BREVET D'INVENTION

NUMERO DE PUBLICATION : 1001004A4
NUMERO DE DEPOT : 8701353
Classif. Internat. : C07D A61K
Date de délivrance : 06 Juin 1989

Le Ministre des Affaires Economiques,

Vu la Convention de Paris du 20 Mars 1883 pour la Protection de la propriété industrielle;

Vu la loi du 28 Mars 1984 sur les brevets d' invention, notamment l'article 22;

Vu l'arrêté royal du 2 Décembre 1986 relatif à la demande, à la délivrance et au maintien en vigueur des brevets d'invention, notamment l'article 28;

Vu le procès verbal dressé le 27 Novembre 1987 à 14h05 à l'Office de la Propriété Industrielle

ARRETE:

ARTICLE 1.- Il est délivré à : GLAXO GROUP LIMITED
Clarges House Clarges Street 6-12, LONDRES(ROYAUME-UNI)

représenté(e)(s) par : DELLEKE Robert, BUREAU VANDEY HAEGHEN, Avenue de la
Toison d'Or, 63 - 1060 BRUXELLES.

un brevet d'invention d'une durée de 20 ans, sous réserve du paiement des taxes annuelles, pour : NOUVELLES CÉTONES TRICYCLIQUES UTILES COMME MEDICAMENTS, PROCEDE ET INTERMÉDIAIRES POUR LEUR PREPARATION.

Priorité(à) 28.11.86 GB GBA 8628473 12.11.87 GB GBA 8726537

ARTICLE 2.- Ce brevet est délivré sans examen préalable de la brevetabilité de l'invention, sans garantie du mérite de l'invention ou de l'exactitude de la description de celle-ci et aux risques et périls du(des) demandeur(s).

Bruxelles, le 06 Juin 1989
PAR DELEGATION SPECIALE :

[Signature]

[Directeur]
Nouvelles cétones tricycliques utiles comme médicaments, procédé et intermédiaires pour leur préparation

La présente invention concerne des cétones tricycliques, des procédés pour leur préparation, des compositions pharmaceutiques les contenant et leur utilisation médicale. En particulier, l'invention concerne des composés qui agissent sur les récepteurs à la 5-hydroxytryptamine (5-HT) tels que ceux situés sur les terminaisons des nerfs afférents principaux.

Des composés ayant une activité d'antagonisme au niveau des récepteurs "neuronaux" à la 5-HT du type situé sur les nerfs afférents principaux ont été précédemment décrits.

Par exemple, le brevet britannique publié n° 2 153 821 A et le brevet européen publié n° 191 562, décrivent des tétrahydrocarbazolones de formule générale

![Chemical structure](image)

dans laquelle R\(^1\) représente un atome d'hydrogène ou un alkyle en C\(_{1-10}\), un cycloalkyle en C\(_{3-7}\), un cycloalkyl(C\(_{3-7}\))alkyle en C\(_{1-4}\), un alcényle en C\(_{3-6}\), un alcyenyle en C\(_{3-10}\), un phényle ou un phénylalkyle en C\(_{1-3}\), et un des groupes représentés par R\(^2\), R\(^3\) et R\(^4\) est un atome d'hydrogène ou un groupe alkyle en C\(_{1-6}\), cycloalkyle en C\(_{3-7}\), alcényle en C\(_{2-6}\) ou phényl-alkyle en C\(_{1-3}\), et chacun des deux autres groupes, qui peuvent être semblables ou différents, représente un atome d'hydrogène ou un groupe alkyle en C\(_{1-6}\).

La demanderesse a découvert un nouveau groupe de composés qui diffèrent par leur structure de ceux précédemment décrits et qui sont des antagonistes puissants de l'effet de la 5-HT sur les récepteurs "neuronaux" à la 5-HT.

Donc, selon un de ses aspects, l'invention fournit des cétones tricycliques répondant à la formule générale (I):

```latex
\begin{align*}
R^1 & \text{atome d'hydrogène ou un alkyle en } C_{1-10}, \text{ cycloalkyl en } C_{3-7}, \text{ cycloalkylalkyle en } C_{1-4}, \\
R^2 & \text{atome d'hydrogène ou un groupe alkyle en } C_{1-6}, \text{ cycloalkyle en } C_{3-7}, \text{ alcényle en } C_{2-6}, \text{ phényl-alkyle en } C_{1-3}, \\
R^3 & \text{atome d'hydrogène ou un groupe alkyle en } C_{1-6}.
\end{align*}
```
R1 représente un atome d'hydrogène ou un groupe choisi parmi alkyle en C_{1-6}, alcényle en C_{3-6}, alcynyle en C_{3-10}, cycloalkyle en C_{3-7}, cycloalkyl(C_{3-7})alkyle en C_{1-4}, phényle, phényl-alkyle en C_{1-3}, -CO_{2}R^{5}, -COR^{5}, -CONR^{5}R^{6} ou -SO_{2}R^{5} (où R^{5} et R^{6} qui peuvent être semblables ou différents, représentent chacun un atome d'hydrogène, un groupe alkyle en C_{1-6} ou un groupe cycloalkyle en C_{3-7} ou un groupe phényle ou phényl-alkyle en C_{1-4}, dont le groupe phényle est facultativement substitué par un ou plusieurs groupes alkyles en C_{1-4}, alcoxy en C_{1-4} ou hydroxy, ou atomes d'halogène, sous réserve que R^{5} ne représente pas un atome d'hydrogène lorsque que R^{1} représente un groupe -CO_{2}R^{5} ou -SO_{2}R^{5}) ; un des groupes représentés par R^{2}, R^{3} et R^{4} est un atome d'hydrogène ou un groupe alkyle en C_{1-6}, cycloalkyle en C_{3-7}, alcényle en C_{3-6}, phényle ou phényl-alkyle en C_{1-3} et chacun des deux autres groupes, qui peuvent être semblables ou différents, représente un atome d'hydrogène ou un groupe alkyle en C_{1-6} ;

Q représente un atome d'hydrogène ou d'halogène ou un groupe hydroxy, alcoxy en C_{1-4}, phényl-alcoxy en C_{1-3} ou alkyle en C_{1-6}, ou un groupe -NR^{7}R^{8} ou -CONR^{7}R^{8} (où R^{7} et R^{8} qui peuvent être semblables ou différents, représentent chacun un atome d'hydrogène ou un groupe alkyle en C_{1-4} ou alcényle en C_{3-4} ou, ensemble avec l'atome d'azote auquel ils sont fixés, forment un cycle saturé à 5 à 7 chaînons) ;
n représente 1, 2 ou 3 ; et A-B représente le groupe CH-CH₂ ou C=CH ; et leurs sels physiologiquement acceptables et leurs solvates. Les sels physiologiquement acceptables des composés de formule générale (I) comprennent les sels d’addition d’acides formés avec des acides organiques ou minéraux, par exemple les chlorhydrates, bromhydrates, sulfates, alkyl- ou arylsulfonates (comme méthanesulfonate ou p-toluenesulfonate), phosphates, acétates, citrates, succinates, tartrates, fumarates et maléates. Les solvates peuvent par exemple être des hydrates.

Il convient de noter que lorsque A-B représente CH-CH₂, l’atome de carbone A est asymétrique et peut exister sous les configurations R ou S. De plus, selon la nature des substituants A-B, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ et Q, des centres d’isomérie optique et géométrique peuvent exister ailleurs dans la molécule. Tous les isomères optiques des composés de formule générale (I) et leurs mélanges, y compris les mélanges racémiques, et tous les isomères géométriques des composés de formule (I) entrent dans le cadre de l’invention.

