(22) Date de dépôt/Filing Date: 2007/01/18
(41) Mise à la disp. pub./Open to Public Insp.: 2007/07/31
(30) Priorité/Priority: 2006/01/31 (FR06/00872)
(51) Cl.Int./Int.Cl. G01D 3/08 (2006.01), B60C 99/00 (2006.01), G01C 22/02 (2006.01),
G01D 5/12 (2006.01), G08C 17/02 (2006.01)
(71) Demandeur/Applicant:
MICHELIN RECHERCHE ET TECHNIQUE S.A., FR
(72) Inventeurs/Inventors:
BERANGER, MARC, FR;
DAUMAS, FRANCK, FR;
LIBERGE, FRANCK, FR;
PENOT, THIERRY, FR;
VIAL, FRANCK, FR;
VILLARD, MARIE-JOSE, FR
(74) Agent: ROBIC

(54) Titre : PNEUMATIQUE, ROUE OU ENSEMBLE PNEUMATIQUE ET ROUE EQUIPES D’UN DISPOSITIF DE
COMPTAGE DU NOMBRE DE ROTATIONS
(54) Title: TIRE, WHEEL OR TIRE AND WHEEL ASSEMBLY EQUIPPED WITH A DEVICE FOR COUNTING NUMBER
OF ROTATIONS

(57) Abrégé/Abstract:
Dans un dispositif électronique de comptage du nombre de rotations pour un ensemble pneumatique et roue, un moyen de
mémorisation retient une information de comptage (NbRot) destinée à représenter le nombre de rotations compté à chaque
instant. Il est proposé d’assurer que l'information de comptage (NbRot) est représentative du nombre de rotations compté depuis
un instant prédéterminé.
ABRÉGÉ

Dans un dispositif électronique de comptage du nombre de rotations pour un ensemble pneumatique et roue, un moyen de mémorisation retient une information de comptage (NbRot) destinée à représenter le nombre de rotations compté à chaque instant. Il est proposé d’assurer que l’information de comptage (NbRot) est représentative du nombre de rotations compté depuis un instant prédéterminé.
1

PNEUMATIQUE, ROUE OU ENSEMBLE PNEUMATIQUE ET ROUE ÉQUIPÉS
D’UN DISPOSITIF DE COMPTAGE DU NOMBRE DE ROTATIONS

[0001] L’invention concerne un ensemble pneumatique et roue équipé d’un dispositif électronique de comptage du nombre de ses rotations.

[0002] On utilise de plus en plus fréquemment de nos jours des dispositifs électroniques de contrôle des systèmes mécaniques, par exemple pour obtenir un suivi du fonctionnement de ceux-ci.

[0004] Une telle solution est décrite dans la demande de brevet WO 2004/110793.

[0005] Dans de tels dispositifs électroniques, le nombre de rotations de l’objet est mémorisé sous la forme d’une information de comptage, par exemple dans une mémoire du dispositif.

[0006] Pour pratiquée qu’elle soit, cette solution base sa fonction de contrôle (c’est-à-dire de suivi correct du système mécanique) sur l’exactitude de l’information de comptage mémorisée et est donc vulnérable lorsque cette information risque d’être altérée, par exemple par un fraudeur qui chercherait à réduire (voire à annuler) le nombre de tours mémorisé par le dispositif.

[0007] Afin de répondre à ce problème, l’invention propose un pneumatique, une roue ou un ensemble pneumatique et roue équipés d’un dispositif électronique de comptage du nombre de rotations dans lequel un moyen de mémorisation retient une information de comptage destinée à représenter le nombre de rotations compté à chaque instant, caractérisé par des moyens pour assurer l’absence de remise à zéro du moyen de mémorisation depuis un instant prédéterminé et ainsi assurer que l’information de comptage (NbRot) est représentative du nombre de rotations comptées depuis l’instant prédéterminé.

[0008] L’information de comptage peut ainsi être utilisée pour le suivi du nombre de rotations depuis l’instant prédéterminé avec un meilleur degré de certitude.
[0009] On évite ainsi d’utiliser l’information de comptage pour le suivi du nombre de rotations depuis l’instant prédéterminé après une remise à zéro intempestive (volontaire ou non) du moyen de mémorisation.

[0010] On entend ici «remise à zéro» dans le sens général, à savoir toute modification à une valeur antérieure de l’information mémorisée, même si cette valeur n’est pas nulle.

[0011] Selon un premier mode de réalisation, les moyens pour assurer l’absence de remise à zéro comprennent des moyens de remise à zéro conditionnelle du moyen de mémorisation.

[0012] On évite ainsi les remises à zéro intempestives, la mise en œuvre d’une remise à zéro autorisée nécessitant un contexte particulier (i.e. au moins une condition particulière).

[0013] Lesdits moyens de remise à zéro conditionnelle sont par exemple aptes à remettre à zéro le moyen de mémorisation si et seulement si au moins deux conditions distinctes sont réalisées.

[0014] Lorsque le dispositif comprend des moyens de réception d’une requête d’émission de données, une première desdites conditions peut consister en la réception de ladite requête.

[0015] Lorsque le dispositif comprend un micro circuit, une seconde desdites conditions peut consister en l’application d’une tension prédéterminée sur une broche du microcircuit.

