(54) 发明名称
作为丙型肝炎病毒抑制剂的掺入氘的三肽

(57) 摘要
本文公开了具有通式 (I) 的丙型肝炎病毒抑制剂，也公开了包含所述化合物的组合物和应用所述化合物抑制HCV的方法。
1. 一种式 (I) 化合物

或其药学上可接受的盐，其中
\(R^1, R^2, R^3, R^4, R^5, R^6, R^7, R^8 \) 和 \(R^{10} \) 独立选自氢和氘；前提是至少一个不是氢。

2. 权利要求 1 的化合物，其中各个 \(R^1 \) 是氘。

3. 权利要求 2 的化合物，其中各个 \(R^2 \) 是氘。

4. 权利要求 3 的化合物，其中各个 \(R^3 \) 是氘。

5. 权利要求 1 的化合物，其中各个 \(R^4 \) 是氘。

6. 权利要求 1 的化合物，其中 \(R^5 \) 是氘。

7. 权利要求 1 的化合物，其中各个 \(R^6 \) 是氘。

8. 权利要求 7 的化合物，其中各个 \(R^7 \) 是氘。

9. 权利要求 1 的化合物，其中各个 \(R^8 \) 是氘。

10. 权利要求 9 的化合物，其中各个 \(R^9 \) 是氘。

11. 权利要求 10 的化合物，其中各个 \(R^{10} \) 是氘。

12. 一种化合物，其选自
或其药学上可接受的盐。
13. 一种化合物，其选自
或其药学上可接受的盐。

14. 一种组合物，其包含权利要求 1 的化合物，或其药学上可接受的盐和药学上可接受的载体。

15. 权利要求 14 的组合物，其还包含至少一个另外的、具有抗-HCV 活性的化合物。

16. 权利要求 15 的组合物，其中至少一种另外的化合物是干扰素或利巴韦林。

17. 权利要求 16 的组合物，其中的干扰素选自干扰素 α 2B、聚乙二醇化的干扰素 α、复合干扰素、干扰素 α 2A 和类淋巴母细胞干扰素 τ。

18. 权利要求 15 的组合物，其中至少一种另外的化合物选自白介素 2、白介素 6、白介素 12、增强 1 型辅助 T 细胞反应的发展的化合物、干扰 RNA、反义 RNA、咪唑莫特、利巴韦林、肌苷 5’-单磷酸脱氧酶抑制剂、金刚烷胺和金刚乙胺。

19. 权利要求 15 的组合物，其中至少一种另外的化合物有效抑制选自以下的目标的功能：HCV 金属蛋白酶、HCV 丝氨酸蛋白酶、HCV 聚合酶、HCV 蛋白酶、HCV NS4B 蛋白、HCV 进入、HCV 装配、HCV 脱出、HCV NS5A 蛋白和治疗 HCV 感染的 IMPDH。

20. 权利要求 1 的化合物或其药学上可接受的盐在制备用于治疗患者的 HCV 感染的药物中的用途。

21. 权利要求 20 的用途，所述药物还包括在给予权利要求 1 的化合物或其药学上可接受的盐之前、之后或同时给予的至少一种另外的、具有抗-HCV 活性的化合物。

22. 权利要求 21 的用途，其中至少一种另外的化合物是干扰素或利巴韦林。

23. 权利要求 22 的用途，其中干扰素选自干扰素 α 2B、聚乙二醇化的干扰素 α、复合干扰素、干扰素 α 2A 和类淋巴母细胞干扰素 τ。
24. 权利要求 21 的用途，其中至少一种另外的化合物选自白介素 2、白介素 6、白介素 12、增强 I 型辅助 T 细胞反应的发展的化合物、干扰 RNA、反义 RNA、咪唑莫特、利巴韦林、肌苷 -5’- 单磷酸脱氢酶抑制剂、金刚烷胺和金刚乙胺。

25. 权利要求 21 的用途，其中至少一种另外的化合物有效抑制选自以下的靶标的功能：HCV 金属蛋白酶、HCV 丝氨酸蛋白酶、HCV 聚合酶、HCV 解旋酶、HCV NS4B 蛋白、HCV 进入、HCV 装配、HCV 脱出、HCV NS5A 蛋白和治疗 HCV 感染的 IMPDH。
作为丙型肝炎病毒抑制剂的掺入氚的三肽

【0001】相关申请的交互参考
【0002】本申请要求2011年5月27日提交的美国临时申请序号61/490,665的权益。
【0003】本公开涉及脱氢的A-（叔丁氧基羰基）-3-甲基-L-缬氨酸-(4A)-A-（(1R,2S)-1[(环丙基硫代基)氨基]羰基)乙酸基环丙基)-4-[(4-甲氧基-7-氯代异喹啉-1-基)氧基]-L-脯氨酰胺化合物。它们的药效组合物，其制备过程和使用方法。所述化合物拥有抑制NS3蛋白酶（在此也被称为“丝氨酸蛋白酶”）的能力并被用于丙型肝炎病毒的治疗。
【0004】HCV是一个主要的感染病原体，感染估计全球1.7亿人——大约由人类免疫缺陷病毒1型感染的数量的5倍。这些HCV感染的个体的相当大的一部分，发展为严重的进行性肝病，包括肝硬化和肝细胞癌。
【0005】目前，有效的HCV疗法采用α-干扰素和利巴韦林的联合，在40%的患者中导致持续的效果。最近的临床结果证明，聚乙二醇化的α干扰素优于作为单一疗法的未改性的α干扰素。然而，即使采用包括聚乙二醇化的α干扰素和利巴韦林组合的实验治疗方案，相当大一部分患者的病毒荷载没有持续减少。因此，对于开发治疗HCV感染的有效的疗法存在于明确的和未得到需求的需求。
【0006】HCV是一种单链RNA病毒。基于推导的氨基酸序列和5'非翻译区中的广泛相似性的比较，HCV已被分类为黄病毒科（Flaviviridae family）中的一个单独的属。黄病毒科家族的所有成员具有包囊的病毒粒子（virions），其包含一个通过单一的、不间断的、开放阅读框的翻译编码所有已知病毒特异性蛋白的正链RNA基因组。
【0007】在贯穿HCV基因组的核苷酸家族编码的氨基酸序列内发现相当大的异质性。已经对6个主要的基因型进行了特征鉴定，并且已经描述了超过50个亚型。尽管已有基因型对发病机理和治疗的可能影响的大量研究，但是HCV的主要基因型在世界各地的分布不同，且HCV的遗传异质性的临床意义仍然是难以捉摸的。
【0008】单链HCV RNAG基因组大约有9500个核苷酸的长度，并有一个单一的开放阅读框（ORF），编码约3000个氨基酸的单一的大的多蛋白。在感染的细胞中，这种多蛋白在多个位点上被细胞和病毒蛋白酶裂解，产生结构和非结构（NS）蛋白。在HCV的情况下，成熟的非结构蛋白（NS2、NS3、NS4A、NS4B、NS5A和NS5B）的生成是通过两个病毒蛋白酶进行的。第一个裂解在NS2-NS3结点，第二个是丝氨酸蛋白酶，其包含在NS3的N-末端区内，并介导所有随后的NS3下游的裂解，两者均为顺式（cis），在NS3-NS4A裂解位点，和对于剩下的NS4A-NS4B、NS4B、NS5A、NS5A-NS5B位点，为反式。NS4A蛋白似乎发挥多重功能，作NS3蛋白酶的辅因子，并可能协助NS3和其他病毒复制酶组分的序列定位。NS3蛋白与NS4A的复合物的形成，对于有效的多蛋白加工、提高所有位点的蛋白水解裂解是必不可少的。NS3蛋白也展现核苷三磷酸酶和RNA解旋酶的活性。NS5B是一种依赖于RNA的RNA聚合酶，其参与HCV的复制。
【0009】本公开提供肽化合物，其可抑制NS3蛋白酶，如与NS4A蛋白酶联合发挥的功能。
【0010】在一方面，本公开提供式（I）化合物。
或其药学上可接受的盐，其中
R¹、R²、R³、R⁴、R⁵、R⁶、R⁷和 R⁸ 独立选自氢和氘；前提是至少一个不是氢。

在第一方面的第一个实施方案中，本公开提供式 (I) 化合物或其药学上可接受的
盐，其中各个 R¹ 是氘。在第一方面的第二个实施方案中，各个 R² 是氘。在第一方面的第三个实施方案中，各个 R³ 是氘。

在第一方面的第四个实施方案中，本公开提供式 (I) 化合物或其药学上可接受的
盐，其中各个 R⁴ 是氘。

在第一方面的第五个实施方案中，本公开提供式 (I) 化合物或其药学上可接受的
盐，其中 R⁵ 是氘。

在第一方面的第六个实施方案中，本公开提供式 (I) 化合物或其药学上可接受的
盐，其中各个 R⁶ 是氘。在第七个实施方案中，各个 R⁷ 是氘。

在第一方面的第八个实施方案中，本公开提供式 (I) 化合物或其药学上可接受的
盐，其中各个 R⁸ 是氘。在第九个实施方案中，各个 R⁹ 是氘。在第十个实施方案中，各个 R¹⁰ 是氘。

在第二方面，本公开提供包含式 (I) 化合物或其药学上可接受的盐和药学上可接
受的载体的组合物。在第二方面的第一个实施方案中，组合物还包含至少一种具有抗 -HCV
活性的另外的化合物。在第二方面的第二个实施方案中，至少一种另外的化合物是干扰素
或利巴韦林。在第二方面的第三个实施方案中，干扰素选自干扰素 α 2B、聚乙二醇化的干
扰素 α、复合干扰素、干扰素 α 2A 和类淋巴细胞 (lymphoblastoid) 干扰素 τ。