En ce qui concerne la formule générale (I), les groupes alkyles représentés par R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ et Q peuvent être des groupes alkyles à chaîne droite ou à chaîne ramifiée, par exemple méthyle, éthyle, propyle, prop-2-yle, butyle, but-2-yle ou 2-méthylprop-2-yle et, dans le cas de R¹-R⁶ et Q, pentyle, pent-3-yle ou hexyle. Un groupe alcényle peut être par exemple un groupe propényle ou butényle. Un groupe alcynyle peut être par exemple un groupe prop-2-ynyle ou oct-2-ynyle.

Il est sous-entendu que lorsque R¹ ou R³ représentent un groupe alcényle en C₃-6 ou R¹ représente un groupe alcynyle en C₃-10 ou R⁷ ou R⁸ représentent un groupe alcényle en C₃-4, la double ou triple liaison ne peut pas être adjacente à l’atome d’azote.

Un groupe phényl-alkyle en C₁₃ (tel quel ou faisant partie d’un groupe phényl-alcoxy en C₁₁-₃) peut par exemple être un groupe benzyle, phénéthyle ou 3-phénylpropyle. Un groupe cycloalkyle (tel quel ou faisant partie d’un groupe cycloalkylalkyle) peut par exemple être un groupe cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle ou cycloheptyle. Lorsque R³ représente un groupe
cycloalkyl(C₃-7)alkyle en C₁-4, le fragment alkyle peut par exemple être un groupe méthyle, éthyle, propyle, prop-2-yle ou butyle. Lorsque Q représente un groupe alcoxy en C₁-4, il peut être par exemple un groupe méthoxy. Lorsque Q représente un atome d'halogène, il peut être par exemple un atome de fluor, de chlore ou de brome. Le substituant Q peut être en la position a, b, c ou d du fragment indole :

Une catégorie préférée des composés de formule (I) est celle dans laquelle R¹ représente un atome d'hydrogène ou un groupe alkyle en C₁-3 (comme méthyle), alcènyle en C₃-4 (comme prop-2-ényle), alcynyle en C₃-4 (comme prop-2-ynyle), cycloalkyle en C₅-6 (comme cyclopentyle), cycloalkyl(C₅-6)méthyle (comme cyclopentylméthyle), phényl-alkyle en C₁-2 (comme benzyle), alcoxy(C₁-3)carbonyle (comme méthoxycarbonyle), N,N-di-alkyl(C₁-3)carboxamido (comme N,N-diméthylcarboxamido) ou phénylsulfonyle. Plus préféremment, R¹ représente un atome d'hydrogène ou un groupe alkyle en C₁-3 (comme méthyle), alcènyle en C₃-4 (comme prop-2-ényle), alcynyle en C₃-4 (comme prop-2-ynyle), cycloalkyl(C₅-6)méthyle (comme cyclopentylméthyle), phényl-alkyle en C₁-2 (comme benzyle), alcoxy(C₁-3)carbonyle (comme méthoxycarbonyle) ou N-N-di-alkyl(C₁-3)carboxamido (comme N,N-diméthylcarboxamido). Tout préféremment, R¹ représente un atome d'hydrogène ou un groupe alkyle en C₁-3 (comme méthyle), alcènyle en C₃-4 (comme prop-2-ényle), alcynyle en C₃-4 (comme prop-2-ynyle), cycloalkyl(C₅-6)méthyle (comme cyclopentylméthyle), phényl-alkyle en C₁-2 (comme benzyle) ou N,N-di-alkyl(C₁-3)carboxamido (comme N,N-diméthyl-carboxamido).

Une autre catégorie préférée de composés de formule (I) est celle dans laquelle R² représente un atome d'hydrogène ou un groupe alkyle en C₁-3 (comme méthyle), plus préféremment un atome d'hydrogène.

Une autre catégorie préférée de composés de formule (I) est
celle dans laquelle R³ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₃ (comme méthyle), plus préférentiellement un atome d'hydrogène.

Une autre catégorie préférée de composés de formule (I) est celle dans laquelle R⁴ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₃ (comme méthyle). Plus préférentiellement, R⁴ représente un groupe méthyle.

Une autre catégorie préférée de composés de formule (I) est celle dans laquelle Q représente un atome d'hydrogène, un atome d'halogène (comme le fluor) ou un groupe hydroxy, alcoxy en C₁₋₃ (comme méthoxy) ou alkyle en C₁₋₃ (comme méthyle). Plus préférentiellement, Q représente un atome d'hydrogène ou un atome d'halogène (comme le fluor) ou un groupe hydroxy. Encore plus préférentiellement, Q représente un atome d'hydrogène ou de fluor.

Lorsque Q représente un substituant autre qu'un atome d'hydrogène, Q est de préférence en la position b ou c du fragment indole.

Une autre catégorie préférée de composés de formule (I) est celle dans laquelle A-B représente CH-CH₂.

Une autre catégorie préférée de composés de formule (I) est celle dans laquelle n représente 2 ou 3, plus particulièrement 2.

Un groupe préféré des composés de formule (I) est celui dans lequel R¹ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₃, alcényle en C₃₋₄, alcynyle en C₃₋₄, cycloalkyl(C₅₋₆)méthyle, phényl-alkyle en C₁₋₂, alcoxy(C₁₋₃)carboxyle ou N,N-di-alkyl(C₁₋₃)carboxamido ; R² et R³ représentent chacun un atome d'hydrogène ; R⁴ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₃ ; Q représente un atome d'hydrogène ou d'halogène ou un groupe hydroxy ; A-B représente CH-CH₂ ou C=CH ; et n représente 2 ou 3.

Un groupe particulièrement préféré de composés de formule (I) est celui dans lequel R¹ représente un atome d'hydrogène ou un groupe méthyle, prop-2-ényle, prop-2-ynyle, cyclopentylméthyle, benzyle ou N,N-diméthylcarboxamido ; R² et R³ représentent chacun un atome d'hydrogène ; R⁴ représente un groupe méthyle ; Q représente un atome d'hydrogène ou de fluor ; A-B représente CH-CH₂ ; et n représente 2 ou 3.

Dans les groupes préférés et particulièrement préférés
ci-dessus de composés, un groupe particulièrement important de composés est celui dans lequel n représente 2.

Les composés préférés selon l’invention sont :
la 6-fluoro-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyle-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one ;
la 1,2,3,9-tétrahydro-3-[(5-méthyle-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one ;
la 9-(cyclopentylméthyl)-1,2,3,9-tétrahydro-3-[(5-méthyle-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one ;
10 la 1,2,3,9-tétrahydro-3-[(5-méthyle-1H-imidazole-4-yl)méthyl]-9-(2-propynyl)-4H-carbazole-4-one ;

un autre composé préféré selon l’invention est la 6,7,8,9-tétrahydro-5-méthyl-9-[(5-méthyle-1H-imidazole-4-yl)méthyl]cyclohept[b]indole-10(5H)-one ;
et leurs sels physiologiquement acceptables et leurs solvates.

Un composé particulièrement préféré selon l’invention est la 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyle-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one et ses sels physiologiquement acceptables et ses solvates (par exemple hydrates).

Les formes préférées de ce composé sont le chlorhydrate et le maléate. Une forme particulièrement préférée est le chlorhydrate monohydraté.

