wo 2013/169766 A1 || I N OAT OO0 AT A AL AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/169766 A1l

14 November 2013 (14.11.2013) WIPO | PCT
(51) International Patent Classification: (74) Agents: SLAYDEN, Bruce, W., II et al.; King & Spalding
GO6F 11/36 (2006.01) LLP, 401 Congress Ave., Suite 3200, Austin, TX 78701
(21) International Application Number: (US).
PCT/US2013/039934 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
7 May 2013 (07.05.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/643,725 7 May 2012 (07.05.2012) Us NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(71) Applicant: MICROCHIP TECHNOLOGY INCOR- TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
PORATED [US/US]; 2355 West Chandler Blvd., Chand- M, ZW.
ler, AZ 85224-6199 (US).
(84) Designated States (uniess otherwise indicated, for every
(72) Inventors: MILKS, Justin; 630 East Woodsman Place, kind of regional protection available). ARIPO (BW, GH,

Chandler, AZ 85286 (US). PERME, Thomas, Edward,
222 8. Eucalyptus Place, Chandler, AZ 85225 (US).
BALASUBRAMANIAN, Sundar; 1163 W. Bluebird Dr.,
Chandler, AZ 85286 (US). JAVAGAL, Kushala; 3625 E.
Ray Rd., Apt. 2050, Phoenix, AZ 85044 (US).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,

[Continued on next page]

(54) Title: PROCESSOR DEVICE WITH RESET CONDITION TRACE CAPABILITIES

gonerate
reset_puise

«

=

(57) Abstract: A processor device with debug capabilities has a

Figure 4

4— 400

tre_q1_clk

410 ed_sys_clk 420 tre_q2_chk

L Trace

tre_g3_clk
Q-Generator =

System Clock
Configuration

Module

tre_a4_ck

tro_data_gen_reset_aliow

trc,_eff_force_rst trc_reset_os?_pulse

440

tro_csw_reset

trc_eff_foroe_tst

l iod_sys_ck

430

tre_en

P trc_generic_reset

—
device_
runring..

mdr
-

ICD
Reset

" [~——— ic_resel_os1_pulse
Analog Unit ?

trc_csw_
esel_alio

central processing unit, debug circuitry including a trace module, a
system clock module for providing internal clock signals, and a reset
detection unit which during a debug mode prevents the system clock
module from receiving a reset signal.

WO 2013/169766 A1 |IIIWAT 00N VAT 0 A

TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, __
ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

WO 2013/169766 PCT/US2013/039934

PROCESSOR DEVICE WITH RESET CONDITION TRACE CAPABILITIES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/643,725
filed on May 7, 2012, entitled “PROCESSOR DEVICE WITH INSTRUCTION TRACE
CAPABILITIES”, which is incorporated herein in its entirety.

TECHNICAL FIELD

The present disclosure relates to processor devices, in particular microcontroller

devices with integrated debug capabilities.
BACKGROUND

Modern microprocessors and microcontrollers include circuitry that efficiently allows
analyzing a running program by means of a so-called in-circuit debugger or emulator device.
To this end, a microcontroller or microprocessor provides for internal circuitry that supports
debugging functions and a specific interface which can be for example activated by
programming multiple function pins of the device to operate as the debug interface. Such an
interface usually can be configured as a high speed serial interface to allow for fast
communication between the actual device and the external debugger or emulator. The device
itself can thus be operated in a normal operating mode which does not activate this interface
and associated pins can be used for other purposes and a debug operating mode which uses
this interface to exchange data with respective external devices, such as debuggers or
emulators that can be operated from and by an external host computer. The debuggers or
emulators can also be operated as programmers, wherein the program is transferred into the
target device via the same debug interface. Host computer, external debugger or emulator

thus forms an inexpensive analysis and debugging system.

Modern processors and microcontrollers provide for an extended set of debug
functions inside the respective device. For example, a number of breakpoints can be set
within the device to allow the device to actually run in real time which would not be possible
with an external debugger when using just a high speed serial interface and thus would
require bond-out chips and expensive debug circuitry. However, the functionality of these

internal debug circuitries is of course somewhat limited due to a limited amount of silicon

WO 2013/169766 PCT/US2013/039934

real estate and other reasons. For example, trace back functions are often not supported by
external in circuit debuggers and even more complex in circuit emulators may not sufficiently

support a trace function when in debug mode, in particular when the device executes a reset.

SUMMARY

Therefore a need exists, for an improved in circuit debug unit within a processor or
microcontroller device. For example, an instruction trace through both asynchronous and

synchronous resets is made possible according to various embodiments.

According to an embodiment, a processor device having debug capabilities, may
comprising a central processing unit, debug circuitry including a trace module, a system
clock module for providing internal clock signals, and a reset detection unit which during a

debug mode prevents the system clock module from receiving a reset signal.

According to a further embodiment, the trace module can be operable to record trace
information after a reset signal has been detected and generates a signal after recording the
trace information that resets the system clock module. According to a further embodiment,
the trace information may include a reset source information. According to a further
embodiment, the trace module may generate a trace stream including information about
executed instructions, wherein the trace stream is output through an external interface.
According to a further embodiment, the trace stream can be packet based. According to a
further embodiment, the trace packet may include information about the trigger source.
According to a further embodiment, the information can be provided conditionally, wherein
the condition can be user defined. According to a further embodiment, a reset signal can be a
synchronous reset signal or an asynchronous reset signal. According to a further
embodiment, a synchronous reset signal can be generated by a watchdog timer WDT, a
RESET instruction executed by the central processing unit, a Stack overflow/underflow reset.
According to a further embodiment, an asynchronous reset signal can be received through an

external pin of the processor device.

According to another embodiment, a method for debugging executed code within a
processor device may comprise executing code by a central processing unit (CPU); upon
determining of a reset, forwarding reset signals to internal units of the microcontroller with
the exception of a system clock module to allow further operation of a trace module; and

record trace information after reception of the reset.