[0016] Selon un second mode de réalisation, éventuellement combinable au premier, les moyens pour assurer l’absence de remise à zéro comprennent des moyens de comptage du nombre de remises à zéro du moyen de mémorisation.

[0017] On a ainsi accès au nombre de remises à zéro intempestives, une seule remise à zéro étant généralement autorisée dans la vie du dispositif.
Les moyens de comptage sont par exemple aptes à mémoriser le nombre de
remises à zéro dans une mémoire non-volatile, ce qui permet de conserver ce nombre
même en cas de coupure de l'alimentation du dispositif.

Selon un autre mode de réalisation, on peut faire en sorte qu'un composant
fusible du microcircuit soit « grillé » à chaque remise à zéro rendant le dispositif
inutilisable après un nombre défini de remises à zéro correspondant à autant de
composants fusibles présents dans le microcircuit, cela rend visible sur le dispositif le
nombre de remises à zéro du dispositif.

Lorsque le dispositif comprend des moyens d'émission de données, les moyens
d'émission sont aptes par exemple à émettre une information relative au nombre de
remises à zéro, ce qui permet à cette information d'être suivie depuis l'extérieur.

Le dispositif peut également comprendre des moyens d'initialisation du
dispositif aptes à remettre à zéro le moyen de mémorisation audit instant prédéterminé,
 selon une procédure de fonctionnement normale et autorisée.

Dans ce cas, les moyens d'initialisation sont par exemple aptes à mémoriser un
code prédéterminé dans une première partie d'une mémoire vive, alors qu'une seconde
partie de la mémoire vive peut former le moyen de mémorisation.

Selon un troisième mode de réalisation, éventuellement compatible avec au
moins un des deux premiers, les moyens pour assurer l'absence de remise à zéro
comprennent des moyens de vérification de la présence du code prédéterminé dans la
première partie de mémoire vive.

On peut ainsi détecter la remise à zéro intempestive du moyen de
mémorisation.

Des moyens d'émission de l'information de comptage sont alors par exemple
aptes à émettre cette information seulement en cas de vérification positive par les
moyens de vérification, ce qui permet de n'émettre l'information que lorsque sa fiabilité
est assurée par les moyens de vérification.
[0026] Selon un quatrième mode de réalisation, éventuellement compatible avec l’un ou plusieurs des trois autres, un moyen de renforcer le degré de certitude de l’information comptage, consiste à n’autoriser une remise à zéro du moyen de mémorisation que par l’intermédiaire d’une requête spécifique cryptée émise par un dispositif extérieur au dispositif électronique de comptage du nombre de rotations et apte à communiquer avec lui. De préférence, la clé de cryptage de l’algorithme de cryptage se trouve dans le dispositif extérieur. Cela rend plus difficile son identification et son étude par un utilisateur usuel des véhicules.

[0027] En complément, le dispositif électronique de comptage peut crypter l’information de comptage du nombre de rotations avec le même algorithme de cryptage. C’est le dispositif extérieur qui, après émission d’une requête, reçoit et traite l’information de comptage du nombre de rotations.

[0028] De façon préférentielle, le dispositif de comptage est porté par le pneumatique et non par la roue. Le nombre de rotations enregistré par le dispositif correspond alors de façon irréfutable au pneumatique quel que soit le nombre de montages et de démontages qu’il aura subit.

[0029] L’invention a aussi pour objet l’utilisation pour l’équipement et la caractérisation d’un pneumatique, d’une roue ou d’un ensemble pneumatique et roue d’un dispositif électronique de comptage du nombre de rotations d’un objet dans un référentiel, dans lequel un moyen de mémorisation (10) du dispositif de comptage retient une information de comptage (NbRot) destinée à représenter le nombre de rotations comptées à chaque instant, ledit dispositif étant caractérisé en ce que le dispositif de comptage comporte des moyens pour assurer que l’information de comptage (NbRot) est représentative du nombre de rotations comptées depuis un instant prédéterminé.

[0030] Selon un autre aspect, l’invention a pour objet un dispositif électronique de comptage du nombre de rotations d’un objet dans un référentiel, comprenant un capteur magnétique relié à des moyens de comptage et des moyens de réception de signaux
extérieur, caractérisé en ce que les moyens de réception des signaux extérieurs sont constitués par une antenne électromagnétique comprenant le capteur magnétique.

[0031] L'invention a aussi pour objet l'utilisation pour l'équipement et la caractérisation d'un pneumatique, d'une roue ou d'un ensemble pneumatique et roue d'un dispositif électronique de comptage du nombre de rotations d'un objet dans un référentiel selon l'invention ainsi qu'un pneumatique, une roue ou un ensemble pneumatique et roue équipé d'un tel dispositif.

[0032] De façon préférentielle, le capteur magnétique est une bobine.

[0033] Le capteur magnétique peut être relié aux moyens de comptage par un filtre basse fréquence.

[0034] Le dispositif comportant un microcontrôleur relié audits moyens de comptage, l'antenne électromagnétique est reliée au microcontrôleur par un filtre haute fréquence.