Il convient de noter que l’invention s’étend à d’autres équivalents physiologiquement acceptables des composés selon l’invention, c’est-à-dire les composés physiologiquement acceptables qui sont transformés in vivo en le composé parent de formule (I).

Les composés de l’invention sont des antagonistes puissants et sélectifs des réactions induites par la 5-HT de la préparation de nerf pneumogastrique isolé du rat, et agissent ainsi comme des antagonistes puissants et sélectifs des récepteurs "neuraux" à la 5-HT situés sur les nerfs afférents principaux. Les récepteurs de ce type sont maintenant appelés récepteurs 5-HT₃. Ces récepteurs sont également présents dans le système nerveux central. La 5-HT est abondamment présente dans les voies neuronales du système nerveux central et on sait que les perturbations de ces voies contenant de la 5-HT modifient les syndromes comportementaux, tels que l'humeur, l'activité psychomotrice, l'appétit et la mémoire. Les composés de
formule (I), qui s’opposent à l’effet de la 5-HT au niveau des récepteurs 5-HT₃, sont utiles dans le traitement d’états tels que les troubles psychotiques (comme la schizophrénie et la manie) ; l’anxiété ; et les nausées et les vomissements, en particulier ceux associés à la chimiothérapie et la radiothérapie anti-cancéreuses.

Les composés de formule (I) sont également utiles dans le traitement de la stase gastrique ; les symptômes de troubles fonctionnels gastro-intestinaux, tels qu’ils sont produits dans la dyspepsie, l’ulcère gastro-duodénal, l’œsophagite par reflux, le météorisme et le syndrome d’irritabilité intestinale ; la migraine et la douleur.

Les composés de formule (I) peuvent être utilisés également dans le traitement de l’assuétude aux médicaments et aux drogues, de la dépression et de la démence, et d’autres troubles cognitifs.

Contrairement aux médicaments existants utilisés pour le traitement de certains des états ci-dessus, les composés de l’invention, en raison de leur forte sélectivité pour les récepteurs 5-HT₃, ne sont pas susceptibles de produire des effets secondaires indésirables. Ainsi par exemple, les médicaments neuroleptiques peuvent provoquer des effets extrapyramidaux, tels qu’une dyskinésie tardive, et les benzodiazépines peuvent entraîner une assuétude.

Selon un autre aspect, l’invention fournit un procédé de traitement d’un sujet humain ou d’un animal atteint d’un trouble psychotique, tel que la schizophrénie ou la manie ; d’anxiété ; de nausées ou de vomissements, en particulier de ceux associés à la chimiothérapie et à la radiothérapie anticancéreuses ; de stase gastrique ; de symptômes de troubles fonctionnels gastro-intestinaux, tels que la dyspepsie, l’œsophagite par reflux, l’ulcère gastro-duodénal, le météorisme et le syndrome d’irritabilité intestinale ; de migraines ; ou de douleurs, qui comprend l’administration d’une quantité efficace d’un composé de formule (I) ou d’un sel physiologiquement acceptable ou solvate de celui-ci.

L’invention fournit donc une composition pharmaceutique, qui comprend au moins un composé choisi parmi les cétones tricycliques de formule générale (I), leurs sel s physiologiquement acceptables et leurs solvates (comme les hydrates), pour l’emploi en médecine humaine ou vétérinaire, et présentée pour l’administration selon une voie appropriée quelconque.
Ces composition peuvent être présentées de façon classique par emploi d'un ou plusieurs supports et/ou excipients physiologiquement acceptables.

Les composés selon l'invention peuvent donc être présentés pour l'administration orale, buccale, parentérale, rectale ou transdermique ou sous une forme appropriée à l'administration par inhalation ou insufflation (par la bouche ou le nez).

Pour l'administration orale, les compositions pharmaceutiques peuvent être sous forme par exemple de comprimés ou de capsules préparés de façon classique avec des excipients convenant en pharmacie, tels que des liants (comme de l'amidon de maïs prégélatinisé, de la polyvinylpyrrolidone ou de l'hydroxypropylméthylcellulose) ; des charges (comme le lactose, la cellulose microcrystalline ou l'hydrogénophosphate de calcium) ; des lubrifiants (comme le stéarate de magnésium, le talc ou la silice) ; des désintégrants (comme l'amidon de pomme de terre ou l'amidon-glycérat de sodium) ou des agents mouillants (comme le laurylsulfate de sodium). Les comprimés peuvent être enrobés selon des procédés bien connus dans l'art. Les préparations liquides pour l'administration orale peuvent être par exemple sous forme de solutions, de sirops ou de suspensions ou peuvent être présentées sous forme d'un produit sec destiné à être reconstitué avec de l'eau ou un autre véhicule approprié avant l'emploi. Ces préparations liquides peuvent être préparées de façon classique avec des additifs convenant en pharmacie, tels que des agents de suspension (comme un sirop de sorbitol, des dérivés de la cellulose ou des graisses comestibles hydrogénées) ; des agents émulsifiants (comme la lécithine ou la gomme arabique) ; des véhicules non-aqueux (comme l'huile d'amande, des esters huileux, l'alcool éthylique ou des huiles végétales fractionnées) ; et des conservateurs (comme les p-hydroxybenzoates de méthyle ou de propyle ou l'acide sorbique). Les préparations peuvent également contenir des sels tampon et des agents d'aromatisation, de coloration et d'édulcoration, à la demande.

Les préparations pour l'administration orale peuvent de façon appropriée être présentées pour assurer une libération contrôlée du composé actif.
Pour l'administration buccale, les compositions peuvent être sous forme de comprimés ou de pastilles présentés de façon classique.

Les composés de l'invention peuvent être présentés pour l'administration parentérale par injection, par exemple par injection en embol ou par perfusion. Les compositions injectables peuvent être sous forme de doses unitaires, comme des ampoules, ou de doses multiples avec addition d'un conservateur. Les compositions peuvent être sous forme de suspensions, de solutions ou d'emulsions dans des véhicules huileux ou aqueux et peuvent contenir des agents de préparation, tels que des agents de suspension, de stabilisation et/ou de dispersion. Sinon, l'ingrédient actif peut être sous forme d'une poudre destinée à être reconstituée avec un véhicule approprié, par exemple de l'eau stérile a pyrogène, avant l'emploi.

Les composés de l'invention peuvent être également sous forme de compositions rectales, telles que des suppositoires ou d'injections rectales, contenant par exemple des bases classiques pour suppositoires, telles que le beurre de cacao ou d'autres glycérides.

En plus des compositions précédemment décrites, les composés de l'invention peuvent également être présentés sous forme de préparations retard. Ces compositions à action prolongée peuvent être administrées par implantation (par exemple sous-cutanée, transcutanée ou intramusculaire) ou par injection intramusculaire. Ainsi par exemple, les composés de l'invention peuvent être associés à des matières polymères ou hydrophobes appropriées (par exemple sous forme d'une émulsion dans une huile acceptable) ou des résines échangeuses d'ions, ou peuvent être sous forme de dérivés peu solubles, par exemple d'un sel peu soluble.

Pour l'administration par inhalation, les composés selon l'invention sont de façon pratique délivrés sous forme d'un aérosol, à partir d'un récipient sous pression ou d'un nébuliseur, à l'aide d'un propulseur approprié, comme le dichlorodifluorométhane, le trichlorofluorométhane, le dichlorotétrafluorométhane, le dioxyde de carbone ou un autre gaz approprié. Dans le cas d'un aérosol sous pression, la dose unitaire peut être déterminée à l'aide d'une valve délivrant une quantité mesurée. Des capsules et des cartouches, par exemple en gélatine, pour l'emploi dans un inhalateur ou un
dispositif d'insufflation, peuvent être présentées pour contenir un
mélange en poudre d'un composé de l'invention et d'une base en
poudre appropriée, telle que le lactose ou l'amidon.