WO 2013/169766 PCT/US2013/039934

According to a further embodiment of the method, the method may further comprise
resetting the system clock module after the trace information has been recorded. According
to a further embodiment of the method, the trace information may include a reset source
information. According to a further embodiment of the method, the trace module may
generate a trace stream including information about executed instructions, wherein the trace
stream is output through an external interface. According to a further embodiment of the
method, the trace stream can be packet based. According to a further embodiment of the
method, the trace packet may include information about the trigger source. According to a
further embodiment of the method, the information can be provided conditionally, wherein
the condition can be user defined. According to a further embodiment of the method, a reset
signal can be a synchronous reset signal or an asynchronous reset signal. According to a
further embodiment of the method, a synchronous reset signal can be generated by a
watchdog timer WDT, a RESET instruction executed by the central processing unit, a Stack
overflow/underflow reset. According to a further embodiment of the method, an

asynchronous reset signal can be received through an external pin of the processor device.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a block diagram of an integrated debug module according to various

embodiments;
Fig. 2 shows a hardware breakpoint block diagram of Fig. 1 in more detail;
Fig. 3 shows an event combiner block diagram of Fig. 1 in more detail;
Fig. 4 shows a block diagram for handling the trace clock;
Fig. 5 shows an exemplary trace Q-generator as used in Fig. 4;
Fig. 6 shows an exemplary ICD analog reset unit as used in Fig. 4 in more detail
Fig. 7 shows a trace block diagram of Fig. 1 in more detail;
Fig. 8 shows a typical trace signal timing diagram;
Fig. 9 shows a simplified block diagram trace sub system;

Fig. 10 shows a block diagram of a system using a microcontroller with an embedded
debug unit according to various embodiments and an external in circuit debug (ICD)

controller; and

WO 2013/169766 PCT/US2013/039934

Fig. 11 shows an exemplary timing diagram of a system clock clkin and related

quadrature signals.

Fig. 12 shows a block diagram of a system using a microcontroller with an embedded
debug unit according to various embodiments and an external in circuit debug (ICD)

controller.

DETAILED DESCRIPTION

A typical microcontroller device may have several asynchronous and synchronous
system reset sources. Even though the microcontroller unit (MCU) system stops operation
upon such a reset occurrence, according to various embodiments, an instruction trace module
within a debug unit of the device will record the reset occurrence and the source. To this end,
the various embodiments provide instruction trace through external, asynchronous and

internal synchronous device resets.

According to various embodiments, a trace system blocks the reset to the system
clock configuration module, synchronizes the reset (if asynchronous) and records the reset.

The system has therefore no timing sensitivity to the reset.

Fig. 1 shows a block diagram of an in-circuit-debug module that can be integrated
within a microcontroller according to an embodiment. However, the general concept as
described above can be implemented in other types of on-chip debug circuitry. The block
diagram shows a module that can be implemented for example in a microcontroller and may

consists of five basic blocks:
* Breakpoint Compare Logic 135
» Stop-Watch Cycle counter Logic 150
* Control and State Machine Logic 145
* Trace Logic 120
* Event Combiner logic 125

CPU 110 1s coupled with hardware breakpoint unit 135, event detection unit 140,
control logic unit 145 and background interface 155 through an internal bus. Multiplexer 160
is used to allow coupling of the debug unit with an external debugger through dedicated

debug clock and data pins 165. The control logic 145 may be coupled with one or more

WO 2013/169766 PCT/US2013/039934

external pins. Fig. 1 shows an exemplary TRGIN pin 185. Such a pin may be a dedicated
pin with no other function. However, in particular in low-pin devices, such a pin may be a
multi-function pin that allows to be assigned under program control to different peripheral
devices and therefore can perform different functions according to its programmed
assignment. For example, such a pin may be programmed by means of a configuration
register to be in addition to the trace trigger in function to act as a serial interface clock pin, a
digital I/O pin, an analog input pin, etc. As shown in Fig. 1 the control logic also provides
for a trigger out pin 190 that can be similar to pin 185 a multi-function pin. The trace module
120 is coupled with a trace stall input pin 115, and trace clock and data output pins 175. Fig.
1 also shows pulse reject filters 170 and 180 that may be configurable through control logic
145. Signal routing through such filters is not shown in Fig. 1. According to some
embodiments, breakpoint debugging is implemented such that execution is halted before the
instruction is executed, so-called “zero skid” operation. According to other debugger
embodiments this is not true and may cause problems with where code stops or “skids”,
allowing an instruction to execute before the processor is halted. External events are (by
definition) asynchronous to the instruction execution stream. As such, their operation cannot

be compared to zero skid concepts.

When an internal signal debug en = 1, the module is enabled and monitors all the
“HALT” events, generates events, performs data capture, etc. If the internal signal debug_en
= 0, all debug logic is disabled and the module is configured to consume minimum power

mode.

To make debugging less invasive, it may be useful to have a means of streaming data
off the device in real-time. The trace module 120 supports a method taking data being read
or written to a specific address and transmitting it out the Trace port. This can be described as
a Real-time watchpoint. Normal operation of the device is not interrupted when using a

watchpoint.

Data capture may be performed using the same hardware as is used for generating a
hardware breakpoint. Using a breakpoint for data capture at the same time as generating a
halt will allow both operations to occur. However, enabling data capture and data matching

at the same time may generate unexpected results, especially for breakpoint counts greater

WO 2013/169766 PCT/US2013/039934

than one. As the data capture and data compare use the same physical register, the compare

value will be updated on every capture.

Fig. 2 shows the hardware breakpoint unit 135 in more detail. Hardware breakpoints
can be configured to break on matching addresses in either program or data memory. To this
end, respective comparators 220 and 230 and decoding units 240 are provided as shown in
Fig. 2. When the breakpoint is selected to operate on data memory, the breakpoint can
additionally be qualified with data value and a mask, allowing only certain values to generate
a breakpoint event. Data breakpoints can also optionally be set to only break on read or write
cycles. In all cases, the breakpoints have a counter 210 so that the specific event must occur
N times before the breakpoint event is generated. This can be set, for example, for any value

from 1 to 256 times according to some embodiments.

The block diagram of Fig. 2 is shown for a single breakpoint. The number of
breakpoints implemented is however variable according to various embodiments, many
breakpoints may exist. Fig. 2 shows an exemplary embodiment that allows various
parameters to be programmed to define the trigger requirements for a breakpoint. According
to other embodiments, less or more of such parameters may be used. For example, the
number of breakpoint occurrences necessary to generate a breakpoint can be set by the

BPxCNT parameter in counter 210. Each breakpoint module may have identical registers.

Breakpoints are listed among the event channel definitions and can be used to start or
stop the cycle counter 150, set or reset an event combiner stage 125, start or stop trace unit

120, or take a stack snapshot.

