

República Federativa do Brasil Ministério do Desenvolvimento, Indústria e do Comércio Exterior Instituto Nacional da Propriedade Industrial.

(21) PI 1004089-7 A2

(22) Data de Depósito: 07/10/2010 **(43) Data da Publicação: 13/02/2013**

(RPI 2197)

(51) Int.Cl.: G03G 9/08

(54) Título: COMPOSIÇÕES DE TONER

(30) Prioridade Unionista: 08/10/2009 US 12/575,718

(73) Titular(es): Xerox Corporation

(72) Inventor(es): Daniel W. Asarese, Grazyna E. Kmiecik-Lawrynowicz, Maura A. Sweeney, Robert D. Bayley, Samir Kumar, Siddhesh Pawar (57) Resumo: COMPOSIÇÕES DE TONER. A presente invenção refere-se a toneres e métodos para sua produção. Nas concretizações, o toner pode incluir uma configuração de núcleo/invólucro, com uma resina não-reticulada e uma resina reticulada no núcleo, com uma segunda resina não-reticulada no invólucro, pigmento/pigmentos e uma cera que possui ambos carbonos ramificados e lineares.

Relatório Descritivo da Patente de Invenção para "COMPOSI-ÇÕES DE TONER".

ANTECEDENTES

5

10

15

20

25

30

A presente invenção se refere a toneres e processos úteis na provisão de toneres adequados para aparelhos eletrostatográficos, incluindo aparelhos xerográficos tais como aparelhos de imagem-em-imagem digital, e aparelhos similares.

Numerosos processos estão dentro da competência daquele técnico no assunto para a preparação de toneres. A agregação de emulsão (EA) um tal método. Esses toneres estão dentro da competência daqueles técnicos no assunto e toneres podem ser formados por agregação de um corante com um polímero de látex formado por polimerização de emulsão.

Alguns toneres de EA de alto brilho usam resinas que possuem uma configuração de núcleo-invólucro, com uma resina de temperatura de transição do vidro inferior (Tg) no núcleo e uma resina de Tg mais alta no invólucro. Tais toneres podem incluir ceras e podem ser produzidos com agentes de agregação baseados em alumínio. Processos para produção de tais toneres podem utilizar agentes sequestrantes para remover íons de alumínio e reticulação iônica inferior, aumentando, desse modo, o brilho. Uma emissão com esses toneres é que eles podem ser propensos a bloquear as emissões e podem ter muitas protrusões de cera na superfície.

Métodos aperfeiçoados para produção de toner, que diminuem o tempo de produção e permitem excelente controle do carregamento de partículas de toner, permanecem desejáveis.

SUMÁRIO

A presente descrição proporciona formulações de toner que podem ser adequadas, em concretizações, para impressoras de monocromo de Desenvolvimento de Componente Único (SCD). Os toneres da presente descrição podem possuir desempenho de proporção de offset quente e fusão e densidade ótica mais alta das imagens impressas. Os processos para produção de tais toneres são também providos.

Nas concretizações, um toner da presente revelação pode incluir

um núcleo e um invólucro, no qual o núcleo inclui uma resina incluindo um primeiro polímero não-reticulado em combinação com um polímero reticulado, pelo menos uma cera de parafina modificada que possui carbonos ramificados em combinação com carbonos lineares, e um corante opcional, no qual o invólucro inclui um segundo polímero não-reticulado presente em uma quantidade de cerca de 20 porcento por peso do toner a cerca de 40 porcento por peso do toner, e no qual os carbonos ramificados da pelo menos uma cera de parafina modificada estão presentes em uma quantidade de cerca de 1 % a cerca de 20 % da cera, e têm um peso molecular médio de número de cerca de 520 a cerca de 80% a cerca de 99% da cera, e têm um peso molecular médio de número de cerca de 505 a cerca de 530.

5

10

15

20

25

30

Em outras concretizações, um toner da presente descrição pode incluir um núcleo e um invólucro, o núcleo incluindo um primeiro polímero não-reticulado, tais como estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, em combinação com um polímero reticulado, pelo menos uma cera de parafina modificada que possui carbonos ramificados em combinação com carbonos lineares, e um corante opcional, no qual o invólucro inclui um segundo polímero não-reticulado, tais como estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, presentes em uma quantidade de cerca de 26 porcento por peso do toner a cerca de 36 porcento por peso do toner, no qual os carbonos ramificados estão presentes em uma quantidade de cerca de 1% a cerca de 20% da cera, e têm um peso molecular médio de número de cerca de 520 a cerca de 600, e os carbonos lineares estão presentes em uma quantidade de cerca de 80% a cerca de 99% da cera, e têm um peso molecular médio de número de cerca de 505 a cerca de 530, e no qual partículas incluindo o toner possuem uma circularidade de cerca de 0.950 a cerca de 0,998.

Um processo da presente descrição pode incluir, nas concretizações, contactar uma emulsão incluindo um primeiro polímero não-reticulado

em combinação com um polímero reticulado, pelo menos uma cera de parafina modificada que possui carbonos ramificados em combinação com carbonos lineares, e um corante opcional; agregação das partículas por contato
das partículas com de cerca de 0,1 partes por centena a cerca de 0,25 partes por centena de um agente de agregação para formar partículas agregadas; formação de um invólucro sobre as partículas agregadas por contato
das partículas agregadas com uma emulsão incluindo um segundo polímero
não-reticulado; e recuperação das partículas de toner, no qual as partículas
de toner possuem uma circularidade de cerca de 0,900 a cerca de 0,999.

BREVE DESCRIÇÃO DOS DESENHOS

As figuras 1A-1D são fotografias de microscópio de elétron de varredura (SEM) de partículas que compõem um polímero de látex produzido de acordo com a presente descrição;

е

5

10

15

20

25

30

as figuras 2A-2D são fotografias de microscópio de elétron de varredura (SEM) de toneres produzidos de acordo com a presente descrição.

DESCRIÇÃO DETALHADA DAS CONCRETIZAÇÕES

A presente descrição proporciona toneres e processos para a preparação de partículas de toner. Nas concretizações, os toneres da presente descrição podem ser preparados por combinação de um polímero de látex, uma cera, um corante opcional, e outros aditivos opcionais. Enquanto o polímero de látex pode ser preparado por qualquer método dentro da competência daquele técnico no assunto, nas concretizações o polímero de látex pode ser preparado por métodos de polimerização de emulsão, incluindo polimerização de emulsão semicontínua, e o toner pode incluir toneres de agregação de emulsão. A agregação de emulsão envolve agregação de ambas partículas de látex de submícron e pigmento em partículas de tamanho de toner, onde o crescimento no tamanho de partícula é, por exemplo, nas concretizações, de cerca de 0,1 mícrons a cerca de 15 mícrons.

<u>Resina</u>

Qualquer monômero adequado para preparação de um látex pa-

ra uso em um toner pode ser utilizado. Conforme notado acima, nas concretizações o toner pode ser produzido por agregação de emulsão. Monômeros adequados úteis na formação de uma emulsão de polímero de látex e, desse modo, as partículas de látex resultantes na emulsão de látex, incluem, mas não são limitadas a, estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, e similares.

5

10

15

20

25

30

Nas concretizações, o polímero de látex pode incluir pelo menos um polímero. Nas concretizações, pelo menos um pode ser de cerca de um a cerca de vinte e, em concretizações, de cerca de três a cerca de dez. Polímeros exemplares incluem estireno acrilatos, estireno butadienos, estireno metacrilatos, e, mais especificamente, poli(estireno alquil acrilato), poli(estireno 1,3-dieno), poli(estireno alquil metacrilato), poli(estireno alquil acrilato-ácido acrílico), poli(estireno-1,3-dieno ácido acrílico), poli(estireno alquil metacrilato-ácido acrílico), poli(alquil metacrilato alquil acrilato), poli(alquil metacrilato aril acrilato), poli(aril metacrilato alquil acrilato), poli(alquil metacrilato ácido acrílico), poli(estireno alquil acrilato acrilonitrila ácido acrílico). poli(estireno 1,3-dieno-acrilonitrila ácido acrílico), poli(alquil acrilato acrilonitrila ácido acrílico), poli(estireno butadieno), poli(metilestireno butadieno). poli(metil metacrilato butadieno), poli(etil metacrilato butadieno), poli(propil metacrilato butadieno) poli(butil metacrilato butadieno), poli(metil acrilato butadieno), poli(etil acrilato butadieno), poli(propil acrilato butadieno), poli(butil acrilato butadieno), poli(estireno isopreno), poli(metilestireno isopreno), poli(metil metacrilato isopreno), poli(etil metacrilato isopreno), poli(propil metacrilato isopreno), poli(butil metacrilato isopreno), poli(metil acrilato isopreno. poli(etil acrilato isopreno), poli(propil acrilato isopreno), poli(butil acrilato isopreno), poli(estireno propil acrilato), poli(estireno butil acrilato), poli(estireno butadieno-ácido acrílico), poli(estireno-butadieno ácido metacrílico), poli(estireno butadieno acrilonitrila-ácido acrílico), poli(estireno butil acrilatoácido acrílico), poli(estireno butil acrilato-ácido metacrílico), poli(estireno butil acrilato acrilonitrila), poli(estireno butil acrilato acrilonitrila-ácido acrílico), poli(estireno butadieno), poli(estireno isopreno), poli(estireno butil metacrilato),

poli(estireno butil acrilato-ácido acrílico), poli(estireno butil metacrilato-ácido acrílico), poli(butil metacrilato butil acrilato), poli(butil metacrilato ácido acrílico), poli(acrilonitrila butil acrilato-ácido acrílico), e combinações destes. Os polímeros podem ser copolímeros de bloco, aleatórios ou alternantes.