在第二方面的第四个实施方案中，本公开提供包含式 (I) 化合物或其药学上可接
受的盐，药学上可接受的载体和至少一种具有抗 -HCV 活性的另外的化合物的组合物，其中
至少一种另外的化合物选自白介素 2、白介素 6、白介素 12、增强 I 型辅助 T 细胞反应的发展
的化合物、干扰 RNA、反义 RNA、咪唑莫特、利巴韦林、肌苷-5’-单磷酸脱氢酶抑制剂、金刚烷
胺和金刚乙胺。

在第二方面的第五个实施方案中，本公开提供包含式 (I) 化合物或其药学上可接
受的盐、药学上可接受的载体和至少一种具有抗-HCV 活性的另外的化合物的组合物。其中至少一种另外的化合物有效抑制选自以下的靶标的功能：HCV 金属蛋白酶、HCV 丝氨酸蛋白酶、HCV 聚合酶、HCV 解旋酶、HCV NS4B 蛋白、HCV 进入、HCV 装配、HCV 脱出（HCV egress）、HCV NS5A 蛋白和治疗 HCV 感染的 IMPDH。

【0022】在第三方面，本公开提供包含式 (1) 化合物或其药学上可接受的盐，具有抗-HCV 活性的一个、两个、三个、四个或五个另外的化合物和药学上可接受的载体的组合物。在第三方面的第一个实施方案中，组合物包含具有抗-HCV 活性的三个或四个另外的化合物。在第三方面的第二个实施方案中，组合物包含具有抗-HCV 活性的一个或两个另外的化合物。

【0023】在第四方面，本公开提供在患者中治疗 HCV 感染的方法，该方法包括给予患者有效治疗量的式 (1) 化合物或其药学上可接受的盐。在第四方面的第一个实施方案中，该方法还包括在给予式 (1) 化合物或其药学上可接受的盐之前、之后或同时，给予至少一种具有抗-HCV 活性的另外的化合物。在第四方面的第二个实施方案中，至少一种另外的化合物是干扰素或利巴韦林。在第四方面的第三个实施方案中，干扰素选自干扰素 α 2B、聚乙二醇化干扰素 α，复合干扰素、干扰素 α 2A 和類淋巴母细胞干扰素 τ (tau)。

【0024】在第四方面的第四个实施方案中，本公开提供在患者中治疗 HCV 感染的方法，该方法包括在给予式 (1) 化合物或其药学上可接受的盐之前、之后或同时，给予患者有效治疗量的式 (1) 化合物或其药学上可接受的盐和至少一种具有抗-HCV 活性的另外的化合物，其中至少一种另外的化合物选自白介素 2、白介素 6、白介素 12、增强 1 型辅助 T 细胞反应的发展的化合物、干扰 RNA、反义 RNA、咪唑莫特、利巴韦林、肌苷-5’-单磷酸脱氢酶抑制剂、金刚烷胺和金刚乙胺。

【0025】在第四方面的第五个实施方案中，本公开提供在患者中治疗 HCV 感染的方法，该方法包括在给予式 (1) 化合物或其药学上可接受的盐之前、之后或同时，给予患者有效治疗量的式 (1) 化合物或其药学上可接受的盐和至少一种具有抗-HCV 活性的另外的化合物，其中至少一种另外的化合物有效抑制选自以下的靶标的功能：HCV 金属蛋白酶、HCV 丝氨酸蛋白酶、HCV 聚合酶、HCV 解旋酶、HCV NS4B 蛋白、HCV 进入、HCV 装配、HCV 脱出、HCV NS5A 蛋白和治疗 HCV 感染的 IMPDH。

【0026】在第五方面，本公开提供在患者中治疗 HCV 感染的方法，该方法包括在给予式 (1) 化合物或其药学上可接受的盐之前、之后或同时，给予患者有效治疗量的式 (1) 化合物或其药学上可接受的盐和一个、两个、三个、四个或五个具有抗-HCV 活性的另外的化合物。在第五方面的第一个实施方案中，该方法包括给予三个或四个另外的具有抗-HCV 活性的化合物。在第五方面的第二个实施方案中，该方法包括给予一个或两个另外的具有抗-HCV 活性的化合物。

【0027】本公开的其他方面可包括本文公开的实施方案的适当的组合。

【0028】可在本文提供的描述中发现另外的其他方面和实施方案。

【0029】应该理解的是，本公开囊括的化合物是那些适宜稳定用作药物的化合物。

【0030】本文的意图是在一个分子中的特定位置的任何取代基或变量的定义，独立于在该分子中其它位置的该取代基或变量的定义。例如，三个 R 基团中的每一个可以相同或不同。

【0031】在本说明书中引用的所有专利，专利申请和参考文献通过全文参考结合于本文。
说明书

在不一致的情况下，以本发明的定义为准。

【0032】本文所用的单数形式“一”、“一个”和“该”包括复数形式，除非文中另有明确说明。

【0033】应该理解的是，掺入式或流程的式，可通过使用符号“D”、“d”或“H”来指明。

【0034】本公开的化合物可作为药学上可接受的盐存在。本文所用的术语“药学上可接受的盐”表示本公开的化合物自身或其盐，它们是水溶性或油溶性的，或是可分散的，它们在合理的医学判断范围内，适用于与患者组织接触而无过度毒性、刺激性、变态反应或其它问题或并发症。此与合理的利益/风险比相称，并有效用于其指定用途。可在化合物最终的分离和纯化期间制备其盐，或者可单独使合适的氮原子与合适的酸反应来制备化合物的盐。代表性的酸加成盐包括乙酸盐、己二酸盐、海藻酸盐、柠檬酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、硫酸氢盐、丁酸盐、氯代酸盐、磷酸二盐；二聚糖酸盐、甘油磷酸盐、半硫酸盐（hemisulfate）、庚酸盐、己酸盐、甲酸盐、富马酸盐、盐酸盐、氢溴酸盐、氢碘酸盐、2-羟基乙磺酸盐、乳酸盐、马来酸盐、均三甲基苯磺酸盐（mesitylenesulfonate）、甲磺酸盐、亚硫酸盐、烟酸盐、对磺酸盐、草酸盐、扑酸盐（pamolate）、果酸盐（pectinate）、过硫酸盐、苯基丙酸盐、苦味酸盐、新戊酸盐、丙酸盐、琥珀酸盐、酒石酸盐、三氯乙酸盐、三氟乙酸盐、磷酸盐、谷氨酸盐、碳酸氢盐、对甲苯磺酸盐和十一烷酸盐。可用于形成药学上可接受的加成盐的酸的实例包括无机制酸及有机酸，无机制酸有例如盐酸、氢溴酸、硫酸和磷酸，有机酸有例如草酸、马来酸、琥珀酸和柠檬酸。

【0035】可以在化合物最终的分离和纯化期间通过使羧基与合适的碱（例如金属阳离子的氢氧化物或碳酸氢盐）反应或与氢或有机伯胺、仲胺或叔胺反应来制备加成盐。药学上可接受的盐的阳离子包括锂、钠、钾、钙、镁和铝，以及无毒的季铵阳离子例如铵、季铵盐、四甲基铵、四乙基铵、甲铵、二甲胺、三甲胺、三乙胺、二乙胺、乙胺、三丁胺、吡啶、N,N-二甲基苯胺、N-甲基哌啶、N-甲基吗啉、二环己胺、普鲁卡因、苯胺、N,N-二苯基苯乙胺和N,N'-二苯基乙二胺。用于形成加成盐的其它代表性的有机胺包括二乙胺、乙醇胺、二乙醇胺、哌啶和哌嗪。

【0036】如在本文使用的，术语“抗-HCV活性”是指化合物有效治疗HCV病毒。

【0037】术语“本公开的化合物”和等同表达意指包括式（I）化合物和药学上可接受的对照体、非对照体及其盐。同样，提及中间体时意指包括本文允许的中间体的盐。

【0038】术语“患者”包括人和其他哺乳动物两者。

【0039】术语“药用组合物”意指包含至少一种另外的药用载体组合的本公开化合物的组合物，所述药用载体，即佐剂、赋形剂或媒介物，为例如稀释剂、防腐剂、填充剂、流动调节剂、崩解剂、润滑剂、乳化剂、助悬剂、增溶剂、矫味剂、香味剂、抗菌剂、抗真菌剂、润滑剂和分散剂，取决于给药模式和剂型的性质。例如，可使用在Remington’s药物科学（Remington’s Pharmaceutical Sciences），第18版，Mack Publishing Company，Easton，PA（1999）中列出的成分。

【0040】本文所用的词组“药学上可接受的”是指这样的化合物、原料、组合物和/或剂型，它们在合理医学判断的范围内，适用于与患者组织接触而无过度毒性、刺激性、变态反应或其它问题和并发症，此与合理的利益/风险比相称。

【0041】术语“有效治疗量”意指足以显示出有意义的患者益处（例如持续减少病毒负荷）的各活性组分的总量。当用于单独的活性成分单独给药时，该术语仅指该成分。当组合应
用时，该术语则是指不论依次或同时联合给药时，都引起治疗效果的活性成分的合并量。

【0042】术语“治疗（动词）”和“治疗（名词）”指的是：(i) 在已知疾病、障碍和/或病症但尚未被确诊患者疾病、障碍和/或病症的患者中防止疾病、障碍或病症的发生；(ii) 抑制疾病、障碍或病症，即阻止其发展；和 (iii) 缓解疾病、障碍或病症，即使疾病、障碍和/或病症消退。

