-screen representations of the actual object its image or sound) on

38

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

his own machine. These may be beauty shots or the actual images that are part of the object

It cdoes iot include any of the object's behaviors, however.

These previews are one use of a special property that can be given to a Transactor

object: the transient property. Transient objects provide a mechanism to allow exchange of

data between users or client and server that exploits the security and consistency of the

Transactor protocols, while not transferring ownership or utility to the receiver. Transient

objects cannot be stored in a user's inventory, and they automatically disappear when the

connection with their originator is broken.

To create a previewable object without transferring the entire real object (which could

be much larger), the original complete object may contain or refer to a small embedded

transient "preview" of itself which can be separately extracted and sent to the prospective

buyer. This transient object has no value, is unusable in play, and cannot be traded or retained

in the user's inventory. It is purely for examination before purchase. Its Object ID does not

exist in any Transactor-server database, since it is created on-the-fly, so it cannot be traded.

Not all Transactor objects must contain previews The user may already have all the

previewable images or elements possible for a game or other scenario on the original CD-

ROM), and it would suffice for the buyer to know that a Model X41 Laser Pistol was being

offered. The software would then load the previewing images or other representations from

the buyer's local machine (hard disk or CD-ROM), and no preview object would be needed.

2. Membership Cards

In principle, a membership card is a persistent "entry visa" to other services or

privileges. It is persistent in that it cannot be spent or expended like currency, and has no

inherent value as currency (but may have collectible value). It allows entry or access to

services, because the service provider can see the user present a valid card.. Membership

cards usually have an expiration date, nor are they transferable to another user except by the

issuer A passport is one example of a "membership card", as is a driver's license.

A membership card also identifies the holder as a member of the issuing organization,

but this is primarily for use by other organizations, since in an electronic world an organization

39

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

may be presumed to have an available database of members, making membership cards

superfluous. As a real-world example, membership cards may be used across organizations,

such as showing a specific airline's frequent-flyer card to receive a discount at a particular car-

rental agency The car-rental agency can't redeem miles, but can give a discount after seeing a

valid card. Thus possession of the card has value, even if not as currency.

Membership cards are one application of a special property of Transactor objects: the

assigned property. An assigned object is owned like any other Transactor object, but its

ownership cannot be changed by the owner, only by the maker/issuer. Specifically, the

assigned object cannot be sold or traded away until after it expires (thus not interfering with

any potential collectibles market). If the issuer creates the object with an expiration date, then

the object is only valid until that date.

All assigned objects contain the normal Transactor fields identifying the owner, maker,

etc. But since these fields are inherently alterable, the assigned object must have an override

mechanism. That override is contained in the digitally-signed and inherently unalterable body

of the object. It cor.ists of an additional packet of data labeled as "assignment data" and

appeaiing in a standardized form, which contains the TID of the issuing organization, the TID

of the assigned owner, and an assignment expiration date. These unalterable fields automati-

cally override the normal Transactor fields, and thus prevent the object from being traded

away or transferred. Since the issuer and assignee TID's are visible, the user's membership in

that particular issuing organization is confirmed to any third party who requests a membership

card

The assignment data packet may also hold an expiration date. When used beyond that

date, the object is no longer valid, and should be treated as if the object did not exist. For the

case of membership cards, this represents the membership expiration date. For other kinds of

assigned objects, it may represent a deadline or some other fixed date or timestamp, as defined

by that kind ofobject's unique requirements.

Membership cards may be defined by the issuer/maker to hold preferences or other

demographic data about the assigned owner. This data may be encrypted, visible only to the

issuer, or it may be cleartext, visible to any organization that the card is presented to. In the

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

real world, for example, driver's licenses are effectively membersh;p cards. A "motorcycle"

endorsement or "corrective lenses" restriction are owner-specific information encoded on the

card itself

3. Private Currencies

A privale currency is any fungible valuable medium of exchange that does not

represent actual money. The termfungible means that the nature of the object makes it

replaceable and non-unique, such as grain or cash is in the real world. The term valuable

simply means that people might have a reason to collect pieces of the exchange medium, other

than as collector's items. So private currencies do have real value, even if not directly

convertible to cash. Some real-world examples are frequent-flyer miles that accrue and earn

airline tickets or hotel stays, or the "bonus points" awarded by some long-distance phone

carriers that can be redeemed for phone-time or merchandise. But perhaps the best-known

example is S&H green stamps they are fungible and valuable, but have no actual cash

value.

When a Transactor system is installed, its medium of exchange is defined as either

money or a private currency. If the private currency option is chosen, then a

CurrencyConversion supporting module is configured and installed in the system. This

module converts private currency amounts into money amounts, as needed by other modules

in the system the billing department). The actual conversion data is defined in a vendor-

specific database, which is kept secure on the vendor's servers, and can be edited by the

vendor at any time.

A private-currency Transactor system requires conversion into and out of the private

currency Conversion into private currency is made as a money-purchase of some number of

units of the private currency. For example, a user spends $10 and has 1000 quatloos credited

to his account. This can be a straight linear conversion, or it can be tiered spend $20 and

get 2500 quatloos), all as defined in the conversion database.

Normal spending of the private currency is simply a "redemption" of the private

currency in exchange for an object. This needs no conversion, only the price of the object

41

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PC/US98/07176

expressed in the private currency, e.g. 200 quatloos to purchase a new laser-pistol digital

object The buyer's account is deb; d and the object is transferred to the new owner, If the

seller were another user, then the seller's :a,,rlt would be credited. Nowhere is a conversion

out of the private currency required. Note that this is true even when physical objects are

being purchased the example of S&H green stamps did not require cash, either).

Conversions out of the private currency only occur when outside organizations are

involved For example, if a phone company were offering conversion of quatloos at 50 per

minute of long-distance time, then a conversion wouid need to be performed. This informa-

tion contained in the database, and identifies not only the conversion rate, but the identity of

the offerer (phone company), the expiration date of the offer, and any other limits on conver-

sion (not more than 5000 quatloos per individual), All this data is used to perform an outside

transaction, according to the protocols for physical objects (described next).

Purchasing Physical Objects

Physical objects can be bought and sold on a Transactor system, in addition to or as an

alternative to purely digital objects. For example, a user can buy a T-shirt or a game acces-

sory as easily as a new digital game object. The user immediately receives an assigned digital

object representing the purchase of the physical object, and later receives the actual physical

object via a shipping channel. Any conventional shipping channel may be used for this

purpose

The purchase of physical objects requires an interface between the Transactor server

and a merchandise supplier. This is similar in concept to the interface between the Transactor

server and financial institutions, and is accomplished using identical supporting software and

interfaces, that is, the merchandise supplier appears to the system as just another outside

organization providing "financial" services. The only difference is that the middleware deals in

merchandise orders rather than in monetary transfers. Both types of transactions involve

transfer of value, account reconciling, security aspects, etc.

