实用新型名称
一种螺旋板式换热器

摘要
本实用新型公开了一种螺旋板式换热器，包括清扫装置、换热板、壳体和顶盖，所述清扫装置包括伸缩气缸、气缸伸缩杆，至少一根导向杆、清洗毛刷和清洗毛刷固定支架，所述气缸伸缩杆的一端与伸缩气缸相连，另一端与导向杆相连，所述清洗毛刷通过所述固定支架固定连接在所述导向杆上，所述换热板内部设有中空腔体，所述换热板上设有与所述导向杆相配合的导向槽，所述壳体上还设有流体入口集管和流体出口集管，所述流体入口集管和流体出口集管均与所述中空腔体相通。通过上述方式，本实用新型一种螺旋板式换热器通过在换热器的内部设置清扫装置，有效防止因换热板的表面污垢堆积，引起的换热器效率低下的问题，提高了生产效率。
1. 一种螺旋板式换热器，其特征在于：包括清扫装置、换热板、壳体和顶盖，所述清扫装置包括伸缩气缸、气缸伸缩杆、至少一根导向杆，清洗毛刷和清洗毛刷固定支架，所述气缸伸缩杆的一端与伸缩气缸相连，另一端与导向杆相连，所述清洗毛刷通过所述固定支架固定连接在所述导向杆上，所述换热板设置成螺旋状，且换热板的内部设有中空腔体，所述换热板上设有与所述导向杆相配合的导向槽，所述壳体上还设有流体入口集管和流体出口集管，所述流体入口集管和流体出口集管皆与所述中空腔体相通，所述多个换热板位于所述壳体的内部，所述壳体上还设有进料口和出料口，所述顶盖连接在所述壳体的上端。

2. 根据权利要求1所述的螺旋板式换热器，其特征在于：所述壳体内还设有进液腔体和出液腔体，所述进液腔体、出液腔体与所述导向杆位置相对应，且其宽度皆大于所述导向杆的宽度。

3. 根据权利要求2所述的螺旋板式换热器，其特征在于：所述壳体内还设有腔体隔板，所述腔体隔板位于换热板的下端与壳体的底部之间，将壳体的下部隔断为进液腔体和出液腔体。

4. 根据权利要求1所述的螺旋板式换热器，其特征在于：所述清洗毛刷设有两排，且所述清洗毛刷设置成螺旋状，所述清洗毛刷的上端固定连接在所述固定支架上，所述两排清洗毛刷分别位于换热板的两侧。

5. 根据权利要求1所述的螺旋板式换热器，其特征在于：所述导向杆将所述换热板分为至少两个扇区，相邻的两层换热板之间设有用于导向杆或清洗毛刷运动的间隔空间。

6. 根据权利要求1所述的螺旋板式换热器，其特征在于：所述换热板上设有至少一个流体入口支管，所述流体入口支管的一端与所述换热板的中空腔体相连，另一端与所述进液腔体相连。

7. 根据权利要求1所述的螺旋板式换热器，其特征在于：所述换热板上设有至少一个流体出口支管，所述流体出口支管一端与所述换热板的中空腔体相连，另一端与所述出液腔体相连。

8. 根据权利要求1所述的螺旋板式换热器，其特征在于：所述进料口位于所述壳体的外壁上，所述出料口位于所述壳体的底部。
说明书

一种螺旋板式换热器

技术领域
[0001] 本实用新型应用于污水、化工、化学行业，属于节能环保与化工设备技术领域，特别是涉及一种螺旋板式换热器。

背景技术
[0002] 现有的螺旋板式换热器是由两张平行的金属板卷制成两个螺旋形通道，冷热流体之间通过螺旋板壁进行换热，现有螺旋板式换热器分为不可拆式和可拆式两种，不可拆式无法全焊接密封，无法拆卸清洗内部，而可拆式虽然可以拆卸清洗内部，但拆卸清洗过程操作复杂，而换热器在使用一段时间之后，其螺旋板壁上留有的污垢会严重降低换热器的换热效率，一定程度上造成了能源的浪费。

