International Patent Classification
C04B 30/02, 14/06 // (C04B 30/02, 14:06, 14:42)

International Publication Number
WO 97/10188

International Filing Date
10. September 1996 (10.09.96)

International Priority Date
11. September 1995 (11.09.95) DE

Inventor

Anmelder (für alle Bestimmungsstaaten ausser US):
HÖCHST AKTIENGESELLSCHAFT [DE/DE]; Britningsstrasse 50, D-65929 Frankfurt am Main (DE).

Erfinder: und

Erfinder/Anmelder (nur für US):
FRANK, Dierk [DE/DE]; Homburger Strasse 11a, D-65719 Hofheim (DE); ZIMMER-MANN, Andreas [DE/DE]; Im Dürren Kopf 27a, D-64347 Griesheim (DE).

Title
FIBRE-CONTAINING AEROGEL COMPOSITE MATERIAL

Abstract
The invention relates to a composite material containing 5 to 97 % vol. aerogel particles, at least one binder and at least one fibrous material, in which the diameter of the aerogel particle ≥ 0.5 mm, a process for its production and its use.

Zusammenfassung
Die Erfindung betrifft ein Verbundmaterial, das 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial enthält, wobei der Teilchendurchmesser der Aerogel-Partikel ≥ 0.5 mm ist, ein Verfahren zu seiner Herstellung sowie seine Verwendung.
<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
<th>Sprache</th>
<th>Landesbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>KE</td>
<td>Kenia</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>LZ</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LX</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakische Republik</td>
<td>MD</td>
<td>Republik Moldau</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td>MR</td>
<td>Mauritius</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
<td>MX</td>
<td>Mexiko</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>NL</td>
<td>Niederland</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>KE</td>
<td>Kenia</td>
<td>SG</td>
<td>Singapur</td>
</tr>
<tr>
<td>KG</td>
<td>Kasachstan</td>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>LZ</td>
<td>Luxemburg</td>
<td>SZ</td>
<td>Swasiland</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>MD</td>
<td>Republik Moldau</td>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritius</td>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
Faserhaltiges Aerogel-Verbundmaterial

Die Erfindung betrifft ein Verbundmaterial, das 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial enthält, wobei der Teilchendurchmesser der Aerogel-Partikel ≥ 0,5 mm ist, ein Verfahren zu seiner Herstellung sowie seine Verwendung.

Aerogele, insbesondere solche mit Porositäten über 60 % und Dichten unter 0,4 g/cm³, weisen aufgrund ihrer sehr geringen Dichte, hohen Porosität und geringen Porendurchmesser eine äußerst geringe thermische Leitfähigkeit auf und finden deshalb Anwendung als Wärmeisolationsmaterialien, wie z. B. in der EP-A-O 171 722 beschrieben.

Die hohe Porosität führt aber auch zu einer geringen mechanischen Stabilität sowohl des Gels, aus dem das Aerogel getrocknet wird, als auch des getrockneten Aerogels selbst.

Aerogele im weiteren Sinne, d.h. im Sinne von "Gel mit Luft als Dispersionsmittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne fallen Aerogele im engeren Sinn, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinne bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes weitgehend entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf-Grenzphase, entfernt, bezeichnet man das entstandene Gel auch als Xerogel. Bei der Verwendung des Begriffs Aerogele in der vorliegenden Anmeldung handelt es sich um Aerogele im weiteren Sinn, d.h. im Sinn von "Gel mit Luft als Dispersionsmittel".

Der Formgebungsprozeß des Aerogels wird während des Sol-Gel-Übergangs abgeschlossen. Nach Ausbildung der festen Gelstruktur kann die äußere Form nur
noch durch Zerkleinern, beispielsweise Mahlen, verändert werden. Für eine andere Form der Beanspruchung ist das Material zu brüchig.

Für viele Anwendungen wird von einem Dämmstoff neben einer guten Wärmédämmung auch ein gutes Dämmvermögen für Luftschall gefordert. Eine gute Schalldämpfung tritt typischerweise bei porösen Materialien auf, deren Porosität auf einer makroskopischen Skala (> 0,1 μm) liegt, da dann die Geschwindigkeitswellen des Schalls durch Reibung der Luft an den Porenwänden gedämpft werden. Monolithische Materialien ohne makroskopische Porosität weisen daher eine nur geringe Schalldämpfung auf. Ist ein Material nur auf mikroskopischer Skala porös, wie z.B. monolithische Aerogele, so kann die Luft nicht durch die Poren strömen, sondern die Schallwellen werden auf das Gerüst des Stoffes übertragen, das sie ohne starke Dämpfung weiterleitet.

