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Systems and Methods Employing

Cooperative Optimization-Based Dimensionality Reduction

BACKGROUND

Many applications such as oilfield logging require analysis of many independent data
parameters. The measurements can be treated as points in a multi-dimensional data space —
an approach that is often convenient mathematically, but extremely difficult for humans to
visualize or analyze effectively. Nevertheless, such visualization usually offers insight into
the nature of the data, thereby facilitating subsequent use of the data set for interpretation and
modeling.

Techniques exist for translating a set of data points having many dimensions (i.c., a
“high-dimensionality data set”) into a set of data points having a smaller number of
dimensions (i.e., a “low-dimensionality data set”). The number of dimensions for the low-
dimensionality data set is often chosen in the range of two to four to enable straightforward
visualization of the data. A review on high-dimension data visualization and data dimension
reduction can be found in the paper, “DD-HDS: A method for visualization and exploration
of high-dimensional data”, by Lespinats et al., IEEE Transactions on Neural Networks, vol.
18, no.5, pp: 1265-1279, Sept. 2007, which is hereby incorporated herein by reference.

Generally speaking, it is desirable to preserve as much as possible the difference, or
“distance”, between pairs of data points. Thus, for example, data points that are closely
spaced in the high-dimensionality data set should be closely spaced in the low-dimensionality
data set, and data points that are widely spaced in the high-dimensionality data set should be
widely spaced in the low dimensionality data set. Such preservation of the sample pair
distances is believed to preserve the “essential” information contained by the data set.

Since conventional linear mapping methods such as principal component analysis
(PCA) do not preserve such distance-based essential information in a satisfactory way,
dimensionality reduction is often treated as a non-linear optimization problem. J.W. Sammon,
in “A Nonlinear Mapping for Data Structure Analysis”, IEEE Trans. Comput. C-18 (5): 401-
409, 1969, introduces the use of an objective function (termed a “stress function” by
Sammon) to minimize the mismatch of sample-pair distance between the original and

transformed data. P. Demartines J. Herault, in “Curvilinear Component Analysis: A Self-
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Organizing Neural Network for Nonlinear Mapping of Data Sets”, IEEE Trans. Neural
Networks 8 (1): 148-154, 1997, implicitly use a a gradient-based approach to implement
their neural-network based dimensionality reduction. In “Graph Drawing by Force-Directed
Placement”, Software: Practice and Experience 21 (11): 1129-1164, 1991, T. Fruchterman
and E. Reingold adopt the concept of the spring-mass system to adjust and stabilize the low-
dimensionality data positions.

M. Raymer et al, in “Dimensionality Reduction Using Genetic Algorithms”, IEEE
Transactions on Evolutionary Computation 4 (2): 164—171, 2000, focus on feature selection,
feature extraction, and classifier training, to construct a linear transformation matrix that can
then be tuned using evolutionary computation. C. Yang et al, in “Dimensionality Reduction
Using GA-PSO”, Proc. 9th Joint Conference on Information Sciences, Taiwan, 2006, focus
on the feature selection aspect of Raymer with a combined GA-PSO (Genetic Algorithm —
Particle Swarm Optimization) approach. It should be noted that Yang integrates PSO into his
genetic algorithm using an N-nearest neighbor distance match, and he applies it to each
generation.

The foregoing techniques fail to effectively minimize the information loss associated

with dimensionality reduction.

BRIEF DESCRIPTION OF THE DRAWINGS
The file of this patent contains at least one drawing executed in color. Copies of this
patent with color drawing(s) will be provided by the Patent and Trademark Oftice upon
request and payment of the necessary fee.
In the following detailed description, reference will be made to the accompanying
drawings, in which:
Fig. 1 shows an illustrative logging while drilling (LWD) environment;
Fig. 2 shows an illustrative wireline logging environment;
Fig. 3 is a perspective view of an illustrative system employing dimensionality
reduction;
Fig. 4 is a block diagram of an illustrative system employing dimensionality
reduction;
Fig. 5 is a flow diagram of an illustrative evolutionary computation phase;
Fig. 6 is a flow diagram of an illustrative particle-swarm optimization phase;

Fig. 7 is a flow diagram of an illustrative method employing dimensionality reduction;
2
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Fig. 8 shows an illustrative neural network for dimensionality reduction;

Figs. 9 and 10 show distance correlation plots for 2D and 3D coding;

Figs. 11 and 12 show 2D locations of cluster kernels and data, respectively;

Figs. 13 and 14 show 3D locations of cluster kernels and data, respectively;

Fig. 15 is a graph of various illustrative weighting functions;

Figs. 16 and 17 show comparative distance correlation plots for different fitness

functions;

Figs. 18 and 19 show comparative distance correlation plots before and after particle

swarm optimization;

Fig. 20 shows a distance correlation plot for an integrated logging data set;

Fig. 21 shows 3D locations of a pulsed neutron (PN) data set;

Figs. 22 and 23 are distance distribution histograms of the PN data in the high- and

low-dimensionality spaces, respectively;

Figs. 24 and 25 are prediction errors derived from the PN data in the high- and low-

dimensionality spaces, respectively;

Figs. 26 and 27 show 3D locations of a geochemical data set derived using difterent

fitness functions;

Fig. 28 shows 3D locations of integrated logging data from a training well; and

Fig. 29 shows 3D locations of integrated logging data taken from an application well;

Figs. 30 and 31 show density correlations with the integrated logging data taken from

the training and application wells, respectively.

The drawings show illustrative invention embodiments that will be described in
detail. However, the description and accompanying drawings are not intended to limit the
invention to the illustrative embodiments, but to the contrary, the intention is to disclose and
protect all modifications, equivalents, and alternatives falling within the spirit and scope of
the appended claims.

NOMENCLATURE

Certain terms are used throughout the following description and claims to refer to
particular system components. This document does not intend to distinguish between
components that differ in name but not function. The terms “including” and “comprising” are
used in an open-ended fashion, and thus should be interpreted to mean “including, but not

limited to...”.
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The term “couple” or “couples” is intended to mean either an indirect or direct
electrical, mechanical, or thermal connection. Thus, if a first device couples to a second
device, that connection may be through a direct connection, or through an indirect connection
via other devices and connections. Conversely, the term “connected” when unqualified
should be interpreted to mean a direct connection. For an electrical connection, this term
means that two elements are attached via an electrical path having essentially zero
impedance.

In the context of dimensionality reduction, this document variously uses the terms
“original”, “high-dimensionality”, and “HD” as modifiers to indicate the data set being
accepted as input for the dimensionality reduction process. Similarly the terms “output”,
“low-dimensionality”, “LLD”, “reduced”, and “compressed” are used as modifiers to indicate
the data set resulting from the dimensionality reduction process and/or the data space
destined to contain the resulting data set.

The term “sample point” as used herein refers generically to either a data point from
the HD data set or a kernel point that represents a cluster in the HD data set. The term
“coding” as used herein refers to a coordinate of a point in the reduced dimensionality data

space.