Pour l'administration intranasale, les composés selon

5 l'invention peuvent être présentés sous forme de solutions destinées
da être administrées avec un dispositif doseeur unitaire approprié,
or sinon sous forme d'un mélange en poudre avec un support approprié
da l'administration à l'aide d'un distributeur approprié.

Les composés de formule (I) peuvent également être

10 administrés en combinaison avec d'autres agents thérapeutiques.
Ainsi par exemple, dans le traitement de la stase gastrique, des
symptômes de troubles fonctionnels gastro-intestinaux et des nausées
et vomissements, les composés de formule (I) peuvent être
administrés en association avec des agents antisécrétoires, tels que
des antagonistes des récepteurs H₂ à l'histamine (comme la
ranitidine, la sulfotidine ou la loxtidine) ou des inhibiteurs de
15 l'H⁺K⁺ATPase (comme l'onépazole).

Une posologie proposée des composés de l'invention pour
l'administration à l'homme (ayant un poids corporel d'environ 70 kg)
est de 0,001 à 100 mg, par exemple de 0,01 à 50 mg, et plus
préréféramment de 0,1 à 20 mg de l'ingrédient actif par dose
unitaire, que l'on peut administrer par exemple 1 à 4 fois par jour.
La posologie dépend de la voie d'administration et de l'état à
traiter. Il convient de noter qu'il peut être nécessaire de

20 modifier, comme il est habituel, la posologie selon l'âge et le
poids du patient ainsi que la gravité de l'état à traiter.

Selon un autre aspect de l'invention, les composés de
formule générale (I) et leurs sels physiologiquement acceptables ou
leurs solvates peuvent être préparés selon les procédés généraux
décrits ci-après. Dans la description qui suit, les groupes R¹, R²,
R³, R⁴, A, B, Q, n et Im ont la même définition que pour les
composés de formule générale (I) sauf indication contraire.

Selon un premier procédé général (A) on peut préparer un
composé de formule générale (I) dans laquelle A-B représente le
groupe C=CH par déshydratation d'un composé de formule (II) :
ou d'un dérivé protégé de celui-ci, suivie au besoin d'une élimination des groupes protecteurs.

L'opération de déshydratation peut être effectuée selon des procédés classiques, par exemple par emploi d'un acide organique ou minéral (comme les acides p-toluenesulfonique, méthanesulfonique, trifluoroacétique ou chlorhydrique) dans un solvant approprié tel qu'un éther (comme le tétrahydrofuranne), un alcool (comme le méthanol) ou l'acide acétique glacial, à une température dans la gamme de 0 à 100°C.

Selon un mode de réalisation particulier de ce procédé, on peut préparer directement un composé de formule générale (I), dans laquelle A-B représente le groupe C=CH, par réaction d'un composé de formule (III) :

ou d'un dérivé protégé de celui-ci, avec un composé de formule (IV) :

ou un dérivé protégé de celui-ci, en présence d'une base, telle qu'un amidure de métal alcalin (comme le diisopropylamidure de lithium) dans un solvant inerte, tel qu'un éther (comme le tétrahydrofuranne). La déshydratation est ensuite effectuée in situ en utilisant les conditions appropriées décrites ci-dessus et elle est suivie au besoin d'une déprotection. Les composés de formule (II) peuvent être isolés comme intermédiaires dans ce mode
particulier de réalisation du procédé (A).

Selon un autre mode de réalisation de ce procédé, on peut préparer un composé de formule générale (I), dans laquelle A-B représente le groupe C=CH, par conversion du groupe hydroxy d'un composé de formule (II) en un groupe labile, tel qu'un hydrocarbyl-
sulfonate (comme un mésylate ou un trifluorométhanesulfonate) en utilisant des procédés classiques, en présence d'une base (comme la triéthylamine ou l'hydroxyde de sodium aqueux) dans un solvant tel qu'un éther (comme le tétrahydrofuranne) ou un alcool (comme le méthanol).

Selon un autre procédé général (B), on peut transformer un composé de formule générale (I) en un autre composé de formule (I) selon des techniques classiques. Ces techniques classiques comprennent l'hydrogénation, l'alkylation, l'acylation et le clivage catalysé par un acide, avec au besoin une protection et une déprotection.

Donc, selon un mode de réalisation du procédé (B) d'interconversion, on peut préparer des composés de formule (I), dans laquelle A-B représente le groupe CH-CH₂ et R² est autre qu'un groupe alcényle en C₃-6 ou alcynyle en C₃-10 et/ou Q est autre qu'un groupe benzylolxy, par hydrogénation des composés correspondants dans lesquels A-B représente le groupe C=CH. L'hydrogénation peut également être utilisée pour transformer un substituant alcényle ou alcynyle en un substituant alkyle, ou un substituant alcynyle en un substituant alcényle, ou un substituant benzylolxy en un groupe hydroxyle.

L'hydrogénation selon le procédé général (B) peut être effectuée selon des modes opératoires classiques, par exemple en utilisant de l'hydrogène en présence d'un catalyseur à métal noble (comme le palladium, le nickel de Raney, le platine ou le rhodium). Le catalyseur peut par exemple être fixé sur un support, tel que le charbon ou l'alumine, ou sinon on peut utiliser un catalyseur homogène, tel qu'un chlorure de tris(triphénylphosphine)rhodium. L'hydrogénation est généralement effectuée dans un solvant, tel qu'un alcool (comme le méthanol ou l'éthanol), un éther (comme le dioxyane), un hydrocarbure halogéné (comme le dichlorométhane) ou un ester (comme l'acétate d'éthyle) ou un de leurs mélanges, et à une
température dans la gamme de -20 à +100°C, de préférence de 0 à 50°C.

Selon un autre mode de réalisation du procédé d'interconversion (B), on peut préparer un composé de formule (I) dans laquelle

\[R^2 \] représente un groupe alkyle en \(C_{1-6} \), cycloalkyle en \(C_{3-7} \),

alcényle en \(C_{3-6} \), alcynyle en \(C_{3-10} \), cycloalkyl(C\(_3-7 \)) alkyle en \(C_{1-4} \) ou phényl-alkyle en \(C_{1-3} \), ou un composé dans lequel au moins un de \(R^2 \) et \(R^3 \) représente un groupe alkyle en \(C_{1-6} \), cycloalkyle en \(C_{3-7} \),

alcényle en \(C_{3-6} \) ou phényl-alkyle en \(C_{1-3} \), ou un composé dans lequel \(Q \) représente un groupe alcoxy en \(C_{1-4} \), phényl-alcoxy en \(C_{1-3} \), ou un composé dans lequel \(R^7 \) et/ou \(R^8 \) représentent un groupe alkyle en \(C_{1-4} \), ou alcényle en \(C_{3-4} \), par alkylation d'un composé de formule (I) dans laquelle un ou plusieurs de \(R^1 \), \(R^2 \), \(R^3 \), \(R^7 \) et \(R^8 \) représentent un atome d'hydrogène ou \(Q \) représente un groupe hydroxyle.

Le terme "alkylation" selon le procédé général (B) comprend donc également l'introduction d'autres groupes, tels que cycloalkyle, alcényle ou phénylalkyle.