5

Em adição, resinas de poliéster que podem ser usadas incluem aquelas obtidas a partir dos produtos de reação de bisfenol A e óxido de propileno ou carbonato de propileno, bem como os poliésteres obtidos pela reação daqueles produtos de reação com ácido fumárico, e resinas de poliéster ramificadas resultantes da reação de dimetiltereftalato com 1,3-butanodiol, 1,2-propanodiol, e pentaeritritol.

10

Nas concretizações, um poli (estireno-butil acrilato) pode ser utilizado como o polímero de látex. A temperatura de transição do vidro deste látex, que nas concretizações pode ser usada para formar um toner da presente revelação, pode ser de cerca de 35°C a cerca de 75°C, nas concretizações de cerca de 40°C a cerca de 70°C.

15

Nas concretizações, o látex pode ser preparado em uma fase aquosa contendo um surfactante ou cossurfactante. Surfactantes que podem ser utilizados com o polímero para formar uma dispersão de látex podem ser surfactantes iônicos ou não-iônicos em uma quantidade para proporcionar uma dispersão de cerca de 0,01 a cerca de 15 peso porcento de sólidos, em concretizações de cerca de 0,1 a cerca de 10 peso porcento de sólidos.

20

Os surfactantes aniônicos que podem ser utilizados incluem sulfatos e sulfonatos, dodecilsulfato de sódio (SDS), sódio dodecilbenzeno sulfonato, dodecilnaftaleno sulfato de sódio, dialquil benzenoalquil sulfatos e sulfonatos, ácidos, tais como ácido abiético, disponível de Aldrich, NEO-GEN®, NEOGEN SC®, obtido de Daiichi Kogyo Seiynku Co., Ltd, DOW-FLAX® obtido de Dow Chemical, combinações destes, e similares.

30

25

Exemplos de surfactantes catiônicos incluem, mas não estão limitados a, amônios, por exemplo, alquilbenzil dimetil cloreto de amônio, dialquil benzenoalquil cloreto de amônio, lauril trimetil cloreto de amônio, alquilbenzil metil cloreto de amônio, alquil benzil dimetil brometo de amônio, cloreto de benzalcônio, C12, C15, C17 trimetil brometos de amônio, combi-

nações destes, e similares. Outros surfactantes catiônicos incluem cetil brometo de piridínio, sais de haleto de polioxietilalquilaminas quaternizadas, dodecilbenzil trietil cloreto de amônio, MIRAPOL e ALKAQUAT disponível de Alkaril Chemical Company, SANISOL (cloreto de benzalcônio), disponível de Kao Chemicals, combinações destes, e similares. Em concretizações, um surfactante catiônico adequado inclui SANISOL B 50, disponível de Kao Corp., que é principalmente um benzil dimetil cloreto de amônio.

Exemplos de surfactantes não-iônicos incluem, mas não estão limitados a, ácidos e ésteres, por exemplo, álcool polivinílico, ácido poliacrílico, metalose, metil celulose, etil celulose, propil celulose, hidroxil etil celulose, carbóxi metil celulose, cetil éter de propoxietileno, lauril éter de polioxietileno, octil éter de polioxietileno, octilfenil éter de polioxietileno, oleil éter de polioxietileno, sorbitan monolaurato de polioxietileno, estearil éter de polioxietileno, nonilfenil éter de polioxietileno, dialquilfenóxi poli(etileno-óxi) etanol, combinações destes, e similares. Em concretizações, surfactantes comercialmente disponíveis de Rhone Poulenc, tais como IGEPAL CA 210[®], IGEPAL CA 520[®], IGEPAL CA 720[®], IGEPAL CA 890[®], IGEPAL CO 720[®], IGEPAL CO 290[®], IGEPAL CO 210[®], ANTAROX 890[®] e ANTAROX 897[®], podem ser utilizados.

A escolha de surfactantes particulares ou combinações destes, bem como as quantidades de cada a serem usadas, estão dentro da competência daqueles versados na técnica.

<u>Iniciadores</u>

5

10

15

20

25

30

Nas concretizações, iniciadores podem ser adicionados para formação do polímero de látex. Exemplos de iniciadores adequados incluem iniciadores solúveis em água, tais como amônio persulfato, sódio persulfato, e potássio persulfato, e iniciadores solúveis orgânicos, incluindo peróxidos e compostos azo, incluindo vazo peróxidos, tais como VAZO 64[®], 2-metil 2,2'-azobis propanonitrila, VAZO 88[®], 2,2'-azobisisobutiramida de-hidrato, e combinações destes. Outros iniciadores solúveis em água que podem ser utilizados incluem compostos de azoamidina, por exemplo, 2,2' azobis (2-metil-N-fenilpropionamidina) di-hidrocloreto, 2,2'-azobis[N-(clorofenil)-2-

metilpropionamidina]-di-hidrocloreto, 2,2,'-azobis[N-(hidroxofenil)-2-metilpropionamidina]di-hidrocloreto, 2,2,'-azobis[N-(4-amino fenil)-2metilpropionamidina]tetra-hidrocloreto. 2,2,'-azobis[2 metil-N-(fenilmetil)propionamidina]di-hidrocloreto, 2,2'-azobis[2-metil N-2propenilpropionamidinaldi-hidrocloreto, 2,2' azobis (N-(2-hidróxi-etil)2metilpropionamidina] di-hidrocloreto, 2,2' azobis [2(5-metil-2-imidazolin-2il)propano] di-hidrocloreto, 2,2' azobis [2(2-imidazolin-2-il)propano] dihidrocloreto, 2,2' azobis [2(4,5,6,7-tetra-hidro 1H 1,3-diazepin-2-il)propano] di-hidrocloreto, 2.2' azobis [2(5-hidróxi-3,4,5,6-tetra-hidropirimidin-2il)propano] di-hidrocloreto, 2,2' azobis [2[1(2-hidroxietil)2-imidazolin 2il]propano) di-hidrocloreto, combinações destes, e similares.

Iniciadores podem ser adicionados em quantidades adequadas, tais como de cerca de 0,1 a cerca de 8 peso porcento dos monômeros, e, nas concretizações, de cerca de 0,2 a cerca de 5 peso porcento dos monômeros.

Nas concretizações, agentes de transferência de cadeia podem também serem utilizados na formação do polímero de látex. Agentes de transferência de cadeia incluem dodecano tiol, octano tiol, tetrabrometo de carbono, combinações destes, e similares, em quantidades de cerca de 0,1 a cerca de 10 porcento e, em concretizações, de cerca de 0,2 a cerca de 5 porcento por peso de monômeros, para controlar as propriedades de peso molecular do polímero de látex quando polimerização de emulsão é conduzida de acordo com a presente descrição.

Látex de Gel

5

10

15

20

25

30

Em concretizações, um látex de gel pode ser adicionado a resina de látex não-reticulada suspensa no surfactante. Conforme aqui usado um látex de gel pode se referir a, nas concretizações, uma resina reticulada ou polímero, ou misturas destes, ou uma resina não-reticulada conforme descrita acima, que foi submetida à reticulação.

O látex de gel pode incluir partículas de resina reticuladas de submícron tendo um tamanho de cerca de 10 a cerca de 200 nanômetros em diâmetro médio de volume, em concretizações, de cerca de 20 a 100 nanômetros em diâmetro médio de volume. O látex de gel pode ser suspenso em uma fase aquosa de água contendo um surfactante, no qual o surfactante pode estar em uma quantidade de cerca de 0,5 a cerca de 5 porcento por peso de sólidos total, ou de cerca de 0,7 a cerca de 2 porcento por peso de sólidos total.