DETAILED DESCRIPTION

Accordingly, there are disclosed herein systems and methods to help determine the
best data transformation of a high-dimensionality (“HD”) data set to a low-dimensionality
(“LD”) data space with minimal information loss. The disclosed systems and methods
employ a hybrid approach in which an optional clustering phase is followed by an
evolutionary computation (“EC”) phase that directly determines near-optimal LD locations
for each of the HD sample points. A particle-swarm optimization (PSO) phase may then be
used to refine the EC phase coding. The set of HD sample points, along with the
corresponding LD encodings, can then be used to train a neural network (or a neural network
ensemble) to implement a general transform from the HD data space to the LD data space.
This approach enables a user to embed a multi-objective fitness function to preserve the
aspects of the data set that the user considers to be essential. Thus, e.g., the user can
maximize the distance matching in the relevant data spaces while retaining the correlation of

the LD data set with user-selected external parameters. Such correlations enable predictive
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modeling or feature extraction in the LD data space. This hybrid approach is expected to fully
address the local minima issue while enabling robust conversion of any newly acquired data.

Potential applications of the disclosed systems and methods include: data
visualization, data transmission, and predictive modeling. With respect to data visualization,
the disclosed systems and methods can be used to automate high dimensionality data
processing for many logging, drilling and petrophysical/geophysical applications by
displaying essential information in a vision-friendly low-dimensionality space. Particular
illustrative applications include multi-well cluster merging / splitting, facies identification,
lithotyping, stratigraphic classification and characterization, and reservoir quality
determination. As dimensionality reduction also ecases the tasks of many clustering
algorithms, the disclosed methods can better exploit clustering to further improve the visual
presentation of the data set.

With respect to data transmission, we note that efficient data transmission from the
downhole to the surface is desirable in diverse drilling operations to adjust steering mode and
facilitate real-time applications. Since too many variables affect well path, high-ratio
downhole data compression is critical to overcome the limitation of the existing
logging/drilling tools and well telemetry systems. The disclosed systems and methods will
effectively reduce the load of transmission system by transmitting dimension-reduced data
only with minimal information loss. On a related note, the data set is expected to be more
readily accessible in the reduced data space, enabling computational cost reductions when
processing the data set.

With respect to predictive modeling, we note that input selection is often a problem
for predictive modeling, especially if the candidate dimensionality is high. Some
commercially available services (such as LaserStrat from Sperry Drilling Services) offer rock
clemental data with more than 40 measurements for each sample. As another example, the
primary and secondary measurements of pulsed-neutron logging tools have more than 30
variables. Even routine logging suites typically offer in excess of 12 independent
measurements. The abundance of available input variables potentially improves data analysis,
but requires significant effort to integrate the data in a manner that provides information
specific to different applications. The disclosed systems and methods provide an alternative,
enabling the use of the LD data as general inputs. We will show in the later section that
quality prediction in formation density can still be obtained from reduced dimensionality

pulsed neutron data.
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Hlustrative Context

The disclosed systems and methods are best understood in the context of some of
their potential applications. Accordingly, Fig. 1 shows an illustrative logging while drilling
(LWD) environment. A drilling platform 2 supports a derrick 4 having a traveling block 6 for
raising and lowering a drill string 8. A drill string kelly 10 supports the rest of the drill string
8 as it is lowered through a rotary table 12. The rotary table 12 rotates the drill string, thereby
turning a drill bit 14. As bit 14 rotates, it creates a borehole 16 that passes through various
formations 18. A pump 20 circulates drilling fluid through a feed pipe 22 to kelly 10,
downhole through the interior of drill string 8, through orifices in drill bit 14, back to the
surface via the annulus around drill string 8, and into a retention pit 24. The drilling fluid
transports cuttings from the borehole into the pit 24 and aids in maintaining the borehole
integrity.

The drill bit 14 is just one piece of a bottom-hole assembly that includes one or more
drill collars (thick-walled steel pipe) to provide weight and rigidity to aid the drilling process.
Some of these drill collars include built-in logging instruments to gather measurements of
various drilling parameters such as position, orientation, weight-on-bit, borehole diameter,
etc. An azimuthally sensitive tool 26 (such as a pulsed neutron logging tool, a gamma ray
logging tool, an acoustic logging tool, or a resistivity logging tool) may be integrated into the
bottom-hole assembly near the bit 14. As the bit extends the borehole through the formations,
tool 26 rotates and collects azimuthally-sensitive formation property measurements that a
downhole controller associates with tool position and orientation measurements to form a
three-dimensionality image map of the borehole wall. The measurements can be stored in
internal memory and/or communicated to the surface. A telemetry sub 28 may be included in
the bottom-hole assembly to maintain a communications link with the surface. Mud pulse
telemetry is one common telemetry technique for transferring tool measurements to surface
receivers 30 and receiving commands from the surface, but other telemetry techniques can
also be used.

At various times during the drilling process, the drill string 8 may be removed from
the borehole as shown in Fig. 2. Once the drill string has been removed, logging operations
can be conducted using a wireline logging tool 34, i.e., a sensing instrument sonde suspended
by a cable 42 having conductors for transporting power to the tool and telemetry from the
tool to the surface. A resistivity imaging portion of the logging tool 34 may have sensing

pads 36 that slide along the borehole wall as the tool is pulled uphole. Other formation
6
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property sensors can additionally or alternatively be included. A logging facility 44 collects
measurements from the logging tool 34, and includes computing facilities for processing and
storing the measurements gathered by the logging tool.

Fig. 3 is a perspective view of an illustrative computerized system 300 employing
dimensionality reduction. A computer chassis 302 is coupled to a display 304 and one or
more input devices 306. Illustrative removable information storage media 330 are also
shown. The display 304 and the input devices 306 cooperate to function as a user interface to
enable the user to map a high dimensionality data set into a low dimensionality data set for
visualization and/or for analysis in the low dimensionality data space.

A block diagram of the illustrative system 300 is shown in Fig. 4. Fig. 4 shows that, in
addition to a display 304 and keyboard 306, a pointing device 406 and a data acquisition unit
410 may be coupled to the computer chassis 302. Keyboard 306 and pointing device 406 are
just two examples of the many suitable input devices available to the user for guiding the
system’s operation in response to information provided on display 304. Data acquisition unit
410 serves as an optional way to acquire high-dimensionality telemetry data from a logging
tool or other source.

Located in the chassis 302 is a display interface 412, a peripheral interface 414, a bus
416, a processor 418, a memory 420, an information storage device 422, and a network
interface 424. The display interface 412 may take the form of a video card or other suitable
interface that accepts information from the bus 416 and transforms it into a form suitable for
display 404. Conversely, the peripheral interface 414 may accept signals from input devices
306, 406 and transform them into a form suitable for communication on bus 416. Bus 416
interconnects the various elements of the computer and transports their communications.

Processor 418 gathers information from the other system elements, including input
data from the peripheral interface 414 and program instructions and other data from the
memory 420, the information storage device 412, or from an external location via the
network interface 424. (The network interface 424 enables the processor 418 to communicate
with remote systems via a wired or wireless network.) The processor 418 carries out the
program instructions and processes the data accordingly. The program instructions may
further configure the processor 418 to send data to other system elements, including
information for the user, which may be communicated via the display interface 412 and the

display 304.



10

15

20

25

30

WO 2010/017300 PCT/US2009/052860

The processor 418, and hence the computer as a whole, generally operates in
accordance with one or more programs stored on an information storage device 422. One or
more of the information storage devices may store programs and data on removable storage
media such as a floppy disk or an optical disc 330 (Fig. 3). Whether or not the information
storage media is removable, the processor 418 may copy portions of the programs into the
memory 420 for faster access, and may switch between programs or carry out additional
programs in response to user actuation of the input device. One or more of these programs
configures the computer to carry out at least one of the dimensionality reduction methods
disclosed herein.