[0035] D'autres caractéristiques de l'invention apparaîtront mieux à la lumière de la description qui suit, faite en référence aux dessins annexés dans lesquels :

- la figure 1 représente le schéma général d'un dispositif de comptage selon l'invention;
- la figure 2 représente un exemple détaillé d'une partie du dispositif de la figure 1 ;
- la figure 3 représente le comportement fréquentiel global d'une partie du circuit représenté à la figure 2 ;
- la figure 4 représente le dispositif de la figure 1 et un dispositif de surveillance apte à communiquer avec lui ; et
- la figure 5 est une vue en coupe méridienne d'un pneumatique muni, de façon illustrative, de plusieurs dispositifs de comptage des rotations disposés sur ses surfaces interne et externe.

[0036] La figure 1 représente les éléments essentiels d'un dispositif de comptage des rotations d'un objet dans un référentiel réalisé conformément aux enseignements de l'invention.
[0037] Il s’agit par exemple d’un dispositif autonome embarqué dans un pneumatique dans le but de compter le nombre de tours de roues effectués par le pneumatique afin d’avoir une indication sur son état d’usure.

[0038] Le dispositif de comptage représenté à la figure 1 comprend un capteur magnétique 2 réalisé en pratique par une bobine, c’est-à-dire un enroulement conducteur formé d’une spire ou d’une pluralité de spires.

[0039] Le signal généré par le capteur 2 est transmis d’une part à un compteur 8, à travers un filtre basse fréquence 4 (dénommé dans la suite filtre BF) puis éventuellement un circuit de mise en forme du signal, et d’autre part à des bornes de réception d’un microcontrôleur 10 à travers un filtre haute fréquence 6 comme décrit en détail dans la suite.

[0040] Le filtre BF 4 est conçu pour ne transmettre du capteur magnétique 2 au compteur 8 que les signaux représentatifs du mouvement à mesurer (c’est-à-dire ici les signaux générés à la fréquence de rotation de l’objet, par la rotation du capteur magnétique 2 dans le champ magnétique terrestre).

[0041] Pour ce faire, le filtre BF 4 présente une impédance élevée en dehors de la plage de fréquences qui correspond aux signaux de mesure.

[0042] Par exemple, dans le cas évoqué ici de la mesure des rotations d’un pneumatique, vues les vitesses de rotation courantes des roues de véhicules les signaux générés par la rotation dans le champ magnétique terrestre ont des fréquences variant entre 1 Hz et quelques dizaines de Hz.

[0043] On prévoit donc, dans ce cas, une impédance élevée du filtre BF 4 à partir d’une fréquence supérieure à 100 Hz par exemple à partir de 1 kHz.

[0044] Le compteur 8 a pour fonction de compter le nombre d’alternances dans le signal généré par le capteur magnétique 2 du fait de sa rotation dans le champ magnétique terrestre, c’est-à-dire dans le signal transmis par le filtre BF 4.
[0045] Le compteur 8 décompte par exemple un nombre prédéterminé d’alternances (par exemple 4096 alternances) dans le signal qu’il reçoit du filtre BF 4, puis transmet une information de dépassement à un microcontrôleur 10 lorsque le nombre prédéterminé est atteint, et reprend alors le décompte du nombre prédéterminé d’alternances.

[0046] Le microcontrôleur 10 incrémenta un registre interne à chaque réception de l’information de dépassement et mémorise ainsi le nombre cumulé d’informations de dépassement reçues, qui représente donc (à un facteur multiplicatif près) le nombre d’alternances dans le signal issu du filtre BF 4.

[0047] On a ainsi facilement accès au nombre de rotations du dispositif de comptage (et de manière équivalente du capteur magnétique 2 qui lui est solidaire) dans le champ magnétique terrestre.

[0048] On pourra sur ce sujet se référer à la demande de brevet WO 2004/110793 qui décrit également certains des aspects qui viennent d’être évoqués.

[0049] Comme déjà indiqué, la bobine 2 est par ailleurs connectée à un filtre haute fréquence 6 (dénommé dans la suite filtre HF). Ce filtre HF 6 est conçu de manière à présenter une impédance élevée dans les domaines fréquentiels des signaux utilisés pour la mesure (ici pour le comptage des rotations), c’est-à-dire les signaux transmis de la bobine 2 au compteur 8 par le filtre BF 4, de telle sorte que le filtre HF 6 ne transmet de la bobine 2 aux bornes de réception du microcontrôleur 10 que les signaux de fréquence supérieure à une fréquence donnée (par exemple de l’ordre de 1 kHz), ou dans une bande de fréquence dont la limite inférieure correspond à cette fréquence donnée.

[0050] Le filtre BF 4 et le filtre HF 6 ont donc des bandes passantes distinctes (par exemple de part et d’autre de 1 kHz), ce qui permet, à partir de la bobine 2, de ne transmettre que les signaux dans une première bande de fréquence au compteur 8 et que les signaux dans une seconde bande de fréquence aux bornes de réception de microcontrôleur 10.
[0051] Dans la seconde bande de fréquence (située ici au-dessus de 1 kHz, par exemple autour de 50 kHz avec une bande passante de quelques kHz, par exemple 5 kHz, ce qui correspond à un coefficient de surtension de 10), la bobine 2 se comporte comme une antenne électromagnétique.