Les réactions d'alkylation ci-dessus peuvent être effectuées par emploi de l'agent d'alkylation approprié choisi parmi les composés de formule \(R^9 Z \), dans laquelle \(R^9 \) représente un groupe alkyle en \(C_{1-6} \), cycloalkyle en \(C_{3-7} \), alcényle en \(C_{3-6} \), alcynyle en \(C_{3-10} \), cycloalkyl(C\(_3-7 \)) alkyle en \(C_{1-4} \) ou phényl-alkyle en \(C_{1-3} \), et \(Z \) représente un atome ou groupe labile, tel qu'un atome d'halogène (comme le chlore, le brome ou l'iode), un groupe acyloxy (comme trifluoroacétyloxy ou acétoxy) ou un groupe sulfonyloxy (comme trifluorométhanesulfonyloxy, p-toluénesulfonyloxy ou méthanesulfonyloxy) ; ou un sulfate de formule \((R^9)_2 SO_4 \).

La réaction d'alkylation est, de façon pratique, effectuée dans un solvant organique inerte, tel qu'un amide substitué (comme le diméthylformamide), un éther (comme le tétrahydrofuranne) ou un hydrocarbure aromatique (comme le toluène), de préférence en présence d'une base. Les bases appropriées comprennent par exemple les hydrures de métaux alcalins (comme l'hydrure de sodium), les amidures de métaux alcalins (comme l'amidure de sodium ou le diisopropylamidure de lithium), les carbonates de métaux alcalins (comme le carbonate de sodium) ou un alcoolate de métal alcalin (comme le méthylate, l'éthylate ou le tert-butylate de sodium ou de
potassium). La réaction peut de façon pratique être effectuée à une température dans la gamme de -80 à +100°C, de préférence de -80 à +50°C.

Selon un autre mode de réalisation du procédé général (B), on peut préparer un composé de formule (I) dans laquelle R1 représente -CO₂R₅, -COR₅, -CONR₅R₆ ou -SO₂R₅, par acylation d'un composé de formule (I) dans laquelle R₁ représente un atome d'hydrogène. Les réactions d'acylation peuvent être effectuées par emploi d'un agent d'acylation approprié selon des modes opératoires classiques.

Les agents d'acylation appropriés comprennent les halogénures d'acyle (tels qu'un chlorure, bromure ou iodure d'acyle, d'alkylsulfonyle ou d'arylsulfonyle), des anhydrides mixtes ou symétriques (comme un anhydride symétrique de formule (R⁵CO)₂O), des halogénoformiates d'alkyles inférieurs (comme les chloroformiates d'alkyles inférieurs), des sulfonates (comme des hydrocarbaryl-sulfonates tels que les p-toluènesulfonates), des halogénures de carbamoyle (par exemple des chlorures de carbamoyle de formule R⁵R₆NCOC₁), des carbonates et des isocyanates (comme des isocyanates de formule R⁵NCO).

La réaction peut, de façon pratique, être effectuée en présence d'une base, telle qu'un hydrure de métal alcalin (comme l'hydrure de sodium ou de potassium), un carbonate de métal alcalin (comme le carbonate de sodium ou de potassium), un alcoolate de métal alcalin (comme le tert-butylate de potassium), le butyl-lithium, le diisopropylamidure de lithium ou une amine tertiaire (comme la triéthylamine ou la pyridine).

Des solvants appropriés que l'on peut employer dans l'acylation du procédé général (B) comprennent des amides (comme le diméthylformamide ou le diméthylacétamide), des éthers (comme le tétrahydrofuranne ou le dioxyanne), des hydrocarbures halogénés (comme le chlorure de méthylène), des nitriles (comme l'acétonitrile) et des esters (comme l'acétate d'éthyle). La réaction peut, de façon pratique, être effectuée à une température de -10 à +150°C.

Selon un autre mode de réalisation du procédé général (B), on peut préparer un composé de formule (I) dans laquelle Q représente un groupe hydroxyle, à partir du composé correspondant
dans lequel Q représente un groupe alcoxy ou benzyloxy, par clivage catalysé par un acide. La réaction peut être effectuée par emploi d’un acide de Lewis, tel que le tribromure de bore ou le trichlorure d’aluminium, dans un solvant, tel qu’un hydrocarbure halogéné (comme le dichlorométhane). La température de réaction peut de façon pratique être dans la gamme de -80 à +100°C.

Selon un autre procédé général (C), on peut préparer un composé de formule générale (I), dans laquelle A-B représente le groupe CH-CH₂, par réaction d’un composé de formule (III) ou d’un dérivé protégé de celui-ci avec un composé de formule (V):

\[\text{LCH}_2^2 - \text{Im} \]

(V)

dans laquelle L représente un atome ou groupe labile, tel qu’un atome d’halogène ou un groupe acyloxy ou sulfonyloxy, comme précédemment défini pour Z, ou un dérivé protégé correspondant, en présence d’une base, suivie au besoin de l’élimination des groupes protecteurs. Les bases appropriées comprennent les hydrures de métaux alcalins (comme l’hydrure de sodium ou de potassium), les alcoolates de métaux alcalins (comme le tert-butylation de potassium) ou les amidures de métaux alcalins (comme le diisopropylamidure de lithium). La réaction peut de façon pratique être effectuée dans un solvant inerte, tel qu’un éther (comme le tétrahydrofuranne), un amide substitué (comme le diméthylformamide) ou un hydrocarbure aromatique (comme le toluène), et à une température dans la gamme de -80 à +50°C.

Selon un autre procédé général (D), on peut préparer un composé de formule générale (I), dans laquelle A-B représente le groupe CH-CH₂, par oxydation d’un composé de formule (VI):

\[\text{A} \]

(VI)

\[\\]

\[\text{N} \]

\[(\text{CH}_2)_n \]

\[\text{R} \]

35 dans laquelle A représente un atome d’hydrogène ou un groupe hydroxyle ou un sel ou dérivé protégé de celui-ci, suivie au besoin de l’élimination des groupes protecteurs.
L'opération d'oxydation peut être effectuée selon des procédés classiques et les composés réagissants et les conditions réactionnelles doivent être choisis de façon à ne pas provoquer d'oxydation du fragment indole ni d'autres groupes fonctionnels. Donc, l'opération d'oxydation est de préférence effectuée avec un agent oxydant modéré.

Pour l'oxydation d'un composé de formule (VI), dans laquelle
A représente un atome d'hydrogène, les agents oxydants appropriés comprennent des quinones en présence d'eau (par exemple la 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ou la 2,3,5,6-tétrachloro-1,4-benzoquinone), le dioxyde de sélénium, des agents oxydants au céridium (IV) (comme le nitrate céridique ammoniacal) et des agents oxydants au chrome (VI) (comme une solution d'acide chromique dans l'acétone, par exemple le réactif de Jones ou le trioxyde de chrome dans la pyridine).

Pour l'oxydation d'un composé de formule (VI), dans laquelle
A représente un groupe hydroxyle, des agents oxydants appropriés comprennent des quinones en présence d'eau (par exemple la 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ou la 2,3,5,6-tétrachloro-1,4-benzoquinone), des cétones (comme l'acétone, la méthyl-éthylcétone ou la cyclohexanone) en présence d'une base (comme le tert-butylate d'aluminium), des agents oxydants au chrome (VI) (comme une solution d'acide chromique dans l'acétone, par exemple le réactif de Jones ou le trioxyde de chrome dans la pyridine), des N-halogénosuccinimides (comme le N-chlorosuccinimidé ou le N-bromosuccinimidé), des dialkylsulfoxides (comme le diméthylsulfoxide) en présence d'un agent activateur, tel que le N,N'-dicyclohexylcarbo-diimide ou un halogénure d'acyle (comme le chlorure d'oxalyle ou le chlorure de tosyle), le complexe pyridine-trioxyde de soufre et des catalyseurs de déshydrogénéation (par exemple le chromite de cuivre, l'oxyde de zinc, cuivre ou argent).