Stated in another fashion, the methods described herein can be implemented in the
form of software that can be communicated to a computer or another processing system on an
information storage medium such as an optical disk, a magnetic disk, a flash memory, or
other persistent storage device. Alternatively, such software may be communicated to the
computer or processing system via a network or other information transport medium. The
software may be provided in various forms, including interpretable “source code” form and
executable “compiled” form. The various operations carried out by the software as described
herein may be written as individual functional modules (e.g., “objects”, functions, or
subroutines) within the source code.

Hlustrative Methods

The methods disclosed herein can generally be broken down into four sequential
phases, some of which may be optional for transforming some high-dimensionality data sets.
The four phases are: clustering, evolutionary computation (EC), particle swarm optimization
(PSO), and generalization. The EC and PSO phases are now discussed in detail in preparation
for the description of the overall method.

The task of the EC phase is to construct a set of points in a reduced dimensionality
data space that maximize a set of optimization criteria. For data visualization, the number of
dimensions in the low dimensionality data space might typically be 2 or 3. If the original data
set is not too large (e.g., smaller than about 400), each EC chromosome has one low-
dimensionality position encoding for each data point. If the data set is too large, then a
clustering phase is applied to identify the data set’s high-dimensionality cluster kernels, and
each EC chromosome has one low-dimensionality position encoding for each kernel. The
design decision for the EC chromosomes also includes the range and resolution of each

dimension in the low dimensionality data space. It is noted that the low dimensionality
8
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coordinates can be specified using Gray coding to ensure that small changes in position do
not require a disproportionate number of bit transitions. An illustrative chromosome for 300
samples in a 3D low-dimensionality data space with 12 bit resolution is 10800 bits long.

Since the EC phase is determining LD coordinates encoded in a long binary string,
the chances of being trapped in a local minimum are high. To better tackle this problem, we
divide the EC optimization process into two stages. In the first stage, the basic genetic
algorithm is applied to the whole chromosome (“global search”), and each generation is
derived solely from the initial population. This stage enables us to quickly reduce the
mapping error. In the second stage, the chromosome (which is, after all, a group of genes) is
divided into subgroups. The genes outside the selected subgroup are frozen and evolution is
performed while only allowing changes within the selected subgroup (sometimes termed a
“local search™). In this stage, each generation can be augmented with a secondary population
generated by applying random variations to the selected subgroup.

A flow diagram for the EC phase is shown in Fig. 6. Beginning in block 502, the
system 300 generates a population of chromosomes having randomly encoded LD
coordinates for each sample. In block 504, the system determines the distances between each
pair in the LD data space. In block 506 a fitness function determines a measure of how well
the distances in the LD and HD data spaces match, and the chromosomes are ranked
accordingly. Fitness functions are discussed in more detail further below, but for now it is
sufficient to note that some embodiments include calculations of mean square error between
inter-sample distances in the HD and LD data spaces.

In block 508, the “fittest” chromosomes are selected for survival and participation in
generating new chromosomes via crossover pairing and mutation. In block 510, the system
determines whether blocks 504-508 should be repeated with the new generation. This
determination can be based on reaching a threshold fitness level or exceeding a
predetermined number of iterations. Blocks 502-510 represent the “global search” stage of
the EC phase. In block 512, the system determines whether a “local search” is desirable. As
before, this determination can be based on reaching a threshold fitness level or reaching a
predetermined number of iterations. If no further local searching is needed, the EC phase
terminates.

Blocks 514-524 represent the “local search” stage of the EC phase. In block 514, the
system selects a subgroup. The mutually exclusive subgroups each include a whole number

of LC encodings, but these encodings need not be adjacent on the chromosome. We note here
9
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that the subgroups can be randomly re-determined each time the local search stage is begun,
but once determined they are held fixed until each subgroup has been processed.

In block 516, a secondary population of chromosomes is to augment the primary
population. The secondary population is generated by taking chromosomes from the primary
and replacing the selected subgroup with randomly generated encodings. In block 518 the
system measures the distances between LD sample pairs for each chromosome in both the
primary and secondary populations. In block 520, these sample pair distances are used to
determine the fitness of each chromosome and rank the chromosomes accordingly. In block
522, the population is updated by selection, crossover, and mutation. Again, the crossover
and mutation are limited to the selected subgroup. In block 524, the system determines
whether each of the subgroups has been processed. If not, then blocks 514-522 are repeated
for the next selected subgroup. Otherwise the local search stage terminates and the system
returns to block 504.

Now we turn to a discussion of the particle swarm optimization (PSO) phase. The LD
encodings generated by the EC phase are potentially impaired due to the range and resolution
limits imposed by the chromosome design process. With the PSO phase, we remove these
limits by using floating-point numbers. PSO is a population-based stochastic optimization
technique. In PSO, each single candidate solution can be considered as an individual bird of a
flock. The particles move through the problem space by following a current of optimum
particles, and the less-fit particles do not die.

Fig. 6 shows a flow diagram of the PSO phase, taking the best LD encoding result
from the EC phase as the initial condition. The number of tuning cycles, number of particles,
number of iterations, and update equations are other predetermined parameters employed
during the PSO phase. Beginning in block 602, system selects one of the sample points. To
speed convergence, the system can order the samples according to distance mismatch,
starting with the largest. In subsequent cycles, the samples can be ordered according to the
previous cycle’s change in LD position, again starting of the largest.

In block 604, the system determines the initial position and velocity of each particle
in the LD space. The initial positions can be specified as randomly distributed offsets from
the LD position of the selected sample. Velocities are also randomly generated. In block 606
the fitness function is evaluated for each particle, or at least that portion of the fitness
function that is affected by adjusting the LD position of the sample to the current particle

position. In block 608, the fitness value for each particle is compared to previous “best”
10
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values (if any) to identitfy and store the best positions encountered by each of the particles.
An individual best position is stored for each particle, as well as a global best position. in
block

In block 610, the system updates the current position and velocity of each particle. In
some embodiments, the following update equations are used:

V(t+1)=1W()xV(t)+C, xrand x (P - X(1))+ C, xrand x (Pg — X(1))

Xt+)=X@O)+V(+1)
where V(¢) is the velocity, IW(¥) is the inertia weight which decreases over time (e.g. from 0.9
to 0.4), C, and C; are constants chosen to tailor the sensitivity of the particle’s motion to its
distance from the individual and global best positions (e.g., chosen in the range 1.4 to 2.0),
rand is a randomly generated value between zero and one (with a uniform distribution), P is
the individual best position of the particle, Pg is the global best position of the particle
swarm, and X(?) is the current position of the particle.

In block 612, the system determines whether the desired number of particle position
updates have been performed, and if not, blocks 606-610 are repeated. Otherwise, the
sample’s LD position is updated if the particle swarm identified a better position, and in
block 614, the system determines whether each of the sample points have been processed in
the current cycle. If not, blocks 602-612 are performed for the next sample. Otherwise, the
system determines whether the desired number of optimization cycles have been performed.
If not, blocks 602-614 are repeated until the desired number of cycles has been reached and
the PSO phase terminates.

Using a hybrid EC/PSO process is expedient because our direct-encoding approach
requires a large number of parameters to be determined, and the chance of solution trapped in
the local minimum is high. Our studies indicate that fitness measures improved rapidly
during the early stages the EC phase, but thereafter improved very slowly once they began to
approach a global optimum. With the use of different optimization principles, the PSO phase
proved to be very efficient at making kernel-by-kernel position adjustment once a sub-
optimum mapping had been established.