[0052] On permet ainsi la réception, par la bobine 2 et à travers le filtre HF 6, d'un signal radiofréquence par le microcontrôleur 10 au niveau de ses bornes de réception.

[0053] On peut ainsi transmettre des informations au dispositif de comptage (c'est-à-dire en pratique à son microcontrôleur 10) par télécommunication au moyen d'ondes électromagnétiques (par exemple sur une porteuse à 50 kHz dans l'exemple mentionné ci-dessus).

[0054] Il s'agit notamment d'une information de réveil transmise par un dispositif extérieur (typiquement un dispositif du système électronique du véhicule ou autre dispositif de surveillance de l'état d'usure des pneumatiques) ; cette information de réveil indique au dispositif de comptage (en pratique à son microcontrôleur 10) que ce dernier doit émettre une information représentative du mouvement mesuré cumulé (c'est-à-dire du nombre de rotations effectuées) comme décrit ci-après.

[0055] Pour ce faire, le dispositif de comptage de la figure 1 comprend également un émetteur 12 en liaison électrique avec le microcontrôleur 10 et une antenne d'émission 14, réalisée par exemple elle aussi sous forme d'un enroulement conducteur.

[0056] Ainsi, lorsqu'il reçoit une information de réveil au moyen de la bobine 2 faisant fonction d'antenne électromagnétique de réception, mais éventuellement aussi dans d'autres phases de son fonctionnement, le microcontrôleur 10 transmet à l'émetteur 12 des informations à émettre (telles que le nombre cumulé des informations de dépassement reçues, qui comme déjà indiqué est représentatif du nombre de rotations effectuées par le pneumatique).

[0057] L'émetteur 12 transforme alors ces informations (par exemple reçues par celui-ci sous forme d'un train binaire) en signaux électriques à émettre sous forme d'une onde
électromagnétique par l’antenne d’émission 14, par exemple sur une porteuse à une fréquence d’émission (qui vaut 433,92 MHz dans le mode de réalisation décrit ici).

[0058] En résumé, le microcontrôleur 10 reçoit des informations de mesure générées par la bobine 2 aux fréquences où celle-ci se comporte comme un capteur magnétique (informations de mesure traitées par le compteur 8), et des informations en réception reçues par la bobine 2 dans les fréquences où elle se comporte comme une antenne électromagnétique.

[0059] L’utilisation du filtre BF 4 et du filtre HF 6 permet de limiter la transmission des signaux, respectivement au compteur et aux bornes de réception du microcontrôleur 10, aux seules plages de fréquence utiles dans chaque cas, c’est-à-dire respectivement les fréquences où apparaissent les signaux ou informations de mesure (en général en dessous de 100 Hz) et les fréquences de réception des signaux radiofréquences, c’est-à-dire typiquement entre 10kHz et 1 MHz.

[0060] Grâce à cette construction, la bobine 2 joue simultanément les rôles de capteur magnétique et d’antenne électromagnétique, sans que cela n’implique toutefois de problème pour le fonctionnement du circuit (tel que par exemple d’éventuels problèmes d’interférence entre ces deux fonctions).

[0061] Dans le dispositif de comptage de la figure 1, le microcontrôleur 10 est également relié à une mémoire non-volatile réinscriptible 16 (par exemple du type EEPROM, dénomination venant de l’anglais « Electrically Erasable and Programmable Read Only Memory »). Cette mémoire non-volatile 16 permet par exemple de stocker une information relative au nombre de remises à zéro qu’a subi le dispositif de comptage, ce qui constitue comme expliqué plus loin une mesure de protection contre d’éventuelles tentatives de fraude sur le nombre de tours décompté.

[0062] Le microcontrôleur 10 est aussi relié à des composants fusibles 19 dont le nombre correspond au nombre total de remises à zéro autorisées du dispositif avant de rendre celui-ci inutilisable.
La remise à zéro du nombre de tours décompté est ici conditionnelle afin d'éviter toute remise à zéro intempestive : le microcontrôleur 10 lance une procédure de remise à zéro autorisée du nombre de tours décomptés quand les deux conditions suivantes sont réunies :

- présence d'une tension électrique d'une valeur prédéterminée (par exemple supérieure à 3 V) sur une broche dédiée 18 du microcontrôleur 10 ; et
- réception d'une information de réveil au moyen de la bobine 2 et à travers le filtre HF 6 selon les modalités déjà mentionnées.

Lors de cette phase de remise à zéro autorisée, le dispositif extérieur qui émet l'information de réveil peut également transmettre un nombre prédéterminé ou code qui sera ainsi reçu par le microcontrôleur 10 (à travers la bobine 2 et le filtre HF 6), puis stocké par le microcontrôleur 10 dans la mémoire utilisée pour le stockage du nombre de tours décompté (ici la mémoire vive formée par les registres internes déjà mentionnés).

Le microcontrôleur 10 pourra alors vérifier la présence de cette information pour s'assurer que le contenu de la mémoire (qui comprend le nombre de tours décompté) n'a pas été réinitialisé ou corrompu (par exemple par un fraudeur qui souhaiterait remettre à zéro le nombre tours décompté). On peut alors prévoir que le microcontrôleur 10 ne déclenche l'émission des informations à émettre par l'émetteur qu'à la condition qu'il vérifie au préalable la présence du code dans la mémoire.