实用新型内容
[0003] 本实用新型主要解决的技术问题是提供一种螺旋板式换热器，其自动清扫换热板表面的污垢，清扫方便，彻底解决了设备的堵塞、粘附、沉积、换热效率低等常规螺旋板换热器难以解决的问题。
[0004] 为解决上述技术问题，本实用新型提供一种螺旋板式换热器，包括：清扫装置、换热板、壳体和顶盖，所述清扫装置包括伸缩气缸、气缸伸缩杆、至少一根导向杆、清洗毛刷和清洗毛刷固定支架，所述气缸伸缩杆的一端与伸缩气缸相连，另一端与导向杆相连，所述清洗毛刷通过所述固定支架固定连接在所述导向杆上，所述换热板设置成螺旋状，且换热板的内部设有中空腔体，所述换热板上设有与所述导向杆相配合的导向槽，所述壳体上还设有流体入口集管和流体出口集管，所述流体入口集管和流体出口集管皆与所述中空腔体相通，所述多个换热板位于所述壳体的内部，所述壳体上还设有进料口和出料口，所述顶盖连接在所述壳体的上端。
[0005] 在本实用新型一个较佳实施例中，所述壳体内还设有进液腔体和出液腔体，所述进液腔体、出液腔体与所述导向杆位置相对应，且其宽度皆大于所述导向杆的宽度。
[0006] 在本实用新型一个较佳实施例中，所述壳体内还设有腔体隔板，所述腔体隔板位于换热板的下端与壳体的顶部之间，将壳体的下部隔断为进液腔体和出液腔体。
[0007] 在本实用新型一个较佳实施例中，所述清洗毛刷设有两排，且所述清洗毛刷设置呈螺旋状，所述清洗毛刷的上端固定连接在所述固定支架上，所述两排清洗毛刷分别位于换热板的两侧。
[0008] 在本实用新型一个较佳实施例中，所述导向杆将所述换热板分为至少两个扇区，相邻的两层换热板之间设有用于导向杆或清洗毛刷运动的间隔空间。
[0009] 在本实用新型一个较佳实施例中，所述换热板上设有至少一个流体入口支管，所述流体入口支管的一端与所述换热板的中空腔体相连，另一端与所述进液腔体相连。
[0010] 在本实用新型一个较佳实施例中，所述换热板上设有至少一个流体出口支管，所述流体出口支管一端与所述换热板的中空腔体相连，另一端与所述出液腔体相连。
说明书

[0011] 在本实用新型一个较佳实施例中，所述进料口位于所述壳体的外壁上，所述出料口位于所述壳体的底部。

[0012] 本实用新型的有益效果是：本实用新型螺旋板式换热器通过在换热器的内部设置清洗装置，自动清扫换热板表面的污垢，清扫方便，彻底解决了设备的堵塞、粘附、沉积、换热效率低等常规螺旋板换热器难以解决的问题，全过程自动控制，省去了人工拆卸清洗的繁琐，提高了效率。

附图说明

[0013] 为了更清楚地说明本实用新型实施例中的技术方案，下面将对实施例描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本实用新型的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动的前提下，还可以根据这些附图获得其它的附图，其中：

[0014] 图1是本实用新型的螺旋板式换热器一较佳实施例的结构示意图；

[0015] 图2是换热器的主视图；

[0016] 图3是图2的A-A向剖视图；

[0017] 图4是图2的B-B向剖视图；

[0018] 图5是换热器的仰视图；

[0019] 图6是换热板的结构示意图。

具体实施方式

[0020] 下面将对本实用新型实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例仅是本实用新型的一部分实施例，而不是全部的实施例。基于本实用新型中的实施例，本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例，都属于本实用新型保护的范围。