Les solvants appropriés peuvent être choisis parmi les cétones (comme l'acétone ou la butanone), les éthers (comme le tétrahydrofuranne ou le dioxyanne), les amides (comme le diméthylformamide), les alcools (comme le méthanol), les hydrocarbures (comme le benzène ou le toluène), les hydrocarbures halogénés (comme le dichlorométhane) et l'eau ou leurs mélanges.
Le procédé est de façon pratique réalisé à une température de -70 à +50°C. Il convient de noter que le choix de l'agent oxydant influe sur la température préférée de réaction. Les composés de formules (II) et (VI) sont de nouveaux composés et constituent un autre aspect de l'invention.

Selon un autre procédé général (E), on peut préparer un composé de formule générale (I) dans laquelle A-B représente le groupe CH-CH₂, par cyclisation d'un composé de formule (VII):

ou d'un sel ou dérivé protégé de celui-ci, suivie au besoin d'une élimination des groupes protecteurs.

Il convient de noter que les composés de formule (VII) peuvent exister sous la forme tautomère de l'hydrazone émolique.

La cyclisation peut être effectuée dans des milieux aqueux ou non-aqueux en présence d'un catalyseur acide. Lorsqu'on emploie un milieu aqueux, ce peut être l'eau ou un solvant organique aqueux, tel qu'un alcool aqueux (comme le méthanol, l'éthanol ou l'isopropanol) ou un éther aqueux (comme le dioxyanne ou le tétrahydrofuranne), ainsi que des mélanges de tels solvants, et le catalyseur acide peut par exemple être un acide minéral, tel que l'acide chlorhydrique concentré ou l'acide sulfurique (dans certains cas, le catalyseur acide peut également agir comme solvant de la réaction). Dans un milieu réactionnel anhydre, qui peut comprendre un ou plusieurs alcools ou éthers (comme décrit ci-dessus), acides carboxyliques (comme l'acide acétique) ou esters (comme l'acétate d'éthyle), le catalyseur acide est généralement un acide de Lewis, tel que le trifluorure de bore, le chlorure de zinc ou le chlorure de magnésium. La réaction de cyclisation peut de façon pratique être effectuée à des températures de 20 à 200°C, de préférence de 50 à 125°C.

Sinon, l'opération peut être effectuée en présence d'un
ester de type polyphosphate dans un milieu réactionnel qui peut comprendre un ou plusieurs solvants organiques, de préférence des hydrocarbures halogénés, tels que le chloroforme, le dichlorométhane, le dichloréthane, le dichlorodifluorométhane ou leurs mélanges. L'ester de type polyphosphate est un mélange d'esters que l'on peut préparer à partir de pentoxyde de phosphore, d'éther diéthylique et de chloroforme selon le procédé décrit dans "Reagents for Organic Synthesis" (Fieser et Fieser, John Wiley et Sons 1967).

Selon un mode de réalisation particulier du procédé (E), on peut préparer un composé de formule générale (I) directement par réaction d'un composé de formule (VIII) :

\[Q \]

\[NR_1NH_2 \]

ou d'un sel de celui-ci avec un composé de formule (IX) :

\[Q \]

\[\text{Im} \]

\[(CH_2)_n \]

ou un dérivé protégé de celui-ci, en utilisant des conditions appropriées comme décrit ci-dessus, suivie au besoin de l'élimination des groupes protecteurs. Les composés de formule (VII) peuvent être isolés comme intermédiaires dans ce mode de réalisation particulier.

Un dérivé protégé de formule (IX) peut par exemple avoir l'un des groupes carbonyles ou les deux protégés (par exemple sous forme d'un éther énolique). Il convient de noter que, lorsqu'on utilise un composé de formule (IX) dont le groupe carbonyle en position 3 est protégé, il peut être nécessaire d'éliminer le groupe protecteur pour que la réaction se produise avec le composé de formule (VIII). La déprotection peut être effectuée selon des procédés classiques, comme décrit ci-après. Si on le désire, la
déprotection peut être effectuée in situ.

Il convient de noter que, dans les transformations ci-dessus, il peut être nécessaire ou souhaitable de protéger les groupes sensibles de la molécule du composé en question pour éviter des réactions secondaires indésirables. Par exemple, il peut être nécessaire de protéger le groupe céto, par exemple sous forme d'un cétaï ou d'un thiocétaï ou d'un éther énolique. Il peut également être nécessaire de protéger les atomes d'azote du fragment carbazolone et/ou imidazole, par exemple avec un groupe arylméthyle (comme benzyle ou trityle), alkyle (comme tert-butyle), alcoxyméthyle (comme méthoxyméthyle), acyle (comme benzyloxycarbonyle) ou sulfonyle (comme N,N-diméthylaminosulfonyle ou p-toluènesulfonyle). Lorsque Q représente un groupe hydroxyle, il peut être nécessaire de protéger le groupe hydroxyle, par exemple avec un groupe arylméthyle (comme benzyle ou trityle).

Donc, selon un autre procédé général (F), on peut préparer un composé de formule générale (I) par élimination des groupes protecteurs d'une forme protégée d'un composé de formule (I). La déprotection peut être effectuée par emploi de techniques classiques, telles que celles décrites dans "Protective Groups in Organic Synthesis" par Theodora W. Greene (John Wiley et Sons, 1981).

Par exemple, un cétaï, tel qu'un groupe alkyllénecétale, peut être éliminé par traitement avec un acide minéral, tel que l'acide chlorhydrique. Un groupe thiocétaï peut être clivé par traitement avec un sel mercure (comme le chlorure mercure) dans un solvant approprié tel que l'éthanol. Un éther énolique peut être hydrolysé en présence d'un acide aqueux (comme l'acide sulfurique ou l'acide chlorhydrique dilués). Un groupe arylméthyle N-protecteur peut être clivé par hydrogénolyse en présence d'un catalyseur (tel que le charbon palladié) et un groupe trityle peut également être clivé par hydrolyse acide (par exemple par emploi d'acide chlorhydrique ou d'acide acétique dilués). Un groupe alcoxyalkyle peut être éliminé par emploi d'un acide de Lewis, tel que le tribromure de bore. Un groupe acyle peut être éliminé par hydrolyse dans des conditions acides ou basiques (par exemple par emploi de bromure d'hydrogène ou d'hydroxyde de sodium). Un groupe sulfonyle
peut être éliminé par hydrolyse alcaline. Un groupe arylméthyle
OH-protecteur peut être clivé dans des conditions acides (par
exemple avec de l'acide acétique, de l'acide bromhydrique ou du
tribromure de bore dilués) ou par hydrogénolyse en présence d'un
catalyseur (par exemple du charbon palladié).

Les composés de formule (II) peuvent être préparés par
condensation d'un composé de formule (III), ou d'un dérivé protégé
de celui-ci, avec un composé de formule (IV), ou un dérivé protégé
de celui-ci, en présence d'une base telle qu'un amidure de métal
alcalin (comme le diisopropylamidure de lithium) dans un solvant
inerte tel qu'un éther (comme le tétrahydrofuranne).