En pratique, la vérification de la présence du code dans la mémoire peut par exemple être réalisée en transmettant, à partir du dispositif extérieur, le code en même temps que l'information de réveil déjà mentionnée ; le microcontrôleur 10 peut alors comparer le code reçu avec chaque information de réveil au code stocké en mémoire lors de la phase de remise à zéro autorisée et ainsi vérifier que la mémoire n'a pas subi d'altération.

Lorsque, selon un mode de réalisation particulier, le dispositif comporte les composants fusibles 19, à la suite d'un processus de remise à zéro, le microcircuit applique une tension prédéfinie aux bornes du composant fusible 19. Cette tension grille
ce composant fusible, ce qui rend visible le nombre de remises à zéro dans le dispositif de comptage. D’autre part, lorsque tous les composants fusibles 19 sont grillés, le microcircuit 10 devient inutilisable.

[0068] On va à présent décrire en référence à la figure 2 un mode de réalisation possible pour la bobine 2, le filtre BF 4 et le filtre HF 6 qui viennent d’être décrits en référence à la figure 1.

[0069] Comme cela sera décrit dans la suite, la première partie du circuit électrique représentée à la figure 2 permet de réaliser d’autres fonctions que celles qui viennent d’être mentionnées, et notamment une mise en forme des signaux de mesure comme illustré en figure 1.

[0070] La bobine 2 est représentée sur le schéma électrique de la figure 2 par une inductance L1.

[0071] La bobine 2 est réalisée par l’enroulement de plusieurs milliers de spires (par exemple entre 1 000 et 10 000 spires, ici 3 000 spires) ayant chacune une surface de l’ordre de 10 mm² et réalisées en fil de cuivre isolé, ce qui lui confère une inductance de quelques dizaines de mH. On obtient ainsi une surface équivalente de l’ordre de quelques dm², voire de quelques dizaines de dm² (par exemple comprise entre 1 dm² et 1 m²).

[0072] Avantageusement, les spires peuvent être bobinées sur un noyau à forte perméabilité magnétique, ce qui permet une amélioration de la sensibilité qui correspond à une multiplication de la surface équivalente, par exemple par un facteur compris entre 1 et 10, ici un facteur 6.

[0073] Ce dimensionnement de la bobine lui permet de constituer à basse fréquence un capteur magnétique avec une sensibilité de l’ordre de 1 V/Tesla à 1 Hz, qui génère ainsi à ses bornes une tension de l’ordre de 50 µV à 1 Hz lors de ses rotations dans le champ magnétique terrestre (en prenant pour ce dernier une valeur caractéristique de 50 µT).
Le dimensionnement de la bobine 2 lui permet également, du fait de sa capacité parasite C_{parasite} qui vaut environ 40 pF, de constituer une antenne électromagnétique sensible en particulier autour de sa fréquence de résonance $f_0 = \frac{1}{2 \pi} \sqrt{\frac{L_1 C_{\text{parasite}}}{}}$, soit ici environ 100 kHz.

Comme visible sur la figure 2, les bornes de la bobine 2 (représentées par l'inductance L_1) sont pour une première part reliées par l'association en série d'une résistance R_1 et d'une capacité C_1 qui forment un filtre passe-bas F_1 avec une fréquence de coupure de 9 Hz. Ce filtre passe-bas F_1 permet déjà la transmission des seuls signaux de mesure aux étages ultérieurs du circuit électronique décrits ci-après, même si d'autres filtres viennent renforcer cet effet comme également expliqué ci-dessous.

En effet, dans l'application considérée ici d'une mesure du nombre de rotations des roues de poids lourd (dont la vitesse maximum est de l'ordre 30 m/s et la circonférence parcourue par le capteur de l'ordre de 3 m), les signaux mesurés sont inférieurs à 10 Hz.

Après filtrage par le filtre passe-bas F_1, les signaux (aux bornes du condensateur C_1) sont appliqués à un étage de mise en forme comprenant par exemple un amplificateur A, un filtre passe-bande F et un comparateur U_1. L'amplificateur peut avoir par exemple un gain de 100.

Comme bien visible sur la figure 3 qui représente le comportement fréquentiel de l'ensemble des éléments qui viennent d'être décrits, la réponse fréquentielle globale RFG de l'association de l'inductance L_1, du filtre passe-bas F_1 et de l'étage de mise en forme est située principalement entre 0,9 Hz et 9 Hz, qui constitue la plage de fréquence caractéristique des signaux à mesurer. (Ces fréquences correspondent, pour un poids lourd, à des vitesses comprises entre environ 10 km/h et 100 km/h.)

On remarque en outre que cette réponse fréquentielle globale RFG est pour l'essentiel plate sur cette plage de fréquence, ce qui simplifie grandement le traitement ultérieur des signaux générés en sortie.
[0080] Les signaux amplifiés par l’amplificateur A et transmis par le filtre passe-bande F sont appliqués au comparateur U1 qui réalise une fonction de détection des alternances du signal généré par la bobine 2 du fait de ses rotations dans le champ magnétique terrestre, après traitement comme décrit ci-dessus. Ce comparateur U1 génère ainsi des impulsions de comptage, en correspondance avec chacune des alternances du signal généré par la bobine 2, qui sont transmises au compteur 8.