According to one embodiment, for the breakpoint to be enabled, the bit BPEN of a
control register ICDBPxCON must be set. If this bit is cleared, all circuitry for this specific
breakpoint is disabled and no breakpoint events will be generated. The breakpoint can be
configured to only trigger an action on every N-th occurrence of the qualifying conditions.
For example, to set a breakpoint to trigger on every third occurrence, the counter 210 is set to
BPxCNT = 2. Respective control registers may be used in combination with counter 210 to

reload its value and/or monitor the current state.

Breakpoints may also be qualified based on execution context (main line code,

interrupt handler, or either), by setting respective bits, for example in an associated

WO 2013/169766 PCT/US2013/039934

configuration register. A breakpoint may then only occur when the program is executing from

a selected context.

Yet another breakpoint parameter may be used, by setting respective bits in a
configuration register, which allow to monitor the program counter (PC execution address).
Program Memory breaks are zero skid, and occur before the operation is executed. The PC

will indicate the address of the trigger instruction.

When a respective control bit is cleared, e.g.. BPAREN = ‘0, a break is triggered
when the PC equals a predefined address. When BPAREN = ;1°, a break is trigged when the

PC falls within the predefined inclusive range of addresses.

According to some embodiments, only executed instructions can generate a
breakpoint. If the PC is at an address that is not executed, the breakpoint does not trigger.

This includes:
» flow changing instructions (CALL, RETURN, etc.),
» skipped instructions (per BTFSS, BTFSC), or
« the next fetch after a PCL, FSR, or other two cycle instructions.

When another control bit field is set to 01, 10, or 11 in a control register, the
breakpoint monitors data accesses, both address and value. The three states of the associated

bits select whether read or write cycles are used to determine the breakpoint.

Data breakpoints, by necessity, cause a break at the end of instruction execution, after
data is read or written (as applicable). In all cases, the instruction runs to completion.
Accordingly, the “break™ actually occurs on the next instruction execution, and the PC will
indicate the instruction following the trigger instruction. A break may also be triggered when

both the memory address and data value qualifiers have been met.

The cycle counter 150 is a counter used to provide a stopwatch function so that user
code can be profiled. The cycle counter is controlled by respective control registers. The
counter 150 may consist of four 8-bit counter/registers. The counter 150 may be incremented
at the end of every Q-cycle of the CPU; multi-cycle instructions (e.g., GOTO) count multiple

times.

WO 2013/169766 PCT/US2013/039934

In order to allow multiple functions to be controlled by specific events, all of the
possible sources in the may be combined into one event bus. This allows the Cycle Counter
150, Trace unit 120, and Event combiners unit 125 to use the same settings to select their

actions.

An event combiner 300 as shown in Fig. 3 monitors multiple event inputs 320 and can
generate a halt or a trigger out 190 based on combinations and sequences of those inputs. An
event combiner 300 is enabled when a respective control bit is set. Disabled combiners 300
do not produce output events. Event combiners 300 are listed among the event channel
definitions and can be used to start or stop the cycle counter 150, set or reset an event
combiner stage 310, start or stop trace unit 120, or take a stack snapshot. Event combiner
stages 310 are independently enabled when respective control bits for that stage are set in
associated control registers. A stage’s current output will be reflected in an associated status

bit. Stages 310 have an implied order as shown in Figure 3, and can be combined in a number

of ways:

» a stage can be activated individually by an event,

* a stage can be activated by an event while the next lower stage is active,

* a stage can be deactivated individually by an event,

* a stage can be deactivated by an event or when the next lower stage is
deactivated.

By setting a respective control bit, only the (N+1)-th occurrence of the combined
event(s) will signal an output event. N can be set from 0 to 255. If the combined trigger
conditions are met, then the register is decremented by 1. If the combined trigger conditions
are met, an event combiner event is generated and the counter is reloaded with the preset
value. Also, any time a new count value is written into the respective control register, the
value in the counter Is reloaded. For example, to set a breakpoint to trigger on the third

occurrence, the respective counter value should be set to 2.

In addition according to some embodiments, an external signal fed to pin TRGIN 185
allows a user input to generate trace packets to be inserted into a trace stream, generate halts
and optionally trigger TRGOUT signals. When “Polarity” = 0 (Fig. 6) the trigger input is

active high and rising edges cause events. When “Polarity”= 1, the trigger input is active low

WO 2013/169766 PCT/US2013/039934

and falling edges cause events. Another control bit may be used to control the filter, for
example, to define that the input must be in the active state for a minimum time in order to be

recognized. Shorter pulses are then ignored.

The TRGIN event can be listed among the event channel definitions and can be used
to start or stop the cycle counter 150, set or reset an event combiner stage 310, start or stop
trace unit 120, or take a stack snapshot. Changes in the trigger input will generate a Trace

packet if Trace is enabled.

When an event, such as a breakpoint, occurs with an enabled trigger, a pulse on the
TRGOUT pin 195 is generated. The basic trigger output signal operation is configured by
setting respective control bits. These control bits may for example control that the Trigger
Output is asserted for approximately the duration of the trigger event. Adjacent or
overlapping events may hold the signal in the asserted state. The control bits may also
control whether the output is stretched to a minimum time period. Once the TRGOUT one-
shot is triggered, more events occurring within the timing period will be ignored. After the
one-shot times out and TRGOUT returns to zero, it may again be triggered by another event.
The one-shot is edge triggered, and will clear after a predefined time period even if the event

signal persists.

Software may cause a Trigger Out by setting a respective control bit. If the device is
awake, the bit is cleared by hardware after 1 cycle. TRGOUT may also be cleared by writing

a respective control bit, or will be cleared automatically when the device wakes up.

External, asynchronous resets typically affect the entire processor device. In order to
properly record that such an event has occurred, an instruction trace module is designed to be
un-affected by the reset without regard to the timing of the reset. The various embodiments
thus advance the on-chip debug capabilities and provides features that were previously not
available on conventional microcontroller devices. Thus high-tech debugging capabilities
usually only known from expensive dedicated in circuit debuggers can be implemented in

“normal” microcontroller or microprocessor devices.