In der DE-A 33 46 180 werden biegefeste Platten aus Preßkörpern auf der Basis von aus der Flammpyrolyse gewonnenem Kieselsäureaerogel in Verbindung mit einer Verstärkung durch mineralische Langfasern beschrieben. Bei diesem aus der Flammpyrolyse gewonnenem Kieselsäureaerogel handelt es sich jedoch nicht um ein Aerogel im obigen Sinne, da es nicht durch Trocknung eines Gels hergestellt
wird und damit eine gänzlich andere Porenstruktur aufweist. Es ist mechanisch stabiler und kann daher ohne Zerstörung der Mikrostruktur gepreßt werden, weist aber eine höhere Wärmeleitfähigkeit als typische Aerogele im obigen Sinne auf. Die Oberfläche solcher Preßkörper ist sehr empfindlich und muß daher etwa durch den Einsatz eines Binders an der Oberfläche gehärtet oder durch Kaschierung mit einer Folie geschützt werden.

Bei einem für eine geringe Wärmeleitfähigkeit günstigen hohen Volumenanteil von Aerogel bleiben nur geringe Volumenanteile von Binder in den Zwinkelbereichen, was besonders bei porösen Bindern wie z.B. Schäumen mit geringer Wärmeleitfähigkeit eine geringe mechanische Stabilität zur Folge hat. Das Ausfüllen aller Zwinkelbereiche mit Binder führt weiterhin durch die reduzierte makroskopische Porosität (zwischen den Partikeln) zu einer stark reduzierten Schalldämpfung im Material.

In der EP-A- 489 319 wird ein Verbundschaumstoff mit niedriger Wärmeleitfähigkeit offenbart, der 20 bis 80 Vol.-% Silica-Aerogel-Partikel, 20 bis 80 Vol.-% eines die Aerogel-Partikel umhüllenden und miteinander verbindenden Styrolpolymerisatschaumstoffs der Dichte 0,01 bis 0,15 g/cm³ und gegebenenfalls
übliche Zusatzstoffe in wirksamen Mengen enthält. Der so hergestellte Verbundschaumstoff ist zwar druckfest, aber bei hohen Konzentrationen an Aerogel-Partikeln nicht sehr biegefest.

In der noch nicht offengelegten deutschen Patentanmeldung P 44 45 771.5 wird ein Faservlies-Aerogel-Verbundmaterial offenbart, das mindestens eine Lage Faservlies und Aerogel-Partikel aufweist, das dadurch gekennzeichnet ist, daß das Faservlies mindestens ein Bicomponenten-Fasermaterial enthält, dessen Fasern untereinander und mit den Aerogel-Partikeln durch das niedrigschmelzende Mantelmaterial verbunden sind. Dieses Verbundmaterial weist eine relativ niedrige Wärmeleitfähigkeit sowie eine hohe makroskopische Porosität und damit verbunden eine gute Schalldämmung auf, jedoch werden durch die Verwendung von Bicomponentenfasern der Temperaturbereich, in dem das Material verwendet werden kann, sowie die Brandschutzeinsicht eingeschränkt. Weiter sind die entsprechenden Verbundstoffe, insbesondere kompliziertere Formkörper, nicht einfach herzustellen.

Eine der Aufgaben der vorliegenden Erfindung war es daher, ein Verbundmaterial auf der Basis von Aerogel-Granulat bereitzustellen, das eine niedrige Wärmeleitfähigkeit aufweist, mechanisch stabil und leicht herstellbar ist.

Eine weitere Aufgabe der vorliegenden Erfindung war es, ein Verbundmaterial auf der Basis von Aerogel-Granulat bereitzustellen, das zusätzlich noch eine gute Schalldämmung aufweist.
Die Aufgabe wird gelöst durch ein Verbundmaterial, das 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial enthält, wobei der Teilchendurchmesser der Aerogel-Partikel ≥ 0,5 mm ist.