[0081] Le circuit décrit plus haut (et notamment l’amplificateur A) permet de générer en sortie du filtre passe-bande F1 un signal qui permet le déclenchement du comparateur ; celui-ci délivre alors un signal logique, par exemple avec une amplitude de 3 V, compatible avec des circuits numériques.

[0082] Les bornes de la bobine 2 (reprsentées sur le circuit de la figure 2 par l’inductance L1) sont reliées pour une seconde part au moyen d’un condensateur C2 (par exemple de 100 pF) qui abaisse la fréquence de résonance de la bobine 2 (qui a une fréquence de résonance propre de l’ordre de 100 kHz comme vu ci-dessus) à environ 50 kHz. L’utilisation du condensateur C2 permet également de stabiliser la fréquence de résonance de l’ensemble à cette valeur de 50 kHz, la capacité parasite de la bobine 2 (d’environ 40 pF comme vu plus haut) ne permettant pas en pratique d’obtenir une valeur suffisamment stable de la fréquence de résonance.

[0083] Le signal aux bornes de l’ensemble inductance L1 - condensateur C2 est transmis à un transistor T par l’intermédiaire d’un condensateur C3 qui permet de ne laisser passer en direction du transistor T que les signaux à des fréquences supérieures à une valeur déterminée. Ainsi, le condensateur C3 forme un filtre passe-haut avec une fréquence de coupure inférieure ici à 50 kHz et qui forme le filtre HF de la figure 1.

[0084] Ainsi, lorsque l’amplitude crête des signaux hautes fréquences (ici à 50 kHz) aux bornes de la bobine dépasse 0,6 V (grâce à l’amplification générée naturellement par la résonance de l’ensemble à cette fréquence), le transistor T devient conducteur et sa tension émetteur-collecteur passe de 3 V à 0 V, ce qui constitue une information de réveil transmise au microcontrôleur 10.
[0085] Le dispositif de comptage est alimenté par une pile électrique, par exemple une pile délivrant une tension VCC de 3 V disponible sous la référence BR1632A.

[0086] On va à présent décrire en référence à la figure 4 différentes phases envisageables du fonctionnement du dispositif de comptage précédemment évoqué au cours desquelles celui-ci dialogue avec un dispositif extérieur comme déjà mentionné.

[0087] Le dispositif de comptage du nombre de rotation est représenté de manière générale en figure 4 sous la référence 20. Certains des éléments qui le constituent (à savoir la bobine 2, le microcontrôleur 10, l'antenne d'émission 14 et la mémoire non-volatile 16) sont également représentés schématiquement en figure 4 afin d'alléger cette figure. On pourra naturellement se reporter aux figures précédentes (en particulier la figure 1) pour une description détaillée de la constitution du dispositif de comptage 20.

[0088] Comme déjà évoqué, le dispositif de comptage 20 peut dialoguer avec un dispositif extérieur 22 (ici un dispositif de surveillance de l'utilisation des pneus, qui peut être réalisé en pratique sous la forme d'une borne ou d'un terminal dédié, ou encore sous la forme d'un dispositif embarqué dans un véhicule).

[0089] Le dispositif extérieur 22 comprend des moyens (typiquement une antenne) 23 pour émettre un signal électromagnétique à destination du dispositif de comptage 20 (et précisément de la bobine 2 dans ce dispositif). Le dispositif extérieur 22 comporte également des moyens (du type antenne) 24 pour recevoir les données émises par le dispositif de comptage 20 au moyen de son antenne d'émission 14.

[0090] Le dispositif extérieur 22 agit par exemple sous le contrôle général d'un microprocesseur 25. Selon une possibilité de réalisation utilisée comme expliqué dans la suite, le dispositif extérieur 22 peut en outre inclure un lecteur de carte à microcircuit 26 connecté au microprocesseur 25 et apte à lire des données stockées sur une carte à microcircuit 27.

[0091] On va à présent décrire à titre d'exemple différentes phases possibles du fonctionnement du dispositif de comptage 20.
Immediatement après sa production et avant tout dialogue avec un dispositif extérieur 22, le dispositif de comptage 20 est par exemple initialisé comme suit : nombre de remises à zéro dans la vie du dispositif NbRAZ (mémorisé en mémoire non-volatile 16) : 0 ; nombre de rotations décomptées NbRot (mémorisé dans les registres du microcontrôleur) : 0.

Le dispositif de comptage peut éventuellement alors subir des déplacements et des mouvements, par exemple lors d’un éventuel transport de celui-ci avant son utilisation, ce qui entraîne éventuellement des risques de décompte (et donc d’incrémentation) du nombre de rotations décomptées NbRot sans correspondance avec une usure effective du système surveillé.

Il est donc souhaitable de remettre à zéro ce décompte avant la première utilisation effective de l’appareil surveillé, selon une procédure de remise à zéro autorisée.