Figure 4 shows the high level concept according to various embodiments. The system
clock configuration module 410 generates the system clock icd_sys_clk. The System clock is
used by the trace Q-generator 420 which generates the 4 phases of the trc_q_clks signals, i.e.
tre_ql_clk, trc q2 clk, trc_q3_clk, and trc_q4 clk. Fig. 11 shows an exemplary timing

WO 2013/169766 PCT/US2013/039934
10

diagram of a system clock clkin and related quadrature signals with respect to the execution
of an instruction. In this embodiment, four clocks ql, q2, g3, q4 derived from clkin are used
to execute one instruction. Trace clocks may be derived from internal clocks ql, q2, q3, q4
or may be identical these clocks. However, according to other embodiments a ditferent
central processing architecture may be implemented which may allow to execute instructions

for example, in a single cycle.

Figure 5 shows details of the schematic of the trace Q-generator 420. It can be a 4-bit
cyclic shift register, for example formed by four flip-flops 510, 520, 530, and 540 in a
conventional manner. Some examples of reset sources are: watchdog timer WDT reset,
RESET instruction executed by the central processing unit, Stack overflow/underflow reset

and master clear MCLR reset. However, other reset sources and signal may apply.

Back to Figure 4, when a generic reset occurs, the Resets Analog Unit 430 allows the
generic reset to be asserted to the entire chip, except for the System Clock Configuration
Module 410. This allows the system clock to keep running and the trace Q-generator 420 and
therefore also the trace data generator 120 can continue operating. While the microcontroller
central processing unit 110 is held in reset, the trace data generator records the reset related

trace information and then notifies the trace Q-generator that the record is done.

The generic reset condition is also synchronized using trc q2 clk signal and
trc_q4 clk signal, for example by flip-flops 450 and 460, respectively, and as the trace Q-
generator 420 stops, the Reset Analog Unit 430 is notified, for example by flip-flop 480, to
allow the System Clock Configuration Module 430 to reset.

An exemplary embodiment of the Reset Analog Unit 430 is shown in Figure 6. The
Reset Analog Unit 430 allows the system clock configuration module 410 to reset after it has
been notified to do so. At the same time when the system clock configuration module 430
resets, a one-shot pulse trc_reset osl pulse is generated to reset the synchronizer register
elements 450, 460, 480 so that the entire circuit can be re-armed for another reset occurrence
detection. As shown in Fig. 6, logic can be provided to generate the various control signals.

Other logic circuits can be used and adapted depending on the general design of the device.

This various embodiments therefore have the ability to deal with both level sensitive

and edge sensitive resets and allows the entire microcontroller system (EXCEPT the system

WO 2013/169766 PCT/US2013/039934

11

clock configuration module) to reset as soon as the reset occurs, therefore closer to native

operation even though an instruction trace is in progress.

The various embodiments ensure that a minimum pulse width duration is guaranteed
to reset the system clock configuration module, even though the module was prevented from

resetting as soon as the chip reset occurred.

The following section details the trace data interface between the device and an
external debug tool. The Trace subsystem as for example shown in Fig. 7 provides a real-time
record of the instruction execution stream that can be captured and analyzed by a debug tool.
Trace operation assumes that the debug tool has access to the source code and program

memory content, and can infer some aspects of CPU operation.

When an instruction writes to PCL (either directly or through INDx), the new PC may
be anywhere in program memory. In this case, the instruction packet is replaced by so called
full program counter (FPC) packet. A FIFO as shown in Fig. 7 can be used to match the core
data rate with the debug tool data rate (governed by TRSTALL). The FIFO is filled from the
CPU encoder, and is emptied by the data encoder, as illustrated in Fig. 7. The FIFO holds up
to 4096 instruction packets, but the effective operating size may be selected by respective
control bits. WATCH event packets are also placed into the FIFO, so the actual number of
instruction packets in-flight will usually be less. The TRCLK output, when toggling, outputs
one data word with each clock edge. The output clock rate is always linked to the CPU
instruction rate, and will change if software changes SYSCLK, or if a reset changes
SYSCLK. According to respective configuration, the output rate can always be two trace
words per instruction period. The rate can be reduced to 1-per and 1/2-per instruction,
although this will likely lead to FIFO overflow. The TRCLK output can be selected to either
be in phase with the data changes or out of phase, depending on the setting of the TRCPS
bits. The in-FIFO encoding may be different than the line encoding, so each FIFO location

may represent as many as 3 data words in the TRDAT interface.

A ftrace stall function can be implemented wherein a configuration bit may determine
whether the TRSTALL input has effect or not. For example, when control bit TRXSE = 1
and signal TRSTALL = 1, the trace FIFO will stop emptying on a payload boundary and stop
the clock. When TRSTALL (tr_stall_pin) returns to ‘0’, clocking will resume and the FIFO
will begin emptying data again. When trace is enabled and the FIFO is empty, IDLE or

WO 2013/169766 PCT/US2013/039934

12

SLEEP packets are sent according to the sleep state of the device. The FIFO can also be
forced empty and trace can be deactivated according to some embodiments. If the FIFO
becomes full, the system response may depends on a respective control setting. In any case,
the overflow state (stalled or not posting data) will persist until the FIFO is either 25% or
75% full, as selected by a respective control register. Other functions regarding a trace
implementation may be added and some functions as described may not be implemented

according to some embodiments. A typical trace signal timing diagram is shown in Fig. 8.

Trace payload packets encode the instructions that the CPU core executes and
selected data events, and also provide trace stream synchronization. According to an
embodiment, most packets may consist of 1 or 2 seven (7)-bit words, or 3 words for a FPC
packet. Generally speaking, the packets consist of a “word 1 and an optional “word 2”.
However, other formats may be used according to different embodiments. According to a
specific embodiment, the value of “word 1” identifies the packet, and implies whether or not
“word 2” exists. Packets that are synchronous to instruction execution (like EX, EXD, and
RESET) and asynchronous “Event” packets include WATCH, RESET, and TRIGGER as

described below in more detail.

Synchronous packets are emitted in the order of execution. Event packets appear in
the stream near the time of the event, but if a number of events happen simultaneously, some
reports will be delayed. In some cases, FPC is a synchronous report, but at other times it is an
event. Transport layer (TR) packets RESYNC, IDLE and END are inserted as required to
manage and identify the various states of the interface data stream. TR packets RESYNC and

IDLE may be discarded when analyzing the instruction trace.