Durch das Bindemittel werden entweder die Fasern bzw. Aerogele untereinander sowie miteinander verbunden oder aber das Bindemittel dient als Matrixmaterial, in das die Fasern und die Aerogel-Partikel eingebettet sind. Die Verbindung der Fasern und der Aerogel-Partikel untereinander sowie miteinander durch das Bindemittel sowie gegebenenfalls die Einbettung in eine Bindermatrix führt zu einem mechanisch stabilen Material mit geringer Wärmeleitfähigkeit.

Die Fasern können glatt oder gekräuselt als Einzelfasern, als Bausch oder als Faservlies oder -gewebe vorliegen. Faservliese und/oder -gewebe können dabei als zusammenhängendes Ganzes und/oder in Form mehrerer kleiner Stücke in dem
Verbundstoff enthalten sein.

Die Fasern können runde, trilobale, pentalobale, oktalobale, bandchen-, tannenbaum-, hantel- oder andere sternförmige Profile aufweisen. Ebenso können auch Hohlfasern verwendet werden.

Der Durchmesser der im Verbundstoff verwendeten Fasern sollte vorzugsweise kleiner als der mittlere Durchmesser der Aerogel-Partikel sein, um einen hohen Anteil Aerogel im Verbundstoff binden zu können. Durch Wahl von sehr dünnen Fasern wird der Verbundstoff leichter biegsam.

Vorzugsweise werden Fasern mit einem Durchmesser zwischen 1 µm und 1 mm verwendet. Typischerweise führt bei festem Volumenanteil von Fasern die Verwendung geringer Durchmesser zu bruchfesten Verbundmaterialien.

Die Länge der Fasern ist in keiner Weise beschränkt. Vorzugsweise sollte jedoch die Länge der Fasern größer als der mittlere Durchmesser der Aerogel-Partikel sein, d.h. mindestens 0,5 mm.

Weiter können Mischungen der oben genannten Typen benutzt werden.

Die Stabilität wie auch die Wärmeleitfähigkeit des Verbundmaterials nimmt mit steigendem Faseranteil zu. Je nach Anwendung sollte der Volumenanteil der Fasern vorzugsweise zwischen 0,1 und 40 Vol.-% liegen, besonders bevorzugt im Bereich zwischen 0,1 und 15 Vol.-%.

Die Fasern können zur besseren Anbindung an die Matrix noch mit Schichten oder Kontaktvermittlern (coupling agents) beschichtet sein, wie z.B. bei Glasfasern üblich.

Geeignete Aerogele für die erfindungsgemäßen Verbundmaterialien sind solche auf der Basis von Metalloxiden, die für die Sol-Gel-Technik geeignet sind (s. z.B. C.J.)

Zur Reduktion des Strahlungsbeitrages zur Wärmeleitfähigkeit kann das Aerogel IR-Trübungsmittel, wie z.B. Ruß, Titandioxid, Eisenoxid, Zirkondioxid oder Mischungen derselben enthalten.

Darüber hinaus gilt, daß die thermische Leitfähigkeit der Aerogele mit zunehmender Porosität und abnehmender Dichte abnimmt und zwar bis zu einer Dichte im Bereich von 0,1 g/cm³. Aus diesem Grund sind Aerogele mit Porositäten über 60 % und Dichten zwischen 0,1 und 0,4 g/cm³ bevorzugt. Die Wärmeleitfähigkeit des Aerogel-Granulates sollte vorzugsweise weniger als 40 mW/mK, besonders bevorzugt weniger als 25 mW/mK betragen.

In einer bevorzugten Ausführungsform werden hydrophobe Aerogel-Partikel verwendet, die durch Einführen von hydrophoben Oberflächengruppen auf den Porenoberflächen der Aerogele während oder nach der Herstellung der Aerogele erhältlich sind.

Mit dem Begriff "Aerogel-Partikel" sollen in der vorliegenden Anmeldung Teilchen bezeichnet werden, die entweder monolithisch sind, d.h. aus einem Stück bestehen, oder aber die im wesentlichen Aerogel-Partikel mit einem Durchmesser kleiner als der des Teilchens enthalten, die durch ein geeignetes Bindemittel verbunden sind und/oder durch Pressen zu einem größeren Teilchen zusammengefügt sind.
Die Größe der Körner richtet sich nach der Anwendung des Materials. Um eine hohe Stabilität zu erreichen, sollte das Granulat nicht zu grobkörnig sein, vorzugsweise sollte der Durchmesser der Körner kleiner 1 cm sein und besonders bevorzugt kleiner als 5 mm sein.