Une telle procédure de remise à zéro autorisée est par exemple une procédure conditionnelle qui est mise en œuvre lorsqu’au moins une condition précise est réalisée ; ici, deux conditions doivent être réalisées comme déjà décrit, à savoir la présence d’une valeur prédéterminée de tension sur une borne 18 du microcontrôleur 10 du dispositif de comptage 20 et la réception d’une information de réveil générée par le dispositif extérieur 22.

Lors d’une telle procédure de remise à zéro autorisée (réalisée par exemple par une personne autorisée qui connaît la procédure à appliquer et possède une carte à microcircuit dédiée 27), le dispositif extérieur 22 émet non seulement l’information de réveil (qui permet dans les conditions précitées de déclencher la remise à zéro autorisée du dispositif de comptage 20), mais aussi un nombre CODE lu par exemple sur la carte à microcircuit 27 au moyen du lecteur de carte 26 et transmis ainsi sur instruction du microprocesseur 25 par l’intermédiaire des moyens d’émission 23. A réception de ce nombre CODE pendant la phase de remise à zéro autorisée, le micro contrôleur 10 du dispositif de comptage 20 mémorise ce nombre CODE dans ses registres internes (ou mémoire vive).
[0097] Par ailleurs, le microcontrôleur 10 incrémenté alors la valeur du nombre de remises à zéro NbRAZ mémorisé en mémoire non-volatile 16.

[0098] Le dispositif de comptage 20 peut alors commencer son fonctionnement normal, à savoir principalement à décompter le nombre de rotations et à mémoriser une information NbRot représentative de ce nombre.

[0099] A une phase ultérieure du fonctionnement, le dispositif extérieur 22 peut souhaiter (en général sur demande d’un opérateur) prendre connaissance du nombre décompté dans le dispositif de comptage 20 selon les modalités déjà expliquées à propos de la figure 1.

[0100] Pour ce faire, le dispositif extérieur 22 émet au moyen de ses moyens d’émission 23 une information de réveil et le nombre CODE déjà émis lors de la remise à zéro du dispositif de comptage 20 (c’est-à-dire en pratique le nombre mémorisé dans la carte à microcircuit associée au dispositif de comptage 20).

[0101] À réception de l’information de réveil, le microcontrôleur 10 vérifie tout d’abord l’identité du nombre qu’il vient de recevoir en association avec l’information de réveil au nombre mémorisé lors de la phase de remise à zéro autorisée, afin de détecter une éventuelle perte des données dans ses registres internes.

[0102] En cas de différence entre le nombre reçu et le nombre mémorisé, on considère que les registres internes ont été corrompus (que ce soit le fait d’un fraudeur ou de manière fortuite) ; l’information relative au nombre de rotations décomptées est alors douteuse et ne sera pas émise : on s’abstient dans ce cas d’activer l’émetteur 12.

[0103] Si au contraire le nombre reçu avec l’information de réveil correspond précisément au nombre mémorisé lors de la remise à zéro autorisée, on procède à l’émission de l’information indicative du nombre de rotations NbRot et du nombre de remises à zéro subi par le dispositif de comptage NbRAZ, à destination du dispositif extérieur 22 et au moyen de l’émetteur 12 et de son antenne 14.
[0104] Le dispositif extérieur 22 peut alors vérifier que le dispositif de comptage a subi une et une seule remise à zéro, ce qui confère un caractère de fiabilité à l’information indicative du nombre de rotations également reçu.

[0105] En variante, la vérification qu’une et une seule remise à zéro du dispositif de comptage 20 a été réalisée peut être mise en œuvre au sein même du dispositif de comptage ; on peut alors ici aussi empêcher l’émission de l’information indicative du nombre de rotations si une telle vérification n’est pas positive.

[0106] La figure 5 est une vue en coupe méridienne d’un pneumatique 30 monté sur une jante 40. Le pneumatique 30 comprend un sommet 32, deux flancs 34 et deux bourrelets 36. Les bourrelets 36 reposent sur les crochets 40 d’une jante (un seul crochet de la jante est représenté). Les dispositifs 20 peuvent notamment être disposé aux trois positions illustrées sur la figure 5 : sur la gomme intérieure du pneumatique entre le bourrelet 36 et le flanc 34 (position 37) ; sous le sommet 32 (position 33) et à l’extérieur du pneumatique au niveau du flanc 34 (position 35).

[0108] Le mode de réalisation qui vient d’être décrit, et notamment les valeurs numériques indiquées, ne constituent qu’un exemple possible de mise en œuvre de l’invention.
REVENDICATIONS

1. Pneumatique, roue ou ensemble pneumatique et roue équipés d'un dispositif électronique de comptage du nombre de rotations, dans lequel un moyen de mémorisation (10) retient une information de comptage (NbRot) destinée à représenter le nombre de rotations comptées à chaque instant, caractérisé par des moyens pour assurer l'absence de remise à zéro du moyen de mémorisation depuis un instant prédéterminé et ainsi assurer que l'information de comptage (NbRot) est représentative du nombre de rotations comptées depuis l'instant prédéterminé.

2. Pneumatique, roue ou ensemble selon la revendication 1, dans lequel les moyens pour assurer l'absence de remise à zéro comprennent des moyens de remise à zéro conditionnelle du moyen de mémorisation.