When a user purchases a physical object, his account is debited in the normal way. A

new digital object is created and transferred to the user. This digital object represents the

42

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

merchandise order, and contains all the information one would find on a regular order receipt:

date of order, price, tracking number, buyer, seller, shipper, shipping address, etc. Thus, the

digital object serves as a digital receipt. The digital object, however, can also contain other

elements, such as beauty shots of the purchased physical object JPEG images), preferably

rendered to match any optional features, like color or size. This digital object is an assigned

object having no intrinsic value (described above, under "Membership Cards"). Since it is

assigned only to the buyer, it cannot be traded away, although it can be deleted from the

owner's inventory at any time, if desired.

When the user's account is debited, an order is placed with the merchandise supplier,

as if that supplier were being "credited" with the amount deducted from the user. In reality,

the "credit transaction" is an order for the merchandise, incorporating all the shipping

information and other account information needed to process the order. At that point, it is the

supplier's responsibility to ship the order to the user, and the Transactor system is not

involved any further.

This protocol for purchasing physical objects works for any Transactor-supported

sales mechanism, including direct object sales as well as flyers. The flyer for a physical object

is no different than that for a digital object, since both actually refer to a service provided by a

supplier, as outlined above.

Cryptographic Protocols

A variety of cryptographic protocols to provide security for the above-described

Transactor system and other Transactor systems according to the present invention will be

apparent to those skilled in the art based on the present disclosure. This section presents a

preferred set of mechanisms and protocols used to provide security in connection with the

Transactor system discussed above. These security features are discussed in the context of,

and are particularly useful in embodiments, involving interactive games which may allow

ownership and transfer of various kinds of objects, both online and offline.

In the game setting, objects are typically owned by players (in some cases, they may be

simply lying discarded somewhere, owned by no player, in which case ownership may be

assigned to the game server). An object is not necessarily represented by an "object" in some

43

SUBSTITUTE SH'EET (RULE 26)

WO 98/47091 PCT/US98/07176

programming language (though this would be a natural way to represent it). Game objects are

usually owned by someone, and have specific attributes, which may change over time.

In some game embodiments, objects are owned by independent agents acting in the

game world. This can be considered to be a form of ownership by the game server. In the

worldview of the players, however, the objects will be owned by another entity.

Objects and Cheating

It is desirable to resist several kinds of cheating, which include

a. Unauthorized creation--Most objects cannot be created by players.

b. Unauthorized transfer--Some objects can only be transferred under special

conditions.

c. Unauthorized destruction--Most objects cannot be destroyed by players, or can

only be destroyed under special conditions.

d. Impermissible multiple transfers--A player may try to transfer the same object

sequentially to many other players, which is inappropriate for most objects as a previously

transferred object is no longer in the first player's possession.

e. Queries--A player may try to determine what objects are in the possession of other

players, or those objects' attributes.

f Unwanted Transfer--A player may try to transfer an object to or from another

player, without that player's approval.

g. Resurrection--A player may try to bring back an object that has been destroyed.

h. Alteration--A player may try to alter the attributes of an object, i.e. increasing the

number of charges some magic item has.

44

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PC/US98/071 76

i. Multiple Play--A player may try to play in many different games (in any mode but

Server-Mode), and use the same objects in each. This is an extension of the idea of multiple

transfers

The following protocols and data structures allow the Transactor system to resist

unauthorized creation, queries, and unwanted transfers at all times. All the other attacks can

be resisted in real-time only in Server-Mode, and otherwise will allow the cheating to be

caught later.

Notation

In this section, several protocols are described using the following simple notation.

a. Encryption using a symmetric algorithm, such as DES, 3DES, or RC4, is shown as

E_{Key (Data), where Key is the key and Data is the data being encrypted.

b Hashing using a one-way hash function, such as MD5 or SHAI, is shown as

hash(Data).

c. Public-key signing using an algorithm such as RSA, DSA, or ElGamal, is shown as

Sign_{PrivateKey}(Data), where PrivateKey is the signer's private key, and Data is the data

being signed.

d. Public-key encryption, using an algorithm such as RSA or EIGamal, is shown as

PKE_{PublicKey}(Data), where PublicKey is the public key of the message's intended

recipient, and Data is the data being encrypted. Typically, this is used only to send random

encryption keys for symmetric algorithms.

e. All protocol steps start with a header value, labeled something like

Ul hash(" Transactor System--Exit Visa Request").

This is used to ensure that both the sender and the receiver alw ays can

immediately tell which message of which protocol they have received. These can be

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

precomputed and stored in the source code as constants, or the actual text string can be used

to calculate this at run time.

f. Many protocols require some random numbers or keys. These are assumed to be

coming from a high-quality cryptographic random bit generator. Good cryptographic libraries,

such as BSAFE, RSAREF, and CryptoLib, have good software routines for starting with a

random seed value too unpredictable to be guessed, and using it to derive a long sequence of

unpredicatable values. Typically, the problem is in getting a sufficiently random initial seed.

Methods to do this are described in the last part of this section. A variety of protocols and

algorithms are known to those skilled in the art (see, Scheier, Applied Ciyptography, 2nd

Edition (John Wiley Sons, 1996)) and, based on the present disclosure, may be used in

connection with embodiments of the present invention.

Implementation of the Protocols

Each protocol message has a unique 160-bit identifier at its beginning, followed by a

32-bit version identifier, and a 32-bit value giving the length of the whole final message. This

is intended to allow an implementation to parse each incoming message immediately.

Preferably, there is one universally-accepted message:

UO hash("Transactor System--Error Message")

VO version

LO total message length

Ux the header of the previous message

CO error code

LOa Length of freeform error recovery data (may be zero).

DO freeform error recovery data

XO UO,VO,LO,hash(prev message *),CO,LOa,DO

46

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

When there is no previous message, this is an all-zero field.

The total message is

MO XO,SignSK_{ Sender}

As stated below, all lengths are given in bits (to accommodate odd lengths of key or

data), but all fields are padded out with zeros to the next full byte boundary.

The above described bit fields are examples only. Other embodiments having different

bit fields and protocol implementatiuns will be apparent to those skilled in the art based on the

present disclosure.

Programming Models

A variety of interactive gc.nie design approaches for use in connection with a

Transactor system will be apparent to those skilled in the art based on the present disclosure,

In some embodiments, there is one central server, which holds the "world," and with which all

players' machines interact to learn about and influence their world. This is an inherently simple

way of implementing a game. It suffers from the problems that it may be hard to find a trusted

server machine which has the computational ability and bandwidth to and from each player's

machine to do this effectively. Essentially, this is related to centrally maintaining one big

database with various kinds of access restrictions The security model described below is

most effective in connection with this type of game setting.

Modes of Play

This security system relates to the following four basic modes of play:

Server-Mode: The most secure design for all of the security issues is simply to

have each player interacting constantly with the server. The server can always arbitrate in

disputes.