Andererseits soll der Durchmesser der Aerogelteilchen größer als 0,5 mm sein, um zum einen bei der Herstellung den sehr schwierigen Umgang mit einem sehr feinen Pulver geringer Dichte vermeiden zu können. Weiterhin dringt bei der Verarbeitung in der Regel flüssiges Bindemittel in die oberen Schichten des Aerogels ein, das in diesem Bereich seinen hohen Isolationswirkung verliert. Daher sollte das Verhältnis von makroskopischer Teilchenoberfläche zu Teilchenvolumen möglichst klein sein, was mit zu kleinen Teilchen nicht der Fall wäre.

Bevorzugt verwendet werden Polyvinylbutyrale und/oder Polyvinylalkohole.

Vorzugsweise sollte das Bindemittel so gewählt werden, daß es, wenn es in bestimmten Phasen der Verarbeitung in flüssiger Form vorliegt, in diesem Zeitraum nicht oder nur unwesentlich in das sehr poröse Aerogel eindringen kann. Das Eindringen des Bindemittels in das Innere der Aerogel-Partikel kann neben der Auswahl des Bindemittels auch über die Regelung der Prozeßbedingungen wie Druck, Temperatur und Mischzeit beeinflußt werden.

Bildet das Bindemittel eine Matrix, in die Aerogele und Fasern eingebettet sind, so werden wegen ihrer geringen Wärmeleitfähigkeit vorteilhaft poröse Materialien mit
Dichten kleiner als 0,75 g/cm³ wie z.B. Schäume, vorzugsweise Polymerschäume (z.B. Polystyrol- oder Polyurethan- Schäume), verwendet.

Um eine gute Verteilung des Bindemittels in den Zwinkelhohlräumen bei hohem Aerogelanteil und möglichst guter Verklebung zu erreichen, sollten in dem Fall, daß man von Bindemitteln in fester Form ausgeht, die Körner des Bindemittels vorzugsweise kleiner als die des Aerogel-Granulates sein. Ebenso kann eine Verarbeitung bei erhöhtem Druck notwendig sein.

Muß das Bindemittel bei erhöhten Temperaturen wie z.B. im Fall von Schmelzklebern oder Reaktionsklebern wie z.B. Melaminformaldehydharzen, verarbeitet werden, so muß das Bindemittel so gewählt werden, daß dessen Schmelztemperatur die Schmelztemperatur der Fasern nicht überschreitet.

Das Bindemittel wird im allgemeinen in einer Menge von 1 bis 50 Vol.-% des Verbundmaterials verwendet, vorzugsweise in einer Menge von 1 bis 30 Vol.-%. Die Auswahl des Bindemittels richtet sich nach den mechanischen und thermischen Anforderungen an den Verbundstoff sowie den Anforderungen im Hinblick auf den Brandschutz.

Der Verbundstoff kann in wirksamen Mengen weitere Zusatzstoffe wie z.B. Farbstoffe, Pigmente, Füllstoffe, Flammenschutzmittel, Synergisten für Flammenschutzmittel, Antistatica, Stabilisatoren, Weichmacher und IR-Trübungsmittel enthalten.

Weiterhin kann der Verbundstoff Zusatzstoffe enthalten, die zu seiner Herstellung benutzt werden, bzw. bei der Herstellung entstehen, so z.B. Gleitmittel zum Verpressen, wie Zinkstearat, oder die Reaktionsprodukte von sauren bzw. säureabspaltenden Härtungsbeschleunigern bei der Verwendung von Harzen.

Die Brandklasse des Verbundmaterials wird durch die Brandklasse des Aerogels,
der Fasern und des Bindemittels sowie weiterer gegebenenfalls enthaltener Stoffe bestimmt. Um eine möglichst günstige Brandklasse des Verbundmaterials zu erhalten, sollten vorzugsweise nichtentflammbare Fasertypen, wie z.B. Glas- oder Mineralfasern, oder schwerentflammbare Fasertypen wie z.B. TREVIRA CS® oder Melaminharzfasern, Aereogele auf anorganischer Basis, besonders bevorzugt auf der Basis von SiO₂, und schwerentflammbare Bindemittel wie z.B. anorganische Bindemittel oder Harnstoff- und Melaminformaldehydharze, Silikonharzklebstoffe, Polyimid- und Polybenzimidazolharze verwendet werden.