【0043】在用于命名本公开的化合物时，如在本文使用的标记 P1’、P1、P2、P2*、P3 和 P4，在图中标注 (map) 结合相对于天然肽裂解物的结合的蛋白酶抑制剂的氨基酸残基的相关位置。裂解发生在 P1 和 P1’之间的天然底物中，此处非引物位置指定从肽天然裂解位点的 C-末端起始向 N-末端延伸的氨基酸；反之，引物位置从裂解位点标记的 N-末端起始和向 C-末端延伸。例如，P1’指的是远离裂解位点的 C-末端右手端的第一个位置（即 N-末端第一个位置）；反之，P1 从 C-末端裂解位点的左手侧开始编号，P2 从 C-末端起始的第二个位置，等。（参见 Berger A. & Schechter I., Transactions of the Royal Society London series (1970), B257, 249-264）。

【0044】本公开的化合物中存在不对称中心。例如，化合物可包括下式的 P1 环丙基部分

![环丙基结构](image)

【0045】其中 C1 和 C2 各代表在环丙基环的位置 1 和 2 的不对称碳原子。

【0046】
[0048] 应当理解的是，本公开囊括具有抑制 HCV 蛋白酶能力的所有立体化学形式或其混合物。

[0049] 本公开的某些化合物还可以不同的稳定构象形式存在，这类构象形式是可分离的。由于不对称单键周围阻碍旋转（例如因空间位阻或环张力）所致的扭转不对称性，可以使不同的构象异构体分离开来。本公开包括这些化合物的每一种构象异构体及其混合物。

[0050] 本公开的某些化合物可以两性离子的形式存在，且本公开包括这些化合物的各自的两性离子的形式和它们的混合物。

[0051] 当可用于治疗时，治疗有效量的式（I）化合物及其药学上可接受的盐可作为未加工的化学药品给予，还可作为药物组合物的活性成分提供。因此，本公开还提供药物组合物。该药物组合物包括治疗有效量的式（I）化合物或其药学上可接受的盐及一种或多种（优选 1-3 种）药学上可接受的载体、稀释剂或赋形剂。式（I）化合物及其药学上可接受的盐如上描述。载体、稀释剂或赋形剂在与制剂中的其他成分相容的意义上说必须是可接受的，而无害于其接受者。依据本公开的另一方面，也提供制备药物制剂的方法，其包括将式（I）化合物或其药学上可接受的盐与一或多种药学上可接受的载体、稀释剂或赋形剂混合。

[0052] 药物制剂可呈单位剂型，每个单位剂量含有预定量的活性成分。本公开的化合物的剂量水平介于约 0.01-约 150 毫克/千克（"mg/kg"）体重/天之间，优选介于约 0.05-约 100 mg/kg 体重/天之间，常常以单一疗法用于预防或治疗 HCV 介导的疾病。本公开的药物组合物通常将按每天约 1 次至约 5 次或者作为连续输注给予。这类给药法可用作长期或短期疗法。可与载体材料混合以制备单剂型的活性成分的量将根据待治疗的疾病、病情的严重程度、给药时间、给药途径、所用化合物的排泄速率、疗程和患者年龄、性别、体重和身
说明书

体状况而改变。优选的药物型制剂是含有本文上述活性成分的剂型或分数剂型或其适宜分数的单位剂型制剂。一般认为，用明显降低化合物最佳剂量的小剂量治疗。除此外，以较小的增量来加大剂量直到在各类情况下达到最佳效果。一般而言，最理想地给予化合物的浓度水平是在可抗病毒方面提供有效结果而又不致于引起任何有害或有毒的副作用。

[0053] 当本公开的组合物包含本公开的化合物和/或多种另外的治疗剂和/或预防剂的组合时，化合物和另外的药剂两者均可以小于或等于在单一疗法方案中正常给予的剂量存在。可将本公开的组合物与/或多种例如，以单片和/或双/或多层片剂的形式的另外的治疗剂和/或预防剂共同配制，或可与治疗剂和/或预防剂分开给予。

[0054] 药物制剂可适合于通过任何合适的途径给药，例如通过口服（包括口颊或舌下含服）、直肠、鼻、局部（包括口颊、舌下或经皮）、阴道或胃肠外（包括皮下、皮内、肌内、关节内、滑膜内、胸骨内、性内、病灶内（intralesional）、静脉内或者真皮内注射或输注）途径。这类制剂可按药剂学领域的任何已知方法制备，例如通过将活性成分与载体或赋形剂混合。

[0055] 适合于口服给药的药物制剂可按独立的单位提供，例如胶囊剂或片剂；散剂或颗粒剂；水性或非水性液体中的溶液剂或混悬剂；可食用泡沫制剂或起泡剂（whips）；或水包油乳液剂或油包水乳液剂。

[0056] 举例来说，对于以片剂或胶囊剂形式的口服给药，活性药物组分可与药物学上可接受的口服无毒惰性载体（例如乙醇、甘油、水等）相混合。通过将化合物粉碎成合适的微细尺寸，并与被同样粉碎的药用载体（例如淀粉或甘露醇等可食用的碳水化合物）混匀来制备散剂。也可存在矫味剂、防腐剂、分散剂和着色剂。

[0057] 通过制备如上所述的片状混合物，并装填成形的明胶壳内，来制备胶囊剂。在装填操作之前，可将助流剂和润滑剂（例如硅酸盐、油石粉、硬脂酸镁、硬脂酸钙或固体聚乙二醇）加到片状混合物中。还可加入崩解剂或增溶剂（例如琼脂、碳酸钙或碳酸钠）以改善胶囊剂摄入后的药物利用度。

[0058] 此外，需要或必需时，也可将合适的粘合剂、润滑剂、崩解剂和着色剂掺到混合物中。合适的粘合剂包括淀粉、明胶、天然糖（例如葡萄糖或β-乳糖）、玉米甜味剂、天然和合成树胶（例如阿拉伯树胶、西黄蓍胶或藻酸钠）、羧甲基纤维素、聚乙二醇等。用于这些剂型的润滑剂包括油酸钠、氯化钠等。崩解剂包括但不限于淀粉、甲基纤维素、琼脂、乙醇、黄原胶等。例如，通过制成粉状混合物，将制粒或压片（slugging），添加润滑剂和崩解剂，压制成片，从而制成片剂。将适当粉碎的化合物与如上所述的稀释剂或基料，并任选与粘合剂（例如羧甲基纤维素、藻酸盐、明胶或聚乙烯吡咯烷酮）、溶液阻滞剂（例如石蜡）、吸收加速剂（例如季铵）和/或吸收剂（例如乙醇、高岭土）或磷酸二钙）混合，来制备粉状混合物。可用粘合剂（例如糖浆、淀粉浆、阿拉伯胶浆（acadia mucilage）或纤维素材料或聚合材料溶液）润湿后加压过筛，将粉状混合物制粒。制粒的一个替代方法是，可将粉状混合物通过压片机，结果是将成形不佳的团块再击碎制成颗粒。可通过添加硬脂酸、硬脂酸盐、滑石粉或矿物油使颗粒润湿以防止粘到片剂成形模上。然后将经润湿的混合物压制成片剂。本公开的化合物还可与自由流动的惰性载体混合，无需通过制粒或压片步骤便可直接压制成片剂。可提供透明或不透明的由虫胶密封片、糖衣或聚合材料衣和蜡质抛光片（polish
待接受者血液等渗的溶质:水性和非水性无菌悬浮剂可包括悬浮剂和增稠剂。制剂可以单位剂量或多剂量容器提供,例如密封的安瓿和小瓶,并可保存在冷冻—干燥(冻干)条件下,只需在临用前即刻加入无菌液体载体例如注射用水。临用时配制的注射溶液剂和混悬剂可由无菌粉剂剂、颗粒剂和片剂制备。

[0073] 应该理解,除了以上特别提到的成分以外,制剂还可包括与所述制剂类型有关的其他成分,例如适合于口服给药的这类制剂可包括矫味剂。

[0074] 下表1中列出了一些可与本公开的化合物一起给药的示例性化合物的实例。在联合疗法中,本公开的化合物可与其它抗HCV活性化合物共同或分开给药,或者将化合物掺到组合物中。