5

10

15

20

25

A resina reticulada pode ser um polímero reticulado tais como reticulados estireno acrilatos, estireno butadienos, e/ou estireno metacrilatos. Em particular, resinas reticuladas exemplares são reticulados poli(estireno alquil acrilato), poli(estireno-butadieno), poli(estireno isopreno), poli(estireno alquil metacrilato), poli(estireno alquil metacrilato), poli(estireno alquil acrilato-ácido acrílico), poli(estireno butadieno-ácido acrílico), poli(estireno isopreno-ácido acrílico), poli(estireno alquil metacrilato-ácido acrílico), poli(alquil metacrilato aril acrilato), poli(aril metacrilato alquil acrilato), poli(alquil metacrilato-ácido acrílico), poli(estireno alquil acrilato), poli(alquil metracrilato-ácido acrílico), poli(estireno alquil acrilato acrilonitrila ácido acrílico), reticulado poli(alquil acrilato acrilonitrila-ácido acrílico), e misturas destes.

Um reticulador, tal como monômeros de divinil benzeno ou divinil aromático, ou acrilato de divinila ou metacrilato, pode ser usado na resina reticulada. O reticulador pode estar presente em uma quantidade de cerca de 0,01 a cerca de 25 porcento por peso da resina reticulada, ou de cerca de 0,5 a cerca de 15 porcento por peso da resina reticulada.

As partículas de resina reticulada podem estar presentes em uma quantidade de cerca de 1 a cerca de 20 porcento por peso do toner, em concretizações, de cerca de 4 a cerca de 15 porcento por peso do toner, em concretizações, de cerca de 5 a cerca de 14 porcento por peso do toner.

Em concretizações, a resina utilizada para formar o toner pode ser uma mistura de uma resina de gel e uma resina não-reticulada.

Monômeros Funcionais

Nas concretizações, pode ser vantajoso incluir um monômero funcional quando se forma um polímero de látex e as partículas que compõem o polímero. Monômeros funcionais adequados incluem monômeros tendo funcionalidade de ácido carboxílico. Tais monômeros funcionais po-

dem ser da seguinte fórmula (I):

$$H_2C = C - C - O - R2 - C - O - R3 - C - OH$$

onde RI é hidrogênio ou um grupo metila; R2 e R3 são independentemente selecionados de grupos alquila contendo de cerca de 1 a cerca de 12 átomos de carbono ou um grupo fenila; n é de cerca de 0 a cerca de 20, nas concretizações, de cerca de 1 a cerca de 10. Exemplos de tais monômeros funcionais incluem beta acrilato de carboxietila(p-CEA), poli(2-carboxietil) acrilato, metacrilato de 2-carboxietila, combinações destes, e similares. Outros monômeros funcionais que podem ser utilizados incluem, por exemplo, ácido acrílico e seus derivados.

Nas concretizações, o monômero funcional tendo funcionalidade de ácido carboxílico pode também conter uma pequena quantidade de íons metálicos, tais como sódio, potássio e/ou cálcio, para alcançar melhores resultados de polimerização de emulsão. Os íons metálicos podem estar presentes em uma quantidade de cerca de 0,001 a cerca de 10 porcento por peso do monômero funcional tendo funcionalidade de ácido carboxílico, nas concretizações, de cerca de 0,5 a cerca de 5 porcento por peso do monômero funcionalidade de ácido carboxílico.

Onde presente, o monômero funcional pode ser adicionada em quantidades de cerca de 0,01 a cerca de 5 porcento por peso do toner, nas concretizações, de cerca de 0,05 a cerca de 2 porcento por peso do toner.

Monômeros funcionais adicionais que podem ser utilizados nos processos de formulação de toner incluem bases tais como hidróxidos de metal, incluindo hidróxido de sódio, hidróxido de potássio, hidróxido de amônia, e, opcionalmente, combinações destes. Também úteis como um monômero funcional são carbonatos, incluindo carbonato de sódio, bicarbonato de sódio, carbonato de cálcio, carbonato de potássio, carbonato de amônia, combinações destes, e similares. Em outras concretizações, um monômero funcional pode incluir uma composição contendo silicato de sódio dissolvido em hidróxido de sódio.

5

10

15

20

25

Condições de Reação

5

10

15

20

25

30

No processo de polimerização de emulsão, os reagentes podem ser adicionados a um reator adequado, tal como um vaso de mistura. A quantidade apropriada de pelo menos dois monômeros, nas concretizações, de cerca de dois a cerca de dez monômeros, surfactante(s), monômero funcional, se houver, iniciador, se houver, agente de transferência de cadeia, se houver, corante, se houver, e similares, pode ser combinada no reator e o processo de polimerização de emulsão pode ser permitido começar. As condições de reação selecionadas para efetuar a polimerização de emulsão incluem temperaturas de, por exemplo, de cerca de 45° C a cerca de 120° C, nas concretizações, de cerca de 60° C a cerca de 90° C.

A polimerização pode ocorrer até que partículas de tamanho de nanômetro podem ser formadas, de cerca de 50 nm a cerca de 800 nm em diâmetro médio de volume, nas concretizações, de cerca de 100 nm a cerca de 400 nm em diâmetro médio de volume, conforme determinado, por exemplo, por um analisador de nanotamanho de partícula de Brookhaven.

Agente de ajuste de pH

Em algumas concretizações um agente de ajuste de pH pode ser adicionado para controlar a taxa do processo de agregação de emulsão. O agente de ajuste de pH utilizado nos processos da presente revelação pode ser qualquer ácido ou base que não afeta adversamente os produtos sendo produzidos. Bases adequadas podem incluir hidróxidos de metal tais como hidróxido de sódio, hidróxido de potássio, hidróxido de amônia, e, opcionalmente, combinações destes. Ácidos adequados incluem ácido nítrico, ácido sulfúrico, ácido hidroclórico, ácido cítrico, ácido acético, e, opcionalmente, combinações destes.

Cera

Dispersões de cera podem também serem adicionadas durante formação de uma partícula de toner em um processo de agregação de emulsão. Ceras adequadas incluem, por exemplo, partículas de cera de submícron na faixa de tamanho de cerca de 50 a cerca de 1000 nanômetros, em concretizações de cerca de 100 a cerca de 500 nanômetros em diâmetro

médio de volume, suspensas em uma fase aquosa de água e um surfactante iônico, surfactante não-iônico, ou combinações destes. Surfactantes adequados incluem aqueles descritos acima. O surfactante iônico ou surfactante não-iônico podem estar presentes em uma quantidade de cerca de 0,1 a cerca de 20 porcento por peso, e em concretizações de cerca de 0,5 a cerca de 15 porcento por peso da cera.

5

10

15

20

25

30

A dispersão de cera de acordo com as concretizações da presente revelação pode incluir, por exemplo, uma cera vegetal natural, cera animal natural, cera mineral, e/ou cera sintética. Exemplos de ceras vegetais naturais incluem, por exemplo, cera de carnaúba, cera de candelila, cera do Japão, e cera de murta. Exemplos de ceras animais naturais incluem, por exemplo, cera de abelha, cera púnica, cera de lanolina, cera de laca, cera de verniz, e cera de espermacete. Ceras minerais incluem, por exemplo, cera de parafina, cera microcristalina, cera montan, cera de ozoquerita, cera de petrolato e cera de petróleo. Ceras sintéticas da presente descrição incluem, por exemplo, cera de Fischer Tropsch, cera de acrilato, cera de ácido graxo amida, cera de silicone, cera de politetrafluoroetileno, cera de polietileno, cera de polipropileno, e combinações destas.

Nas concretizações, uma cera adequada pode incluir uma cera de parafina. Ceras de parafina adequadas incluem, por exemplo, ceras de parafina que possuem estruturas cristalinas modificadas, que podem ser referidas aqui, nas concretizações, como uma cera de parafina modificada.

Desse modo, comparada com ceras de parafina convencionais, que podem ter uma distribuição simétrica de carbonos lineares e carbonos ramificados, as ceras de parafina modificadas da presente descrição podem possuir carbonos ramificados em uma quantidade de cerca de 1% a cerca de 20% da cera, em concretizações, de cerca de 8% a cerca de 16% da cera, com carbonos lineares presentes em uma quantidade de cerca de 80% a cerca de 99% da cera, em concretizações, de cerca de 84% a cerca de 92% da cera.

Em adição, os isômeros, isto é, carbonos ramificados, presentes em tais ceras de parafina modificadas podem ter um peso molecular médio

de número (Mn) de cerca de 520 a cerca de 600, em concretizações, de cerca de 550 a cerca de 570, em concretizações, cerca de 560. Os carbonos lineares, às vezes referidas aqui, nas concretizações, como normais, presentes em tais ceras podem ter um Mn de cerca de 505 a cerca de 530, em concretizações, de cerca de 512 a cerca de 525, em concretizações, cerca de 518. O peso molecular médio de peso (Mw) dos carbonos ramificados nas ceras de parafina modificadas pode ser de cerca de 530 a cerca de 580, em concretizações, de cerca de 555 a cerca de 575, e o Mw dos carbonos lineares nas ceras de parafina modificadas pode ser de cerca de 480 a cerca de 550, em concretizações, de cerca de 515 a cerca de 535.