Having discussed the EC and PSO phases in detail, we now provide a discussion of an
overall method. Fig. 7 is a flow diagram of an illustrative method employing dimensionality
reduction. Starting in block 702, the dimensionality reduction system 300 obtains a high
dimensionality data set. The system may obtain the data from any number of sources,
including logging sensors, a telemetry stream, a stored data file, and a database management

11
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system. In block 704, the system determines, based on the size of the data set, whether it is
necessary to find sample points representative of the data set via clustering analysis before
the EC phase. If clustering is elected, then in block 706 the system applies a clustering
algorithm to identify cluster kernels, i.c., a representative data point for each cluster. Certain
examples discussed further below employ a multi-resolution graph-based clustering
technique as described by Ye and Rabiller in U.S. Patent 6295504, but any suitable
clustering technique can be used. (See, ¢.g., “Survey of Clustering Algorithms”, IEEE Trans.
on Neural Networks, Vol. 16, No. 3, p. 645-678, May 2005.) The (high dimensionality)
cluster kernels are then used in place of high dimensionality data set points for subsequent
operations.

In block 708, the system determines distances between each pair of samples (i.e.,
cluster kernels or data points) in the high dimensionality data set. In block 710, the system
gets the dimensionality of the low dimensionality data set, the scale (i.e., range) of each axis,
and the resolution (i.e., number of bits) for each axis. Typically, these values can be preset
or interactively provided by the user of the system. In some embodiments, the system
normalizes the range for each of the dimensions of the HD data set (e.g., from -1 to +1) and
estimates the range of the LD data space dimensions based on the maximum HD sample-pair
distance. (The maximum sample-pair distance in the normalized HD set usually increases
with dimensionality.) For example, in some of the experiments described below, the range of
each 3D output is set from 0 to 5 with input dimensionality equal to 10 (see Simulated
Pulsed Neutron Data Example, where the maximum HD sample pair distance is about 4.9),
and set from 0 to 6 with input dimensionality equal to 18 (see Integrated Logging Data
Example, wherein the maximum HD sample pair distance is about 6.5). Alternatively, the
range of each output can be centralized to zero with positive and negative extension in each
side, or set using a fixed setting (0 to 255 for example) when the fitness function is designed
to maximize the sample-pair HD-LD distance correlation (rather than maximizing the HD-
LD distance match itself) between the input and output space. The number of bits for each
output may typically vary from 8 to 16.

In block 712 the system determines the fitness function and evolution parameters,
which again can be preset or interactively provided. Illustrative fitness functions include
mean square error, where the error is measured as the difference between distances in the
high-dimensionality space and the low dimensionality space for each sample pair. Other

alternatives include the mean absolute error, or the linear correlation between each sample
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pair’s distances in the high and low dimensionality spaces can be used. With any of these
fitness functions, a weighting function may be applied to de-emphasize the error
contributions of the widely-spaced sample pairs. In some applications, a multi-objective
fitness function may be employed to preserve other properties of the data set in the low-
dimensionality data space (e.g., linear correlation with a variable that is to be predicted from
the low-dimensionality data points). Other evolutionary parameters that can be specified
include population size, mutation probabilities, stopping criteria, and inclusion or exclusion
of local (“conditional’) evolutionary searches.

In block 714, the evolutionary search technique is applied to obtain an encoding
solution as described previously. The initial population is given randomly assigned
coordinates. Thereafter, the fitness function is used to rank the population and the “fittest”
chromosomes are selected for cross-breeding and mutation.

When local evolutionary searches are enabled, the system attempts to escape local
minima by systematically selecting small groups of genes that are allowed to change while
the others are held fixed. Restricted cross-breeding and mutation steps are performed on the
primary population, but in addition, random encodings for that gene group can be generated
to form a secondary population. Each of the resulting chromosomes in the secondary
population is evaluated under the fitness function and the best members (also known as
“elite members”) of the secondary population can be merged with the primary population for
the next cycle of breeding and mutation.

Thus the evolutionary search technique assigns each high-dimensionality sample
point a corresponding point in low-dimensionality space. The process completes when the
assignments adequately satisfy the fitness function. As will be discussed further below, the
solution identified by the evolutionary computation process performs adequately, but leaves
room for improvement. Consequently, system 300 may follow the evolutionary computation
phase with a particle swarm optimization (PSO) phase to refine the solution. In block 716,
the system determines the parameters for the PSO phase, either from a stored configuration
file or from interactive user input. These parameters can include the number of particles to
follow, the form for the velocity and position update calculations, the rate at which particle
inertia or energy evolves, and the fitness function. In block 718, the PSO phase is applied to
the solution from the evolutionary computation phase, and the globally best position among
all of the particles is selected as the optimal low-dimensionality coordinates for each high-

dimensionality sample point.
13



10

15

20

25

30

WO 2010/017300 PCT/US2009/052860

It is noted here that the solution identified above does not necessary dictate how new
or intermediate high-dimensionality data points should be mapped to low-dimensionality
coordinates. Accordingly, in block 720 system 300 trains a neural network (such as that
shown in Fig. 8) or an ensemble of such neural networks, using as training data the high-
dimensionality sample point coordinates as inputs and the corresponding reduced-
dimensionality coordinates as outputs. Other interpolation techniques could also be
employed, but neural networks offer a robust, generalized answer to this issue. Neural
network ensemble design techniques are described in detail by D. Chen, S. Hamid, and H.D.
Smith, U.S. Patent 7280987, “Genetic algorithm based selection of neural network ensemble
for processing well logging data”.

In block 722, the system 300 applies the trained neural network ensemble to covert
the set of high-dimensionality data points into a set of low-dimensionality data points. The
low-dimensionality data set can then be used in a number of potentially advantageous ways.
For example, the low-dimensionality data set offers a compressed representation of the high-
dimensionality data set which can be used in block 724 to transmitting telemetry information
from downhole to the surface. The low-dimensionality data set (particularly when in 2D or
3D) offers a representation that can be readily displayed to a user in block 726. The low-
dimensionality data set offers a representation that can serve as the basis for making
predictions in block 728 (e.g., predicting formation density or producible oil). The low-
dimensionality data set offers a representation that can be used as a basis for decision-
making in block 730 (e.g., steering a drillstring or completing a wellbore). In essence, the
low-dimensionality data set should preserve the essential information of the high-
dimensionality data set accurately enough to enable the low-dimensionality data set to serve
as a surrogate for the high-dimensionality data set. When this occurs, the compact and
readily-visualizable nature of the low-dimensionality data set greatly facilitates the
identification and usage of the information contained within the data set. It is expected that
users of the disclosed systems and methods will find them very computationally efficient
and suitable for ready integration with existing systems and software to extend their
functionality.

Geochemical Data Example

In one illustrative example, the foregoing procedure was applied to whole-rock

elemental (geochemical) data obtained from rock samples of three wells. The elemental data

was obtained by standard geochemical sample preparation techniques and high-precision
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measurement on inductively-coupled plasma (ICP) spectrometers. The data set contains
about 300 samples, each with about 30 elemental values determined. Nine critical values
were derived from the total elemental measurements to determine a chemostratigraphic
zonation, with each dimension ranging from -1 to +1. The resulting 9-dimensional data set
was taken as the high-dimensionality data set for this example.