[0075] 表1

<table>
<thead>
<tr>
<th>商品名</th>
<th>生理类别</th>
<th>抑制剂或靶的类型</th>
<th>来源公司</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nim811</td>
<td>亲环蛋白抑制剂</td>
<td>Novartis</td>
<td></td>
</tr>
<tr>
<td>日达欣(Zadaxin)</td>
<td>免疫调节剂</td>
<td>SciClone</td>
<td></td>
</tr>
<tr>
<td>Suvus</td>
<td>亚甲基蓝</td>
<td>Bioenvision</td>
<td></td>
</tr>
<tr>
<td>Actilus (CPG10101)</td>
<td>TLR9激动剂</td>
<td>Coley</td>
<td></td>
</tr>
<tr>
<td>巴佛他林 (Batabulin) (T67)</td>
<td>抗癌药</td>
<td>Tularik Inc., South San Francisco, CA</td>
<td></td>
</tr>
<tr>
<td>ISIS 14803</td>
<td>抗病毒药</td>
<td>反义</td>
<td>ISIS Pharmaceuticals Inc., Carlsbad, CA</td>
</tr>
<tr>
<td></td>
<td>抗病毒药</td>
<td>抗病毒</td>
<td>Endo Pharmaceuticals Holdings Inc., Chadds Ford, PA</td>
</tr>
<tr>
<td>Summetrel</td>
<td>抗病毒药</td>
<td>HCV抑制剂</td>
<td>Achillion/Gilead</td>
</tr>
<tr>
<td>GS-9132 (ACH-806)</td>
<td>抗病毒药</td>
<td>HCV抑制剂</td>
<td>Arrow Therapeutics Ltd.</td>
</tr>
<tr>
<td>吡唑并嘧啶化合物</td>
<td>抗病毒药</td>
<td>Ribapharm Inc., Costa Mesa, CA</td>
<td></td>
</tr>
<tr>
<td>Levovirin</td>
<td>抗病毒药</td>
<td>IMPDH抑制剂</td>
<td>Vertex Pharmaceuticals Inc., Cambridge, MA</td>
</tr>
<tr>
<td>美泊地布 (Merimepoldip) (VX-497)</td>
<td>抗病毒药</td>
<td>IMPDH抑制剂</td>
<td></td>
</tr>
<tr>
<td>商品名</td>
<td>生理类别</td>
<td>抑制剂或靶的类型</td>
<td>来源公司</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>XTL-6865 (XTL-002)</td>
<td>抗病毒药</td>
<td>单克隆抗体</td>
<td>XTL Biopharmaceuticals Ltd., Rehovot, Israel</td>
</tr>
<tr>
<td></td>
<td>抗病毒药</td>
<td>NS3 丝氨酸蛋白酶抑制剂</td>
<td>Vertex Pharmaceuticals Inc., Cambridge, MA/Eli Lilly and Co. Inc., Indianapolis, IN</td>
</tr>
<tr>
<td>HCV-796</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Wyeth/Viropharma</td>
</tr>
<tr>
<td>NM-283</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Idenix/Novartis</td>
</tr>
<tr>
<td>GL-59728</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Gene Labs/Novartis</td>
</tr>
<tr>
<td>GL-60667</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Gene Labs/Novartis</td>
</tr>
<tr>
<td>2'C MeA</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Gilead</td>
</tr>
<tr>
<td>PSI 6130</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Roche</td>
</tr>
<tr>
<td>R1626</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Roche</td>
</tr>
<tr>
<td>2'C-甲基腺苷</td>
<td>抗病毒药</td>
<td>NS5B 复制酶抑制剂</td>
<td>Merck</td>
</tr>
<tr>
<td>JTK-003</td>
<td>抗病毒药</td>
<td>RdRp 抑制剂</td>
<td>Japan Tobacco Inc., Tokyo, Japan</td>
</tr>
<tr>
<td>Levovirin</td>
<td>抗病毒药</td>
<td>利巴韦林</td>
<td>ICN Pharmaceuticals, Costa Mesa, CA</td>
</tr>
<tr>
<td>利巴韦林</td>
<td>抗病毒药</td>
<td>利巴韦林</td>
<td>Schering-Plough Corporation, Kenilworth, NJ</td>
</tr>
<tr>
<td>Viramidine</td>
<td>抗病毒药</td>
<td>利巴韦林前药</td>
<td>Ribapharm Inc., Costa Mesa, CA</td>
</tr>
<tr>
<td>Heptazyme</td>
<td>抗病毒药</td>
<td>核酶</td>
<td>Ribozyme Pharmaceuticals Inc., Boulder, CO</td>
</tr>
<tr>
<td>BILN-2061</td>
<td>抗病毒药</td>
<td>丝氨酸蛋白酶抑制剂</td>
<td>Boehringer Ingelheim Pharma KG, Ingelheim, Germany</td>
</tr>
</tbody>
</table>

[0078]
<table>
<thead>
<tr>
<th>商品名</th>
<th>生理类别</th>
<th>抑制剂或靶的类型</th>
<th>来源公司</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH 503034</td>
<td>抗病毒药</td>
<td>丝氨酸蛋白酶抑制剂</td>
<td>Schering Plough</td>
</tr>
<tr>
<td>Zadazim</td>
<td>免疫调节剂</td>
<td>免疫调节剂</td>
<td>SciClone Pharmaceuticals Inc., San Mateo, CA</td>
</tr>
<tr>
<td>Ceplene</td>
<td>免疫调节剂</td>
<td>免疫调节剂</td>
<td>Maxim Pharmaceuticals Inc., San Diego, CA</td>
</tr>
<tr>
<td>CellCept</td>
<td>免疫抑制剂</td>
<td>HCV IgG 免疫抑制剂</td>
<td>F. Hoffmann-La Roche Ltd, Basel, Switzerland</td>
</tr>
<tr>
<td>Civacir</td>
<td>免疫抑制剂</td>
<td>HCV IgG 免疫抑制剂</td>
<td>Nabi Biopharmaceuticals Inc., Boca Raton, FL</td>
</tr>
<tr>
<td>Albuferon - α</td>
<td>干扰素</td>
<td>白蛋白 IFN-α2b</td>
<td>Human Genome Sciences Inc., Rockville, MD</td>
</tr>
<tr>
<td>干复津 A (Infergen A)</td>
<td>干扰素</td>
<td>IFN alfacon-1</td>
<td>InterMune Pharmaceuticals Inc., Brisbane, CA</td>
</tr>
<tr>
<td>Omega IFN</td>
<td>干扰素</td>
<td>IFN-α</td>
<td>Intarcia Therapeutics</td>
</tr>
<tr>
<td>IFN-β和 EMZ701</td>
<td>干扰素</td>
<td>IFN-β和 EMZ701</td>
<td>Transition Therapeutics Inc., Ontario, Canada</td>
</tr>
<tr>
<td>利比(Rebif)</td>
<td>干扰素</td>
<td>IFN-β1a</td>
<td>Serono, Geneva, Switzerland</td>
</tr>
<tr>
<td>罗斐格(Roferon A)</td>
<td>干扰素</td>
<td>IFN-α2a</td>
<td>F. Hoffmann-La Roche Ltd, Basel, Switzerland</td>
</tr>
<tr>
<td>甘乐能(Intron A)</td>
<td>干扰素</td>
<td>IFN-α2b</td>
<td>Schering-Plough Corporation, Kenilworth, NJ</td>
</tr>
<tr>
<td>甘乐能和日达仙</td>
<td>干扰素</td>
<td>IFN-α2b/α1-胸腺素</td>
<td>RegeneRx Biopharma. Inc., Bethesda, MD/SciClone Pharmaceuticals Inc, San Mateo, CA</td>
</tr>
<tr>
<td>商品名</td>
<td>生理类别</td>
<td>抑制剂或靶的类型</td>
<td>来源公司</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Rebetron</td>
<td>干扰素</td>
<td>IFN-α2b/利巴韦林</td>
<td>Schering-Plough Corporation, Kenilworth, NJ</td>
</tr>
<tr>
<td>Actimmune</td>
<td>干扰素</td>
<td>INF-γ</td>
<td>InterMune Inc., Brisbane, CA</td>
</tr>
<tr>
<td>干扰素-β</td>
<td>干扰素</td>
<td>干扰素-β-1a</td>
<td>Serono</td>
</tr>
<tr>
<td>Multiferon</td>
<td>干扰素</td>
<td>长效 IFN</td>
<td>Viragen/Valentis</td>
</tr>
<tr>
<td>惠福仁(Wellferon)</td>
<td>干扰素</td>
<td>类淋巴母细胞 IFN-αn1</td>
<td>GlaxoSmithKline plc, Uxbridge, UK</td>
</tr>
<tr>
<td>Omniferon</td>
<td>干扰素</td>
<td>天然 IFN-α</td>
<td>Viragen Inc., Plantation, FL</td>
</tr>
<tr>
<td>派罗欣(Pegasys)</td>
<td>干扰素</td>
<td>聚乙二醇化 IFN-α2a</td>
<td>F. Hoffmann-La Roche Ltd, Basel, Switzerland</td>
</tr>
<tr>
<td>派罗欣和 Ceplene</td>
<td>干扰素</td>
<td>聚乙二醇化 IFN-α2a/免疫调节剂</td>
<td>Maxim Pharmaceuticals Inc., San Diego, CA</td>
</tr>
<tr>
<td>派罗欣和利巴韦林</td>
<td>干扰素</td>
<td>聚乙二醇化 IFN-α2a/利巴韦林</td>
<td>F. Hoffmann-La Roche Ltd, Basel, Switzerland</td>
</tr>
<tr>
<td>PEG-Intron</td>
<td>干扰素</td>
<td>聚乙二醇化 IFN-α2b</td>
<td>Schering-Plough Corporation, Kenilworth, NJ</td>
</tr>
<tr>
<td>PEG-Intron/利巴韦林</td>
<td>干扰素</td>
<td>聚乙二醇化 IFN-α2b/利巴韦林</td>
<td>Schering-Plough Corporation, Kenilworth, NJ</td>
</tr>
<tr>
<td>IP-501</td>
<td>保肝药</td>
<td>抗纤维变性</td>
<td>Indevus Pharmaceuticals Inc., Lexington, MA</td>
</tr>
<tr>
<td>IDN-6556</td>
<td>保肝药</td>
<td>半胱天冬酶抑制剂</td>
<td>Idun Pharmaceuticals Inc., San Diego, CA</td>
</tr>
<tr>
<td>ITMN-191</td>
<td>抗病毒药</td>
<td>丝氨酸蛋白酶抑制剂</td>
<td>InterMune Pharmaceuticals Inc., Brisbane, CA</td>
</tr>
<tr>
<td>(R-7227)</td>
<td>抗病毒药</td>
<td>NS5B复制酶抑制剂</td>
<td>Genelabs</td>
</tr>
<tr>
<td>GL-59728</td>
<td>抗病毒药</td>
<td>TLR-7激动剂</td>
<td>Anadys</td>
</tr>
<tr>
<td>ANA-971</td>
<td>抗病毒药</td>
<td>丝氨酸蛋白酶抑制剂</td>
<td>Merck</td>
</tr>
<tr>
<td>MK 78009</td>
<td>抗病毒药</td>
<td>丝氨酸蛋白酶抑制剂</td>
<td>Merck</td>
</tr>
<tr>
<td>商品名</td>
<td>生理类别</td>
<td>抑制剂或靶的类型</td>
<td>来源公司</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>TMC-435350</td>
<td>抗病毒</td>
<td>丝氨酸蛋白酶抑制剂</td>
<td>Tibotec</td>
</tr>
</tbody>
</table>