Para os carbonos ramificados, o peso molecular médio de peso (Mw) das ceras de parafina modificadas pode demonstrar um número de átomos de carbono de cerca de 31 a cerca de 59 átomos de carbono, em concretizações, de cerca de 34 a cerca de 50 átomos de carbono, com um pico a cerca de 41 átomos de carbono, e para os carbonos lineares, o Mw pode demonstrar um número de átomos de carbono de cerca de 24 a cerca de 54 átomos de carbono, em concretizações, de cerca de 30 a cerca de 50 átomos de carbono, com um pico a cerca de 36 átomos de carbono.

A cera de parafina modificada pode estar presente em uma quantidade de cerca de 2% por peso a cerca de 20% por peso do toner, em concretizações, de cerca de 4 % por peso a cerca de 15 % por peso do toner, em concretizações cerca de 5% por peso a cerca de 13% por peso do toner.

Um benefício da presente revelação inclui a lisura obtida com partículas formadas com essas ceras, e que a cera não migra para a superfície da partícula.

Colorantes

5

10

15

20

25

30

Uma dispersão de corante pode ser adicionada às partículas de látex e cera. A dispersão de corante pode incluir, por exemplo, partículas de corante de submícron tendo um tamanho de, por exemplo, de cerca de 50 a cerca de 500 nanômetros em diâmetro médio de volume e, em concretizações, de cerca de 100 a cerca de 400 nanômetros em diâmetro médio de

volume. As partículas de corante podem ser suspensas em uma fase aquosa de água contendo um surfactante aniônico, um surfactante não-iônico, ou combinações destes. Nas concretizações, o surfactante pode ser iônico e pode ser de cerca de 1 a cerca de 25 porcento por peso, e em concretizações de cerca de 4 a cerca de 15 porcento por peso do corante.

5

10

15

20

25

30

Os corantes úteis na formação de toneres de acordo com a presente descrição incluem pigmentos, corantes, misturas de pigmentos e corantes, misturas de pigmentos, misturas de corantes, e similares. O corante pode ser, por exemplo, negro de carbono, ciano, amarelo, magenta, vermelho, laranja, marrom, verde, azul, violeta, ou combinações destes. Nas concretizações um pigmento pode ser utilizado. Conforme aqui usado, um pigmento inclui um material que muda a cor da luz que ele reflete como o resultado da absorção de cor seletiva. Em concretizações, em contraste com um corante que pode ser geralmente aplicado em uma solução aquosa, um pigmento geralmente é insolúvel. Por exemplo, enquanto um corante pode ser solúvel na condução de veículo (o ligante), um pigmento pode ser insolúvel na condução do veículo.

Nas concretizações nas quais o corante é um pigmento, o pigmento pode ser, por exemplo, negro de carbono, ftalocianinas, quineridonas, corantes vermelho, verde, laranja, marrom, violeta, amarelo, fluorescente, incluindo tipo RHODAMINE B[®], e similares.

O corante pode estar presente no toner da revelação em uma quantidade de cerca de 1 a cerca de 25 porcento por peso de toner, em concretizações em uma quantidade de cerca de 2 a cerca de 15 porcento por peso do toner.

Corantes exemplares incluem negro de carbono similar a *p.17 magnetitamagnetitas REGAL 330®; magnetitas Mobay incluindo MO8029®, magnetitas Columbian; MAPICO BLACK®, e magnetitas tratadas na superficie;magnetitas Pfizer incluindo CB4799®, CB5300®, CB5600®, MCX6369®; magnetitas Bayer incluindo BAYFERROX 8600®, 8610®, magnetitas Northern Pigments incluindo NP 604®, NP 608®; magnetitas Magnox incluindo TMB 100®, ou TMB 104®; HELIOGEN BLUE L6900®; D684®; D7080®; P-

5

10

15

20

25

30

YLAM OIL BLUE®; PYLAM OIL YELLOW®; PIGMENT BLUE 1®; disponível de Paul Rhlich and Company, Inc., PIGMENT VIOLET 18; PIGMENT RED 48[®]; LEMON CHROME YELLOW DCC 1026[®]; E.D. TOLUIDINE RED[®]; e BOM RED C®; disponível de Dominion Color Corporation, Ltd, Toronto, Ontario; NOVAPERM YELLOW FGL®; HOSTAPERM PINK E®; de Hoechst: e CINQUASIA MAGENTA®; disponível de E. I. DuPont de Nemours e Company. Outros corantes incluem 2,9-dimetil quinacridona substituída e antraquinona de corante identificado no Índice de Cor como CI 60710. CI Vermelho Disperso 15, diazo corante identificado no Índice de Cor como CI 26050. CI Solvente Vermelho 19, cobre tetra (octadecil sulfonamido) ftalocianina, x cobre ftalocianina pigmento listado no índice de Cor como CI 74160, CI Pigment Blue, Antratreno Azul identificado no índice de Cor como CI 69810, Special Blue X 2137, dialirida amarelo 3,3-diclorobenzideno acetoacetanilidas, um monoazo pigmento identificado no Índice de Cor como CI 12700, CI Solvent Yellow 16, uma nitrofenil amina sulfonamida identificada no Índice de Cor como Foron Yellow SE/GLN, CI Dispersed Yellow 33, 2,5-dimetóxi-4sulfonanilida fenilazo-4'-cloro-2,5-dimetóxi acetoacetanilida. Yellow 180 e Permanent Yellow FGL. Corantes solúveis orgânicos tendo uma pureza para a proposta de gama de cor que podem ser utilizados incluem Neopen Yellow 075, Neopen Yellow 159, Neopen Orange 252, Neopen Red 336, Neopen Red 335, Neopen Red 366, Neopen Blue 808, Neopen Black X53, Neopen Black X55, no qual os corantes são selecionados em várias quantidades adequadas, por exemplo, de cerca de 0,5 a cerca de 20 porcento por peso, em concretizações, de cerca de 5 a cerca de 18 peso porcento do toner.

Nas concretizações, exemplos de corante incluem Pigmento A-zul 15:3 (as vezes referido aqui, nas concretizações, como PB 15:3 pigmento ciano) tendo um Número de Constituição de Índice de Cor de 74160, Magenta Pigmento Vermelho 81:3 tendo um Número de Constituição de Índice de Cor de 45160:3, Amarelo 17 tendo um Número de Constituição de Índice de Cor de 21105, e corantes conhecidos tais como corantes de alimento, amarelo, azul, verde, vermelho, corantes magenta, e similares.

Outras concretizações, um pigmento magenta, Pigmento Verme-

lho 122 (2,9-dimetilquinacridona), Pigmento Vermelho 185, Pigmento Vermelho 192, Pigmento Vermelho 202, Pigmento Vermelho 206, Pigmento Vermelho 235, Pigmento Vermelho 269, combinações destes, e similares, podem ser utilizados como o corante. Pigmento Vermelho 122 (às vezes referidos como aqui como 122) foram amplamente usados na pigmentação de toneres, plásticos, tinta, e revestimentos, devido a sua sombra magenta única.

Invólucro

5

10

15

20

25

30

Nas concretizações, enquanto não requerido, um invólucro pode ser formado nas partículas agregadas. Qualquer látex utilizado acima notado para formar o látex de núcleo pode ser utilizado para formar o látex de invólucro. Nas concretizações, um copolímero de acrilato estireno-n-butila pode ser utilizado para formar o látex de invólucro. Nas concretizações, o látex utilizado para formar o invólucro pode ter uma temperatura de transição do vidro de cerca de 35°C a cerca de 75°C, em concretizações, de cerca de 40°C a cerca de 70°C.

Onde presente, um látex de invólucro pode ser aplicado por qualquer método dentro da competência daquele versado na técnica no assunto, incluindo pingamento, pulverização, e similares. O látex de invólucro pode ser aplicado até que o tamanho final desejado das partículas de toner seja alcançado, em concretizações, de cerca de 3 mícrons a cerca de 12 mícrons, em outras concretizações, de cerca de 4 mícrons a cerca de 9 mícrons. Em outras concretizações, as partículas de toner podem ser preparadas por copolimerização de emulsão semicontínua semeada *in situ* do látex com a adição do látex de invólucro uma vez que as partículas agregadas tenham se formado.