In the clustering phase, a basic multi-resolution graph-based clustering (MRGC)
method was applied (see Ye and Rabillier), resulting in 39 clusters. (Although clustering is
employed in this example for illustrative purposes, it is not strictly necessary for 300
samples.) Note that even for distance-measure-based clustering many variations are allowed
here by using different distance functions or choosing transformed dimensionality (first
difference or second difference in dimension, for example, for curve-shape matching). The
kernel of a cluster could be the mean in each dimension averaged over the samples in the
cluster, or the real sample nearest to the calculated mean, or (as in this example) the free
attractor as determined in the MRGC method. There were 741 distances calculated in the
HD data space between the different kernel pairs.

Two low-dimensionality data spaces were chosen for comparison: a 2D and a 3D
space. In each dimension, the range was chosen to be 0-255, with eight-bit resolution and
Gray coding. Thus 16 bits per kernel was needed for 2D coding and 24 bits per kernel was
needed for 3D coding, resulting in chromosomes of 624 bits and 936 bits, respectively. The
initial population size for the EC phase consisted of 50 randomly selected full-length (624 or
936 bits) chromosomes.

The fitness function for this example is the linear correlation between the HD and LD
distances. Local searches were not enabled, and the EC phase terminated when no further
improvements were observed in the linear correlation. Fig. 9 shows a plot of the distances in
the original data set versus distance in the reduced dimensionality data set for the 2D space,
and Fig. show shows a similar plot for the 3D space. The linear correlations are R=0.9661
and 0.9847, respectively.

Fig. 11 shows the kernel positions in 2D space as determined by the EC phase. After
the kernel positions are refined with PSO and used to train a neural network ensemble, the
2D mapping of the geochemical data set appears as shown in Fig. 12. Similarly, Fig. 13
shows the kernel positions in 3D space as determined by the EC phase, and the 3D mapping
of the geochemical data set using a neural network-based conversion model trained on EC

optimized kernel positions is shown in Fig. 14.
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These plots enable the user to easily relate each cluster to its neighbor clusters. Since
information loss is minimized in data transformation with the use of evolutionary
optimization and neural network ensemble, the converted cluster kernel and samples will
maintain the basic information embedded in the original clusters and samples for subsequent
use. Note that the strong correlation between the LD coding and the original clusters may
not exist for some data sets, a circumstance that can be determined by visual inspection or

by setting adaptable thresholds.

Weighting Functions

As previously mentioned, one of the primary objectives of the fitness function is to
maximize the match of the Euclidian distances between all sample pairs in the original and
output data spaces. However, even if the difference between the number of dimensions in the
original and output data spaces is only moderate, exact distance matching is most often
impossible. The distance crossplots shown in Figs. 9 and 10 demonstrate that there is plenty
of deviation from the ideal. However, preserving the match for short distances may be
regarded as more important than long distances. To that end, Fig. 15 illustrates various
weighting functions that might be employed in calculating the fitness measurement. Line
1502 represents the uniform, or un-weighted, distance matching objective. Lines 1504 and
1506 de-emphasize the contributions of mismatch errors for sample pairs that are widely
spaced in the original data space.

Lines 1504 and 1506 employ a log-sigmoid (“logsig”) function to determine the
weighting factor associated with the mismatch error for a given sample pair. The logsig
function has the form of a = 1/ (1+¢™), where a is the output and » is the input. The
weighting function takes the form of

Wij =y, — logsig (Dij - y),
where Wij is the weighting factor, Dij the distance between sample points i and j in the
original data space, and y , y are constants which can be adjusted according to the range of
distances found in the original data set. For line 1504, ¥ =1.5, and y=0. For line 1506, y
=1.0, and y=4.85.

In one embodiment, the weighted performance measure can be expressed as:

LYY (C e 48]
Sy C
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wherein F is the fitness function, C is a matrix having elements Wij , 4 is a sample pair
distance matrix having elements Dij, B is the corresponding sample pair distance matrix in
the LD data space, the operator “e*” denotes “multiplication element by element”, and the
operator of double summation denotes “summation over all rows and columns of a matrix”.
Other suitable weighting functions for dimensionality reduction can be found in Lespinats et
al. (2007), which introduces a symmetric handling of short distance in the original and output
spaces, avoiding false neighbor representations while still allowing some necessary tears in
the original distribution.

The following example illustrates the effect of employing a weighting function.
Simulated Pulsed Neutron Data Example

In another illustrative example, the disclosed method was applied to open-hole pulsed
neutron (PN) logs simulated under different formation and borehole conditions with the
Monte Carlo-N-Particle (MCNP) transport algorithm. The high dimensionality data set
consists of 441 ten-dimensional samples. The variables making up the dimensions included
borehole and formation sigma vales and the primary PN tool responses. The LD space was
chosen to have three dimensions with each dimension ranging from 0 to 5.

Two fitness functions were employed for comparison: a uniformly weighted (mean)
square error (line 1502) and a logsig weighted absolute error (line 1504). EC/PSO
cooperative optimization was performed directly on the HD data points (i.e., without
clustering). Fig. 16 shows the distance crossplot resulting from the former, while Fig. 17
shows the distance crossplot resulting from the latter. Ideally, the dual-distance points would
be less deviated from the diagonals of Figs. 16 and 17, reflecting perfect distance matches.
Too much deviation may indicate significant information loss due to dimension reduction. If
that happens, we may need additional coordinates in output space to make more accurate
distance mapping. In this experiment, a quality mapping from 10 dimensions to 3 dimensions
was achieved, even though the variation of small distance is relatively higher than the
variation of larger distance in the mapping space.

Dual-distance point deviation from the diagonal could also result if the EC search is
trapped into a local optimal solution. For example, the crossplot in Fig. 18 illustrates the
crossplot that results when the PSO phase is omitted. The crossplot in Fig. 19 shows the
improvement that results from applying a final tuning using PSO. A comparison further

justifies the use a co-operative tuning method.
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A visualization of the reduced dimensionality PN data is shown in Fig. 21. The
symbol key identifies 7 groups of samples simulated with different formation fluid salinity,
formation type, borehole fluid salinity, and borehole barite mud types. In the key, the first
two letters (fw or sw) identify the formation fluid (i.e., fresh water or salt water), the second
two letters (ss or Is) identify the type of formation (sandstone or limestone), and the third pair
of letters (sw, fw, or bm) identify the type of borehole fluid (salt water, fresh water, or barite
mud). For example, the data points represented by the black circle have signatures with
saltwater in formation fluid, sandstone in formation type, and saltwater in borehole fluid
(swssswbh). The data group represented by the red circle was simulated using freshwater as
sandstone formation fluid, and also with freshwater and barite mud in borechole
(fwssfwbmbh). We can see that these two groups of data are well separated in the 3D output
space. The variation in each data group can be explained by borehole size, formation porosity
and density, and the stand-off of the tool, which are different from sample to sample. The
data of some groups may have some overlap, indicating that the tool response is not very
sensitive to those particular formation and borehole parameters. Although perhaps not
perfect, the 3D coding of the PN samples in Fig. 21 really preserves the “essential”
information of the original high-dimensionality data space, and provides a comprehensive
picture of the data base in a direct and vision-friendly manner.

Fig. 22 is a histogram of the distance distribution of all sample pairs in original PN
data space. Fig. 23 shows the corresponding distribution in the 3D data space. It can be
observed that the histograms have a near perfect match in shape, with both distributions
being Gaussian-like with a bit of skew in the tail on the right side.