Proxy-Mode: Some other entity is acting as proxy for the server. This would

typically be the case when a small group of users wanted to play a "local" game. The proxy

47

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCTIUS98/07176

will prevent unwarranted creation, destruction, and alteration of objects in the local game, and

will try to guarantee that no cheating done in the local game (even involving all participants)

can allow cheating in the global game. Note that in many circumstances, one player in a group

might be trusted enough to be the proxy.

Group-Mode: A small group of players is interacting without even a proxy

server. In this case, the group themselves must probably take on the proxy server's tasks,

probably by delegating one of their machines to server as the proxy server.

Player-Mode: In Player Mode, there is a single player playing the game alone.

His machine is effectively the proxy server.

In any of these modes, objects may be transferred around between players, and may

also (in some cases) be discarded or picked up. It may make sense to have a user ID for a

player called "nobody," and have this user ID possess things that have been discarded. There

may be one such user ID used for each different game or "world" that's going on, i.e. each

Proxy Server may have its own.

Server-Mode

In Server-Mode, security concerns almost disappear. Presenting users with signed

versions of their ownership certificates is unimportant, as is verifying those signatures; instead,

the server keeps track of everything. This mode needs only two protocols-the one for

preparing to leave this mode for some other mode, and the one for coming back to this mode

from some other mode. Here, we also discuss the format of object ownership documents and

object transfer documents.

1. Ownership Documents

An ownership document is a signed document from the server, affirming that at some

time, T, a given player was in possession of a given object, with a given set of attributes and

conditions.

48

SUBSTITUTE SHEET (RULE 26)

WO 98/47091
PCT/US98/07176

Thus, it is structured as

field name

a. hash("Transaction System--Ownership Document"

b. Version

c, length of document

d. Player ID

e. Player Public Key

f. Object ID

g. Object Data and Attributes

h. Attribute Transfer Condition

i. Time at which this document was made.

j. Time at which this document expires.

k. Signature on fields a..j.

32

64

1024-2048

64

variable

variable

32

32

1024-2048

Variable-length fields always start with a 32-bit length identifier. All

lengths are given in bits, but all fields are continued out to the next full byte. If the length field

is zero, then that's all the data in that field.

Object Data and Attributes may change after this document is issued in

some cases, a gun with a limited number of bullets. Implementations need to be flexible

enough to allow this, while doing some object-type specific tests to ensure that (for example)

the magic lamp hasn't wound up with more wishes than it started with.

A variety of different implementations and structures for ownership documents used in

connection with embodiments of a Transactor system will be apparent to those skilled in the

art based on the present disclosure.

49

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 98/47091 PCT/US98/07176

2. Exit Protocol

The player wants to be able to play at some other mode. Therefore, he requests an

"exit visa" from the central server, to allow him to take part in other games. This works as

follows:

a. The Player forms

UO hash("Transactor System--Exit Visa Request")

VO version

LO length of final message, including signature.

RO a random number of 64 bits

XO UO,VO,LO,RO

and sends to the Server

MO XO,Sign_{SKP)(XO)

b. The Server forms

Ul hash("Transactor System--Challenge for Exit Visa Request")

V1 version

L1 length of final message, including signature.

R1 a random number of 64 bits

XI U1,Vl,Ll,hash(MO),R1

and sends to the Player

Ml X1,Sign_{SK_S}(X1).

c. The Player forms

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

U2 hash("Transactor System--Response fbr Exit Visa Request")

V2 version

L2 length of whole final message, including signature.

X2 U2,V2,L2,hash(M I)

and sends to the Server

M2 X2,Sign_{SK_P (X2).

d. The Server forms

U3 hash("Transactor System--Exit Visa Transmission")

U3a hash("Transactor System--Exit Visa")

V3 version

L3 length of whole message, including signature.

L3a length of whole ExitVisa, including signature.

where SO[i] signed object ownership statement for object i, and n

the number of objects

owned by the user.

TS valid time span

C_P certificate of P's public key

R3 a random number of 64 bits

K3 a random encryption key

X3 U3a,V3,L3a,hash(M2),R3,C_P,TS,SO[I..n]

ExitVisa X3,Sign_ SK_S}(X3)

51

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07 176

and sends to the Player

M3 U3, V3, L3, PKE_{PKP E_ K3) (Exit Visa)

3. Entrance Protocol

a. The Player forms

UO =hash(" Transactor System--Entrance Visa Request')

VO =version

LO =length of whole final message, including signature

RO =a random number of 64 bits

XO UO,VO,LO,RO

and sends to the Server

MO =XO,Sign{fSKP)(XO)

b. The Server forms

U] hash(" Transactor Systen-Entrance Visa Challenge")

V I =version

L I length of whole- final message, including signature.

RI a raniomn number of 64 bits

X1 U1,Vl,LI,hash(MO),RI

and sends to the Player

Ml XI,Sign{(SKS}(XI)

!0 c. The Player forms

52

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCTUS98/07176

U2 hash("Transactor System--Entrance Visa Transmission")

U2a hash("Transactor System--Entrance Visa")

V2 version

L2 length of whole signed and encrypted message

L2a length of EntranceVisa

ProxyExitVisa the exit visa from the proxy server or the central server,

K2 a random encryption key

X2 U2a,V2,L2a,hash(M1),ProxyExitVisa

EntranceVisa X2,Sign(X2)

and sends to the Server

M2 U2,V2,L2,PKE_{PKS}(K2),E_{K2}(EntranceVisa)

d After this message has been decrypted and verified, the Server checks to see if any

of the changes are in contradiction with other things (restrictions on objects, existing owner-

ship records, etc.). If not, then the Server forms

U3 hash(" Transactor System--Entrance Visa Acknowledgment")

V3 version

L3 final length of M3

MESSAGE any message that needs to be sent to the Player (This could be

encrypted if necessary.)

X3 U3,V3,L3,hash(M2),MESSAGE

and sends back to the Player

53

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

M3 X3,Sign_{ SK_S (X3)

Proxy-Mode

Proxy-Mode is also relatively easy to secure. The Proxy takes on the tasks of the

Server--so long as these are done honestly, the whole system should work almost exactly like

Server-Mode. However, if the Proxy is dishonest, then its dishonesty (at least in changing

around object ownerships) should be easily detected.

1. Transfer Documents in Proxy-Mode

In this mode, transfers without revealing objects' histories directly to the receiving

users are allowed. This prevents our system revealing things which players might want to

keep secret (For example, if Alice really hates Bob, she may not want to trade with Carol, if

she knows that Carol is also trading with Bob. In the real world, objects usually don't know

their previous owners.)

In Proxy-Mode, the Proxy Server issues transfer documents These are of the

following general format:

a. hash("Transactor System--Transfer Document")

b. Version

c. Length of whole transfer document, including signature

d. FromPlayerID ID of the player from whom object was transferred

e. ToPlayerlD ID of the player to whom the object was transferred.