Wird das Material in Form von flächigen Gebilden, wie z.B. Platten oder Matten, verwendet, kann es auf mindestens einer Seite mit mindestens einer Deckschicht kaschiert sein, um die Eigenschaften der Oberfläche zu verbessern, so z.B. die Robustheit zu erhöhen, sie als Dampfsperre auszubilden oder gegen leichte Verschmutzbarkeit zu schützen. Die Deckschichten können auch die mechanische Stabilität des Verbundstoff-Formteils verbessern. Werden auf beiden Flächen Deckschichten verwendet, so können diese gleich oder verschieden sein.

Die Deckschichten können selbst auch aus mehreren Schichten bestehen. Die Deckschichten können mit dem Bindemittel befestigt sein, durch das die Fasern und die Aerogel-Partikel untereinander und miteinander verbunden sind, es kann aber auch ein anderer Kleber Verwendung finden.

Die Oberfläche des Verbundmaterials kann auch durch Einbringen mindestens eines geeigneten Materials in eine Oberflächenschicht geschlossen und verfestigt werden.
Als Materialien sind z.B. thermoplastische Polymere, wie z.B. Polyethylen und Polypropylen, oder Harze wie z.B. Melaminformaldehydharze geeignet.

Die erfindungsgemäßen Verbundmaterialien weisen vorzugsweise Wärmeleitfähigkeiten zwischen 10 und 100 mW/mK, besonders bevorzugt im Bereich von 10 bis 50 mW/mK, insbesondere im Bereich von 15 bis 40 mW/mK auf.

Eine weitere Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung des erfindungsgemäßen Verbundmaterials bereitzustellen.

Danach werden diese Bäusche zusammen mit dem Bindemittel und gegebenenfalls den Aerogel-Partikeln z.B. in einem Mischer vermischt, bis sich Bindemittel und gegebenenfalls Aerogel-Partikel möglichst gleichmäßig zwischen den Fasern verteilt haben. Die Masse wird dann in eine Form gegeben und gegebenenfalls unter Druck auf eine Temperatur erhitzt, die im Fall von Schmelzklebern oberhalb der Schmelztemperatur des Klebers und im Fall von Reaktionsklebern oberhalb der für die Reaktion notwendigen Temperatur liegt. Nachdem das Bindemittel geschmolzen
ist bzw. reagiert hat, wird das Material abgekühlt. Vorzugsweise werden hier Polyvinylbutyrale verwendet. Durch die Anwendung höherer Drücke läßt sich die Dichte des Verbundmaterials erhöhen.

Das Verpressen findet in Abhängigkeit vom verwendeten Bindemittel im allgemeinen bei Pressdrücken von 1 bis 1000 bar und Temperaturen von 0 bis 300°C in beliebigen Formen statt.
Im Fall der Phenol-, Resorcin-, Harnstoff- und Melaminformaldehydarze findet das Verpressen vorzugsweise bei Drücken von 5 bis 50 bar, besonders bevorzugt 10 bis 20 bar und Temperaturen vorzugsweise von 100 bis 200°C, besonders bevorzugt 130 bis 190°C und insbesondere zwischen 150 und 175°C in beliebigen Formen statt.

Wird als Bindemittel ein Schaum verwendet, so kann das Verbundmaterial je nach Art des Schaums auch folgendermaßen hergestellt werden.
Wird der Schaum durch Expansion expandierbarer Granulatkörner in einer Form wie im Fall von expandiertem Polystyrol hergestellt, so werden alle Komponenten innig vermischt und dann typischerweise erhitzt, vorteilhaft mittels Heißluft oder Dampf. Durch die resultierende Ausdehnung der Partikel wird der Druck in der Form erhöht, wodurch das Zwickelvolumen von dem Schaumstoff ausgefüllt und die Aerogel-Partikel in dem Verbund fixiert werden. Nach dem Abkühlen wird das Verbundstoff-Formteil der Form entnommen und gegebenenfalls getrocknet.

Wird der Schaum durch Extrusion oder Expansion eines nicht zähflüssigen Gemischtes mit nachfolgender Verfestigung erzeugt, können die Fasern der Flüssigkeit beigemischt werden. Die Aerogel-Partikel werden mit der entstandenen Flüssigkeit gemischt, die dann aufschlämt.