Les composés de formule (III) peuvent être préparés par
exemple selon un ou plusieurs procédés analogues à ceux décrits par

Les composés de formule (IV) peuvent être préparés par
exemple par oxydation de l'hydroxyméthylimidazole correspondant de
formule (XI) :

$$\text{HOCH}_2\text{-Im}$$

ou d'un dérivé protégé de celui-ci, avec un agent oxydant tel que le
diodyde de manganèse.

Les composés de formule (V), dans laquelle L représente un
atome d'halogène, peuvent être obtenus par réaction d'un composé de
formule (XI) ou d'un dérivé protégé de celui-ci, avec un agent
d'halogénation tel que le chlorure de thionyle ou un trihalogénure
de phosphore (comme le trichlorure de phosphore). Les composés de
formule (V), dans laquelle L représente un groupe acyloxy ou un
groupe sulfonyle, peuvent être préparés par réaction d'un composé
de formule (XI) avec un agent approprié d'acylation ou de
sulfonylation, tel qu'un anhydride ou un halogénure de sulfonyle
(comme le chlorure de méthanesulfonyle), facultativement en présence
d'une base (comme la triéthylamine ou la pyridine).

Les composés de formule (VI) peuvent être préparés par
exemple par réaction d'un composé de formule (I) avec un agent
réducteur approprié. On peut donc préparer un composé de formule
(VI) dans laquelle A représente un atome d'hydrogène, par réaction
d'un composé de formule (I) avec un agent réducteur de type hydrure,
tel que l'hydrure de diisobutylaluminium ou le borohydrique de
sodium. Lorsqu'on utilise l'hydrure de diisobutylaluminium, il peut être nécessaire de faire suivre la réaction d'un stade additionnel d'hydrogénation.

L'hydrogénation peut être effectuée selon des modes opératoires classiques, par exemple comme décrit dans le procédé (B).

Un composé de formule (VI), dans laquelle A représente un groupe hydroxyle, peut être préparé par exemple par réaction d'un composé de formule (I) avec un hydrure de métal alcalin (comme l'hydrure de lithium).

Les composés de formule (VII) peuvent être préparés par exemple par réaction d'un composé de formule (VIII), ou d'un sel de celui-ci, avec un composé de formule (IX), ou un dérivé protégé de celui-ci, dans un solvant approprié tel qu'un alcool et à une température par exemple de 20 à 100°C.

Les composés de formule (IX) peuvent être préparés par réaction d'un composé de formule (V), ou d'un dérivé protégé de celui-ci, avec une 1,3-dicétone appropriée, ou un dérivé protégé de celle-ci, dans les conditions indiquées dans le procédé (C) ci-dessus.

Les composés de formule (VIII) et (XI) sont connus ou peuvent être préparés à partir de composés connus, selon des modes opératoires classiques.

Lorsqu'on désire isoler un composé de l'invention sous forme d'un sel, par exemple d'un sel physiologiquement acceptable, on peut pour cela faire réagir le composé de formule (I) sous forme de la base libre avec un acide approprié, de préférence en une quantité équivalente, dans un solvant approprié, tel qu'un alcool (comme l'éthanol ou le méthanol), un alcool aqueux (comme l'éthanol aqueux), un ester (comme l'acétate d'éthyle) ou un éther (comme le tétrahydrofuranne).

Les sels physiologiquement acceptables peuvent également être préparés à partir d'autres sels, y compris d'autres sels physiologiquement acceptables, des composés de formule (I) selon des procédés classiques.

Les énantiomères individuels des composés de l'invention peuvent être obtenus par dédoublement d'un mélange d'énantiomères
(par exemple un mélange racémique) de façon classique, par exemple avec un acide optiquement actif de dédoublement ; voir par exemple "Stereochemistry of Carbon Compounds" par E.L. Eliel (McGraw Hill 1962) et "Tables of Resolving Agents" par S.H. Wilen.

Des exemples d'acides optiquement actifs de dédoublement, que l'on peut utiliser pour former les sels avec les composés racémiques, comprennent les formes (R) et (S) d'acides organiques carboxyliques et sulfoniques, tels que l'acide tartrique, l'acide di-p-toluyltartrique, l'acide camphorsulfonique et l'acide lactique.

Le mélange obtenu des sels isomères peut être séparé, par exemple par cristallisation fractionnée, en les diastéréo-isomères et, si on le désire, l'isomère optiquement actif peut être transformé en la base libre.

Les procédés indiqués ci-dessus pour la préparation des composés de l'invention peuvent être utilisés comme dernier stade principal de la séquence de préparation. Les mêmes procédés généraux peuvent être utilisés pour l'introduction des groupes désirés en une étape intermédiaire de la formation graduelle du composé requis, et il convient de noter que ces procédés généraux peuvent être combinés de façon différente dans de tels procédés en plusieurs étapes. L'ordre des réactions des procédés en plusieurs étapes doit bien sûr être choisi pour que les conditions réactionnelles utilisées n'aient pas d'effet sur les groupes de la molécule qui doivent être présents dans le produit final.

L'invention est de plus illustrée par les exemples suivants. Toutes les températures sont en °C. La chromatographie en couche mince (CCM) a été effectuée sur silicone, et la chromatographie éclair sur colonne (CEC) et la chromatographie sur colonne courte (CCC) ont été effectuées sur silicone (respectivement Merck 9385 et Merck 7747).

Le système solvant A utilisé pour la chromatographie est constitué de dichlorométhane/éthanol/ammoniaque d 0,88. Les spectres de 1H-RMN ont été obtenus à 250 MHz (intégration, multiplicité) ; légende de la multiplicité : s = singulet, d = doublet, t = triplet, m = multiplet, l = large. On sèche les extraits organiques sur sulfate de magnésium ou sulfate de sodium. On utilise les' abréviations suivantes : THF = tétrahydrofuranne ; DMF = diméthylformamide ; ADI = alcool dénaturé industriel.
Intermédiaire 1
5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-méthanol
On ajoute goutte à goutte en 30 minutes une solution de
13,1 g de triphénylchlorométhane dans 80 ml de DMF anhydre à une
solution agitée de 7,0 g de chlorhydrate de 4-méthyl-5-imidazole-
méthanol et 9,52 g de triéthylamine dans 75 ml de DMF anhydre à la
température ordinaire sous azote, et on poursuit l'agitation pendant
2,5 heures. On verse la suspension sur 600 ml de glace, on agite
pendant 30 minutes et on filtre. On triture deux fois le solide
obtenu (12,0 g) avec de l'acétone (2 x 250 ml) pour obtenir 8,4 g de
composé du titre, CCM (système A 94,5/5/0,5) Rf : 0,19.
Intermédiaire 2
5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-carboxaldéhyde
On agite à la température ordinaire pendant 1 nuit un
mélange de 4,0 g de 5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-
méthanol, 40 g de dioxyde de magnésium activé et 225 ml de dioxanne.
On filtre la suspension et on lave le solide avec 1 l de chloroforme
chaud. On évapore sous vide les filtrats combinés pour obtenir 4,0 g
d'un solide que l'on purifie par CEC en éluant avec du chloroforme
pour obtenir un solide que l'on triture avec environ 50 ml d'hexane
pour obtenir 2,99 g du composé du titre, p.f. 184-188°C
(décomposition).
Intermédiaire 3
1,2,3,9-tétrahydro-3-[hydroxy[5-méthyl-1-(triphénylméthyl)-1H-
imidazole-4-yl]méthyl]-9-méthyl-4H-carbazole-4-one
On ajoute 1,08 ml de n-butyllithium (1,57 M) à -78°C sous
azote avec agitation à une solution de 0,24 ml de disopropylamine
dans 7 ml de THF anhydre et on agite à 0°C pendant 30 minutes. On
refroidit la solution à -78°C et on l'ajoute avec une seringue à
282 mg de 1,2,3,9-tétrahydro-9-méthyl-4H-carbazole-4-one à -78°C
sous azote avec agitation. Après 1 heure à -78°C puis 1 heure à 0°C,
on refroidit le mélange à -78°C et on traite avec 500 mg de
l'intermédiaire 2 dans 6 ml de THF. Après 4 heures à -78°C, on
laisse le mélange se réchauffer à 23°C et on agite pendant
14 heures. On refroidit à -78°C le solide obtenu (on a évaporé le
mélange réactionnel), on traite avec 10 ml de THF puis 1 ml d'acide
acétique, on réchauffe à 0°C et on verse dans 50 ml de bicarbonate
de sodium aqueux saturé. On extrait le mélange avec du
dichlorométhane (2 x 60 ml), on évapore les extraits organiques
combinés et séchés. On purifie le résidu par CCC en éluant avec le
système A (967/30/3) pour obtenir 280 mg du composé du titre,
p.f. 141-147°C.