[0081] 本公开的化合物还可以用作实验室试剂。化合物可在为设计病毒复制实验、验证动物实验系统和结构生物学研究提供研究工具方面发挥作用，以进一步加深对 HCV 疾病机制的认识。此外，本公开的化合物可用于通过竞争性抑制来建立或确定其它抗病毒化合物的结合位点。

[0082] 本公开的化合物还可用来处理或防止病毒污染材料，从而降低接触这类材料的实验室人员或医务人员或患者感染病毒的风险。所述材料为例如血液、组织、手术器械和衣物、实验室仪器和衣物及采血或输血设备和材料。

[0083] 当通过合成方法制备，或者通过代谢过程（包括发生在人或动物身体内（体内）的那些过程）或者体外发生过程产生时，本公开意欲包括具有式 (1) 的化合物。

[0084] 现结合某些实施方案来描述本公开，但并不意味着这些实施方案限定其范围。相反地，本公开将涵盖可包括在权利要求范围内的所有替换，修饰和等价物。因此，包括在特定实施方案中的下列实施例将举例说明本公开的实施，应清楚的是这些实施例目的是用于示例性说明某些实施方案，并给出用以提供所认为是最有用的和易于理解其方法和概念性方面的说明。

[0085] 用于本申请的缩写，包括特别在下列示例性流程和实施例中的缩写为本领域技术人员所熟知。所使用的一些缩写如下: Et,N 为三乙胺；DPPA 为二苯基磷酰叠氮化物；h 或 hr 或 hrs 为小时；EtOAc 为乙酸乙酯；Ph 为苯；min 或 mins 为分钟；RT 或 Rt 或 rt 为室温或保留时间（将由上下文决定）；DMF 为二甲亚砜；THF 为四氢呋喃；n-BuLi 为正-丁基锂；i-Pr 为异丙基；i-Pro 为异丙氧基；MeOH 为甲醇；TMS 为三甲基甲硅烷基；t-Bu 为叔-丁基；t-BuO 为叔-丁氧基；Ts 或 p-Ts 为对-甲苯磺酰基；iPr,N 为 DIPEA 为二异丙基乙胺；HATU 为 0-(7-氮杂苯并三唑-1-基)-N,N',N'-四甲基脲鎓六氟磷酸盐；Et 为乙基；Et,N 为乙醚。

[0086] 用于合成本公开化合物的起始原料为本领域技术人员已知的，并且可易于制备或可经商品获得。

[0087] 提供下面提出的下列方法，用于说明的目的，并且不打算限制权利要求书的范围。应该认识到，制备这样的一个化合物，其中采用常规的保护基团保护官能团，然后除去保护基团，以提供本公开的化合物，可能是必要的。涉及依据本公开使用保护基团的细节为本领域技术人员已知的。

[0088] 实施例 1001：化合物 1001 的制备

[0089]
[0090] 化合物 1001

[0091] 方案 1

[0092]

步骤 1 → 步骤 2 → 步骤 3 → 步骤 4 → 步骤 5 → 步骤 6 → 步骤 7

步骤 8 → 步骤 9 → 步骤 10 → 步骤 11

[0093] 步骤 1
向 (E)-3-(4-氯苯基)丙烯酸 (18.3 g, 0.1 mol) 和 Et3N (20.2 g, 0.2 mol) 于苯 (100 mL) 的溶液中逐滴加入 DPPA (27.5 g, 0.1 mol)。搅拌 2 h 后, 再浓缩溶液和经色谱法纯化 (Biotage, 流动相 20/80 Et0Ac/己烷), 得到 16 g 的固体样中间体叠氮化物。将该中间体溶解于 100 mL 的 Ph3CH2和经 30 min 时间使得到的混合物缓慢加热至 90℃。将反应混合物加热至回流并保持在该温度 3 h。在冷却至 RT 后, 沉淀的固体通过过滤收集并用甲苯洗涤, 提供 9.5 g 的 7- 氯代异唑啉-1(2H)- 酮 (53%)

1H NMR (400 MHz, CD3OD)

δ ppm 6.66 (d, J=7.05 Hz, 1 H), 7.18 (d, J=7.05 Hz, 1 H), 7.66 (s, 1 H) 7.67 (d, J=2.01 Hz, 1 H), 8.24 (d, J=2.27 Hz, 1 H); 13C NMR (101 MHz, DMSO-D6) δ ppm 104.05, 125.62, 127.21, 128.54, 129.52, 130.77, 132.43, 136.55, 160.72; LC/MS, MS m/z (M+H)⁺ 180.

步骤 2

将实施例 1001 的步骤 1 的产物 7- 氯代异唑啉-1(2H)- 酮 (36.33 g, 203 mmol) 和 N- 溴代琥珀酰亚胺 (39.74 g, 223.3 mmol) 于无水 CH2CN (500 mL) 中的浆液, 经大约 2 h 的时间缓慢加热至温和回流并保持此温和回流 1.5 h。经 LC/MS 监测反应, 当完成时, 经 3 h 的时间使浆液缓慢冷却至室温。经过滤收集沉淀的固体, 并用 CH2CN (100 mL x 3) 洗涤, 提供 47 g (90%) 的 4- 溴-7- 氯代异唑啉-1(2H)- 酮。该物质无需进一步纯化而用于下一步骤。

1H NMR (400 MHz, CD3OD) δ ppm 7.46 (s, 1 H), 7.81 (dd, J=8.40, 2.00 Hz, 1 H), 7.88 (d, J=8.8 Hz, 1 H), 8.27 (d, J=2.00 Hz, 1 H); 13C NMR (101 MHz, DMSO-D6) δ ppm 96.68, 126.34, 127.58, 127.71, 130.73, 132.20, 133.47, 134.46, 159.88; LC/MS, MS m/z (M+H)⁺ 258.

步骤 3

将实施例 1001 的步骤 2 的产物 4- 溴-7- 氯代异唑啉-1(2H)- 酮 (47 g, 182 mmol) 于 POCI3 (200 mL, 2.15 mol) 中的不均匀溶液, 经 1 h 缓慢加热至回流。应当指出, 在该加热过程中, 将反应混合物变成均匀的。反应混合物保持回流 4 h, 然后冷却至室温并在真空中浓缩, 以除去过多的 POCI3。为了确保完全去除残余的 POCI3, 将残余物溶解于 CH2Cl2, 或者可选地, 溶解于甲苯中并真空浓缩。根据需要重复该过程。 (注意, POCI3 被相应地妥善安置在已贴标签的玻璃瓶中)。将残余物吸收至 600 mL 的 CH2Cl2 中, 冷却至 -35℃, 中和且随后小心用 1N NaOH (400 mL) 碱化, 直至混合物呈弱碱性 (pH = 8)。将有机混分离, 用 H2O 洗涤, 经 MgSO4 干燥并真空浓缩。残余的固体从 Et0Ac (大约 50 mL) 中结晶, 得到 32 g 的 4- 溴-1,7- 二氯代异唑啉。浓缩得自结晶过程中的母液并经 Biotage (16% Et0Ac 在己烷中) 纯化, 提供另外的 4 g 固体样 4- 溴-1,7- 二氯代异唑啉。总共得到 36 g (73%) 的 4- 溴-1,7- 二氯代异唑啉。
步骤 4

向实施例 1001 步骤 3 的产物 4-溴-1,7-二氯代异喹啉 (22.16 g, 80 mmol) 于 THF (500 ml) 中的保持在-78°C的溶液中，用 15 min 经套管逐滴加入 1.6 M n-Buli 的己烷 (100 ml, 160 mmol) 的溶液（内在温度保持<-65°C）。搅拌该溶液 0.5 h 并用 10 min 经注射器逐滴加入 (i-Pro) 2 B (37 ml, 160 mmol)（内在温度保持<-65°C）。搅拌反应混合物 0.5 h 并用 10 min 经漏斗逐滴加入 30% H2O2 (80 ml, 776 mmol)（在加液时内在温度升至 -60°C），随后加入 1N NaOH 溶液 (80 ml, 80 mmol)。移去冷却浴并使反应混合物温热至室温，并再搅拌 1 h。在通过 LC/MS 确认反应完成后，使反应混合物冷却至 -40°C，经 30 min 逐滴加入 100 g 的 Na2SO3 (0.793 摩尔) 于 400 ml H2O 的溶液（内在温度保持在 5-10°C 之间）。于 0°C，用 6 N HCl (大约 50 ml) 中和得到的浆液，以提供 pH ~ 6。用 500 ml 的 EtOAc 稀释混合物，并倾入一个 2 L 分液漏斗中。在反应容器中向留下的固体加入 500 ml 的 H2O 和 300 ml 的 EtOAc，并用 6 N HCl (大约 20 ml) 中和该混合物。在分液漏斗中合并有机层，用盐水 (300 ml x 3) 和 H2O (200 ml x 3) 洗涤。有机相经 MgSO4 干燥，过滤，以除去干燥剂，再浓缩，得到粗产物，用 50 ml 的 EtOAc 研磨。经过滤收集得到的固体，用 EtOAc (3 x 25 ml) 冲洗并干燥，以提供 1,7-二氯代异喹啉-4-醇 (2 次运行 :12.0 g, 70% 和 13.8 g, 81%)。合并滤液，浓缩和经 Biotage (35% EtOAc 在己烷中) 纯化，得到额外的 2.1 g 的 BMS-796007。得到总共 27.9 g (82%) 的 1,7-二氯代异喹啉-4-醇。

步骤 5

步骤 5

1, 7-二氯-4-甲氧基异喹啉的制备:

在保持 0°C 下，向实施例 1001 步骤 4 的产物 1,7-二氯代异喹啉-4-醇 (16 g, 75.5 mmol) 于 MeOH/CH2CN (30 ml/300 ml) 的浆液中，逐滴加入 2 M TMSCHN2 的己烷 (60 ml, 120 mmol) 溶液。使反应混合物温热至室温并搅拌 1 h。浓缩溶液，并用 EtOAc (约 50 ml) 使残余的固体重结晶，得到 8.1 g 的 1,7-二氯-4-甲氧基异喹啉，其用 25% EtOAc 的己烷溶液洗涤。浓缩溶液和经 Biotage (16% EtOAc 在己烷中) 纯化，提供额外的 3.2 g 的固体样 1,7-二氯-4-甲氧基异喹啉。总共得到 11.3 g (66%) 的 1,7-二氯-4-甲氧基异喹啉。
\(^3\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) ppm 4.05 (s, 3 H), 7.67 (dd, \(J=9.06, 2.01\) Hz, 1 H), 7.80 (s, 1 H), 8.16 (d, \(J=8.81\) Hz, 1 H), 8.23 (d, \(J=2.01\) Hz, 1 H); \(^{13}\)C NMR (101 MHz, DMSO-\(D_6\)) \(\delta\) ppm 56.68, 122.70, 123.99, 124.14, 126.67, 127.83, 131.43, 134.10, 139.75, 149.94; LC/MS, MS m/z (M+H\(^+\)) 228.