In addition to helping data visualization and characterization, the systems and
methods disclosed herein would also be useful for predictive modeling. Of course, full use of
the information presented in the original data space should be considered first for predictive
data mining. However, for some applications (e.g., data transmission in a well telemetry
system) only limited data are allowed to be transmitted to the surface and used as inputs to
predict other unknowns. Since dimension-reduced data can still preserve the essential
information of the original data, as described herein, only the reduced data need be
transmitted and processed at the surface to make the desired predictions.

To make the predictors more robust, a multi-objective fitness function may be used to
determining the best data transformation. In this experiment, for example, we can construct a

multi-objective fitness function to minimize the distance mismatch between the original and
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output space, and to maximize the linear correlation between the output coding and the
measured density values in the supervised data set. The first objective helps preserve
essential information. The second objective adapts the output to quality density prediction.

Neural networks were trained to predict density from the original ten-dimensional
data set and from the reduced, three dimensional data set. Figs. 24 and 25 compare the
respective density predictabilities. In each case, 441 neural network models were constructed,
and the distribution of the leave-one-out testing error is given in Fig. 24 (for the original data
set) and in Fig. 25 (for the reduced dimensionality data set). Although using the high-
dimensionality data set gives the better density prediction on average, reduced dimensionality
data set still produces acceptable predictions. The 3D coding in our method is thus a hybrid
non-linear transformation that is more informative than any particular parameter combination
with same number of dimensions.
Sedimentary Rock Data Example

In yet another illustrative example, the disclosed methods were applied to whole-rock
clemental analyses of 3349 sedimentary rock samples (mostly from oil-well cores) for
lithology characterization purposes. The ability to characterize lithology, particularly during
the drilling process, is very helpful in locating and exploiting reserves of hydrocarbons and
minerals. For each rock sample, 11 measurements (dimensions) were made of the standard
geochemical oxides (SiO,, TiO, Al,Os, Fe,03, MnO, MgO, CaO, Na,O, K,0, P,0s) plus
SOs. The measurements were made on laboratory ICP (inductively coupled plasma) and XRF
(X-ray fluorescence) spectrometers. The aim of this experiment was to attempt an objective
and quantitative characterization of the range common sedimentary rock types (sandstones,
shales, carbonates, anhydrites, halites, phosphorites), as well as soils of extreme geochemical
compositions (bauxites and laterites). In addition to data collected from actual samples,
several dozen additional data points were used for absolute reference. These consisted of: 1)
“ideal” (stoichiometric) compositions of key minerals that compose the theoretical end-
member compositions of each general rock type (e.g., quartz, plagioclase feldspar, K-
feldspar, calcite, dolomite, anhydrite, halite, fluorapatite, kaolinite, and hematite); 2)
compiled averages of various types of sandstone and shale, as published in the scientific
literature (Taylor and McLennan 1985, Condie 1993); and 3) compositions of international
Geochemical Reference Materials used as laboratory standards for analysis, as published in

the scientific literature (Govindaraju 1994),
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About 250 clusters were generated from the high-dimensionality (HD) data set. A 3-
dimensional encoding of the 11-dimensional cluster kemels was determined via EC and
PSO. This transform was then used to train a neural network, which was then used to map
all of the HD data set to three dimensions. Two fitness functions were used for comparison:
mean square error, and linear correlation. Fig. 26 shows a data visualization derived using
the former, whereas Fig. 27 shows a data visualization derived using the latter.

In both cases, the major lithological types are clearly discriminated in the 3D plots.
The two dominant groups of sedimentary rocks, siliciclastics and carbonates, make up the
two most prominent “clouds” in the low-dimensionality data space. The spatial extent of
these clouds encompasses the continuum of compositions for these rocks. For siliciclastics,
the continuum ranges from nearly pure quartz sandstones to clay-rich shales. For carbonates,
it spans the continuum between limestone and dolostone. The “filaments” that extend
outward from the two primary clouds are lithologies transitional to the less common
sedimentary rock types, i.e., anhydrite evaporites (high SOs), halite evaporates (high Na,O
and Cl), phosphorites (high P;0s), bauxitic soils ¢(high Al,Os), and ironstones or lateritic
soils (high Fe,0;3). Finally, the most extreme compositions possible in this space, defined by
the pure mineral end-members (e.g., quartz, kaolinite, calcite, dolomite, apatite, hematite,
etc.), form the expected “cage” that encloses all of the clouds defined by the measured
whole-rock data.

Previous visual characterization methods for sedimentary rock can employ as many as
four or five ternary diagrams. The disclosed dimensionality reduction approach may enable
every sedimentary rock sample (i.e., rock composition) to be described by a single (X,Y,Z)
coordinate point in the visualization space. The important implication here is that, all
sedimentary rocks could potentially be uniquely, objectively, and quantitatively characterized
by just the three coordinates. This potentially enables universal characterization and
comparison of lithologies for a variety of geological and petrophysical purposes. Moreover,
the integrated solution method provided herein may enable rapid discrimination of
sedimentary rock types while drilling on-site.

Integrated Logging Data Example

In still yet another illustrative example, the disclosed methods were applied to logging
data acquired from a first (“training”) well to form a visualization transform that was then
successfully applied to visualize data from a second (“application”) well. The input data set

from the training well consisted of about 5500 high-dimensionality samples spanning 2750 ft
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of well depth. Each sample had 18 variables, including LWD measurements (rate of
penetration, caliper, gamma ray, shallow, medium and deep resistivity with different
excitation frequencies) and cased-hole pulsed neutron measurements (including both count-
rate-based primary parameters and ratio-based secondary parameters). Each variable in the
HD data space is typically normalized in the range from -1 to 1. Approximately 400 clusters
were identified in the clustering phase, and the cluster kernels were positioned in a 3D output
data space via EC/PSO with a mean-square error fitness function. A neural network ensemble
was trained to model the dimensionality reduction transform, and was thereafter used to map
all high-dimensionality data to the 3D output data space.

Fig. 20 shows the input and output data space sample-pair distance correlation of the
training well data. Although noisy data were used in this study, high correlation between 18D
and 3D sample-pair distances can still be observed. Compared with the previous simulated
ten-dimensional PN data example, the mean-squared-error over all sample-pair distances has
increased from 0.008 to 0.022 for the eighteen-dimensional field data.

Fig. 28 shows the three dimensional visualization of the training well data. As
indicated by the symbol key, the training well data has been categorized into formation (bulk)
density ranges of <1.9, 1.9-2.1, 2.1-2.3, and >2.3 grams per cubic centimeter. (Bulk density
was excluded from the HD data set.) It can be observed that the points in a given bulk density
range are fairly well segregated in the diagram. The application data set includes 3150
samples spanning 1575 ft of well depth. Fig. 29 shows the three dimensional visualization for
the application well data. In this figure, the segregation is even more pronounced.

As one of the objectives provided in the fitness function, we expected to see the
transformed 3D data would preserve the correlation with formation density as “essential
information”. The linear correlation coefficient of the original 18D inputs and bulk density is
0.8990 for the training well and 0.9026 for the application well. Figs. 30 and 31 illustrate that
the 3D transformed data still preserves a high linear correlation with bulk density up to 0.851
for the training well and 0.868 for the application well.