Soll das Material mit einer Deckschicht versehen werden, so kann diese beispielsweise vor bzw. nach dem Befüllen einer Form in diese eingelegt werden, so daß die Kaschierung und die Formgebung in einem Arbeitsschritt stattfinden können, wobei als Bindemittel für die Kaschierung vorzugsweise das Verbundstoff-Bindemittel benutzt wird. Es ist aber ebenso möglich, den Verbundstoff erst im nachhinein mit einer Deckschicht zu versehen.

Die Form des Formteils, das aus dem erfindungsgemäßen Verbundstoff besteht, ist in keiner Weise beschränkt; insbesondere kann der Verbundstoff in Plattenform gebracht werden.

Aufgrund des hohen Anteils an Aerogel und dessen geringer Wärmeleitfähigkeit eignen sich die Verbundstoffe sehr gut zur Wärmedämmung.

Der Verbundstoff kann, z.B. in Form von Platten, als Schallabsorptionsmaterial direkt oder in der Form von Resonanzabsorbern für die Schalldämmung verwendet werden. Zusätzlich zu der Dämpfung des Aerogel-Materials tritt nämlich je nach Porosität durch makroskopische Poren eine zusätzliche Dämpfung durch...

Die erfindungsgemäßen Verbundmaterialien eignen sich weiterhin aufgrund der makroskopischen Porosität und besonders der großen Porosität und spezifischen Oberfläche des Aerogels auch als Adsorptionsmaterialien für Flüssigkeiten, Dämpfe und Gase.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher beschrieben ohne dadurch jedoch beschränkt zu werden:

Beispiel 1

Formkörper aus Aerogel, Polyvinylbutyral und Fasern

Es werden 90 Vol.-% hydrophobes Aerogel-Granulat, 8 Vol.-% Polyvinylbutyralpulver® Mowital (Polymer F) und 2 Vol.-% Trevira Hochfest Fasern innig vermischt.

Das hydrophobe Aerogelgranulat hat eine mittlere Korngröße im Bereich von 1 bis 2 mm, eine Dichte von 120 kg/m³, eine BET-Oberfläche von 620 m²/g und eine Wärmeleitfähigkeit von 11 mW/mK.

Der Boden der Preßform mit einer Grundfläche von 30 cm x 30 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.
Der erhaltene Formkörper hat eine Dichte von 269 kg/m³ und eine Wärmeleitfähigkeit von 20 mW/mK.

Beispiel 2

Formkörper aus Aerogel, Polyvinylbutyral und Recyclingfasern

Es werden 80 Vol.-% hydrophobes Aerogel-Granulat aus Beispiel 1, 10 Vol.-% Polyvinylbutyralpulver ©Mowital (Polymer F) und 10 Vol.-% grob aufgeschlossene Polyesterfaserreste als Recyclingfasern innig vermischt.

Der Boden der Preßform mit einer Grundfläche von 30 cm x 30 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.

Der erhaltene Formkörper hat eine Dichte von 282 kg/m³ und eine Wärmeleitfähigkeit von 25 mW/mK.

Beispiel 3

Formkörper aus Aerogel, Polyvinylbutyral und Recyclingfasern

Es werden 50 Vol.-% hydrophobes Aerogel-Granulat aus Beispiel 1, 10 Vol.-% Polyvinylbutyralpulver ©Mowital' (Polymer F) und 40 Vol.% grob aufgeschlossene Polyesterfaserreste als Recyclingfasern innig vermischt.

Der Boden der Preßform mit einer Grundfläche von 30 cm x 30 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.
Der erhaltene Formkörper hat eine Dichte von 420 kg/m³ und eine Wärmeleitfähigkeit von 55 mW/mK.

Beispiel 4

Formkörper aus Aerogel, Polyethylenwachs und Fasern

Es werden 60 Gew.-% hydrophobes Aerogel-Granulat aus Beispiel 1, 38 Gew.-% Polyethylenwachspulver ®Ceridust 130 und 2 Vol.-% ®Trevira Hochfest Fasern innig vermischt.

Der Boden der Preßform mit einer Grundfläche von 12 cm x 12 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 170°C mit einem Druck von 70 bar für 30 Minuten gepreßt.

Der erhaltene Formkörper hat eine Wärmeleitfähigkeit von 25 mW/mK.