[0109] 1, 7-二氯-4-(\(\alpha\)-氟-甲氧基) 异喹啉的制备：

[0110] 将实施例 1001 步骤 4 的 1, 7-二氯代异喹啉 -4- 醇 (321 mg, 1.5 mmol)、I\(_2\) (217 mg, 1.500 mmol) 和 Na\(_2\)CO\(_3\) (622 mg, 4.50 mmol) 于丙酮 (10 mL) 中的混合物回流 20 h。过滤后，浓缩滤液和经 Biotaige，以 10% 的乙酸乙酯的己烷溶液洗提纯化。得到 250 mg 的固体样产物。LC/MS, MS (m/z) (M+H\(^+\)) 231.09。

[0111] 步骤 6

[0112] 于 10 ℃，在搅拌中，向实施例 1001 步骤 5 的产物 1, 7-二氯-4-甲氧基异喹啉 (4.52 g, 20 mmol)、(2S, 4R)-1-(\(\alpha\)-叔-丁氧基羰基) -4- 羟基吡咯烷-2-羧酸 (5.08 g, 22 mmol) 和 t-BuOK (6.72 g, 60 mmol) 的混合物中，加入 DMSO (200 mL)。用超声波处理得到的浆液 30 min，以提供均匀的溶液，其在室温下搅拌 3 h。使反应混合物冷却至 0 ℃并通过加入 H\(_2\)O (50 mL) 稀释。中和该混合物，然后通过小心加入 1 N HCl 水溶液酸化至最终 pH 为 5。用 EtOAc (400 mL) 提取该混合物，并用冰水 (200 mL)、H\(_2\)O (200 mL x2) 洗涤有机层，随后经 MgSO\(_4\) 干燥并真空浓缩，提供 8.36 g 的粗固体 (2S, 4R)-1-(\(\alpha\)-叔-丁氧基羰基) -4-(7-氯-4-甲氧基异喹啉-1基氧基) 吡咯烷-2-羧酸。该物质无需进一步纯化而用于下一步骤。

[0113] 1H NMR (400 MHz, CD3OD) \(\delta\) ppm 2.34 - 2.47 (m, 1 H), 2.62 - 2.77 (m, 1 H), 3.70 - 3.92 (m, 2 H), 4.42 - 4.59 (m, 1 H), 5.65 (bs, 1 H), 7.54 (s, 1 H), 7.68 (dd, \(J=8.81, 2.01\) Hz, 1 H), 8.02 - 8.13 (m, 2 H); \(^{13}\)C NMR (126 MHz, DMSO-\(D_6\)) \(\delta\) ppm 13.90, 14.04, 20.71, 22.02, 27.84, 27.98, 30.91, 35.00, 35.87, 51.84, 52.08, 56.21, 57.49, 57.80, 59.70, 73.32, 73.87, 79.14, 79.19, 119.11, 119.77, 122.38, 123.35, 128.50, 130.95, 132.25, 145.70, 151.94, 153.25, 153.71, 173.51, 173.98; MS (M+H\(^+\)) 423.

[0114] 步骤 7

[0115] 向实施例 1001 步骤 6 的产物 (2S, 4R)-1-(\(\alpha\)-叔-丁氧基羰基) -4-(7-氯-4-甲氧基异喹啉-1基氧基) 吡咯烷-2-羧酸 (8.36 g, 19.8 mmol)、(1R, 2S)-1-氨基-N-(环丙基磺酰基)-2-乙烯基环丙烷甲酰胺、TsOH 盐 (9.64 g, 24 mmol) 和 iPr\(_2\)EtN (17.4 mL, 100 mmol) 于 CH\(_2\)Cl\(_2\) (200 mL) 的溶液中，加入 HATU (11.4 g, 31 mmol)。搅拌反应混合物 16 h，真空浓缩并将其余物溶解于 EtOAc (300 mL) 中，并用 1 N HCl (50 mL x 3)、水 (30 mL x 2) 和盐水 (50 mL x 2) 顺序洗涤。有机层经 MgSO\(_4\) 干燥，浓缩并用 Biotaige (25% 丙酮在己烷中) 纯化，以提供 11.5 g 的粗产物 (2S, 4R)-4-(7-氯-4-甲氧基异喹啉-1基氧基)-2-羧酸。
氧基)-2-((1R,2S)-1-(环丙基磺酰基氨基甲酰基)-2-乙烯基环丙基氨基甲酰基)吡咯烷-1-羧酸叔丁酯。该化合物经从MeOH (40 mL) 结晶纯化，得到11 g (88%) 的结晶固体。

[0116] 1H NMR (400 MHz, CD₃OD) δ ppm 1.03 - 1.31 (m, 8 H), 1.43 (s, 9 H), 1.88 (dd, J=8.06, 5.54 Hz, 1 H), 2.17 - 2.36 (m, 2 H), 2.53 (dd, J=13.72, 6.42 Hz, 1 H), 2.90 - 3.03 (m, 1 H), 3.72 - 3.93 (m, 2 H), 4.40 (dd, J=9.69, 6.92 Hz, 1 H), 5.13 (d, J=10.32 Hz, 1 H), 5.31 (d, J=17.12 Hz, 1 H), 5.65 - 5.93 (m, 2 H), 7.55 (s, 1 H), 7.70 (dd, J=8.94, 2.14 Hz, 1 H), 8.06 (d, J=2.01 Hz, 1 H), 8.09 (d, J=8.81 Hz, 1 H); 13C NMR (126 MHz, DMSO-CD₃) δ ppm 5.47, 5.57, 5.75, 19.85, 22.38, 27.90, 29.79, 30.65, 30.72, 32.11, 33.81, 35.11, 36.30, 40.86, 41.59, 48.56, 52.39, 52.76, 56.24, 58.76, 59.21, 73.57, 74.06, 79.28, 80.06, 117.80, 119.16, 119.81, 119.88, 122.14, 123.48, 128.52, 131.00, 132.28, 133.38, 145.72, 151.77, 151.86, 154.06, 168.38, 169.13, 172.46, 173.27; MS: (M+H)⁺ 635.

[0117] 步骤 8

[0118] 使实施例 1001 步骤 7 的产物 (2S,4R)-4-(7-氯-4-甲氧基异嗪啉-1-基氨基)-2-(1R,2S)-1-(环丙基磺酰基氨基甲酰基)-2-乙烯基环丙基氨基甲酰基) 吡咯烷-1-羧酸叔丁酯 (6.34 g, 10 mmol) 于含 3 mL 浓 HCl 的 50 mL 的 MeOH 液及回流 2 h。冷却溶液至室温并真空浓缩。用无水 Et₂O (50 mL) 处理固体析余物并真空浓缩溶液。重复该过程五次，以确保完全去除水和溶解的 HCl，作为 HCl 盐的 (2S,4R)-4-(7-氯-4-甲氧基异嗪啉-1-基氨基)-N-(1R,2S)-1-(环丙基磺酰基氨基甲酰基)-2-乙烯基环丙基) 吡咯烷-2-甲酰胺 (100%)。

[0119] 1H NMR (400 MHz, CD₃OD) δ ppm 0.96 - 1.21 (m, 3 H), 1.22 - 1.30 (m, 1 H), 1.38 (dd, J=9.57, 2.54 Hz, 1 H), 1.95 (dd, J=8.06, 5.79 Hz, 1 H), 2.25 - 2.46 (m, 2 H), 2.83 - 3.08 (m, 2 H), 3.75 - 3.90 (m, 2 H), 4.01 (s, 3 H), 4.70 (dd, J=10.32, 7.81 Hz, 1 H), 5.10 - 5.20 (m, 1 H), 5.33 (d, J=17.12 Hz, 1 H), 5.58 - 5.76 (m, 1 H), 5.88 (s, 1 H), 7.57 (s, 1 H), 7.74 (dd, J=8.81, 0.21 Hz, 1 H), 8.12 (d, J=9.06 Hz, 1 H), 8.28 (d, J=2.01 Hz, 1 H); 13C NMR (101 MHz, CD₃OD) δ ppm 6.52, 6.65, 22.60, 31.99, 34.63, 37.04, 43.18, 52.95, 56.85, 60.56, 76.08, 119.06, 119.10, 121.65, 123.41, 124.63, 130.72, 130.37, 133.78, 134.76, 148.49, 153.02, 170.08, 170.67; LC/MS MS m/z (M+H)⁺ 535.