0 f. Proxy Server ID and Certificate.

g. Object ID

h. Object Data and Attributes

i. Conditions on Transfers

54

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

j. Time of Transfer

k. Time this Document Expires

1. AuditTrail, as discussed below.

m. Sign_{SK_{ProxyServer}} (Fields a..1)

2. AuditTrails

Audit trails to ensure that the Server can untangle fraud or errors in object transfers

can be implemented in this mode. An audit trail contains the previous transfer document,

encrypted under the server's public key. This document will get larger for each transfer, which

will leak information about this object's past. This limited information leakage does not

present a problem, however, in many embodiments.

The structure of an AuditTrail is:

a. UO hash(" Transactor System--AuditTrail (Proxy)")

b. version

c. length of whole AuditTrail.

d. PKE where KO is a random encryption key.

e. E_{KO}(Previous Transfer Document)

Note that if there is no previous transfer document, we simply set the length field here

to 224, which makes it clear that there's nothing that follows this field.

3 Entrance Protocol

!0 Entrance into the game being run by the proxy server occurs as follows

a. The Player forms

UO hash("Transactor System--Entry Request (Proxy)")

SUBSTITUTE SHEET (RULE

WO 98/47091 'CT/US98/07176

VO version

LO length of whole final message, including signature

RO a random number of 64 bits

C_P certificate of player's public key, from ExitVisa.

XO UO,VO,LO,RO,C P

and sends to the Proxy Server

MO= XO,Sign_{SK_P}(XO)

b The Proxy Server verifies the certificate and signature, and then forms

U hash("Transactor System--Entry Challenge (Proxy)")

VI version

LI length of whole final message, including signature.

RI a random number of 64 bits

C_Q certificate of the proxy server's public key, given by the centr:l server.

XI UI,VI,LI,hash(MO),Rl,C_S

and sends to the Player

M XI,Sign_{SK_Q}(Xl).

c The Player forms

U2 hash("Transactor System--Entry Response Envelope (Proxy)")

U2a hash("Transactor System--Entry Response (Proxy)")

V2 version

56

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 WO 98/7091 CT/US98/07176

L2 =final length of M2

L2a final length of Y2

K2 =a random encryption key

R2 =a random number of 64 bits

ExitVisa the Exit Visa given by the central server earlier.

X2 =U2a,V2,L2a,hash(M A),R2,ExitVisa

Y2 =X2, Sign_{tSK-P)(X2)

and sends to the Proxy Server

M2 U2,V2,L2,P KE_{PKQ)(K2),E_{K2}(Y2).

d. The Proxy Server forms

U3 =hash("Trans-,.ctor System--Entry Acceptance Envelope (Proxy)")

133a hash(" Transactor System--Entry Acceptance (Proxy)")

V3 =version

L3 final length of M3

L3 a final length of Y3

PlayerData Data needed by the player to join the game.

4 X3 =U3a,V3,L3a,hash(M2),PlayerData

Y3 =X3,Sign{(SKQ}(X3)

K3 a random encryption key

and sends to the Player

57

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

M3 U3,V3,L3,PKE{[PKP)(K3),E_K3"(Y3)

c. The Proxy makes some kind of note to tell the central Server that the Player joined

the game at this time. When this is delivered, the central Server is able to detect various kinds

of cheating. To form this note (whose method of delivery is still unspecified), the Proxy forms

U4 hash("Transactor System--Entry Acceptance Note (Proxy)")

V4 version

L4 final length ofM4

IDP ID of player

T timestamp

X4 U4,V4,L4,ID_P,T,hash(ExitVisa)

and sends to the central Server

M4 X4,Sign_{SK_Q}(X4).

4. Exit Protocol

Exit from the game being run by the proxy server is relatively simple. The transfers

have all been sent, and the Proxy Server knows enough to form the messages needed to

convince the Server that things are on the level.

a. The Player forms

UO hash("Transactor System--Exit Visa Request (Proxy)")

RO a random number of 64 bits

VO version

LO final length of MO

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/071 76

XO UO,VO,LO,RO

and sends to the Proxy

M/O XO,Sign{_SKP)(XO).

b, The Proxy forms

U1 hash(" Transact or System--Exit Visa Challenge (Proxy)")

RI a random number of 64 bits

VI version

LI final length ofMlI

X1 UI,VI,L,ash(MO)),R1

and sends to the Player

MI =XI,Sign{(SKQJ(XI).

c. The Player forms

U2 hash(" Transactor System--Exit Visa Response (Proxcy)")

V2 =version

L2 =final length of M2

X2 U2,V2,L2,hash(MI)

and sends to the Proxy

M2 =X2,Sign{(SKP)(X2).

d. The Proxy forms

U3 hash(" Transactor System--Exit Visa Response Envelope (Proxy)")

59

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

U3a hash("Transactor System--Exit Visa Response (Proxy)")

V3 version

L3 final length ofM3

L3a final length of Y3

TO[l..n] transfer chains for all n objects the Player has transferred.

ExitVisa the ExitVisa issued to this Player by the central Server.

X3 U3a,V3,L3a,hash(M2),ExitVisa,TO[l..n]

ProxyExitVisa X3,Sign_{SKQ }(X3)

K3 a random encryption key

K4 a random encryption key

and sends to the Player

M3 U3,V3,L3,PKE_{PK_P}(K3),E_{K3 }(ProxyExitVisa),

and sends to the central Server (possibly through a slower channel)

M3a U3,V3,L3,PKE_(PK_S}(K4),E_{ K4 }(ProxyExitVisa).

In step d, it is not a security problem ifK3 K4-the protocol is specified this way to

allow implementations where it would be harder to use the same key for both messages. Also

note that ifK3=K4, it is very important that proper padding schemes be used in some public

key schemes, such as RSA, to aoid various kinds of problems.

Transfer of Obiect

Transference of an object dur.-'g play is simple: In the following, Alice is the player

that starts out owning the object, and Bob is the player that ends up owning the object.

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

a. Alice forms

UO hash("Transactor System--Transfer Request Envelope (Proxy)")

UOa hash("Transactor System--Transfer Request (Proxy)")

VO version

LO final length of MO including encryption.

L0a final length of YO

ID B Bob's ID

RO a random number of 64 bits

ObjectDocument the current object ownership document

XO UOa,VO,LOa,RO,ID_B,ObjectDocument

YO XO,Sign_{SK_A)(XO)

KO a random encryption key

and sends to the Proxy

MO UO,VO,LO,PKE_{PK_Q}(KO),E_{KO}(YO).

b. The Proxy decrypts and verifies the message. If all is well, it forms

U1 hash("Transactor System--Transfer Challenge 1 Envelope (Proxy)")

U la hash("Transactor System--Transfer Challenge 1 (Proxy)")

VI version

L1 final length of Ml

!0 Lla= final length of Y

61

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

RI a random number of 64 bits

Description A description of the requested transfer, including descriptions of

the object and any

changes or costs from the Proxy Server.