Onde presente, o látex de invólucro pode estar presente em uma quantidade de cerca de 20 a cerca de 40 porcento por peso da partícula seca de toner, em concretizações, de cerca de 26 a cerca de 36 porcento por peso da partícula seca de toner, em concretizações, cerca de 27 a cerca de 34 porcento por peso da partícula seca de toner.

Agentes de Agregação

Em concretizações, um agente de agregação pode ser adiciona-

do durante ou antes da agregação do látex e da dispersão aquosa de corante.

5

10

15

20

25

30

Exemplos de agentes de agregação adequados incluem haletos de polialumínio, tais como cloreto de polialumínio (PAC), ou o brometo correspondente, fluoreto ou iodeto; silicatos de polialumínio, tais como polialumínio sulfo silicato (PASS), e sais de metal solúveis em água, incluindo cloreto de alumínio, nitreto de alumínio, sulfato de alumínio, potássio alumínio sulfato, acetato de cálcio, cloreto de césio, nitrito de cálcio, oxilato de cálcio, sulfato de cálcio, acetato de magnésio, nitrato de magnésio, sulfato de magnésio, acetato de zinco, nitrato de zinco, sulfato de zinco, e combinações destes, e similares. Em concretizações, agentes de agregação adequados incluem um sal de polimetal tais como, por exemplo, cloreto de polialumínio (PAC), brometo de polialumínio, ou sulfosilicato de polialumínio. O sal de polimetal pode estar em uma solução de ácido nítrico, ou outras soluções ácidas tal como ácido sulfúrico, ácido hidroclórico, ácido cítrico ou ácido acético.

Em concretizações, um agente de agregação adequado inclui PAC, que é comercialmente disponível e pode ser preparado pela hidrólise controlada de cloreto de alumínio com hidróxido de sódio.

Quantidades adequadas de agente de agregação podem ser de cerca de 0,1 partes por centena (pph) a cerca de 0,25 pph, em concretizações, de cerca de 0,12 pph a cerca de 0,20 pph.

A mistura resultante de látex, opcionalmente em uma dispersão, dispersão de corante opcional, cera, e agente de agregação, pode, em seguida, ser agitada e aquecida a uma temperatura perto da Tg do látex, em concretizações, de cerca de 30°C a cerca de 70°C, em concretizações de cerca de 40°C a cerca de 65°C, resultando em agregados de toner de cerca de 3 mícrons a cerca de 15 mícrons de diâmetro médio de volume, em concretizações de cerca de 5 mícrons a cerca de 9 mícrons de diâmetro médio de volume.

Uma vez que o tamanho final desejado das partículas de toner é alcançado, o pH da mistura pode ser ajustado com uma base a um valor de

cerca de 3,5 a cerca de 7, em concretizações de cerca de 4 a cerca de 6,5. A base pode incluir qualquer base adequada tal como, por exemplo, hidróxidos de metal alcalino tais como, por exemplo, hidróxido de sódio, hidróxido de potássio, e hidróxido de amônia. O hidróxido de metal alcalino pode ser adicionado em quantidades de cerca de 0,1 a cerca de 30 porcento por peso da mistura, em concretizações, de cerca de 0,5 a cerca de 15 porcento por peso da mistura.

5

10

15

20

25

30

A mistura de látex, corante opcional, e cera pode ser subseqüentemente coalescida. A coalescência pode incluir agitação e aquecimento a uma temperatura de cerca de 80°C a cerca de 99°C, em concretizações de cerca de 85°C a cerca de 98°C, resultando em uma forma de toner às vezes referida aqui, em concretizações, como circularidade, de cerca de 0,900 a cerca de 0,999, em concretizações de cerca de 0,950 a cerca de 0,998, em concretizações de cerca de 0,995.

A coalescência pode ser acelerada pelo ajuste do pH da mistura a menos do que 6 com, por exemplo, um ácido para coalescer os agregados de toner.

Uma vez que a forma desejada das partículas de toner é alcançada, o pH da mistura pode ser ajustado com uma base a um valor de menos do que 9.

A mistura pode, em seguida, ser resfriada em uma etapa de resfriamento ou congelamento a menos do que a Tg da partícula.

A pasta fluida de toner pode, em seguida, ser lavada para remover surfactantes.

As partículas são então secadas de modo que elas têm um nível de umidade abaixo de 1%.

As partículas da presente descrição podem ter uma área superficial desejável para uso como toner. A área superficial pode ser determinada nas concretizações, pelo método de Brunauer, Emmett e Teller (BET). A área superficial de BET de uma esfera pode ser calculada pela seguinte equação:

Área superficial (m²/g) = 6 / (Diâmetro de Partícula (um)* Densi-

dade (g/cc)).

5

10

15

20

25

As partícula de toner podem ter uma área superficial de cerca de 0,5 m²/g a cerca de 1,4 m²/g, em concretizações, de cerca de 0,6 m²/g a cerca de 1,2 m²/g, em algumas concretizações, de cerca de 0,7 m/g a cerca de 1,0 m /g.

Em concretizações, os toneres da presente descrição podem ter uma carga triboelétrica de cerca de -10 μ .C/g a cerca de -60 μ C/g, em concretizações, de cerca de -20 μ C/g a cerca de -50 μ C/g. Os toneres da presente revelação podem também possuir uma carga de toner de origem por proporção de massa (Q/M) de cerca de -3 μ C/g a cerca de -35 μ C/g, e um carregamento de toner final após mistura de aditivo de superfície de -10 μ C/g a cerca de -45 μ C/g.

<u>Aditivos</u>

Aditivos opcionais adicionais que podem ser combinados com um toner incluem qualquer aditivo para aumentar as propriedades das composições de toner. Por exemplo, o toner pode incluir agentes de controle de carga positiva ou negativa, por exemplo, em uma quantidade de cerca de 0,1 a cerca de 10 porcento por peso do toner, em concretizações de cerca de 1 a cerca de 3 porcento por peso do toner. Exemplos de agentes de controle de carga incluem compostos de amônia quaternária inclusive de haletos de alquil piridínio; bisulfatos; compostos de alquil piridínio, incluindo aqueles revelados na Patente dos Estados Unidos Nº 4.298.672, a descrição da qual é aqui incorporada por referência em sua totalidade; composições orgânicas de sulfato e sulfonato, incluindo aquelas descritas na Patente dos Estados Unidos Nº 4.338.390, a descrição da qual é aqui incorporada por referência em sua totalidade; cetil tetrafluoroboratos de piridínio; disoearil dimetil metil sulfato de amônia; sais de alumínio, tais como BONTRON E84® ou E88® (Hodogaya Chemical);combinações destes, e similares.

Outros aditivos que podem ser combinados com uma composi-30 ção de toner da presente revelação incluem aditivos de superfície, intensificadores de cor, etc. Aditivos de superfície que podem ser adicionados às composições de toner após lavagem ou secagem incluem, por exemplo, sais de metal, sais de metal de ácidos graxos, sílicas coloidais, óxidos de metal, titanatos de estrôncio, combinações destes, e similares, cujos aditivos são cada usualmente presentes em uma quantidade de cerca de 0,1 a cerca de 10 peso porcento do toner; em concretizações de cerca de 0,5 a cerca 7 peso porcento do toner. Exemplos de tais aditivos incluem, por exemplo, aqueles descritos nas Patentes dos Estados Unidos N° 3.590.000, 3.720.374 e 3.983.045, a descrição das quais é aqui incorporada por referência em sua totalidade. Outros aditivos incluem estearato de zinco e AEROSIL R972®, disponível de Degussa. As sílicas revestidas da Patente dos Estados Unidos N° 6.1990.815 e Patente dos Estados Unidos N° 6.004.714, a descrição das quais é aqui incorporada por referência em sua totalidade, podem também serem selecionadas em quantidades, por exemplo, de cerca de 0,05 a cerca de 5 porcento por peso do toner, em concretizações de cerca de 0,1 a cerca de 2 porcento por peso do toner. Estes aditivos podem ser adicionados durante a agregação ou mistura no produto de toner formado.

As partículas de toner produzidas utilizando um látex da presente revelação podem ter um tamanho de cerca de 1 mícron a cerca de 20 mícrons, em concretizações, cerca de 2 mícrons a cerca de 15 mícrons, em concretizações, de cerca de 6,5 mícrons a cerca de 8 mícrons. As partículas de toner da presente descrição podem ter uma circularidade de cerca de 0,900 a cerca de 0,999, em concretizações de cerca de 0,950 a cerca de 0,998, em algumas concretizações de cerca de 0,970 a cerca de 0,995.