[0120] 步骤 9

[0121] 向保持在 0℃下的，实施例 1001 步骤 8 的产物，作为 HCl 盐的
(2S, 4R)-4-((7-氯-4-甲氧基异喹啉-1-基氧基)-N-((1R, 2S)-1-(环丙基磺酰基氨氨基甲酰基)-2-乙烯基环丙基)吡咯烷-2-甲酰胺(6.07 g, 10 mmol)于100 mL CH₂Cl₂的溶液中，加入8.7 mL的iPr₂EtN (50 mmol)，随后加入Boc-L-枣-亮氨酸(2.772 g, 12 mmol)和HATU (8.7 g, 15 mmol)。使反应混合物温热至RT并搅拌16 h，之后真空浓缩和将残余物溶解于EtOAc (300 mL)中。序贯用1N HCl (50 mL x 3)、H₂O (30 mL x 2) 和盐水 (50 mL x 2) 洗涤EtOAc溶液。有机相经MgSO₄干燥并真空浓缩，在用Biotage (33%丙酮在已烷中)纯化之后得到粗产物，提供7 g (94%) 的所需产物。

[0123]

1H NMR (400 MHz, CD₃OD) δ ppm 1.06 (m, 11 H), 1.16 (s, 9 H), 1.14-1.24 (m, 2 H), 1.44 (dd, J=9.32, 5.29 Hz, 1 H), 1.88 (dd, J=8.06, 5.54 Hz, 1 H), 2.17 - 2.39 (m, 2 H), 2.59 (dd, J=13.85, 6.80 Hz, 1 H), 2.87 - 3.02 (m, 1 H), 4.00 (s, 3 H), 4.01 - 4.14 (m, 1 H), 4.17 - 4.24 (m, 1 H), 4.43 (d, J=12.09 Hz, 1 H), 4.52 - 4.65 (m, 1 H), 5.12 (d, J=10.07 Hz, 1 H), 5.30 (d, J=16.87 Hz, 1 H), 5.65 - 5.91 (m, 2 H), 7.56 (s, 1 H), 7.68 (d, J=9.06 Hz, 1 H), 8.05 (s, 1 H), 8.09 (d, J=9.06 Hz, 1 H);MS: (M+H)+ 748.

[0124] 步骤10

[0125] 向实施例1001步骤9的产物(S)-1-((2S, 4R)-4-((7-氯-4-甲氧基异喹啉-1-基氧基)-2-((1R, 2S)-1-((环丙基磺酰基氨氨基甲酰基)-2-乙烯基环丙基氨基甲酰基)吡咯烷-1-基)-3, 3-二甲基-2-氧代丁-2-基氨基甲酸叔-丁酯 (2.469 g, 3.3 mmol)中，加入4 M HCl (8.25 mL, 33.0 mmol) 的1, 4-二氧六环溶液。于25 °C搅拌形成的溶液3 h。真空浓缩后，向残余物中加入乙醚 (20mL)，然后再浓缩，重复该过程3次。低真空干燥 (House vacuum drying) 得到2.36 g (100%)固体粗产物，其无需进一步纯化即用于下一步骤。MS: (M+H)+ 648.50。

[0126] 步骤11

[0127] 实施例1001步骤10的产物(2S,4R)-1-((S)-2-氨基-3, 3-二甲基丁酰基)-4-((7-氯-4-甲氧基异喹啉-1-基氧基)-N-((1R, 2S)-1-((环丙基磺酰基氨基甲酰基)-2-乙烯基环丙基)吡咯烷-2-甲酰胺、HCl (30 mg, 0.044 mmol)、反应剂2 (9.56 mg, 0.048 mmol)和N-乙基-N-异丙基丙-2-胺 (0.038 mL, 0.219 mmol) 于CH₂Cl₂ (体积: 3 mL) 中的溶液搅拌16 h。浓缩后，残余物经制备型HPLC纯化，得到21 mg (64%) 为固体的所需产物化合物1001。

[0128]
\[^1 \text{H NMR (400 MHz, MeOD)} \delta \text{ppm:} 0.99 - 1.13 (m, 11 H), 1.17 (s, 6 H), 1.21 - 1.32 (m, 2 H), 1.45 (dd, J=9.4, 5.4 Hz, 1 H), 1.89 (dd, J=8.2, 5.4 Hz, 1 H), 2.20 - 2.35 (m, 2 H), 2.61 (dd, J=13.7, 6.9 Hz, 1 H), 2.91 - 3.01 (m, 1 H), 4.01 (s, 3 H), 4.03 - 4.12 (m, 1 H), 4.18 - 4.23 (m, 1 H), 4.43 (s, 1 H), 4.57 (dd, J=10.2, 7.2 Hz, 1 H), 5.14 (dd, J=10.3, 1.5 Hz, 1 H), 5.32 (d, J=17.1 Hz, 1 H), 5.71 - 5.85 (m, 2 H), 7.58 (s, 1 H), 7.69 (dd, J=8.5, 1.8 Hz, 1 H), 8.06 (d, J=1.8 Hz, 1 H), 8.10 (d, J=8.8 Hz, 1 H); MS: (M+H)\) 751.31. \\

[0129] 实施例 1002: 化合物 1002 的制备 \\
[0130] \\

![Chemical structure of Compound 1002](image)

[0131] 化合物 1002 \\
[0132] 通过如对制备化合物 1001 描述的类似程序, 制备化合物 1002, MS: (M+H)\) 754.35。 \\
[0133] 实施例 1003: 化合物 1003 的制备 \\
[0134] \\

![Chemical structure of Compound 1003](image)

[0135] 化合物 1003 \\
[0136] 通过如对制备化合物 1001 描述的类似程序, 制备化合物 1003, MS: (M+H)\) 757.35。 \\
[0137] 生物学研究 \\
[0138] 可采用本领域已知的如下信息, 准备、实施和验证 HCV NS3/4A 蛋白酶复合物酶试验和基于细胞的 HCV 复制子试验： \\
[0139] 重组 HCV NS3/4A 蛋白酶复合物的生成
[0140] 如下描述生成源于 BMS 株、H77 株或 J4L6S 株的 HCV NS3 蛋白酶复合物。产生这些纯化重组蛋白质用于同相试验（homogeneous assay）（见下文），以提供本公开的化合物是否能够抑制 HCV NS3 蛋白酶活性的指示。

[0143] 将 H77 和 J4L6S 株用于产生重组体 NS3/4A 蛋白酶复合物。如由 P. Gallinari 等（Gallinari P, Paolini C, Brennan D, Nardi C, Steinkuhler C, De Francesco R. Biochemistry。38(17): 5620–32, (1999)) 描述的，操控编码这些株的重组体 HCV NS3/4A 蛋白酶复合物（氨基酸 1027–1711）的 DNA。简言之，在 NS4A 编码区的 3'–端加入三个赖氨酸氨基酸残基（solubilizing tail）。将 NS4A–NS4B 裂解位点（氨基酸 1711）的 PI 位置中的半胱氨酸换成甘氨酸，以避免赖氨酸尾端 (tag) 的蛋白水解。此外，在氨基酸位置 1454 处通过 PCR 引入半胱氨酸向丝氨酸突变，以防止在 NS3 解旋酶域中自溶裂解。在 pET21b 载体表达载体（Novagen）中克隆变异 DNA 片段，并根据 P. Gallinari 等人描述的，经修改的规程（Gallinari P, Brennan D, Nardi C, Brunetti M, Tomei L, Steinkuhler C, De Francesco R., J Virol. 72(8): 6758–69 (1998))，在其大肠杆菌（Escherichia. coli）株 BL21（DE3）（Invitrogen）中表达 NS3/4A 复合物。简言之，在 20°C 下用 0.5 毫摩尔 (mM) 异丙基 β-D-1–硫代半乳糖吡喃糖苷 (thiogalactopyranoside, IPTG) 诱导 NS3/4A 蛋白酶复合物表达 22 小时。典型的发酵（1 升 (L)）产生大约 10 克 (g) 湿细胞浆 (wet cell paste)。将所述细胞再悬浮在溶液缓冲液 (10 mM/g) 中，所述溶液缓冲液由 25 mM N-（2-巯基乙基）哌嗪 -N'–(2-乙磺酸) (HEPES)，pH 7.5, 20% 丙二醇，500 mM 氯化钠 (NaCl), 0.5% Triton X-100, 1 微克/毫升（“μg/ml”）溶菌酶，5 mM 氯化镁 (MgCl2), 1 μg/ml DnaseI, 5 mM β-巯基乙醇 (β ME) 组成，无蛋白酶抑制剂–乙二胺四乙酸 (EDTA) (Roche), 在 4°C 下匀浆并搅拌 20 分钟 (min)。该匀浆液经在 4°C 下、235000g 超速离心 1 小时的超速离心处理和澄清，向上清液中加入咪唑至最终浓度为 15mM，并将 pH 值调节至 8.0。将该粗制蛋白质提取物加载在用缓冲液 B (25 mM HEPES, pH 8.0, 20% 丙三醇，500 mM NaCl, 0.5% Triton X-100, 15 mM 咪唑，5 mM β ME) 预平衡的镍 – 联氨三乙酸 (Ni–NTA) 柱上。以 1 ml/min 的流速加载样品。用 15 倍柱体积的缓冲液 C (与缓冲液 B 相同, 但含 0.2% Triton X-100) 洗脱该柱。用 5 倍柱体积的缓冲液 D (与缓冲液 C 相同, 但含 200 mM 咪唑) 洗脱该蛋白质。
[0143] 汇集 NS3/4A 蛋白酶复合物的部分，并将其加载在用缓冲液 D (25 mM HEPES, pH 7.5, 20% 丙三醇, 300 mM NaCl, 0.2% Triton X-100, 10 mM β ME) 预平衡的脱盐柱 Superdex-S200 上。以 1 mL/min 的流速加载样品。汇集 NS3/4A 蛋白酶复合物的部分并浓缩至大约 0.5 mg/ml。通过 SDS-PAGE 和质谱分析判断，衍生自 BMS, H77 和 J4L6S 株的 NS3/4A 蛋白酶复合物的纯度大于 90%。将该酶储存在 -80℃下，在冰上解冻并在使用之前在试验缓冲液中稀释。