RESYNC packets are inserted periodically as specified by respective control bits, so
that the receiver may verify that it is correctly synchronized. At times roughly corresponding
to a predefined time interval, and only if no other FPC has been sent within the interval, an
FPC will be added to the stream. This provides a check that the receiver is correctly tracking
the instruction stream. Inserted FPCs always indicate the address of the instruction that
follows. The number of words in a packet is determined by the value of packet word 1. If
RESYNC is received as a word 1 with an incorrect value for “word 2”, then the stream is out

of sync and an error should be flagged.

WO 2013/169766 PCT/US2013/039934
13

Table 1 illustrates a worst-case situation involving a 2-word packet where the 2nd
word is 0x7D, followed by a RESYNC. If the receiver is properly synchronized, received
word #3 will be a word 1, and word #4 will be a word 2, forming a complete RESYNC pair
that is shown as packet #2. Packet #3 begins with word #5, and will be correctly interpreted.

Table 1

Received word Packet
Value Type / data
% 0x71

EXD DXFL 1
2 Gn70
3 70

RESYHC 2
4 47D
& Oxi4 R 3

Table 2 shows the same data with a clock-bounce duplicating the first word and
throwing the receiver out of sync. Words #1 and #2 are received as an EXD packet with data
= 0x71 (but this is an incorrect interpretation), and words #3 and #4 appear to be a RESYNC
pair. Word #5 is taken as word 1 of a new RESYNC packet, but word #6 is not 0x7D,

revealing the out-of-sync state. Word # 6 begins a new packet.

WO 2013/169766 PCT/US2013/039934

14
Table 2
Received word Packet
Value Type { data
1 0x71
EXD GuFL 1
2 ox71
ax7D
BESYHC 2
Gx70
5 ox70 Note 2
Error SRR
& 0x74 3

Note 1: Receiving a duplicate word is typical of an imped-
ance mismatech in the clock cable.
2: it s sufficient to say that the first non-0x70 that
follows any Ox70 packet fword 1 = 7D} s
always 2 word 1 {or FPC word #3). The receiver
must immediately re-interpret word #6 as the first
word in a new packet
The first packet sent when tracing begins, or when tracing resumes after being
suspended for the debug executive, will always be an FPC. The Full Program Counter (FPC)
packet reports the absolute address of the next instruction that appears in the stream. The FPC

report in these situations:
— start of trace,
— resumption after overflow, and
— resumption after debug, simply indicates the address of the next instruction.

All other uses of FPC indicate that an instruction has executed, and in some cases
replaces the packet that would have been reported for that instruction. When the FPC
represents execution of a branch or program counter altering instructions, the value reported
i1s the branch target address. The instruction packet following the FPC represents the

execution of the instruction to which the FPC points.

The GOTO and CALL instructions assume that the least significant bits of the
program counter PC[10:0] are known to the debug environment (in the assembly code), and
only the upper 4 bits of the new PC are reported in an upper partial program counter (UPC)
packet. However, other embodiments may report more or less information. The reported

value can be 0xOF & (PCLATH >> 3), wherein PCLATH represents an implementation

WO 2013/169766

15

PCT/US2013/039934

specific register that latches the upper bits of the program counter. Since the destination of

relative branches (BRA) is known to the source code, the instruction is reported simply as

EX. A wide variety of trace payloads may be implemented. Table 3 shows an example of

different payload signals.

Table 3
o Trace Encoding Number
- e =] of 7 bit | Sent when
Mnemonic Description g Word 1 . words | TRIEN =0
(Word 3) Sent
WATCH Data trace walch point 9 ccoce 4| ddd dddd 2 Yes
FeC Fullnew PC, P = PC[14:0} 10¢ ppprP | PEP DPEP 3 1 FPC within
tmplies execution of the current instruction (PCH411]y | (PC04] RESYNC
The 2 packets are sent contiguously. 101 pppp interval
(PC3:0)
UpPC Upper Partial PC, P = PC{14:11] 110 pppp 1 No
mplies execution of the current instruction (PCH4I11]
EXD Execute insbruction, D = dala stored 111 o00d | ddd dddd 2 No
EX Execute instruction 111 0160 1 No
STALL No instruction is executed {forced o NOP) § 111 0101 1 No
PC is unchanged (Section 3183 5) 8
SKiP Mo instruction is executed (forced 1o NOP) ﬁ 111 011G 1 No
PC is incremented
OVERFLOW |FIFO has overflowed; data was lost 111 o113 | 111 o111 | 209 Yes
INT interrupt Vector 111 1000 | nnn nomn 2 Mo
Vectoring to inferrupt vector N Table 3-8
RESET CPU is being resel 113 1010 | w00 nrmn 2 Yes
PC is now equal o RSTVEC Fiours 3-4
ERROR An internal error is noted; refer to hardware 111 1010 | xix eesse 2 Yes
documentation for details. Flgure 3-4
TRIGGER TRGTR = 1 and Trigger input change 111 1011 1 Yes
SLEEP TREN = 2b1X, FIFO is emply, Sleeping 111 1196 1 Yes
RESYNC Periodic resync. g | 111 1101 111 1101 263 Yes
FPC will be sent with the same interval. &
e TREN = Zb1X, FIFO is emply g 111 1110 1 Yes
{not Sieeping, not TRSTALL) L
END TREN =2'b00 131 1111 | 111 1111 (207303 Yes
Reserved 113 001x 1
111 1001
Nate 10 All fields are sent MSB first
2 The END packet will be sent at least twice, and possibly 3 third ime s0 that TRCLK stops in the low siate.
¥ The receiver should handle OVERFLOW, RESYNC and END as 1-word packets; see the discussion in Appendix 423
Legend: « = Channel for walchpoint p = Program counter
4 = Write Data

WO 2013/169766 PCT/US2013/039934

16
Table 4 shows an actual trace example:
Table 4
Cycie instruction Packet
PC{0x} Opcode Type / data
1 123 MOVIW HIGH{2300) =x
2 124 MOVWE PCLATH BEXD & ha3
3 125 MOVIW #3 EX
4 125 CALL 200
5 upc—4
G 22060 BIFSS W7 % 4
7 2201 BRA §+4
8 FpC
G 2205 NOP (Mote 2} EX
140 2206 BRW
11 FpC 2208
1 Z220A RETLW #77
12 FpC
13 126 NOP BX
14 127 CALLW
15 Fpe 2377
16 2377 NOP BX
17 2378 GOTO 560
18 upc—g M
19 2500 NOP BX
20 2501 RETURN
21 FRC
22 128 NOP EX

HNote 1 HTRFPCE = 1, this instruction reporis FPC.
Z: The PC value for cycle B is not 15'h2205 because
PCLATH = B'h23 (from cycle 2} the Ui should flag
this error.