X1 =U la,V1,LIa,RI,Description

Y1 X,Sign_{SK_Q}(XI)

Kl a random encryption key

and sends to Bob

M1 UI,VI,L1,PKE_{PKB}(KI),E_{K1}(Y1).

c. Bob decrypts and verifies the message. If he doesn't want to allow the transfer, he

can send any message that isn't the expected response, and the transfer will fail. If he does

want to allow the transfer, then he forms

U2 hash("Transactor System--Transfer Response 1 (Proxy)")

V2 version

L2 final length of M2

R2 a random number of 64 bits

X2 U2,V2,L2,hash(M I),R2

and sends to the Proxy Server

M2 X2,Sign_{SK_B}(X2).

d. The Proxy verifies this message. If all is well, then it next forms

U3 hash("Transactor System--Transfer Challenge 2 (Proxy)")

62

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

L3 final length of M3

V3 version

R3 a random number of 64 bits

X3 U3,V3,L3,hash(MO),R3

and sends to Alice

M3 X3,Sign_{SK_Q}(X3).

e. Alice verifies this message. If all is well, she then forms

U4= hash(" Transactor System--Transfer Response 2 (Proxy)")

L4 final length of M4

V4 version

X4 U4,V4,LA,hash(M3)

and sends to the Proxy

M4 X4,Sign_{SK_A}(X4)

E The Proxy verifies this message. If all is well, it then forms

U5 hash("Transactor System--Transfer Notification Envelope (Proxy)")

USa hash("Transactor System--Transfer Notification (Proxy)")

version

final length of

final length of

TransferDocument a transfer document, as described above.

63

SUBSTITUTE SHEET (RULE 26)

WO 98/47091
PCT/US98/07176

U5a,V5,L5a,hash(M2),TransferDocument

X5,Sign

a random encryption key

and sends to Bob

M5 U5,V5,L5,IKE{PKB}(K5),E_{K5}(Y5)

Group-Mode

In Group-Mode, a group of two or more players get together without a mutually

trusted server. This makes the protocols much harder to make resistant to various kinds of

cheating. The preferred solution is to designate one of the players' machines as the Proxy

Server, and implement the proxy mode security system described above.

Player-Mode

In Player-Mode, the Player controls his own computer. There are many opportunities

for cheating here, but none of them should involve transfer of objects between this Player and

others.

A wide variety of error message formats in all these protocols will be apparent to those

skilled in the art based on the present disclosure. A simple set ofexemplary error codes are

set forth below.

Error Code Meaning

0x00000000 No Error Generally Not Used

!0 0x00000001 Ownership document version invalid

Ox00000002

0x00000003

Ownership document structure invalid

Ownership document signature invalid

64

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

0x00000004

0x00000005

0x00000006

0x00000007

Ox0000008

0x00000009

OxOOOOOOOa

OxOOOOOOOb

OXOOOO00c

OxOOOOOOOd

Ox0000000e

Ox0000000f

Ox00000011

Ox0000O12

0x00000013

0x00000014

0x00000015

x00000016

0x00000017

0x00000018

Ownership document time range invalid

Ownership document length field invalid

Ownership document miscellaneous error

Message length invalid

Message version invalid

Message signature invalid

Message hash chain invalid

Message header invalid

Message not decrypted successfully

Message format invalid

Message out of sequence

Message miscellaneous error

Wrapped message length invalid

Wrapped message version invalid

Wrapped message signature invalid

Wrapped message hash chain invalid

Wrapped message header invalid

Wrapped message not decrypted successfully

Wrapped message format invalid

Wrapped message out of sequence

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

0x00000019

Ox000000la

Ox000000lb

Ox0000001c

Ox000000Id

Ox00000le

Ox0000001f

0x00000020

0x00000021

0x00000022

0x00000023

0x00000024

0x00000025

0x00000026

0x00000027

0x00000028

0x00000029

Ox0000002a

Ox0000002b

Ox0000002c

Wrapped message -miscellaneous error

Certificate signature invalid

Certificate expired

Certificate format invalid

Certificate -miscellaneous error

Transfer Document version invalid

Transfer Document length invalid

Transfer Document ID invalid

Transfer Document Proxy Server ID invalid

Transfer Document Object ID invalid

Transfer Document Object Data/Attributes invalid

Transfer Document Conditions on Transfers invalid

Transfer Document Time of Transfer Invalid

Transfer ouzument Expired

Transfer Document Signature Invalid

Transfer Document Miscellaneous Error

Player ID invalid

Object ID invalid

Miscellaneous error

Internal error

66

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

The present invention is defined by the claims. The above description of preferred

embodiments illustrates certain representative implementations and applications of the present

invention, and does not limit the scope of the invention itself

67

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

CLAIMS

A digital object ownership system, comprising:

a plurality of user terminals, each of said user terminals being accessible by at least one

3 individual user;

4 at least one central computer system, said central computer system being capable of

communicating with each of said user terminals; and

6 a plurality of digital objects, each of said digital objects having a unique object

7 identification code, each of said digital objects being assigned to an owner, said digital objects

8 being persistent such that each of said digital objects is accessible by a particular user both

9 when said user's terminal is in communication with said central computer system and also

when said terminal is not in communication with said central computer system, said object

I I having utility in connection with communication over a network, said utility requiring the

12 presence of the object identification code and proof of ownership.

1 2. The digital object ownership system of Claim 1, wherein said central computer

2 system comprises a central server and an ownership database identifying an owner associated

3 with each of the digital objects.

1 3. The digital object ownership system of Claim 1, wherein said central computer

2 system issues an ownership certificate to the owner of an object.

1 4 The digital object ownership system of Claim 3, wherein the ownership

2 certificate comprises a cryptographically signed data structure, said data structure comprising

3 an object identification code, a user code associated with the owner of the object, a key

4 associated with the central computer system, an ownership certificate issuance date, and an

object expiration date.

1 5 The digital object ownership system of Claim 3, wherein said central computer

2 system maintains at least one certificate revocation list identifying ownership certificates that

3 are no longer valid.

68

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 1CT/US98/7176

1 6 The digital object ownership system of Claim 3, wherein objects arc transfer-

2 able among owners.

1 7 The digital object ownership system of Claim 6, wherein objects are transfer-

2 able online

1 8. The digital object ownership system of Claim 6, wherein objects are transfer-

2 able offline

1 9. The digital object ownership system of Claim 8, wherein a transfer certificate is

2 created when an object is transferred offline, said transfer certificate comprising the ownership

3 certificate of the object, a code identifying the new owner of the object, and the date of the

4 transfer.

1 10. The digital object ownership system of Claim 9, wherein the transfer certifi-

2 cates are cryptographically signed by the owner designated in the ownership certificate.

