发明名称
光学装置

摘要
本发明涉及一种光学装置，其包括光发射器、光耦合透镜以及光接收器。该光发射器用于发出光信号。该光耦合透镜包括入射面，与入射面相邻的出射面以及连接该出射面与该出射面的多个全反射面。该入射面上具有一个与该光发射器相对的第一非球面凸起，该出射面上具有一个第二非球面凸起。该光信号经过第一非球面凸起转换为平行的光信号，并经过该多个全反射面反射至该第二非球面凸起转换成汇聚的光信号。该光接收器与该出射面上的第二非球面凸起相对设置，该光接收器用于接收通过该第二非球面凸起汇聚的光信号。
1. 一种光学装置，其包括：
光发射器，其用于发出光信号；
光耦合透镜，其包括入射面、与该入射面相邻的出射面以及连接该入射面与该出射面的多个全反射面，该入射面上具有一个与该光发射器相对的第一非球面凸起，该出射面上具有一个第二非球面凸起，该光信号经过该第一非球面凸起转换为平行的光信号，并经过该多个全反射面反射至该第二非球面凸起转换成汇聚的光信号；
光接收器，其与该出射面上的第二非球面凸起相对设置，该光接收器用于接收通过该第二非球面凸起汇聚的光信号。
2. 如权利要求1所述的光学装置，其特征在于，该入射面垂直于该光发射器发出的光信号的方向。
3. 如权利要求1所述的光学装置，其特征在于，该入射面垂直于该出射面。
4. 如权利要求3所述的光学装置，其特征在于，该光耦合透镜的全反射面包括与该出射面相连接的第一全反射面，与该入射面连接的第二全反射面以及连接该第一全反射面与该第二全反射面的第三全反射面。
5. 如权利要求4所述的光学装置，其特征在于，该第三全反射面垂直于该第一全反射面以及该第二全反射面。
6. 如权利要求4所述的光学装置，其特征在于，该第一全反射面与该出射面成钝角。
7. 如权利要求6所述的光学装置，其特征在于，该第一全反射面与该出射面成135度角。
8. 如权利要求4所述的光学装置，其特征在于，该第二全反射面与该入射面成钝角。
9. 如权利要求8所述的光学装置，其特征在于，该第二全反射面与该入射面成135度角。
10. 一种光学装置，其包括：
多个光发射器，其分别用于发出光信号；
光耦合透镜，其包括入射面、与该入射面相邻的出射面以及连接该入射面与该出射面的全反射面，该入射面上具有多个分别与该多个光发射器相对的第一非球面凸起，该出射面上具有多个第二非球面凸起，每个光发射器发出的光信号经过一个第一非球面凸起转换为平行的光信号，并经过该多个全反射面反射至一个第二非球面凸起转换成汇聚的光信号；
多个光接收器，其分别与该出射面上的多个第二非球面凸起相对设置，每个光接收器用于接收通过与其对应的该第二非球面凸起的汇聚的光信号。
光学装置

技术领域
[0001] 本发明涉及一种光学装置。

背景技术
[0002] 现有的光学装置，如光信号传输装置，一般包括电路板、设置在电路板上的光发射器、光接收器以及光纤。光发射器发出的光信号通过光纤传送至该光接收器。由于光发射器发射的光信号为直线传播，因此，光纤的接收端需设置在该光发射器的正前方，其应用受到限制。

发明内容
[0003] 有鉴于此，有必要提供一种可调整光信号的传播方向的光学装置。
[0004] 一种光学装置，其包括光发射器、光耦合透镜以及光接收器。该光发射器用于发出光信号。该光耦合透镜包括入射面、与该入射面相邻的出射面以及连接该入射面与该出射面的多个全反射面。该入射面上具有一个与该光发射器相对的第一非球面凸起，该出射面上具有一个第二非球面凸起。该光信号经过该第一非球面凸起转换为平行的光信号，并经过多个全反射面反射至该第二非球面凸起转换成汇聚的光信号。该光接收器与该出射面上的第二非球面凸起相对设置，该光接收器用于接收通过该第二非球面凸起汇聚的光信号。
[0005] 一种光学装置，其包括多个光发射器、光耦合透镜以及多个光接收器。该多个光发射器分别用于发出光信号。该光耦合透镜包括入射面、与该入射面相邻的出射面以及连接该入射面与该出射面的全反射面。该入射面上具有多个分别与该多个光发射器相对的第一非球面凸起，该出射面上具有多个第二非球面凸起，每个光发射器发出的光信号经过一个第一非球面凸起转换为平行的光信号，并经过多个全反射面反射至一个第二非球面凸起转换成汇聚的光信号。该多个光接收器分别与该出射面上的多个第二非球面凸起相对设置，每个光接收器用于接收通过与其相对的该第二非球面凸起的汇聚的光信号。
[0006] 本发明实施方式的光学装置，光发射器发出的光信号先经过该光耦合透镜再入射到该光接收器，由于该光耦合透镜的耦合，从而调整了该光信号的传播方向，并且，可以通过改变该光耦合透镜的入射面、出射面以及全反射面之间的角度，将该光信号调整到预定的方向。