Note that in this example, we did not include multi-objective components during
output positioning optimization. Mean-squared-error in sample-pair distance was the only
performance measure applied to the integrated logging data. Since the dimensionality
reduction information loss was not significant, it could be an advantage to use the 3D outputs
in this case for further data analysis, such as non-linear predictive modeling, lithology

identification and reservoir characterization.
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Discussion of Illustrative Applications

In the foregoing examples, the disclosed dimensionality reduction systems and
methods have been applied for chemostratigraphic zonation from elemental rock data,
borehole environment classification and density prediction from simulated (open-hole)
pulsed neutron data, sedimentary rock classification from geochemical oxide measurements,
and to obtain a transferable dimensionality reduction transform for integrated logging data.
The disclosed techniques could be used equally well on many other kinds of complex
compositional data in many fields of science, engineering, and technology, with numerous
commercial applications. Some illustrative examples include fingerprinting various
substances to identify their source and potential issues associated with those substances.

Hydrocarbons are one such substance. Standard laboratory analyses of hydrocarbons
provide organic compound composition; elemental H, C, N, O and S content; trace element
content (especially, V, Ni, S, and other metals); and stable isotope composition of H, C, and
O. The resulting high-dimensionality data set is difficult to comprehend. If dimensionality
reduction can produce a readily-comprehensible (X,Y,Z) data set similar to that demonstrated
above for sedimentary rock samples, a very powerful fingerprinting technique could be
established. This (X,Y,Z) fingerprint may be a superior way of characterizing hydrocarbons
in the subsurface to assess reservoir continuity, extent of mixing between oils in a given
reservoir; thermal maturity of the oil source, etc. This fingerprint would be useful to guide
exploration and production programs, and to assessing any problematic aspects of oils for
transportation (e.g., asphaltene precipitation) and refining (combinations of V, Ni, S, Fe, etc.
which are detrimental to catalysts in refineries).

Other substances suitable for fingerprinting include kerogens and bitumens in
hydrocarbon source rocks. These substances have much of the same readily-obtainable
characteristics as those outlined for hydrocarbons above. Analyses of kerogen and bitumen
are done routinely and are relatively inexpensive, allowing for economical generation of
abundant input data. The reduced dimensionality coordinates would serve as fingerprints
having utility in upstream exploration and development programs in much the same way as
the hydrocarbon fingerprints.

The collective flow properties of reservoir rocks can be fingerprinted. Laboratory
measurements of porosity, permeability, MICP (mercury injection capillary pressure) curves,
relative permeability, image analysis of pore size / shape from thin section microscopy and

SEM (scanning electron microscopy), inter alia, would provide a high-dimensionality
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characterization of reservoir quality or aquifer quality (i.e., measures of the rock’s ability to
store or transmit water, oil, or natural gas). The reduced dimensionality fingerprint would be
of great use in planning drilling programs for oil and gas recovery from the subsurface.

Fingerprinting of subsurface sedimentary rock can be performed using among other
things, petrophysical log data, chemostratigraphic data (elemental and isotope), mineralogical
data, and organic geochemistry data. Such fingerprinting would, among other things,
facilitate characterizing sedimentary facies in terms of the original depositional environment
of the sediment that now comprises the sedimentary rock. The fingerprints of rocks in
reservoir layers would enable a better understanding of the spatial distribution and volume of
reservoirs, and be of great value in planning and drilling of development wells, especially
horizontal development wells.

Similarly, igneous rock can be fingerprinted to facilitate identifying characteristics
such as the lithology, the source volcano(s) of a volcanic ash bed (where ash has been
transported in the atmosphere and has settled some distance from the volcano), the volcano or
underground source location from which volcanic lava rock was generated or erupted, the
tectonic setting in which the magma was generated in the subsurface, the degree of fractional
crystallization undergone by the magma during its emplacement and cooling to form a solid
rock, and the degree of contamination added to the magma by surrounding rock. Such
characteristics would be helpful to locating and exploiting reserves of metal and mineral ores.

Water produced from subsurface aquifers can be fingerprinted using standard
laboratory water analyses as the high-dimensionality input data set. As with other substances,
the fingerprints would be useful in identifying sources, distribution, etc., for drilling and
production planning. Organic and inorganic pollutants in soils and aquifers can similarly be
fingerprinted from laboratory analyses to enable tracing, source identification, and
remediation planning. Materials commonly employed in criminal forensic investigations can
be fingerprinted from compositional analyses. Examples include soils, paints, concretes,
papers, plastics, metal alloys, glass, residual fluids, biological specimens, and DNA. In such
investigations, the fingerprints would simplify tracing and source identification.

Indeed, many high-dimensionality data sets should be amenable to dimensionality
reduction to enhance understanding and use of the information inherent in that data. Users
seeking the most suitable clustering method for many problems may find that task
considerably simplified when working in the low-dimensionality data space, since the results

after coding will be less sensitive to the particular clustering algorithms. The refining of a
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given clustering scheme via cluster merging/splitting also becomes much more convenient in

the 2D or 3D spaces.

In addition to the performance benefits realized via direct EC encoding of the LD
coordinates coupled with PSO refinement of those coordinates, the disclosed methods and
systems are expected to exhibit improved performance relative to existing dimensionality
reduction techniques through the use of an additional supervised term into the fitness
function. (Usually this term would be the correlation of the output coding with the parameters
to be predicted.) The introduced term is user-defined and may vary depending on the
intended use of the low-dimensionality data set.

The disclosed systems and methods are suitable for automating data mining of HD
data, thereby requiring less specialist manpower. They are suitable for high-ratio data
compression with minimal information loss, thereby enhancing efficiency of data
transmission in a well telemetry system. They may further ease or eliminate input selection
for predictive modeling. Numerous variations and modifications will become apparent to
those skilled in the art once the above disclosure is fully appreciated.

Though the methods disclosed herein have been shown and described in a sequential
fashion, at least some of the various illustrated operations may occur concurrently or in a
different sequence, with possible repetition. For example, in some embodiments the PSO
phase may be followed by a conversion of the PSO results into binary strings for a
subsequent EC phase. It is intended that the following claims be interpreted to embrace all
such variations and modifications.

The following references are helpful to understanding the foregoing disclosure and
are hereby incorporated herein by reference:

1. Beygelzimer, A., et al. 2003. System and methods for using continuous optimization for
ordering categorical data sets. US Pat. 6615211.

2. Chakraborti, N., Mishra, P., and Erkoc, S. 2004. A study of the Cu clusters using gray-
coded genetic algorithms and differential evolution. Journal of Phase Equilibria and
Diffusion, vol. 25, no. 1, p16-21.

3. Chen, D., Quirein, J. A., Smith, H., Hamid, S., and Grable, J. 2005. Neural Network
Ensemble Selection Using a Multi-Objective Genetic Algorithm in Processing Pulsed

Neutron Data. Petrophysics 46 (5): 323-334,
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4. Chen, D., Zhong, A., Hamid, S., Delesus, O., and Stephenson, S. 2007. Construction of
Surrogate Model Ensembles with Sparse Data. Proc., World Congress on Evolutionary
Computation, Singapore, 244-251.

5. Chen, D., et al. 2007. Genetic algorithm based selection of neural network ensemble for
processing well logging data. US Pat. 7280987

6. Condie, K.C. 1993. Chemical Composition and Evolution of the Upper Continental Crust:
Contrasting Results from Surface Samples and Shales. Chemical Geology, 104 (1-4): 1-37.

7. Demartines, P. and Herault, J. 1997. Curvilinear Component Analysis: A Self-Organizing
Neural Network for Nonlinear Mapping of Data Sets. IEEE Trans. Neural Networks 8 (1):
148-154.