1 11. The digital object ownership system of Claim 2, wherein said central computer

2 system further comprises a plurality of peripheral servers, each game server being capable of

3 communicating with a plurality of said user terminals and with said central server.

1 12. The digital object ownership system of Claim 1, wherein each object comprises

2 at least one immutable attribute and a plurality of replicable attributes;

1 13, The digital object ownership system of Claim 1, wherein each object is assigned

2 a duration.

1 14, The digital object ownership system of Claim 6, wherein objects are transfer-

2 able in exchange for payment.

1 15. The digital object ownership system of Claim 14, wherein said payment

2 comprises negotiable currency.

1 16 The digital object ownership system of Claim 1, wherein said users are

2 interactive game players and said digital objects are game objects.

69

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

1 17 A property object in a computer-readable medium, the object being associated

2 with an owner, the property object comprising:

3 at least one immutable attribute;

Sa plurality of replicable attributes, at least one of said replicable attributes having utility

when presented in connection with a communication over a network, said utility requiring the

presence of the immutable attribute in the object and proof of ownership is presented by the

7 ov.ner

1 18 The property object of Claim 17, wherein each object has as associated

2 ownership record identifying an owner of the object;

I 19 The property object of Claim 18, wherein the ownership record is embedded in

2 the object

1 20 The property object of Claim 18, wherein the ownership record is separate

2 from the object

1 21 The property object of Claim 17, wherein the immutable attribute comprises an

2 object identification code.

1 22 The property object of Claim 21, wherein the object identification code

2 comprises a serial number.

1 23 The property object of Claim 21, wherein the object identification code

2 comprises an object tyne code.

1 24 The property object of Claim 21, wherein the object identification code

2 comprises a hash of data representing replicable attributes.

'1 25 The property object of Claim 17 wherein the ownership record comprises an

2 ownership certificate.

1 26 The property object of Claim 25, wherein the immutable attribute comprises an

2 object identification code, a user code is associated with the owner of the object, and the

SUBSTITUTE SHEET (RULE 26)

WO 98/!7091 PCT/US98/07176

3 ownership certificate comprises a cryptographic signature binding the object identification

4 code and a code associated with the owner.

1 27. The property object of Claim 25, wherein the ownership record identifies a

2 duration of the object.

28. The property object of Claim 25, wherein the ownership certificate comprises a

2 cryptographically signed data structure, said data structure comprising an object identification

3 code, a user code associated with the owner of the object, a key associated with an issuer of

4 the certificate, an ownership certificate issuance date, and an object expiration date.

29. The property object of Claim 17, wherein ownership of an object may be

2 transferred offline, and further wherein a transaction record for recording off-line transfers of

3 ownership of the object is associated with the object.

1 30. The property object of Claim 17, wherein the object is an object for use in an

2 online game.

31. The property object of Claim 17, wherein ownership of the object is persistent.

1 32. The property object of Claim 17, wherein ownership of the object is transfer-

2 able.

S33. A digital object ownership server system for conducting interactions with a

2 plurality of users over a computer network, said interactions involving objects owned by at

3 least one of said game players, ownership of said objects being transferable among players,

4 said digital object ownership system comprising:

a user registrar, said user registrar issuing user identification codes to each of said

6 game players;

7 an object registrar, said object registrar issuing object identification codes associated

8 with each of said objects; and

9 a bookkeeper, said bookkeeper associating each object with an owner, and validating

ownership of said objects prior to use.

71

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

1 34 The digital object ownership server system of Claim 33, wherein said server

2 system comprises a game server system for conduction an interactive game.

1 35. The game server system of Claim 33, further comprising an ownership database

2 system, said ownership database system storing codes associated with each object, codes

3 associated with each game player, and identifying at least one game players as the owner of

4 each object.

1 36. The digital object ownership server system of Claim 33, wherein said system

2 issues an ownership certificate to the owner of an object.

1 37. The digital object ownership server system of Claim 36, wherein the ownership

2 certificate comprises a cryptographically signed data structure, said data structure comprising

3 an object identification code, a user code associated with the player that owns the object, a

4 key associated with the game server system, an ownership certificate issuance date, and an

object expiration date.

1 38. The digital object ownership server system of Claim 36, wherein said system

2 maintains at least one certificate revocation list identifying ownership certificates that are no

3 longer valid.

1 39. The digital object ownership server system of Claim 36, wherein objects are

2 transferable among owners offline.

1 40. The digital object ownership server system of Claim 39, wherein a transfer

2 certificate is created when an object is transferred offline, said transfer certificate comprising

3 the ownership certificate of the object, a code identifying the new owner of the object, and the

4 date of the transfer.

1 41. The digital object ownership server system of Claim 40, wherein the transfer

2 certificates are cryptographically signed by the owner designated in the ownership certificate.

1 42. The digital object ownership server system of Claim 33, wherein said system

2 comprises a central server and a plurality of game servers, each game server being capable of

3 communicating with a plurality of game players and with said central server.

72

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

1 43. A digital object ownership client system for conducting interactions over a

2 computer network, said client system comprising:

3 at least one user identification system for encoding signals transmitted over the

4 computer network to identify a predetermined user as originating said signals;

an object manager, said object manager maintaining records of digital objects owned

6 by said user; and

7 an object trader, said object trader enabling said user to transfer ownership of a digital

8 object;

9 a wrapper for wrapping a digital object with predetermined information associated

with said user; and

11 an unwrapper for unwrapping a wrapped digital object to separate the digital object

12 and the predetermined information.

73

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 WO 98/7091 CI/US98/071 76

1/9

Transactor
Biroker

Session Owner
(Trusted 3rd party)

Peer Trust

Relationship

Gamne Server

Keeper of Game
Rules

3 3

33 3 End-users3

FIG. I

SUBSTITUTE SHEET (RULE 26)

WO 93/47091
P'CT/US98/o7176

2/9

Consuiimer
End-users

FIG. 2
SUBSTITUTE SH EET (RULE 26)

WO 98/47091 PCT/US98/07176

3/9
STEP 1. Consumer (35) logs
onto Internet

102

The
Internet

STEP 2. Consumer logs onto Transactor-enabled
service provider or directly onto a Transactor 104
Server.

STEP 3. Consumer
decides to register as
Transactor user. 106

106

zz_'

11

ISTEP 14. Consumer leaves site.

128v

STEP 8. Consumer is already a
Transactor user,

118

1

STEP 4. Consumer fills
out registration form
including Charge Account
and Bank Account info.

108

STEP 5. Registration is
submitted to Transactor
Server from site. 110

STEP 6. Transactor Server
creates new account and
issues private data: User key,
password, etc. to Consumer,

112

STEP 7. Consumer receives and
stores keys and data.
Downloads or receives client I
software in mail. 114r-

STEP 9. Consumer logs into the
client-side Transactor Object
Manager (TOM) as a valid user.