[0021] 请参阅图1至图6，本实用新型实施例包括：

[0022] 一种螺旋板式换热器，包括：清洗装置，换热板2，壳体3和顶盖4，所述清洗装置包括伸缩气缸11，气缸伸缩杆12，两根导向杆13，清洗毛刷14和清洗毛刷固定支架15，所述气缸伸缩杆12的一端与伸缩气缸11相连，另一端与导向杆13相连，所述清洗毛刷14通过所述固定支架15固定连接在所述导向杆13上，所述换热板2上设有与所述导向杆13相配合的导向槽24，所述换热板2设置成螺旋状，且换热板2的内部设有中空腔体25，所述壳体3上还设有流体入口集管31和流体出口集管32，所述流体入口集管31和流体出口集管32皆与所述中空腔体25相通，所述多个换热板2位于所述壳体3的内部，所述壳体3上还设有进料口33和出料口34，所述顶盖4连接在所述壳体3的上端。

[0023] 清洗装置为螺旋形状的自动清洗毛刷，其通过伸缩气缸11驱动，可以上下移动清洗毛刷14来清扫换热板2表面的污垢，有效防止因长期运行换热板2的表面污垢堆积，引起换热器效率低下的问题，减少传统型可拆式螺旋板换热器须人工拆卸清洗的步骤，提高了生产效率。

[0024] 如图1和3所示，多个换热板2排列成螺旋状，两根导向杆13垂直交叉后固定连接在气缸伸缩杆12上，两根导向杆13将所述多个换热板2分为四个扇区，相邻的两层换热
板 2 之间设有用于导向杆 13 或清洗毛刷 14 运动的间隔空间 26，即在伸缩气缸 11 的驱动下，气缸伸缩杆 12 会带动导向杆 13 上下运动。在导向杆 13 的带动下，固定连接在导向杆 13 上的清洗毛刷 14 也随之上下运动。为了保证导向杆 13 能够顺利的上下运动，所述换热板 2 上设有与所述导向杆 13 相配合的多个导向槽 24，即导向杆 13 在螺旋枕板式换热板 2 上的导向槽 24 内上下运动，导向槽 24 起到引导固定支架 15 运动方向的作用，在清洗毛刷 14 清洗换热板 2 的过程中，由于换热板 2 的表面上沾有污渍，这些污渍大小和清洗难度不同，因此，清洗毛刷 14 所受的阻力不同，这样导向槽 24 与导向杆 13 的相互配合，有效避免导向杆 13 在上下运动的过程中发生偏斜，从而保证清洗毛刷 14 的运动方向不会发生偏移，延长了清洗毛刷 14 的使用寿命。多个换热板 2 设置呈螺旋状，相邻两个换热板 2 之间的间隔为导向杆 13 或清洗毛刷 14 提供了运动空间，为了能够对换热板 2 的正反两个外表面进行清洗，所述清洗毛刷 14 设有两排，且所述清洗毛刷 14 设置呈螺旋状，所述清洗毛刷 14 的上端固定连接在所述固定支架 15 上，所述两排清洗毛刷 14 分别位于换热板 2 的两侧，清洗毛刷 14 在上下运动的过程中，清扫换热板 2 表面的污垢，有效防止因长期运行换热板 2 后造成的表面污垢堆积，引起换热器效率低下的问题，减少传统型可拆式螺旋板换热器须人工拆卸清洗的步骤，提高了生产效率。

[0025] 所述进料口 33 位于所述壳体 3 的外壁上，所述出料口 34 位于所述壳体 3 的底部。进料口 33 的位置高于出料口 34 的位置高度，物料从进料口 33 进入壳体后，顺着螺旋状的换热板 2 并且与换热板 2 的中空腔体 25 内部的换热流体进行充分换热后，从出料口 34 出来。

[0026] 如图 6 所示，换热板 2 采用枕板式换热板，即将两张金属板片 23 叠加，利用激光穿透焊接将两个金属板片 23 焊接在一起，将金属板片 23 卷制成螺旋形，然后利用流体将金属板片 23 鼓包膨胀，金属板片 23 的内部即为一种换热流体通道即中空腔体 25，金属板片 23 的外部为另一换热流体通道。