Changes in the trigger input will generate a Trace packet if a respective control bit is
set. If the polarity bit = 0, the event will trigger on the rising edge. If the polarity bit = 1, the
event will trigger on the falling edge. When an instruction writes to the program counter
PCL either directly or indirectly, the new PC may be anywhere in program memory. In this

case, the instruction packet is replaced by an FPC packet.

WO 2013/169766 PCT/US2013/039934

17

A FIFO i1s used to match the core data rate with the debug tool data rate (governed by
TRSTALL). The FIFO is filled from the CPU encoder, and is emptied by the data encoder, as
illustrated by Figure 6. The FIFO holds up to 4096 instruction packets, but the effective
operating size is selected by respective bits in a control register. WATCH event packets are
also placed into the FIFO, so the actual number of instruction packets in-flight will usually be

less.

The TRCLK output, when toggling, outputs one data word with each clock edge. The
output clock rate is always linked to the CPU instruction rate, and will change if software
changes SYSCLK, or if a reset changes SYSCLK. When a respective bit field in an
associated control register is set, the output rate may be always two trace words per
instruction period. The rate can be reduced to 1-per and 1/2-per instruction, although this will
likely lead to FIFO overflow according to some embodiments. The trace clock TRCLK
output can be selected to either be in phase with the data changes or out of phase, depending
on the setting of respective control bits. The in-FIFO encoding is different than the line
encoding, so each FIFO location may represent as many as 3 data words in the TRDAT

interface.

Fig. 9 shows a simplitied block diagram of the trace sub system 700. The subsystem
700 receives instruction codes from the core and WATCH event signals, and formats this
data for delivery on the TRDAT signals. The sequence controller 710 is responsible for
loading instruction and WATCH data into the FIFO. Each data packet is encoded as a single
16-bit word. During q34, the WATCH signals are sampled, and the signal of highest priority
is encoded, loaded, and reset. If more than one signal is asserted, only the highest priority
signal is loaded and the others must wait for subsequent q34 opportunities. Since report
priority is based on breakpoint number, events may be reported out of order. During q12,
data from the previous instruction is encoded and loaded (the opcode is encoded in q3, and
bus data is stable q3-q3, and all is valid at rising q1). Generally speaking, this occurs every
instruction period. For branch and call instructions, as well as interrupt cycles, nothing is
loaded during the first cycle, and the packet is encoded during the 2nd cycle (the so-called
“forced NOP”), allowing UPC and FPC to be emitted with the correct PC value.
Consequently, two WATCH packets may be loaded during a branch. SKIP and STALL are

encoded based on the current core operation.

WO 2013/169766 PCT/US2013/039934
18

The sequence controller 710 can load twice per instruction cycle, and the stream
manager 730 can unload twice per instruction cycle, requiring up to four (4) memory cycles
per instruction cycle. The FIFO controller 720 manages the data provided by the sequence
controller 710. Data is delivered in the same order, when requested by the stream manager
730. The stream manager 730 reformats the 16-bit FIFO words into the data words
transmitted on the TRDAT signals. Some packets (e.g., EX) produce a single TRDAT word
for each FIFO word, while others (e.g., FPC) produce more. As required, the transport
management packets RESYNC, IDLE and END are inserted into the stream, and the read-out
operation is paused according to the TRSTALL input. There are two (2) TRDAT words
transmitted during each instruction cycle period. The TRCLK signal will pause (stretch part

of a cycle) during a system reset (data will not be lost).

Figure 10 shows a system 800 with a microcontroller 810 according to various
embodiments coupled with a debug tool 820 operating as a trace receiver. The debug tool can
be, for example, a Real-ICE in circuit emulator manufactured by Applicant. The receiver 820
performs trace synchronization, discards all IDLE and Transport packets, and transmits
bundles of the remaining packets to a remote host 830, for example a personal computer or

work station where packet stream interpretation is performed.
» Word 1 analysis — convert packets to a 3-wordwide data bus.

» Examine doublets (RESYNC, OVERFLOW, etc.), and flag sync errors when
(a) doublets are not in consecutive words, or (b) an unimplemented word 1 code value is

scen.

* Discard IDLE and other transport packets, and stack the remaining values

into a FIFO.
» Transmit whole packets to the remote host.

When asserting TRSTALL, the receiver 820 is prepared to accept up to 6 more
TRDAT words (the equivalent of 2 consecutive FPC packets), plus the 2 words that may be
en-queued in the resynchronization pipeline. When releasing TRSTALL, packet word 1
alignment is guaranteed. From a string of IDLE packets most, or sometimes all, can be

discarded and not shipped to the remote host, to reduce bandwidth. Unimplemented opcodes

WO 2013/169766 PCT/US2013/039934
19

and FPC word 3 (7°h5x) should also be flagged as synchronization errors, and treated as 1-

word packets.

The 3rd word of FPC is encoded in the style of a single-word packet (e.g., code
7°h5x). Whether in sync or not, it may be assumed that the word following any word of, e.g.
7°h5x, is a word 1 of a new packet. For the purpose of tracking word 1, OVERFLOW,
RESYNC, SLEEP and END packets should be treated as 1-word packets. When 7°h7D is
treated as a 1-word packet, the following packet will then always be a word 1 value, even if it
is another 7°’h7D (the paired RESYNC word). Word 1-aligned (pseudo) data is passed to the
doublet analysis, where synchronization failure is recognized when two RESYNC do not
appear contiguously in the stream. Likewise, OVERFLOW (7°h77) can appear when the
receiver is out of sync, and must be accurately interpreted even if the 2nd word does not
match. This could also flag a synchronization error. Similar reasoning can be applied to
SLEEP and END packets since, if the receiver is out of sync, only one 7’h7C or 7’h7F might
appear at the end, and it would be unsuitable for the receiver to hang while waiting for a
second value. At the other extreme, three identical words might appear, and should not

confuse the receiver either.