3. Pneumatique, roue ou ensemble selon la revendication 2, dans lequel, le dispositif comprenant des moyens de réception (26) d’une requête d’émission de données émise par un dispositif extérieur apte à communiquer avec ledit dispositif électronique de comptage, ladite requête destinée à produire une remise à zéro dudit dispositif est cryptée et la clé de cryptage est placée dans ledit dispositif extérieur.

4. Pneumatique, roue ou ensemble selon l’une des revendications 2 et 3, dans lequel lesdits moyens de remise à zéro conditionnelle sont aptes à remettre à zéro le moyen de mémorisation si et seulement si au moins deux conditions distinctes sont réalisées.

5. Pneumatique, roue ou ensemble selon la revendication 4, dans lequel, le dispositif comprenant des moyens de réception (26) d’une requête d’émission de données, une première desdites conditions consiste en la réception de ladite requête.

6. Pneumatique, roue ou ensemble selon l’une des revendications 4 et 5, dans lequel, le dispositif comprenant un microcircuit (10), une seconde desdites conditions consiste en l’application d’une tension prédéterminée sur une broche (18) du microcircuit (10).
7. Pneumatique, roue ou ensemble selon l'une des revendications 2 à 6, dans lequel les moyens pour assurer l'absence de remise à zéro comprennent des moyens de comptage du nombre de remises à zéro (NbRAZ) du moyen de mémorisation.

8. Pneumatique, roue ou ensemble selon la revendication 7, dans lequel les moyens de comptage sont aptes à mémoriser le nombre de remises à zéro (NbRAZ) dans une mémoire non-volatile (16).

9. Pneumatique, roue ou ensemble selon l'une des revendications 7 et 8, dans lequel les moyens de comptage comportent au moins un composant fusible destiné à être grillé lors d'une remise à zéro.

10. Pneumatique, roue ou ensemble selon la revendication 9, dans lequel l'édit dispositif est rendu inutilisable lorsque le dernier composant fusible est grillé.

11. Pneumatique, roue ou ensemble selon l'une des revendications 7 à 10, dans lequel, le dispositif comprenant des moyens d'émission de données (12, 14), les moyens d'émission sont aptes à émettre une information (NbRAZ) relative au nombre de remises à zéro.

12. Pneumatique, roue ou ensemble selon l'une des revendications 2 à 9, comportant des moyens d'initialisation du dispositif aptes à remettre à zéro le moyen de mémorisation audit instant prédéterminé.

13. Pneumatique, roue ou ensemble selon la revendication 12, dans lequel les moyens d'initialisation sont aptes à mémoriser un code prédéterminé (CODE) dans une première partie d'une mémoire vive.

14. Pneumatique, roue ou ensemble selon la revendication 13, dans lequel une seconde partie de la mémoire vive forme le moyen de mémorisation.
15. Pneumatique, roue ou ensemble selon la revendication 14, dans lequel les moyens pour assurer l’absence de remise à zéro comprennent des moyens de vérification de la présence du code prédéterminé dans la première partie de la mémoire vive.

16. Pneumatique, roue ou ensemble selon la revendication 15, dans lequel des moyens d’émission de l’information de comptage sont aptes à émettre cette information seulement en cas de vérification positive par les moyens de vérification.

17. Utilisation pour l’équipement et la caractérisation d’un pneumatique, d’une roue ou d’un ensemble pneumatique et roue d’un dispositif électronique de comptage du nombre de rotations d’un objet dans un référentiel, dans lequel un moyen de mémorisation (10) du dispositif de comptage retient une information de comptage (NbRot) destinée à représenter le nombre de rotations comptées à chaque instant, ledit dispositif de comptage étant caractérisé en ce qu’il comporte des moyens pour assurer l’absence de remise à zéro du moyen de mémorisation depuis un instant prédéterminé et ainsi assurer que l’information de comptage (NbRot) est représentative du nombre de rotations comptées depuis l’instant prédéterminé.

18. Dispositif électronique de comptage du nombre de rotations d’un objet dans un référentiel, comprenant un capteur magnétique relié à des moyens de comptage et des moyens de réception de signaux extérieurs, caractérisé en ce que les moyens de réception des signaux extérieurs sont constitués par une antenne électromagnétique comprenant ledit capteur magnétique.

19. Dispositif selon la revendication 18, dans lequel le capteur magnétique est une bobine.

20. Dispositif selon l’une des revendications 18 et 19, dans lequel le capteur magnétique est relié auxdits moyens de comptage par un filtre basse fréquence.
21. Utilisation pour l'équipement et la caractérisation d'un pneumatique, d'une roue ou d'un ensemble pneumatique et roue d'un dispositif électronique de comptage du nombre de rotations d'un objet dans un référentiel selon l'une quelconque des revendications 18 à 20.

22. Pneumatique, roue ou ensemble pneumatique et roue équipé d'un dispositif électronique de comptage du nombre de rotations d'un objet dans un référentiel selon l'une quelconque des revendications 18 à 20.
Fig. 1

Fig. 2
Amplitude

\[\text{Bande passante utile} \]

Fig. 3

Fig. 4