[0027] 如图 1、图 4 和图 5 所示，图中箭头为物料和换热流体流道方向，所述壳体 3 内还设有进液腔体 35 和出液腔体 36，所述进液腔体 35、出液腔体 36 与所述导向杆 13 位置相对应，且其宽度皆大于所述导向杆 13 的宽度，由于两根导向杆 13 相互垂直交叉，所以进液腔体 35 和出液腔体 36 也相互垂直。所述壳体 3 内还设有腔体隔板 37，所述腔体隔板 37 位于换热板 2 的下端与壳体 3 的底部之间，将壳体 3 的下部隔断为进液腔体 35 和出液腔体 36，所述换热板 2 上设有多个流体入口支管 21，所述流体入口支管 21 的一端与所述换热板 2 的中空腔体 25 相连，另一端与所述进液腔体 35 相连，所述换热板 2 上设有多个流体出口支管 22，所述流体出口支管 22 一端与所述换热板 2 的中空腔体 25 相连，另一端与所述出液腔体 36 相连。

[0028] 壳体 3 的底部设有两个流体入口集管 31 和两个流体出口集管 32，以污泥处理工艺为例，具体以螺旋板式换热器使用导热油换热加温含水 80% 的污泥为例，污泥从进料口 33 进入换热器壳体 3 的内部，沿着卷制的螺旋板式换热板 2 的外部螺旋状通道流动，然后从出料口 34 流出，所述流体入口支管 21 流入壳体 3 底部的进液腔体 35，然后通过各个流体入口支管 21 流入换热板 2 的中空腔体 25 的内部，在中空腔体 25 中与换热板 2 外部螺旋状通道的污泥充分换热后，从流体出口支管 22 进入出液腔体 36，最后由流体出口集管 32 流出。上述工艺中，进口低温污泥流量 5 吨 / 小时，温度 30℃，导热油加热后，其
温度上升为 80℃，换热量约为 300Kw。[0029] 上述过程中气缸伸缩杆 12 一直收缩在伸缩气缸 11 的内部，此时清洗毛刷 14 和固定支架 15 与导向杆 13 处于换热板 2 的顶部，即在清洗毛刷 14 不工作的状态下，不会影响到换热器的换热工艺。随着换热器的使用，由于螺旋状换热板 2 的外部会因污垢沉积，引起换热器效率降低，在其他条件均不变化的情况下，污垢的出口温度降为 65.5℃，换热量下降为 200Kw 左右，严重影响了工艺正常运行。此时，停止低温污泥进入换热器，改由清洗水从进料口 33 进入换热器壳体 3 的内部，同时开启伸缩气缸 11，使得气缸伸缩杆 12 做往复运动，从而带动固定支架 15 和清扫毛刷 14 上下往返运动，此过程中导向杆 13 在螺旋枕板式换热板 2 上的导向槽 24 内上下运动，起到引导固定支架 15 运动方向的作用。在清扫毛刷 14 上下往返运动中不断清扫换热板 2 表面的污垢，经清扫处理后的换热器重新进行工艺使用，其换热能力恢复到 300Kw 左右，恢复正常使用。[0030] 本实用新型螺旋板式换热器通过在换热器的内部设置清洗装置，清洗装置为螺旋形状的自动清洗毛刷，其通过伸缩气缸驱动，可以上下移动清洗毛刷来清扫换热板表面的污垢，有效防止因长期运行换热板表面污垢堆积，引起换热器效率低下的问题，减少传统型可拆式螺旋板换热器须人工拆卸清洗的步骤，提高了生产效率。[0031] 区别于现有技术，本实用新型螺旋板式换热器通过在换热器的内部设置清洗装置，自动清扫换热板表面的污垢，清扫方便，彻底解决了设备的堵塞、粘附、沉积、换热效率低等常规螺旋板换热器难以解决的问题，全过程自动控制，省去了人工拆卸清洗的繁琐，提高了效率。[0032] 以上所述仅为本实用新型的实施例，并非因此限制本实用新型的专利范围，凡是利用本实用新型说明书内容所作的等效结构或等效流程变换，或直接或间接运用在其它相关的技术领域，均同理包括在本实用新型的专利保护范围内。
图3

图4