Beispiel 5

Formkörper aus Aerogel, Polyethylenwachs und Fasern

Es werden 50 Gew.-% hydrophobes Aerogel-Granulat aus Beispiel 1, 48 Gew.-% Polyethylenwachspulver Hoechst-Wachs PE 520 und 2 Vol.-% ®Trevira Hochfest Fasern innig vermischt.

Der Boden der Preßform mit einer Grundfläche von 12 cm x 12 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 180°C mit einem Druck von 70 bar 30 Minuten gepreßt.
Der erhaltene Formkörper hat eine Wärmeleitfähigkeit von 28 mW/mK.

Beispiel 6

Formkörper aus Aerogel, Polyvinylalkohol und Fasern

Der Boden der Preßform mit einer Grundfläche von 12 cm x 12 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Druck von 70 bar für 2 Minuten gepreßt und anschließend getrocknet.

Der erhaltene Formkörper hat eine Wärmeleitfähigkeit von 24 mW/mK.

Die Wärmeleitfähigkeiten der Formkörper wurden nach DIN 52612 gemessen.
Patentansprüche

1. Verbundmaterial, enthaltend 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial, wobei der Teilchendurchmesser der Aerogel-Partikel \(\geq 0.5 \) mm ist.

2. Verbundmaterial gemäß Anspruch 1, dadurch gekennzeichnet, daß der Volumenanteil des Fasermaterials 0,1 bis 40 Vol.-% beträgt.

3. Verbundmaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Fasermaterial als Hauptbestandteil Glasfasern enthält.

4. Verbundmaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Fasermaterial als Hauptbestandteil organische Fasern enthält.

5. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Anteil der Aerogel-Partikel im Bereich von 20 bis 97 Vol.-% liegt.

6. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Aerogel-Partikel Porositäten über 60 %, Dichten unter 0,4 g/cm³ und Wärmeleitfähigkeiten von weniger als 40 mW/mK aufweisen.

7. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Aerogel ein SiO₂-Aerogel ist, das gegebenenfalls organisch modifiziert ist.

8. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zumindest ein Teil der Aerogel-Partikel hydrophobe Oberflächengruppen aufweisen.
9. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Bindemittel eine Dichte aufweist, die kleiner als 0,75 g/cm³ ist.

10. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Bindemittel als Hauptbestandteil ein anorganisches Bindemittel enthält.

11. Verbundmaterial gemäß Anspruch 10, dadurch gekennzeichnet, daß das anorganische Bindemittel Wasserglas ist.

12. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Bindemittel als Hauptbestandteil ein organisches Bindemittel enthält.

13. Verbundmaterial gemäß Anspruch 12, dadurch gekennzeichnet, daß das organische Bindemittel Polyvinylbutyral und/oder Polyvinylalkohol ist.

14. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß zumindest ein Teil der Aerogel-Partikel und/oder das Bindemittel mindestens ein IR-Trübungsmittel enthalten.

15. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß es eine flächige Form aufweist und auf mindestens einer Seite mit mindestens einer Deckschicht kaschiert ist.

16. Verfahren zur Herstellung eines Verbundmaterials gemäß mindestens einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß man die Aerogel-Partikel und das Fasermaterial mit dem Bindemittel mischt, die Mischung der Formgebung und der Härtung unterzieht.
17. Verwendung eines Verbundmaterials gemäß mindestens einem der Ansprüche 1 bis 15 zur Wärme- und/oder Schalldämmung.

18. Formkörper, enthaltend ein Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 15.

19. Formkörper, im wesentlichen bestehend aus einem Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 15.

20. Formkörper gemäß Anspruch 18 oder 19, dadurch gekennzeichnet, daß er die Form einer Platte aufweist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C04B30/02 C04B14/06 //C04B30/02,14:06,14:42

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 0 340 707 A (BASF AG) 8 November 1989 cited in the application</td>
<td>1,2,5-7,</td>
</tr>
<tr>
<td></td>
<td>see page 2, line 40 - page 3, line 11; claims</td>
<td>10,11,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14,16-20</td>
</tr>
<tr>
<td>Y</td>
<td>DE 33 46 180 A (GRUNZWEIG + HARTMANN UND GLASFASSER AG) 29 August 1985</td>
<td>1,2,5-7,</td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td>10,11,</td>
</tr>
<tr>
<td></td>
<td>see claims 1,7,8; examples 1,2</td>
<td>14,16-20</td>
</tr>
<tr>
<td>A</td>
<td>DE 29 41 606 A (GRUNZWEIG + HARTMANN UND GLASFASSER AG) 23 April 1981</td>
<td>1,5,8,9,</td>
</tr>
<tr>
<td></td>
<td>see page 7, line 37 - page 8, line 5</td>
<td>12,16,</td>
</tr>
<tr>
<td></td>
<td>see page 9, line 8 - page 10, line 38</td>
<td>17,19-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Further documents are listed in the continuation of box C.</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Patent family members are listed in annex.</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 22 November 1996