For complete analysis, host 830 must compare the trace data to the original source
code used to program the microprocessor. For most instructions, the trace data declares that
execution occurred, but the operational details are not included. When branches produce only
EX packets (TRFPCB = 0), the branch destination can only be determined by examining the
source code. Similarly, according to a specific embodiment, writing to PCLATH emits only
partial data, and requires source knowledge to complete the evaluation. Depending on the
operation, STALL packets may precede or follow the affected instruction. STALL packets
may be viewed as a suggestion that a non-typical operation has taken place (e.g., file select
register (FSR) writing to non-volatile memory), with a highlighted notation on the user’s
display. WATCH reports may lag the triggering instruction by many packets. Densely
populated watches may actually be lost if the same watch triggers before read-out occurs.
Since watchpoints identify only the data address, trace analysis must be able to reconstruction
data access pointer values, whether from direct-addressing modes (requiring knowledge of
BSR and the opcode) or from indirect modes (requiring knowledge of FSRs). Watch data is

always from the most-recent occurrence of the watch event. Beware that some FPC packets

WO 2013/169766 PCT/US2013/039934
20

imply that instructions have executed (e.g., RETURN instructions), but other instances are

simply informative.

Fig. 12 shows a typical debugging/programming system 500 with a host such as a
personal computer running a development program and being connected, for example via a
USB interface with an external debugger/programming unit 520. The external debugger
programming unit 520 provides for a dedicated interface which may supply a power supply
voltage generated within the debugger/programmer 520. However, other embodiments may
supply the supply voltage via a dedicated power source or the target system may be self
powered. The actual debug/programming interface may be provided by a synchronous serial
interface with a unidirectional clock signal ICD¢ix provided by the debugger/programming
unit 520 and a bidirectional data line ICDp,,. Thus, at a minimum three connection lines,
ICDcrk, ICDpaa. and reference potential (GND) may be used to couple the
debugger/programming unit 520 with the target system 510 which as a minimum may be a
microcontroller with a debugging/programming interface according to various embodiments

as described above.

Such a system allows a user to program the debugging program running on the host to
set various breakpoints having conditions as explained above and optionally receive trace
information through additional connection lines while the program is executing in real time.
While the debugging software keeps track of the various breakpoints with respect to their
position in the source code, the debugger/programmer 520 communicates the breakpoint
information to the target device which sets the respective breakpoints and configures its
associated registers. Also, setting and configuration of the trace capabilities are
communicated by the debugger/programmer 520 to the target device 510. For example, a
specific breakpoint being triggered by a match of a data value stored in memory may be set.
A user then starts execution of the software of the target device 510 through the debugger
software running on the host PC 530. The execution of the target software is only stopped
when a breakpoint is detected. However, trace information may be forwarded continuously
during execution of the target program. The host computer 530 can evaluate this trace data
and make it available in either text form or using a graphical display. As disclosed above, a
reset event can also be fully traced as the trace subsystem is still clocked according to various

embodiments.

WO 2013/169766 PCT/US2013/039934
21

The present embodiments allow for a better analysis of a trace stream by
implementing the features as discussed above. The various embodiments therefore advance
the state of the art in on-chip debug capabilities, and will allow to bring high tech debugging

capabilities to more, different users.

WO 2013/169766 PCT/US2013/039934
22

CLAIMS

WHAT IS CLAIMED IS:

1. A processor device having debug capabilities, comprising:

a central processing unit;

debug circuitry including a trace module;

a system clock module for providing internal clock signals;

a reset detection unit which during a debug mode prevents the system clock module from

receiving a reset signal.

2. The processor device according to claim 1, wherein the trace module is operable to record
trace information after a reset signal has been detected and generates a signal after recording

said trace information that resets the system clock module.

3. The processor device according to claim 2, wherein the trace information includes a reset

source information.

4. The processor device according to claim 1, wherein the trace module generates a trace
stream including information about executed instructions, wherein the trace stream is output
through an external interface.

5. The processor device according to claim 4, wherein the trace stream is packet based.

6. The processor device according to claim 5, wherein the trace packet includes information

about the trigger source.

7. The processor device according to claim 6, wherein the information is provided

conditionally, wherein the condition can be user defined.

8. The processor device according to claim 1, wherein a reset signal can be a synchronous

reset signal or an asynchronous reset signal.

WO 2013/169766 PCT/US2013/039934
23

9. The processor device according to claim 8, wherein a synchronous reset signal is generated
by a watchdog timer WDT, a RESET instruction executed by the central processing unit, a

Stack overtlow/underflow reset.

10. The processor device according to claim 8, wherein an asynchronous reset signal is

received through an external pin of the processor device.

11. A method for debugging executed code within a processor device, comprising:

executing code by a central processing unit (CPU);

upon determining of a reset, forwarding reset signals to internal units of the microcontroller
with the exception of a system clock module to allow further operation of a trace module;

record trace information after reception of said reset.

12. The method according to claim 11, further comprising resetting said system clock module

after said trace information has been recorded.

13. The method according to claim 12, wherein the trace information includes a reset source

information.

14. The method according to claim 11, wherein the trace module generates a trace stream
including information about executed instructions, wherein the trace stream is output through
an external interface.

15. The method according to claim 14, wherein the trace stream is packet based.

16. The method according to claim 15, wherein the trace packet includes information about

the trigger source.

17. The method according to claim 16, wherein the information is provided conditionally,

wherein the condition can be user defined.

WO 2013/169766 PCT/US2013/039934
24

18. The method according to claim 11, wherein a reset signal can be a synchronous reset

signal or an asynchronous reset signal.

19. The method according to claim 18, wherein a synchronous reset signal is generated by a
watchdog timer WDT, a RESET instruction executed by the central processing unit, a Stack

overflow/underflow reset.

20. The method according to claim 18, wherein an asynchronous reset signal is received

through an external pin of the processor device.