8. Fruchterman, T., and Reingold, E. 1991. Graph Drawing by Force-Directed Placement.
Software: Practice and Experience 21 (11): 1129-1164.

9. Govindaraju, K. 1994. Compilation of Working Values and Sample Description for 383
Geostandards. Geostandards Newsletter 18 (Special Issue): 1-158.

10. Lespinats, S., Verleysen, M., Giron, A., and Fertil, B. 2007. DD-HDS: A Method for
Visualization and Exploration of High-Dimensional Data. IEEE Trans. Neural Networks
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CLAIMS
WHAT IS CLAIMED IS:
1. A visualization method that comprises:
obtaining a data set having a dimensionality that is to be reduced,;
identitying kernels that represent clusters within the data set;
representing low-dimensionality coordinates of each kernel as a corresponding gene on a
chromosome in a population of such chromosomes;
subjecting said population to evolutionary computation to select a dimensionality
reduction mapping; and
displaying the kernels at locations based on their low-dimensionality coordinates as
determined from the selected dimensionality reduction mapping.
2. The visualization method of claim 1, further comprising:
refining the dimensionality reduction mapping using a particle swarm optimization search.
3. The visualization method of claim 1, further comprising:
training a neural network to map kernels to low-dimensionality coordinates derived from
the selected dimensionality reduction mapping;
applying the neural network to members of the data set to determine corresponding low-
dimensionality coordinates; and
displaying the members at locations based on their corresponding low-dimensionality
coordinates.
4. The visualization method of claim 3, wherein the neural network is an ensemble of diverse
neural networks that have been individually trained.
5. The visualization method of claim 1, wherein the evolutionary computation employs a
multi-objective fitness function with a measure of kernel pair distance error and a measure of
linear correlation with a prediction variable.
6. The visualization method of claim 5, wherein the evolutionary computation employs a
fitness function that de-emphasizes effects of distance error for larger distances.
7. The visualization method of claim 1, wherein the evolutionary computation employs a
fitness function that includes a measure of linear correlation between distances in the original
data set and distances in a reduced-dimension data set.
8. The visualization method of claim 1, wherein the evolutionary computation employs

conditional evolution to escape local minima in the fitness function.
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9. The visualization method of claim 1, wherein the data set includes elemental compositions
of rock samples.

10. The visualization method of claim 1, wherein the data set includes oxide measurements
from sedimentary rock samples.

11. The visualization method of claim 1, wherein the data set includes one or more well logs
obtained from different logging tools.

12. The visualization method of claim 1, wherein the data set includes collective flow

properties of reservoir rock samples.

13. A visualization method that comprises:
obtaining a data set having a dimensionality that is to be reduced,;
representing low-dimensionality coordinates of data set members as corresponding genes
in a population of chromosomes;
subjecting said population to evolutionary computation to select a dimensionality
reduction mapping; and
displaying the data set members at locations based on their low-dimensionality
coordinates as determined from the selected dimensionality reduction mapping.
14. The visualization method of claim 13, further comprising:
refining the selected dimensionality reduction mapping using a particle swarm
optimization search.
15. The visualization method of claim 14, further comprising:
training a neural network to map data set members to low-dimensionality coordinates
given by the refined dimensionality reduction mapping;
applying the neural network to new data points to determine corresponding low-
dimensionality coordinates; and
displaying the data points at locations based on their corresponding low-dimensionality
coordinates.
16. The visualization method of claim 15, wherein the neural network is an ensemble of
diverse neural networks that have been individually trained.
17. The visualization method of claim 13, wherein the evolutionary computation employs a
multi-objective fitness function with a measure of kernel pair distance error and a measure of

linear correlation with a prediction variable.

28



10

15

20

25

30

WO 2010/017300 PCT/US2009/052860

18. The visualization method of claim 13, wherein the evolutionary computation employs a
fitness function that includes a measure of linear correlation between distances in the original

data set and distances in a reduced-dimension data set.

19. A substance fingerprinting method that comprises:
performing a compositional analysis on a sample of a substance;
applying a dimensionality reduction transform to results of the compositional analysis to
obtain a low-dimensionality representation;
using the low-dimensionality representation to match the sample with one or more closely-
related substances in a data set; and
identifying one or more characteristics of the sample based on properties of the closely-
related substances.
20. The method of claim 19, further comprising deriving the dimensionality reduction
transform from the data set, wherein said deriving includes:
identitying kernels that represent clusters within the data set;
applying evolutionary computation to directly-encoded low-dimensionality coordinates for
the kernels to select a bit-restricted initial encoding;
refining the initial encoding using a local search technique that is not bit-restricted; and
training at least one neural network to implement the dimensionality reduction transform
based on the refined encoding.
21. The method of claim 20, wherein the local search technique employs particle swarm
optimization.
22. The method of claim 20, wherein the substance is sedimentary rock, and wherein said one
or more characteristics include one or more of the following: lithology; sedimentary facies in
terms of original depositional environment; reservoir quality; and aquifer quality.
23. The method of claim 20, wherein the substance is igneous rock, and wherein said one or
more characteristics include one or more of the following: lithology; source volcano(s) of a
volcanic ash bed included in the igneous rock; source location of volcanic lava from which
the igneous rock originated; tectonic setting in which magma making up the igneous rock
was generated; degree of fractional crystallization undergone by magma during its
emplacement and cooling to form the igneous rock; degree of contamination added by

surrounding rock to magma making up the igneous rock.

29



10

15

20

25

30

WO 2010/017300 PCT/US2009/052860

24. The method of claim 20, wherein identifying one or more characteristics includes
identifying a source and distribution of the substance.
25. The method of claim 24, wherein the substance is in the set consisting of hydrocarbons,

kerogens, bitumens, water, water pollutants, and soil pollutants.

26. A well-telemetry method that comprises:
applying evolutionary computation to logging data to obtain a low-dimensionality
encoding solution;
training a neural network ensemble with the solution;
configuring a downhole processor to apply the neural network ensemble to logging data to
obtain reduced-dimension telemetry data for transmission uphole.
27. The method of claim 26, wherein the evolutionary computation employs a multi-objective
fitness function with a measure of kernel pair distance error and a measure of linear
correlation with a prediction variable.
28. The method of claim 26, wherein the low-dimensionality encoding solution is refined by
particle swarm optimization.
29. The method of claim 26, further comprising:
generating predictions of one or more formation properties based on the telemetry data;
and

displaying the telemetry data and predictions to a user.

30. A system employing dimensionality reduction, the system comprising:

a memory having software;

an output device; and

a processor coupled to the memory to execute the software, wherein the software

configures the processor to:
obtain a high-dimensionality data set;
determine a low-dimensionality representation of the data set using evolutionary
computation with particle swarm optimization; and

output results to a user based on the low-dimensionality representation.
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31. The system of claim 30, wherein the software further configures the processor to train a
neural network ensemble to implement a map from a data space of the high-dimensionality
data set to a reduced-dimensionality data space.

32. The system of claim 30, wherein as part of determining the low-dimensionality
representation, the software configures the processor to determine clusters in the data set, and
wherein the evolutionary computation is applied only to representatives of the clusters.

33. The system of claim 30, wherein the software configures the processor to carry out the
evolutionary computation with at least eight bits of resolution in each dimension of the low-
dimensionality data space, and wherein positions within the low-dimensionality data space
are expressed using Gray coding.

34. The system of claim 30, wherein the software enables the particle swarm optimization to

expand the bounds of the low-dimensionality data space.
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