Seguindo os métodos da presente descrição, as partículas de toner podem ser obtidas tendo várias vantagens comparadas com toneres convencionais: (1) aumento na robustez do carregamento triboelétrico das partículas devido, em parte, a cera reduzida na superfície das partículas, que reduzem defeitos de toner e aperfeiçoa o desempenho da máquina, incluindo fluxo aperfeiçoado e baixa coesão; (2) facilidade para implementar nenhuma mudança maior a processos de agregação/coalescência existentes; e (3) aumento na produtividade e redução no custo de manufaturamento unitário (UMC) por redução do tempo de produção e a necessidade para reoperar (aperfeiçoamento de produção de qualidade devido a, pelo menos em parte,

a natureza reprodutível do processo).

5

10

15

20

25

Os toneres da presente descrição têm excelentes propriedades incluindo offset à quente, proporção de fusão, e densidade. Por exemplo, os toneres da presente descrição podem possuir temperaturas de offset quente, isto é, temperaturas na qual imagens produzidas com o toner podem tornarem fixadas a um substrato, de cerca de 135°C a cerca de 220°C, em concretizações de cerca de 155°C a cerca de 200°C. A proporção de fusão de uma imagem pode ser avaliada na seguinte maneira. Primeiro, uma densidade de estado A (ODI) correspondendo a cada cor de uma imagem é medida, e então uma fita adesiva é aderida à imagem. Em seguida, a fita adesiva é descascada, e então uma densidade de estado A (OD2) correspondente a cada cor da imagem é medida. A densidade ótica é medida com um espectrômetro (por exemplo, um 938 Espectrodensitômetro, fabricado por X-Rite).

Em seguida, as densidades totais assim determinadas são usadas para calcular a proporção de fusão de acordo com a seguinte Equação.

Proporção de fusão (%) = {(OD2/OD1)} x 100

Os toneres da presente revelação podem, desse modo, exibir uma proporção de fusão de cerca de 0,5 a cerca de 1, em concretizações, de cerca de 0,6 a cerca de 0,9.

Por otimização do tamanho de partícula das partículas, em alguns casos de cerca de 6,5 mícrons a cerca de 7,7 mícrons, os toneres da presente descrição podem ser especialmente adequados para sistemas de limpeza sem lâmina, isto é, sistemas de desenvolvimento de componente único (SCD). Com uma esfericidade correta, os toneres da presente descrição podem auxiliar no desempenho de máquina otimizado.

Pela utilização da cera N-539, a cera de superfície é muito baixa ou não-existente, glóbulos de cera são formados abaixo da superfície da partícula capacitando uma superfície muito lisa e partícula muito redonda. Isto capacita boas características de fluxo e baixos valores de cartucho.

30 Usos

Os toneres de acordo com a presente descrição podem ser usados em uma variedade de dispositivos de imagem incluindo impressoras, máquinas de cópia, e similares. Os toneres gerados de acordo com a presente descrição são excelentes para processos de imagem, especialmente processos xerográficos, e são capazes de proporcionarem imagens coloridas de alta qualidade com excelente resolução de imagem, proporção de sinal para ruído aceitável, e uniformidade de imagem. Adicionalmente, os toneres da presente descrição podem ser selecionados para processos de imagem e impressão eletrofotográfica tais como sistemas e processos de imagem digital.

Composições desenvolvedoras podem ser preparadas por mistura dos toneres obtida com os processos aqui descritos com partículas de veículo conhecidas, incluindo veículos revestidos, tais como aço, ferritas, e similares. Tais veículos incluem aqueles descritos nas Patentes dos Estados Unidos N° 4.937.166 e 4.935.326, a descrição das quais é agui incorporada por referência em sua totalidade. Os veículos podem estar presentes de cerca de 2 porcento por peso do toner a cerca de 8 porcento por peso do toner. de cerca de 4 porcento por peso a cerca de 6 porcento por peso do toner. As partículas de veículo podem também incluir um núcleo com um revestimento de polímero, tal como polimetilmetacrilato (PMMA), tendo disperso no mesmo um componente condutivo similar a negro de carbono condutivo. Revestimentos de veículo incluem resinas de silicone tal como metil silsesquioxanos, fluoropolímeros tais como polivinilidieno fluoreto, misturas de resinas não em proximidade nas séries triboelétrica tais como polivinilidieno fluoreto e acrílicos, resinas de termocura tais como acrílicos; combinações destes, e outros componentes conhecidos.

25

5

10

15

20

O desenvolvimento pode ocorrer via desenvolvimento de área de descarga. No desenvolvimento de área de descarga, o fotoreceptor é carregado e em seguida as áreas a serem desenvolvidas são descarregadas. Os campos de desenvolvimento e cargas de toner são tais que toner é repelido pelas áreas carregadas no fotoreceptor e atraído às áreas de descarga.

30

O desenvolvimento pode ser acompanhado pelo processo de desenvolvimento de escova magnética descrito na Patente dos Estados Unidos Nº 2.874.06. Este método requer a condução de um material desenvol-

vedor contendo toner da presente descrição e partículas transportadoras magnéticas por um magneto. O campo megnético do magneto causa alinhamento dos transportadores magnéticos em uma configuração similar à escova, e esta "escova magnética" é trazida em contato a superfície que suporta imagem eletrostática do fotoreceptor. As partículas de toner são retiradas da escova para a imagem eletrostática por atração eletrostática para as áreas de descarga do fotoreceptor, e desenvolvimento dos resultados da imagem. Nas concretizações, o processo de escova magnética condutiva é usado no qual o desenvolvedor inclui partículas transportadoras condutivas e é capaz de conduzir uma corrente elétrica entre o magneto inclinado através das partículas transportadoras ao fotoreceptor.

5

10

15

20

25

30

Os métodos de imagem são também considerados com os toneres aqui revelados.

O processo de imagem inclui a geração de uma imagem em um aparelho de reconhecimento de caráter de imagem e, em seguida, desenvolvimento da imagem com uma composição de toner da presente descrição. A formação e desenvolvimento de imagens na superfície de materiais foto condutivos por meio eletrostático é bem-conhecido. O processo xerográfico básico envolve colocação de uma carga eletrostática uniforme em uma camada de isolamento fotocondutiva, expondo a camada a uma imagem de luz e se sombra para dissipar a carga nas áreas da camada exposta à luz, e desenvolvimento da imagem eletrostática latente resultante por deposição na imagem de um material eletroscópico finamente dividido, por exemplo, toner. O toner normalmente será atraído àquelas áreas da camada, que retém uma carga, formando, desse modo, uma imagem de toner correspondente a imagem eletrostática latente. Esta imagem de pó pode, em seguida, ser transferida para uma superfície de suporte tal como papel. A imagem transferida pode subsequentemente ser permanentemente fixada à superfície de suporte por calor. Ao invés de formação de imagem latente por carregamento uniformemente da camada fotocondutiva e, em seguida, expondo a camada a uma imagem de luz e de sombra, pode-se formar a imagem latente carregando diretamente a camada em configuração de imagem. Em seguida, a imagem de pó pode ser fixada à camada fotocondutiva, eliminando a transferência de imagem de pó. Outros meios de fixação adequados tais como tratamento com solvente ou sobre-revestimento podem ser substituídos pela etapa de fixação de calor precedente.

5

Os seguintes Exemplos estão sendo submetidos para ilustrar concretizações da presente revelação. Estes Exemplos são pretendidos para serem ilustrativos somente e não são pretendidos para limitarem o escopo da presente revelação. Também, partes e percentagens são por peso, a menos que de outro modo indicado.

10

15

EXEMPLOS

EXEMPLO 1

Toneres foram preparados usando-se um misturador Hensehel de 10 litros. A quantidade de gel e cera foi otimizada para evitar emissões no offset de calor e proporção de fusão. As formulações gerais são resumidas abaixo na Tabela 1. Água foi adicionada de modo que o reator tinha um teor de sólidos de cerca de 14%. As propriedades alvos do toner são resumidas abaixo na Tabela 2.

Tabela 1

Matéria prima	Partes
Látex de núcleo (estireno/l acrilato de butila)	11,8
Látex de invólucro (estireno/ acrilato de butila)	8,79
Látex de gel (estireno reticulado/acrilato de butila)	3,52
Regal 330 (pigmento de negro de carbono)	2,77
Pigmento Azul 15:3 (pigmento ciano)	0,71
Dispersão de cera de parafina	4,51
Cloreto de polialumínio (PAC)	0,187
0,02M HNO ₃	1,683
Reator deionizado H ₂ O	25,7
Enxágue deionizado H ₂ O	4,0

Tabela 2
Objetivos

Processo ou Resposta de Material	Objetivo
Tamanho de Partícula, Média de volume (ambas pasta fluida final e partícula seca)	cerca de 7,2 µm
Circularidade, (pasta fluida final e partícula seca) Sysmex 3000	>0,990

A formulação otimizada foi verificada ser cerca de 8%, cerca de 10-12% de cera, 3-4% de negro de carbono, 1% de pigmento ciano usandose uma resina de látex tendo um tamanho de partícula de cerca de 231 nm, a cerca de 14% de sólidos e cerca de 32% no invólucro. A formulação otimizada é resumida abaixo na Tabela 3.