116

1
STEP 10. Consumer decides to
make a purchase. See FIG. 4

120

STEP 11. Consumer decides to
check his Transactor account.
See FIG. 5 122

j
STEP 12, Consumer decides to
post an object that he created
for sale. See FIG. 6 124

STEP 13. Consumer decides to
post a previously acquired
object for resale. See FIG. 7

126FIG. 3
I

SUBSTITrI: St IEET (RULE 26)

WO 98/47091 PCT/US98/07176

4/9

STEP 1. Consumer (35) decides to make
a purchase. 202

STEP 2. Consumer's TOM sends
intent to purchase (and appropriate
IDs) to vendor's web site.

204

STEP 3. Vendor's Transactor Broker
Module creates Transaction Record
that incorporates necessary vendor
IDs, product info and vendor signature
with Consumer's info.

206

STEP 4. Vendor sends Transaction
Record to Consumer's TOM for
signature. 208

STEP 5. Consumer's TOM confirms
vendor's signature and Transaction
Record contents. 210

STEP 6. Consumer's TOM signs the
record and forwards it to the
Transactor Server.

212

STEP 7. Consumer's TOM also
notifies vendor's server that
transaction has been signed and record
has been forwarded to the Transactor
Server. 214

STEP 9b. Transactor Server changes
object's ownership in database.

It also determines all splits and fees
for all accounts involved buyer,
reseller, maker, service, etc.

Transactions for each account are
logged and new account balances are
computed.

220

STEP 10. Transactor Server sends
purchase OK to vendor's server.

STEP 11. Vendor's server receives
purchase OK, and repackages the
existing unit with Consumer's ID.

224

STEP 12. Vendor's server sends object
to Consumer or sends notification of
where to download the object via FTP.
Sale is logged as complete.

226

STEP 13. Consumer's TOM server
receives notice of the sale and
downloads the object. A Transactor
Server will verify the ownership of the
object whenever it is used online.

228

If validation is OK

STEP 8. Transactor Server validates
Transaction Record and contents,
then issues OK or rejection.

216 -I
STEP 9a. The operation is not
performed and the user is notified of
the failure. 218218

L

If validation is not OK

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/47091 PCT/US98/07176

5/9

STEP 1. Consumer (35) decides to
check his Transactor account.

302

STEP 2. Consumer's TOM sends
intent to "purchase" account info (and
appropriate IDs) to Transactor Server
directly or via Transactor enabled web
site or Broker server. The TOM may
operate independently or through other
Transactor-enabled client software.

304

STEP 3. Transactor Server sends
validation challenge to Consumer's
TOM. 306

STEP 4. Consumer's TOM responds to
validation challenge. 308

308

STEP 5. Transactor Server receives
response.

f validation is OK

STEP 6a. The operation is not
performed and the user is notified of

310 the failure.
312

STEP 6b. Transactor Server allows
Java applets (or other client software)
to "download" Consumer's account
info (not persistent).

31

STEP 7. Consumer's TOM
downloads, decrypts and displays
account info using applets (or other
client software) imbedded in web
page (part of Broker Module). 31

1
STEP 8. Consumer reviews account
info (and perhaps other
communications from Transactor
Server). Consumer logs off or
proceeds to other Transactor activity.

318

Ifvalidation is not OK

4

6

8

FIG.

SUBSTITUTE S IEET (RULE 26)

WO 98/47091 PCT/US98/07176

6/9

STEP I. Registered Transactor User (35)
decides to post an object that he created
for sale. 402

STEP 2. User logs into the client-side
Transactor Object Manager (TOM) to
"package" his object. 404

STEP 3. The TOM enters User ID
(A IA I A I) into the object package fields.
The User inputs data regarding price,
revenue model, number available, etc. 406

STEP 4. The User logs onto a Transactor
Server directly or a Transactor-enabled
service provider, and is validated by a
Transactor Server.

I
STEP 5. The User uploads the packaged
object and fields with instructions for the
Transactor Server to create a new product.

410

STEP 6. The Transactor Server verifies
that it received the data correctly, then
proceeds to create a product, giving it a
unique product ID (BBIBI1). 412

1

STEP 7. The Transactor Server sends the
unique product ID, and other product-
related information, back to the user. 4

414

STEP 8. When copies of the product are
sold, the Transactor Server will verify
buyer's (37) Transactor User status and
the existence of available unsold units for
the buyer-designated product ID. 416

If validation of User II)
and product ID is not OK

STEP 9a. The operation is not performed and th
user is notified of the failure. There is not sale.

41!

i
STEP 9b. The Transactor Server creates
a new unique unit ID and assigns
ownership of that unit to the buyer in its
internal ownership databases. 420

STEP 10. The Transactor Server then
packages the unit ID with ownership
information and the digital product
itself, encrypts portions of the resulting
data, then sends the result to the user or
informs the user where the packaged
object may be downloaded, 422

STEP I The Transactor Server will
also update all relevant accounts,
compute and distribute splits, etc. 424

If validation of User ID and product
ID is OK

8 FIG. 6
bUUSTI UTE SHEET (RULE 26)

WO 98/47091
PCT/US98/07176

7/9

STEP 1. Consumer decides to post a
previously acquired object for resale.

502

STEP 2. Using the TOM, Consumer
indicates asking price for object and
sends posting (and appropriate IDs
including TOM signature) to Transactor
Server.

504

STEP 3. Transactor Server sends
validation challenge to Consumer's
TOM. 506

STEP 4. Consumer's TOM responds to
validation challenge.

STEP 6b. Transactor Server includes
object posting in log of objects
currently for sale "classifieds."

The object, or a pointer to the original
object, is stored at a Broker Server for
resale.

514

STEP 7. Another valid Transactor user,
Consumer logs onto a Transactor
enabled web site and activates her TOM
to search for an object to purchase.

516

STEP 8. Consumer 36 searches the
Transactor "classifieds" by object name,
universe, price, etc. to find the desired
object. 518

STEP 9. Consumer (36) locates the
object posted by Consumer (35) and
dt zides to make a purchase.

520

STEP 10. Consumer's (36) TOM
sends intent to purchase (and
appropriate IDs) to Broker Server via
Transactor-enabled web site.

522

STEP 11. Purchase process continues
as in FIG. 4, with Broker Server
acting as vendor.

524

508

STEP 5. Transactor Server receive
response.

If validation is not O0

s ad n
5 10

Ifvalidation is OK

STEP 6a. The operation is not
performed and the user is notified of
the failure.

512

FIG. 7

SUISTITUTE S IEET (RULE 26)

WO 98/47091 j i/SU0 7PCt'/US98/07170

8/9

Unit ID
Assigned to unit during Object creation.

Incorporated in LEDO during initial Object
:tPurchase,.I

602

Owner ID
Assigned to user during User Reg~istration,

f. Incorporated in LEDO during Object Purchase.
604

LEDO
("Limited Edition" Digital Object)

600 17.
Payload

Data which deftnes object (textures, data pointers,
Al, object attributes, etc.)