附图说明
[0007] 图1为本发明实施方式提供的光学装置的立体示意图。
[0008] 图2为图1中的光学装置的正视图。
[0009] 图3为图1中的光学装置中的沿III-III的剖示图。
[0010] 主要元件符号说明

光学装置 100
具体实施方式

[0011] 请参阅图 1、图 2 与图 3，本发明实施方式提供的光学装置 100 包括多个光发射器 10、一光耦合透镜 20 以及多个光接收器 30。

[0012] 该光发射器 10 设置在电路板 11 上，其用于发出光信号。

[0013] 该光耦合透镜 20 用于接收该光发射器 10 发出的光信号，并调整该光信号的传播方向。该光耦合透镜 20 包括入射面 21，与该入射面 21 相邻的出射面 22 以及连接该入射面 21 与该出射面 22 的多个全反射面。在本实施例中，该光耦合透镜 20 包括与该出射面 22 相连接的第一全反射面 231 与该入射面 21 连接的第二全反射面 232 以及连接该第一全反射面 231 与该第二全反射面 232 的第三全反射面 233。

[0014] 在本实施例中，该入射面 21 垂直于该光发射器 10 发出的光信号的方向。该入射面 21 上具有多个分别与该多个光发射器 10 相对的第一非球面凸起 211。该出射面 22 上具有多个分别与该多个光接收器 30 相对的第二非球面凸起 221。该入射面 21 垂直于该出射面 22。

[0015] 该第一全反射面 231 与该出射面 22 成钝角。该第二全反射面 232 与该入射面 21 成钝角。在本实施例中，该第一全反射面 231 与该出射面 22 成 135 度角，该第二全反射面 232 与该入射面 21 成 135 度角。该第三全反射面 233 垂直于该第一全反射面 231 以及该第二全反射面 232。

[0016] 在本实施例中，进一步包括两个固定板 40，该电路板 11 以及该光耦合透镜 20 夹设于该两个固定板 40 之间。具体地，在本实施例中，该入射面 21、该出射面 22 以及该多个全反射面均垂直于该两个固定板 40。该两个固定板 40 用于固定该电路板 11 以及该光耦合透镜 20。

[0017] 该多个光发射器 10 发出的光信号分别经过该多个第一非球面凸起 211 后，由发散的光信号转换成平行的光信号，该平行的光信号依次经过该第一全反射面 231、该第二全反射面 233 以及该第二全反射面 232 全反射后，经过该第二非球面凸起 221 转换成汇聚的光信号。该汇聚的光信号传送至与其对应的光接收器 30，从而调整了该光发射器 10 发出的光信号的方向。

[0018] 当然，该光发射器 10 与该光接收器 30 不限于多个，也可以为一个。该入射面 21 上的第一非球面凸起 211，以及该出射面 22 上的第二非球面凸起 221 的数量可以根据该光
发射器 10 与该光接收器 30 的数量进行相应的调整。

【0019】 可以理解的是，该入射面 21 与该出射面 22 也不限于垂直，也可以成其他角度。并且，该多个全反射面之间也不限于垂直，也可以成其他角度。并且，通过调整该入射面 21、出射面 22、以及多个全反射面之间的角度，从而调整该光发射器 10 发出的光信号的传播方向。

【0020】 可以理解的是，对于本领域的普通技术人员来说，可以根据本发明的技术构思做出其它各种相应的改变与变形，而所有这些改变与变形都应属于本发明权利要求的保护范围。
图 1
图 2
图 3