Date of mailing of the international search report: 11.12.96

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 Hl Bijlmer
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl,
Fax: (+31-70) 340-3018

Authorized officer
Theodoridou, E
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, A</td>
<td>EP 0 672 635 A (BASF AG) 20 September 1995
see page 3, line 4 - line 47
see column 4, line 3 - line 29; claims
---</td>
<td>1-3, 5-8, 12, 14-16, 19-22</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 618 399 A (WACKER-CHEMIE GMBH) 5 October 1994
see page 3, line 1 - line 5; claims
---</td>
<td>1-3, 7, 8, 10, 11, 14-20</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 057 252 A (GRÜNZWEIG + HARTMANN UND GLASFASER AG) 11 August 1982
see page 4, line 24 - page 6, line 17
-----</td>
<td>1, 7, 10, 14-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE-A-3346180</td>
<td>29-08-85</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1171570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 56100182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 7267756</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-T- 145272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 672091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 5915694</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 7165457</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5556689</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 C04B30/02 C04B14/06 //((C04B30/02,14:06,14:42)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestrüststoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C04B

Recherche aber nicht zum Mindestrüststoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorien*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 0 340 707 A (BASF AG) 8.November 1989 in der Anmeldung erwähnt siehe Seite 2, Zeile 40 - Seite 3, Zeile 11; Ansprüche</td>
<td>1,2,5-7, 10,11, 14,16-20</td>
</tr>
<tr>
<td>Y</td>
<td>DE 33 46 180 A (GRÜNZWEIG + HARTMANN UND GLASFASER AG) 29.August 1985 in der Anmeldung erwähnt siehe Ansprüche 1,7,8; Beispiele 1,2</td>
<td>1,2,5-7, 10,11, 14,16-20</td>
</tr>
<tr>
<td>A</td>
<td>DE 29 41 606 A (GRÜNZWEIG + HARTMANN UND GLASFASER AG) 23.April 1981siehe Seite 7, Zeile 37 - Seite 8, Zeile 5siehe Seite 9, Zeile 8 - Seite 10, Zeile 38</td>
<td>1,5,8,9, 12,16, 17,19-22</td>
</tr>
</tbody>
</table>

* Besondere Kategorien von angegebenen Veröffentlichungen:
 - "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam angesehen ist
 - "E" ältestes Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - "L" Veröffentlichung, die genutzt ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 - "O" Veröffentlichung, die auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist

Datum des Abschlusses der internationalen Recherche

22. November 1996

Absendedatum des internationalen Recherchenberichts

11.12.96

Name und Postanschrift der Internationale Recherchenbehöde

Europäisches Patentamt, P.R. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tlx. 31 651 spo nl, Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Theodoridou, E
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, A</td>
<td>EP 0 672 635 A (BASF AG) 20. September 1995</td>
<td>1-3, 5-8, 12, 14-16, 19-22</td>
</tr>
<tr>
<td></td>
<td>siehe Seite 3, Zeile 4 - Zeile 47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>siehe Spalte 4, Zeile 3 - Zeile 29; Ansprüche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 618 399 A (WACKER-CHEMIE GMBH) 5. Oktober 1994</td>
<td>1-3, 7, 10, 14-20</td>
</tr>
<tr>
<td></td>
<td>siehe Seite 3, Zeile 1 - Zeile 5; Ansprüche</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 057 252 A (GRÜNZWEIG + HARTMANN UND GLASFASER AG) 11. August 1982</td>
<td>1, 7, 10, 14-20</td>
</tr>
<tr>
<td></td>
<td>siehe Seite 4, Zeile 24 - Seite 6, Zeile 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentsammlung</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>DE-A-3346180</td>
<td>29-08-85</td>
<td>KEINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-1171570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-56100182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-7267756</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-T-145272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B-627291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-5915694</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-7165457</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A-55556689</td>
</tr>
</tbody>
</table>