<u>Tabela 3</u>
% de partícula de toner seca

Toner	100
Resina de Massa	43,00
Resina do Invólucro	32,00
Látex de Gel	8,00
Regal 330	4,00
PB 15:3	1,00
Cera de parafina	12,00

Esta formulação foi verificada auxiliar na produção das partículas de toner mais robustas com relação a offset quente (devido a inclusão de cera) e bloqueio (devido a teor de gel abaixado).

As imagens SEM das partículas do polímero de látex utilizadas são colocadas nas figuras 1A-1D, e imagens SEM da formulação de toner ótima da Tabela 3 são colocadas nas figuras 2A-2D. As imagens mostram a alta circularidade do toner com a superfície completamente livre de cera. O toner exibiu excelente desempenho de offset quente a cerca de 205°C e cerca de 215°C.

A proporção de fusão deste toner na zona B de um dispositivo eletrofotográfico foi comparada a um toner comercialmente disponível. A proporção de fusão da presente revelação foi aperfeiçoada, mais notada a

10

15

20

5

80% sendo 165°C comprada ao toner comercialmente disponível sendo acima de 180°C. A proporção de fusão abaixada para o toner da presente revelação promoveu melhor qualidade de imagem e aderência ao substrato.

Experimentos de partícula de exame de teor de gel e cera para aperfeiçoar o desempenho de offset quente foram conduzidos. Foi verificado que as formulações de toner designadas 0127 (que é a formulação resumida na Tabela 3 acima), junto com as formulações 0151 e 0165, mostraram o melhor desempenho em baixo teor de gel e alto teor de cera. Estes toneres também mostraram boa estabilidade de armazenagem a 50°C.

10

15

20

25

30

5

O índice de fluxo de fundido (MFI) da partícula foi cerca de 4 a cerca de 15 gm/10 minutos, a cerca de 130°C/10 kg de peso, conforme determinado por um testador de fluxo capilar Shimatzu CFT500D. Calorimetria de escaneamento diferencial (DSC) foi utilizada para determinar a temperatura de transição do vidro das partículas, que foi verificada ser de cerca de 45°V a cerca de 56°C (vaso aberto).

Experimentos de partícula de exame de teor de pigmento para aperfeiçoar a carga de partícula do toner foram conduzidos. Foi verificado que as formulações de toner com proporção mais alta de pigmento ciano/pigmento de negro de carbono mostrou carga mais alta. Em concretizações de cerca de 1:20 a cerca de 1:1,5, em concretizações de cerca de 1:10 a 1:3.

Será apreciado que várias das revelações acima e outras características e funções, ou alternativas destas, podem ser desejavelmente combinadas em muitos outros sistemas ou aplicações diferentes. Também que várias alternativas atualmente não previstas ou não-antecipadas, modificações, variações ou aperfeiçoamentos da mesma, podem ser subsequentemente produzidas por aqueles versados na técnica que são também pretendidos para serem envolvidos pelas reivindicações que se seguem. A menos que especificamente citado em uma reivindicação, etapas ou componentes de reivindicações não devem ser implicadas ou importadas do relatório descritivo ou quaisquer outras reivindicações como para qualquer ordem particular, número, posição, tamanho, forma, ângulo, cor ou material.

REIVINDICAÇÕES

1. Toner compreendendo um núcleo e um invólucro, em que o núcleo compreende uma resina incluindo um primeiro polímero não-reticulado em combinação a um polímero reticulado, pelo menos uma cera de parafina modificada possuindo carbonos ramificados em combinação com carbonos lineares, e um corante opcional,

5

10

15

20

25

30

em que o invólucro compreende um segundo polímero nãoreticulado presente em uma quantidade de cerca de 20 porcento por peso do
toner a cerca de 40 porcento por peso do toner, e no qual os carbonos ramificados da pelo menos uma cera de parafina modificada estão presentes em
uma quantidade de cerca de 1 % a cerca de 20 % da cera e tem um peso
molecular médio de número de cerca de 520 a cerca de 600, e os carbonos
lineares estão presentes em uma quantidade de cerca de 80% a cerca de
99% da cera e tem um peso molecular médio de número de cerca de 505 a
cerca de 530.

- 2. Toner, de acordo com a reivindicação 1, em que o primeiro polímero não-reticulado, o segundo polímero não-reticulado, ou ambos, compreendem pelo menos um monômero selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes.
- 3. Toner, de acordo com a reivindicação 1, em que o primeiro polímero não-reticulado, o segundo polímero não-reticulado, ou ambos, é selecionado a partir do grupo consistindo em poli(estireno-butadieno), poli(metil metacrilato-butadieno), poli(etil metacrilato-butadieno), poli(propil metacrilato-butadieno), poli(butil metacrilato-butadieno), poli(etil metacrilatobutadieno), poli(etil acrilato-butadieno), poli(propil acrilato-butadieno), poli(butil acrilato-butadieno), poli(estireno-isopreno), poli(metilestirenoisopreno), poli(metil metacrilato-isopreno), poli(metil metacrilato-isopreno), poli(propil metacrilato-isopreno), poli(butil metacrilato-isopreno), poli(metil acrilato-isopreno), poli(etil acrilato-isopreno), poli(propil acrilato-isopreno), poli(butil acrilato-isopreno), poli(estireno butil-acrilato), poli(estirenobutadieno), poli(estireno-isopreno), poli(estireno butil-metacrilato), po-

li(estireno butil acrilato-ácido acrílico), poli(estireno butadieno-acrilato-ácido acrílico), poli(estireno isopreno-ácido acrílico), poli(estireno butil metacrilato-ácido acrílico), poli(butil metacrilato butil-acrilato), poli(butil metacrilato-ácido acrílico), poli(estireno butil acrilato acrilonitrila-ácido acrílico), poli(acrilonitrila butil acrilato-ácido acrílico), e combinações destes.

5

10

15

20

25

30

- 4. Toner, de acordo com a reivindicação 1, em que o polímero reticulado compreende pelo menos um monômero selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, o polímero reticulado estando presente no toner em uma quantidade de cerca de 6 porcento por peso do toner a cerca de 14 porcento por peso do toner.
- 5. Toner, de acordo com a reivindicação 1, em que o corante opcional compreende corantes, pigmentos, combinações de corantes, combinações de pigmentos, e combinação de corantes e pigmentos, e em que o toner adicionalmente compreende pelo menos monômero funcional selecionado a partir do grupo consistindo em ácido acrílico, beta carboxietil acrilato, poli(2-carboxietil)acrilato, metacrilato de 2-carboxietila, e combinações destes.
- 6. Toner, de acordo com a reivindicação 1, em que os carbonos ramificados na cera de parafina modificada têm um peso molecular médio de peso de cerca de 530 a cerca de 580, os carbonos lineares na cera de parafina modificada têm um peso molecular médio de peso de cerca de 480 a cerca de 550, e no qual a pelo menos uma cera de parafina modificada está presente em uma quantidade de cerca de 2 porcento por peso do toner a cerca de 20 porcento por peso do toner.
- 7. Toner, de acordo com a reivindicação 1, em que os carbonos ramificados da cera de parafina modificada têm um número de átomos de carbono de cerca de 31 a cerca de 59, e os carbonos lineares da cera de parafina modificada têm um número de átomos de carbono de cerca de 24 a cerca de 54.
 - 8. Toner, de acordo com a reivindicação 1, em que a partícula de

toner possui uma temperatura de offset quente de cerca de 135°C a cerca de 220°C, um tamanho de cerca de 5 mícrons a cerca de 9 mícrons, uma circularidade de cerca de 0,900 a cerca de 0,999, e uma área superficial de cerca de 0,5 m²/g a cerca de 1,4 m²/g.

5

9. Toner, de acordo com a reivindicação 1, compreendendo adicionalmente um pigmento ciano em combinação com um pigmento de negro de fumo, a uma proporção de ciano:negro de fumo de cerca de 1:20 a cerca de 1:1,5.