[0144] FRET 胞外检测法以监测 HCV NS3/4A 蛋白水解活性

[0145] 这种体外检测法的目的是检测本公开的化合物对如上所述的衍生自 BMS 株、H77 株或 J4L6S 株的 HCV NS3 蛋白酶复合物的抑制。该检测法提供本公开的化合物将如何有效地抑制 HCV NS3 蛋白水解活性的指示。

[0147] 在存在或不存在本公开的化合物的情况下，用三种重组体 NS3/4A 蛋白酶复合物之一培养肽底物。通过使用 Cytofluor Series 4000 实时监测荧光反应产物的形成，测定化合物的抑制效应。

[0148] 试剂如下：HEPES 和丙三醇 (Ultrapure) 自 GIBCO-BRL 获得。二甲亚砜 (DMSO) 自 Sigma 获得。β-巯基乙醇自 Bio Rad 获得。

[0149] 试验缓冲液：50 mM HEPES, pH 7.5; 0.15 M NaCl; 0.1% Triton; 15% 丙三醇; 10 mM β ME。底物：2 μM 最终浓度（来自储存在 -20℃下的在 DMSO 中的 2mM 储备溶液）。HCV NS3/4A 蛋白酶 1a (1b) 类型，2-3 nM 最终浓度（来自在 25 mM HEPES 中的 5 μM 储备溶液。pH 7.5, 20% 丙三醇, 300 mM NaCl, 0.2% Triton-X100, 10 mM β ME）。对于效价强度接近检验限 (assay limit) 的化合物，通过试验缓冲液中添加 50 μg/ml 胎牛血清白蛋白 (Sigma) 并将最终蛋白酶浓度降至 300 pM 来使该检验更加敏感。

[0150] 在来自 Falcon 的 96 孔聚苯乙烯黑板中进行检验。各孔含有在试验缓冲液中的 25 μl NS3/4A 蛋白酶复合物，50 μl 在 10% DMSO/试验缓冲液中的本公开的化合物和 25 μl 在试验缓冲液中的底物。也在相同的检验板上制备对照物（无化合物）。将该酶复合物与化合物或对照溶液混合 1 min，然后通过添加底物来引发酶促反应。立即使用 Cytofluor Series 4000 (Perspective Biosystems) 读取检验板。将该仪器设定为发射波长 340 nm 和激发波长 490 nm, 在 25℃下读取数据。反应通常进行大约 15 min。

[0151] 用下列公式计算抑制百分比：

\[\text{抑制} = \left(\frac{\Delta F_{\text{opt}}}{\Delta F_{\text{opt}}} \right) \times 100 \]

[0152] 其中 ΔF 是该曲线的线性范围内的荧光变化。对抑制 - 浓度数据应用非线性曲线拟合，并使用公式 \(y = A + \left((B-A)/(1+(C/x)^D) \right) \) 用 Excel XLfit 软件计算 50% 有效浓度 (IC₅₀)。
说明书

[0154] 据发现,本公开化合物,其被测试对多于一种类型的NS3/4A复合物的抑制,具有类似抑制性质,尽管所述化合物一律表现出对1b株比对1a株更高的效价强度。

[0155] 特异性检验

[0156] 进行特异性检验以证明与其它丝氨酸或半胱氨酸蛋白酶相比,本公开的化合物在抑制HCV NS3/4A蛋白酶复合物方面具有外体选择性。

[0157] 测定本公开的化合物对抗各种丝氨酸蛋白酶的特异性:人体内颗粒细胞弹性蛋白酶(HNE)、猪胰弹性蛋白酶(PPE)和人胰糜蛋白酶和一种半胱氨酸蛋白酶;人肝组织蛋白酶B。在所有情况下,如上所述使用如之前(PCT专利申请号WO 00/095413)描述的、对丝氨酸蛋白酶检验经过一些修改的96孔板格式规程(其使用对各酶有特异性的荧光氨基-甲基-香豆素(AMC)底物)。所有酶均购自Sigma、EMDbiosciences,而底物来自Bachem、Sigma和

[0158] 本化合物浓度随其效价强度不同从100到0.4 μM不等。通过将底物添加到在室温下预培养10 min的酶-抑制剂中,并水解至在cytfluor上检测到15%转化,各自引酶检验。

[0159] 各酶的最终条件如下:

[0160] 50 mM三(羟甲基)氨基甲烷盐酸盐(Tris-HCl) pH 8.0,0.5 M硫酸钠(Na2SO4)、50 mM NaCl,0.1 mM EDTA,3% DMSO,含5 μM LIVY-AMC的0.01%吐温-20,和1 nM糜蛋白酶;

[0161] 50 M Tris-HCl, pH 8.0,50 mM NaCl,0.1 mM EDTA,3% DMSO,0.02%吐温-20,5 μM succ-AAPV-AMC和20 nM HNE或8 nM PPE;

[0162] 100 mM NaOAc (乙酸钠) pH 5.5,3% DMSO,1 mM TCEP (三(2-羟乙基)膦酸盐酸盐)、5 mM组织蛋白酶B (在使用之前在含20 mM TCEP的缓冲液中激活的酶储备溶液)和

[0163] 100 μM Z-FFR-AMC。

[0164] 使用下式计算抑制百分比:

\[
\left[1 - \frac{(UV_{\text{未抑制}} - UV_{\text{样品}})}{(UV_{\text{抑制}} - UV_{\text{样品}})} \right] \times 100
\]

[0165] 将非线性曲线拟合应用于抑制-浓度数据,并使用Excel XLfit软件计算50%有效浓度 (IC50)。

[0166] HCV复制子的生成

[0167] 如由Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R., Science 285(5424):110-3 (1999) 描述的,建立HCV复制子全细胞系统。该系统使发明人能够评测HCV蛋白酶化合物对HCV RNA复制的影响。简言之,使用Lohmann论文中所述的HCV株1b序列(索引号:AY238799),由Operon Technologies, Inc. (Alameda, CA)合成了HCV cDNA,然后使用标准分子生物技术在质粒pGem9zf(+) (Promega, Madison, WI)中组装全长复制子。该复制子由下列构成:(i) 融合到外壳蛋白的前12个氨基酸上的HCV 5’ UTR,(ii) 新霉素磷酸转移酶基因 (neo), (iii) 来自脑心肌炎病毒 (EMCV) 的 IRES, 和(iv) HCV NS3 至 NS5B 基因和 HCV 3’ UTR。用ScaI使质粒DNAs线性化,并在体外使用T7 MegaScript转录试剂盒 (Ambion, Austin, TX) 根据制造商的指示,合成RNA转录物。将cDNA的体外转录物转染到人肝细胞瘤细胞系Huh-7中。在可选择的标记物新霉素 (G418)的存在下,实现在组成上表达HCV复制子的细胞的选择。随时间的推移针对正链和负链RNA产生和蛋白质产生,表征所得到的细胞系。
[0168] HCV复制子FRET检测法

[0169] 开发HCV复制子FRET检测法，以监测未公开中所述的化合物对HCV病毒复制的抑制效果。在含有10%胎牛血清（FCS）（Sigma）和1 mg/ml G418（Gibco-BRL）的Dulbecco’s改良Eagle培养基（Dulbecco’s Modified Eagle Media，DMEM）（Gibco-BRL）中使在组成上表达HCV复制子的Huh-7细胞生长。在前夜（night before）将细胞接种（1.5 x 10^4个细胞/孔）在96孔组织培养无菌板中。在稀释板的含4% FCS、1: 100 青霉素/链霉素（Gibco-BRL）、1: 100 L-谷氨酰胺和5% DMSO的DMEM中，制备化合物和无化合物的对照物（在该检验中最终浓度0.5% DMSO）。向细胞中加入化合物/DMSO混合物，并在37°C下培养4天。4天后，首先针对C50读数使用阿尔玛蓝（alamar Blue）（Trek Diagnostict Systems）评估细胞的细胞毒性。通过将1/10体积的阿尔玛蓝添加到培养细胞的培养基中，测定化合物的毒性（C50）。4小时后，在530 nm激发波长和580 nm发射波长下使用Cytoperm Series 4000（Perspective Biosystems）读取来自各孔的荧光信号。然后用磷酸盐缓冲盐水（PBS）（150 μl 3次）充分漂洗各板。用25 μl含HCV蛋白酶底物的溶液检测试剂（5X细胞荧光素酶细胞培养溶液试剂（Promega #E153A），用蒸馏水稀释至1X，添加NaCl至150 mM最终浓度，FRET肽底物（如上文所检测法所述）由在100% DMSO中的2 mM储备溶液稀释至10 μM最终浓度）溶解细胞。然后将该板放入已设定至340 nm激发波长/490 nm发射波长的Cytoperm 4000仪器中，自动模式运行21个周期，并以动态模式读取该板。如对IC50测定所述进行EC50测定。

[0170] HCV复制子荧光素酶报告基因检测法

[0172] 使用下式计算抑制百分比：

%抑制 = \frac{\text{实验孔中（+化合物）平均荧光素酶信号}}{\text{DMSO对照孔中（-化合物）平均荧光素酶信号}}

[0173] 使用Xlfit绘制和分析数值，以获得EC50值。
[0175] 对于本领域技术人员显而易见的是，本公开并不限于前述说明性实施例，而且可以体现在其它具体形式中而又不偏离其实质特性。因此，预期各实施例在所有方面都被视为说明性且非限制性的，应参照所附权利要求书，而不是前述实施例，因此，在所附权利要求书等同内容的含义和范围内的所有变化都意欲包括在本文中。