WO 2013/169766

PCT/US2013/039934

1/10
t H
| 120 |~
; Trace I ; b
Pulse Reject [{
Filters | |
! i
One Shot ; Event Combiners i |
! 125 |
[- |
110 ! ? |
| ; Hardware {
CPU P Bleakpoints i
f 135 |
| L T i
| |
| i
| @] Event Detection |-e—d |
| 140 |
| |
| %
| mmm——- |
. Control Logic
Pulse Reject | |
180 Filters - ! e §
K% I s
@“{ s ' g
a:mam ; E
i I 145
% i
|
|
| Cycle Counter
| 150
!
l
§ > Background
Pulse Heject Interface
170 Filters : ‘ 155

I

ied_enberid_vd module

Figure 1

PCT/US2013/039934

WO 2013/169766

2/10

Z ainbi4

DR IE TS0
wpneg ain o %

wasls aoey oy ‘Iﬂlsi.wlulnl NIHOLA

I Anmﬂu”| NarHeE

g

A3 s

B
MIdWD

OPNJ

. pgpol s
- i g
b 1800 E
oong | C T
T —lahasew S 4 m e
5 sum W:llllnl
=i pead D, lodmods - e shm”op
\ 0oec
ove
geysue g degy
SADEY I
ioptiuvds q
—_— Opilvag To-iJoi sppe
o oe o g
.| N3uvds rallrifod

PCT/US2013/039934

WO 2013/169766

3/10

=] 1aBBuy
el e 1 - ,
| _ e /Y
g ey SBUIgWoT A3 e \\ K% P Mm £ =55y
oy o 4 5 F
T ey oo
_ g .
‘ L] _ xx&\,. w»ﬁ\\ k& »
» » 7 i -
-] < e
_ _ " / mm oy moumag
& \u e f
\ﬂ 78 3Beig smuiquiog wang P W\a 7 s Bopmem
— ST
\ r—————————F—-——===4-—= >4 \%,a\ p mogapun
h _ A Sy S S
] — A R&.\‘X E e, A
| NZoHISHos —]) AT
_ ML - HOLIBNG
F %
! e Mll ;i;é.,xmwhm e . u%\ 4 L\\x}. = B
v i, o
! HILSED ouatd er P03 W0 Al S T
_ paHeTas T e e xw\? P = R ——
' L o F i) ,4 e o -)
| fwlm||||‘ o s Py Iy &\» e o
1 o : ; T x -
T flnm;iz # P ,\s.xxx o -
3 w M& %X ,.LS kxye\k fzf.f ‘
ﬂ‘ " y wmw bl w&.‘,,.%x,s%v& ;T\ -~ T, -
4315%03 e e ™~
_ WEI5%03 N g
0Lg Tﬁmﬁm%@&w&& —o | =
llllllllllllllllllll -l

WO 2013/169766

PCT/US2013/039934

4/10 A— 400

trc_q1_clk
410 icd_sys_clk 420 trc_qg2_clk
- Trace
System Clock Q-Generator trc_q3_clk
Configuration trc_g4_clk
e REamm
Module
gl R eset
trc_data_gen_reset_allow
trc_eff_force_rst trc_reset_os1_puise
440
trc_csw_reset
I
DReset Q D Reset QHk
> >
Q Q
k K trc_qgen_state
450 460
tq2 tq4
470 s 480
D Reset Q
trc_eff_force_rst tre_q_state ' >
Q
icd_sys_clk

trc_en

—P

generate_
reset_pulse

S

device_

running_
mdr

—
trc_csw_
reset_aliow

__._._>

430 P trc_generic_reset
ICD
Reset . — trc_reset_os1_pulse
Analog Unit

Figure 4

WO 2013/169766 PCT/US2013/039934

5’ 1 0 a— 420
trc_active_qggen_run
530 540
L 510N | 520 ! 3\ [540~

1 D Qre 1 — D Q 1 D Q] — D Q
TRC TRC TRC TRC
>Q1 - P Q2__ P> Q3_ P Q4__
Set Q Reset Q Reset Q Reset Q

\

icd_sys_clk
tre_eff_force_rst

Figure 5

generate_ A— 430
reset_pulse
610 615 trc_generic_reset
device_ ’)
running_ 605 D Q =
mdr
y A P
Reset Q
trc_eff_force_rst

= 640
620 trc_csw_reset
trc_en 62 5 635 j>

dela
trc_csw_ y l 660 trc_reset_os1_pulse
reset_allow 630 650 655 D Q

645 —D Ql— [—>
>__> Resat-‘C7]

Reset -6 6 80

665 670 [—D——

delay

Figure 6

WO 2013/169766 PCT/US2013/039934

| ks tr_ci |
| |
| |
s s ga aa TROLK
| M| FIFO | o L~
do w70 | | DATA - -——— LINE |
CPU EXTRACTOR!| some satus | ENCODERY
M‘*:m ENCODER [*| DRIVER | '
A
i : \\‘ | /
opu_sial |
: Control Logic
TRETSLL
Ko

Note 1: ©_olk is synchronous to g clock.

Figure 7

PC M am X e W s s X s W aen X sm ¥ z

E TS T Ll G Gt r S X~
300 o X = X=X = X
e /TN /TN L
FacePoon| ED CHCRCI EI CIED CH CD CD D €D (

mﬁ&ﬂ;@{ X X X?&Xm;‘é?&X?&hX?%XKhX?%X?F&X%&meMhXYFh)Q

Figure 8

WO 2013/169766 PCT/US2013/039934

7110

710

730

m:q TRCLK TRSTALL

Figure 9

WO 2013/169766 PCT/US2013/039934

810

820

Host (PC)

830

Figure 10

WO 2013/169766 PCT/US2013/039934

9/10
Ly '
423 ck / \
a3_ok ;
ek —;% L :\mw
sok |\ S R
o |

Figure 11

WO 2013/169766

PCT/US2013/039934

10/10

Microcontroller with
Debug/Programming — 510
interface

L] 1]

ICDpaa OPCtk Vg Vi

In Circuit Debugger/
Programmer

520
I usSB

Host (PC) \

530

Figure 12

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/039934

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/36
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

the whole document

A abstract
paragraphs [0034],
[0065]

figures 3,4

[0035],

20 November 2008 (2008-11-20)
abstract

paragraphs [0029] - [0033]
figures 6-9

[0055] -

X US 2004/153814 Al (SWOBODA GARY L [US] ET 1-20
AL) 5 August 2004 (2004-08-05)

X US 2004/103271 Al (AGARWALA MANISHA [US] 1,11
ET AL) 27 May 2004 (2004-05-27)

2-10,
12-20

A US 2008/288808 Al (MOYER WILLIAM C [US]) 1-20

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 July 2013

Date of mailing of the international search report

12/07/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Sabbah, Yaniv

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/039934
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004153814 Al 05-08-2004 NONE
US 2004103271 Al 27-05-2004 US 2004103271 Al 27-05-2004
US 2007055855 Al 08-03-2007
US 2007255935 Al 01-11-2007

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