10. Toner compreendendo:

10

um núcleo e um invólucro, o núcleo compreendendo um primeiro polímero não-reticulado selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, em combinação a um polímero reticulado, pelo menos uma cera de parafina modificada possuindo carbonos ramificados em combinação a carbonos lineares, e um corante opcional,

20

25

30

15

em que o invólucro compreende um segundo polímero nãoreticulado selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, presente em uma quantidade de cerca de 26 porcento por peso do toner a cerca de 36 porcento por peso do toner,

em que, os carbonos ramificados estão presentes em uma quantidade de cerca de 1% a cerca de 20% da e têm um peso molecular médio de número de cerca de 520 a cerca de 600, e os carbonos lineares estão presentes em uma quantidade de cerca de 80% a cerca de 99% da cera e têm um peso molecular médio de número de cerca de 505 a cerca de 530,

e em que partículas compreendendo o toner possuem uma circularidade de cerca de 0,950 a cerca de 0,998.

e em que partículas compreendendo o toner possuem uma área superficial de cerca de 0,5 m/g a cerca de 1,4 m /g.

11. Toner, de acordo com a reivindicação 10, em que o primeiro polímero não-reticulado, o segundo polímero não-reticulado, ou ambos,

compreendem pelo menos um monômero selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, o corante opcional compreende corantes, pigmentos, combinações de corantes, combinações de pigmentos, e combinação de corantes e pigmentos, e em que os carbonos ramificados na cera de parafina modificada têm um peso molecular médio de peso de cerca de 530 a cerca de 580, e os carbonos lineares na cera de parafina modificada têm um peso molecular médio de peso de cerca de 480 a cerca de 550, e em que a pelo menos uma cera de parafina modificada está presente em uma quantidade de cerca de 2 porcento por peso do toner a cerca de 20 porcento por peso do toner.

5

10

15

20

25

30

- 12. Toner, de acordo com a reivindicação 12, em que os carbonos ramificados da cera de parafina modificada têm um número de átomos de carbono de cerca de 31 a cerca de 59, os carbonos lineares da cera de parafina modificada têm um número de átomos de carbono de cerca de 24 a cerca de 54, e no qual a partícula de toner possui uma temperatura de offset quente de cerca de 135°C a cerca de 220°C, e um tamanho de cerca de 5 mícrons a cerca de 9 mícrons.
- 13. Toner, de acordo com a reivindicação 10, compreendendo adicionalmente um pigmento de ciano em combinação com um pigmento de negro de fumo, a uma proporção de ciano:negro de fumo de cerca de 1:20 a cerca de 1:1,5.

14. Processo compreendendo:

contactar uma emulsão compreendendo um primeiro polímero não-reticulado em combinação a um polímero reticulado, pelo menos uma cera de parafina modificada possuindo carbonos ramificados em combinação a carbonos lineares, e um corante opcional;

agregar as partículas pelo contato das partículas com cerca de 0,1 partes por centena a cerca de 0,25 partes por centena de um agente de agregação para formar partículas agregadas;

formar um invólucro sobre as partículas agregadas pelo contato das partículas agregadas com uma emulsão compreendendo um segundo

polímero não-reticulado; e

5

10

15

20

25

30

do toner.

recuperar as partículas de toner,

em que as partículas de toner possuem uma circularidade de cerca de 0,900 a cerca de 0,999.

15. Processo, de acordo com a reivindicação 14, em que o polímero não-reticulado, o segundo polímero não-reticulado, ou ambos, compreendem pelo menos um monômero selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes.

16. Processo, de acordo com a reivindicação 12, em que o polímero reticulado compreende pelo menos um monômero selecionado a partir do grupo consistindo em estirenos, acrilatos, metacrilatos, butadienos, isoprenos, ácidos acrílicos, ácidos metacrílicos, acrilonitrilas, e combinações destes, o polímero reticulado estando presente no toner em uma quantidade de cerca de 4 porcento por peso do toner a cerca de 15 porcento por peso

17. Toner, de acordo com a reivindicação 12, em que a cera de parafina modificada possui carbonos ramificados em combinação a carbonos lineares, em que os carbonos ramificados estão presentes em uma quantidade de cerca de 1% a cerca de 20% da cera, e têm um peso molecular médio de número de cerca de 520 a cerca de 600, os carbonos lineares estão presentes em uma quantidade de cerca de 80% a cerca de 99% da cera, e têm um peso molecular médio de número de cerca de 505 a cerca de 530.

18. Processo, de acordo com a reivindicação 14, em que os carbonos ramificados da cera de parafina modificada têm um número de átomos de carbono de cerca de 31 a cerca de 59, e um peso molecular médio de peso de cerca de 530 a cerca de 580, e os carbonos lineares da cera de parafina modificada têm um número de átomos de carbono de cerca de 24 a cerca de 54, e um peso molecular médio de peso de cerca de 480 a cerca de 550.

19. Processo, de acordo com a reivindicação 14, compreendendo adicionalmente conter a pelo menos uma resina, a cera de parafina modificada, e o corante opcional com pelo menos um monômero funcional selecionado a partir do grupo consistindo em ácido acrílico, beta carboxietil acrilato, poli(2-carboxietil)acrilato, metacrilato de 2-carboxietila, e combinações destes.

5 20. Processo, de acordo com a reivindicação 14, em que a partícula de toner possui uma temperatura de offset quente de cerca de 135°C a cerca de 220°C, e um tamanho de cerca de 5 mícrons a cerca de 9 mícrons.

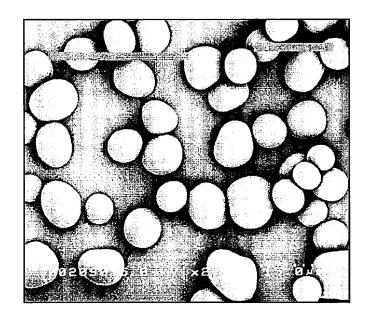


FIG. 1A

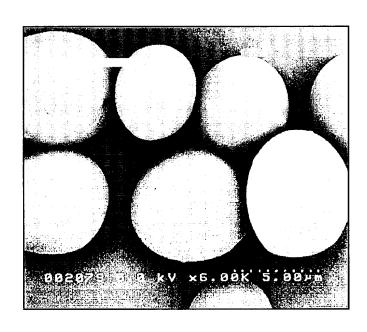


FIG. 1B

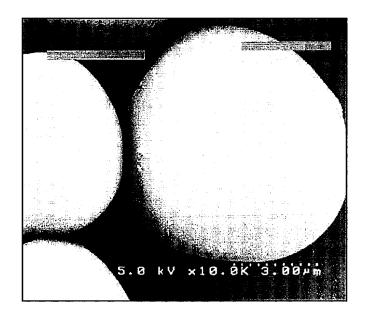


FIG. 1C

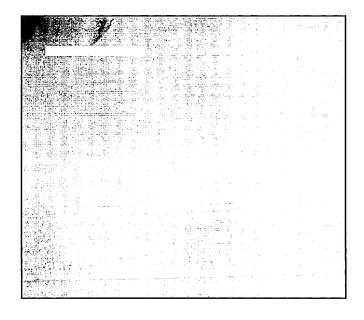


FIG. 1D

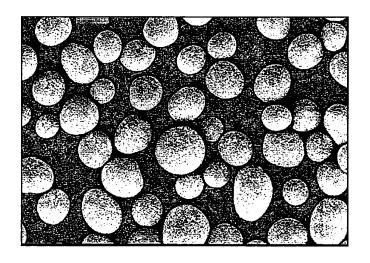


FIG. 2A

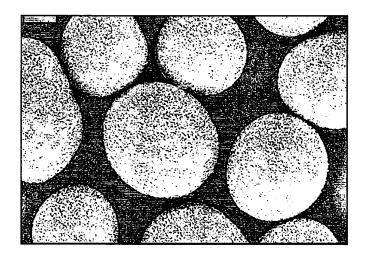


FIG. 2B

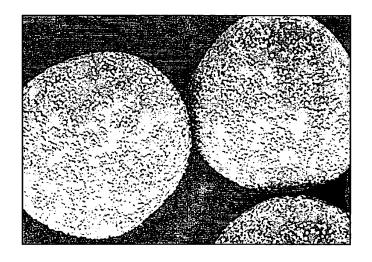


FIG. 2C

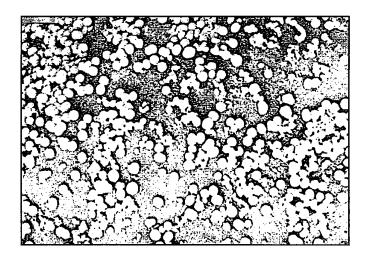


FIG. 2D

RESUMO

Patente de Invenção: "COMPOSIÇÕES DE TONER".

5

A presente invenção refere-se a toneres e métodos para sua produção. Nas concretizações, o toner pode incluir uma configuração de núcleo/invólucro, com uma resina não-reticulada e uma resina reticulada no núcleo, com uma segunda resina não-reticulada no invólucro, pigmento/pigmentos e uma cera que possui ambos carbonos ramificados e lineares.