606

FIG. 8

SUBSTITUTE SHE~ET (RULE 26)

WO 98/47091
3 GCTUS98/07 376

9/9

PRODUCT ID 131311 722

SELLER ID Al17 7T4

OWNER ID Z l~h l726

PRICE $5O 0 28

MAKER ID A17 l 33ol

REVENUE MODEL HTAE 732

TOTAL AVAILABLE 10 -77

FTP lwlasaclor cor 736

720

User (37) sends intent to
buy

PRODUCT ID Z IB1i8E 762]
SELLER ID F -l IA

OWNER ID Cl17l 66

UNIT ID II~1 768
760

User (37) receives
packiped object with his
Ownvrer ID) C IC I)

FIG. 9

SUBSTITUTE S! IEET (RULE 26)

INTERNATIONAL SEARCH REPORT
it'ional Application No

IPCT/IJS 98/07176
A CLASSIFICATION OF SUBJECT MIAT-rFR
IPC 6 G06F19/00 G07F17/32 A63F9/22

A, I' ir'ternai cnnt "Ptent C assiticationttPCt or to both national classilication and IPC

8 FIELDS SEARCHED
lil~irnl-rr -n-umenlatior searcnei iciassitication system tollowed by ctassification symbols)
IPC 6 G06F G07F A63F

C;umneniat.on searcneci other than minimum documentation to the extent that such documents are included in the fields searched

Elec~ron- jaita base consutiea d.,'ing tie international toarch (name ot data base and where practicat, Search terms used

C DOCUMENTS CONSIDERED TO BE RELE VA

Salegonj Citation ot document with Indication hIere appropriate of thif relevant passages "elevant to claim No

X WO 96 07151 A (LOCAL VILLAGES INC) 7 March 1-43
1996
see abstract; claims 1-8; fic,
see page 5, line 24 page t ine 32

X UC' 4f. 07 A (ROSEN SHOLOM S) 3 October 1-43
Ir*

bee -ib-tract, claims 1-9
see column 6, line 20 column 54, line 13

A EP 0 753 836 A (SONY-CORP) 15 January 1997 1.17,33,
43

see abstract

FLI IFnner documents are listed in the continuation ot boa C Patent famtly members are listed in annex

Specal ateoris ofcitd dcumnts"T" later document pubttshed alter the internltionat tiling dote
'A or priority date and not in conflct with the appltication butAdocument aelininq the general state ot the art which is not cited to understand the principle or theory undertying the

consiuered to be o1 particular relevance invention
E earlier document but publisned on or atter the international document at particular relevance, the claimed invention

tiling date cannot be considered novel or cannot be cansidered to
1 document whnich may throw doubts on pnority claim(s) or involve an inventtve step when the document is talnart atone

which is cited to establish the puoticationdate at another document 'it particular relevance the claimed invention
citation of other special reason (as specified) caninoit onsidered to involve an inventtve step whe n the

'C document relenring to air orat disclosure, use, exhibition or documer> combined with one or more other Suich dlocu-
Other means. ments. su.. combination being obvious to a person skilled

Pdocument oubtished or or to the internationat tiling date but in the arn.
later tnian the priorty date claimed document member of the same patent famity

Ditte of te ac'lal completion ot theinternational search Date at mailing at the international search report

22 July 1998 30/07/1998

Name and mailing address ot the ISA Authonized ofticer
Eurooean Pat ant Office P B 5818 Palentlaan 2
NC 22b0 HV Rijswijkn

Tel i-31-701 340.2040. Tx 31 651 epo nI.Sun rm n R
Fax (-3t1-701 340-3016 Sedran

o-x, PC lSA2ix isemifla sneot July 199e2t

page 1 of

INTERNATIONAL SEARCH REPORT
til tIon,3I APPlIctilon No

PCT/US 98/07176
C.1Continiuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Caiegory
ICitation of documnen with fidcainwher'e appropriate, of the relevant passages

A HOFER R C ET AL: "DIS TODAY"
PROCEEDINGS OF THE IEEE,
vol. 83, no. 8, August 1995,
pages 1124-1136, XPOO0524899
see abstract

Reteva'if to claim No

1,17,33,

Formn PCTIISAJ21O (continuaion of second sheet) (July 1992)

page 2 of 2

[NTE RNATIONAL SEARCH REPORT
Informiton on patent family members

FICT/US 98/07176
Patent document Pubtication Patent family Publication

cited in search report date member(s) date

WO 9607151 A 07-03-1996 AU 3413095 A 22-03-1996

US 5455407 A 03-10-1995 us 5453601 A
AT 165463 T
AU 679359 B
AU 2013695 A
AU 673304 B
AU 2013795 A
AU 679360 B
AU 2013895 A
AU 673305 B
AU 2013995 A
AU 658233 B
AU 2739292 A
CA 2080452 A,C
CN 1073789 A
DE 69225197 0
DE 542298 T
EP 0542298 A
EP 0785515 A
EP 0785516 A
EP 0785517 A
EP 0788066 A
EP 0785518 A
EP 0803827 A
EP 0784282 A
F1 933208 A
GR 93300107 T
HlU 65212 A,B
IL 103397 A
IL 116370 A
IL 116371 A
jR 9245108 A
JR 6162059 A
jR 7111723 B
Mx 9205890 A
NZ 244903 A
NZ 286668 A
NZ 286669 A
NZ 286670 A

26-09-1995
15-05-1998
26-06-1997
20-07-1995
3 1-10-1996
20-07-1995
26-06- '97
2 0-07-1995
3 1-10-1996
20-07-1995
06-04-1995
17-06-1993
16-GS-1993
30-06- 1993
28-05- 1998
16-12- 1993
19-05-1993
23-07-1997
23-07-1997
23-07-1997
06-08- 1997
23-07- 1997
29-10-199 7
16-07- 1997
14-07-1993
29- 10-1993
02-OS- 1994
18-06-1996
0 5-04-1998
04 -0 1-1998
19-09- 1997
10-06-1994
29-11-1995
0 1-06-1993
28-10-1996
28-10-1996
28-10- 1996
28-10-1996

Form PCT/tSA/2t0 (pateont iamriy annex) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members
[i inlApplication No

PCT/US 98/07176
Patent document Publication Patent familyPulcto

cited in search repont I at memberts) date

US 5455407

300041
68593

9310503
9208773

28-10-1996
05-04-1994
05-03-1997
2 7-05-1993

13-0- 1993-
EP 0753836 A 15-01-1997 2180891 A

9081781 A
13-01-1997
28-03-1997

Fo"n PCrIiSP.J2t0 (Pateni family annex) (July 1992)

page 2 of 2

	ABSTRACT
	DESCRIPTION
	CLAIMS
	DRAWINGS