Intermédiaire 4
3-(3-fluorophénylhydrazono)-1-cyclohexène-1-ol

On traite 9,35 g de chlorhydrate de 3-fluorophénylhydrazine
dans 100 ml d'eau avec 29 ml d'hydroxyde de sodium aqueux 2 N et on
ajoute la solution obtenue en 2 heures à une solution agitée de
6,65 g de cyclohexane-1,3-dione dans 100 ml d'eau sous azote. On
agit ce mélange pendant 18 heures, on sépare par filtration le
précipité obtenu, puis on l'agite avec 150 ml d'eau. On sépare à
nouveau par filtration le solide, on lave avec 50 ml d'eau et on
sèche pour obtenir 9,90 g d'une poudre. On la lave avec de l'hexane
(2 x 200 ml) et on recueille le solide pour obtenir 5,3 g du composé
du titre, p.f. 142-144°C.

Intermédiaire 5
7-fluoro-1,2,3,9-tétrahydro-4H-carbazole-4-one

On chauffe à 100°C pendant 20 heures un mélange de 25 ml
d'acide acétique glacial, 1,1 g de 3-(3-fluorophénylhydrazono)-1-
cyclohexène-1-ol et 1,0 g de chlorure de zinc fondu. On verse le
mélange réactionnel refroidi dans 35 ml d'eau et on extrait avec du
dichlorométhane (2 x 30 ml). On évapore les extraits organiques
combinés et séchés pour obtenir une huile que l'on purifie par CCC
en éluant avec un mélange 3/2 d'acétate d'éthyle/hexane pour obtenir
0,15 g du composé du titre sous forme d'une poudre, p.f. 231-233°C.

Intermédiaire 6
7-fluoro-1,2,3,9-tétrahydro-9-méthyl-4H-carbazole-4-one

On ajoute goutte à goutte une solution de 1,0 g de
7-fluoro-1,2,3,9-tétrahydro-4H-carbazole-4-one dans 8 ml de DMF
anhydre à une suspension glacée agitée d'hydrure de sodium
(dispersion à 78 % dans l'huile ; 175 mg) préalablement lavée
(hexane ; 2 x 10 ml) dans 5 ml de DMF anhydre sous azote, et on
poursuit l'agitation à la température ordinaire pendant 1,5 heure.
On refroidit la solution à 0°C, on ajoute goutte à goutte 0,35 ml
d'iodométhane et on poursuit l'agitation à 0°C pendant 2 heures. On
verse la suspension dans 30 ml de bicarbonate de sodium aqueux à 8 %, on extrait avec du dichlorométhane (2 x 30 ml), on évapore les extraits organiques combinés et séchés et on les séche sous vide à 100°C pendant 18 heures pour obtenir 1,03 g du composé du titre sous forme d'un solide, p.f. 174-175°C.

Intermédiaire 7

1,2,3,9-tétrahydro-3-[(5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one

On ajoute goutte à goutte une solution de 4,2 g de triphénylchlorométhane dans 40 ml de DMF anhydre à une solution de 3,5 g de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one et 1,75 ml de triéthylamine dans 35 ml de DMF anhydre sous azote. Après 4 heures d'agitation, on verse le mélange dans 300 ml d'eau et on extrait avec du dichlorométhane (3 x 200 ml). On lave les extraits combinés avec 200 ml d'eau, on sèche et on évapore pour obtenir une huile (environ 9 g) que l'on purifie par CEC en éluant avec le système A (200/10/1) pour obtenir 4,57 g de composé du titre sous forme d'une mousse, CCM (système A 200/10/1) Rf : 0,32.

Intermédiaire 8

4-(chlorométhyl)-5-méthyl-1-(triphénylméthyl)-1H-imidazole

On ajoute en 5 minutes une solution de 1,3 ml de chlorure de thionyle dans 10 ml de dichlorométhane anhydre à une suspension agitée de 5,0 g de 5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-méthanol dans un mélange de 100 ml de dichlorométhane et de 2 ml de DMF anhydre à 0°C. On agite le mélange à 0°C pendant 30 minutes et on lave successivement avec du bicarbonate de sodium à 8 % (2 x 50 ml) et 50 ml d'eau, on sèche et on évapore sous vide en-dessous de 40°C pour obtenir 5 g d'une huile. On dissout celle-ci dans 100 ml d'éther et on filtre la solution obtenue à travers un tampon de silice que l'on éluie avec de l'éther (2 x 100 ml). On évapore les filtrats combinés en-dessous de 40°C pour obtenir une mousse que l'on triture avec de l'hexane froid et que l'on filtre pour obtenir 4,2 g du composé du titre sous forme d'un solide, p.f. 133-135°C.

Intermédiaire 9

3-méthoxy-6-[(5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl]
méthyl]-2-cyclohexène-1-one

On ajoute 21 ml de n-butyllithium (1,58 M dans l'hexane) à -78°C sous azote à une solution agitée de 4,6 ml de diisopropylamine dans 75 ml de THF anhydre, et on agite la solution à 0°C pendant 30 minutes. On refroidit la solution à -78°C et on l'ajoute à une solution de 3,4 g de 3-méthoxy-2-cyclohexène-1-one dans 25 ml de THF anhydre à -78°C sous azote avec agitation. Après 1 heure d'agitation à -78°C et 30 minutes à 0°C, on refroidit la solution à -78°C et on ajoute goutte à goutte avec agitation sous azote une solution de 10 g de 4-(chlorométhyl)-5-méthyl-1-(triphénylméthyl)-1H-imidazole dans 100 ml de THF anhydre. On agite la solution à -78°C pendant 3 heures et à 0°C pendant 30 minutes, on traite avec 400 ml de bicarbonate de sodium aqueux à 8 % et on extrait avec de l'acétate d'éthyle (2 x 300 ml). On évapore les extraits organiques combinés et séchés pour obtenir une huile (environ 13 g) que l'on purifie par CCC en éluant avec le système A (967/30/3) pour obtenir 3,28 g du composé du titre, p.f. 145-148°C.

Intérimaire 10

1,2,3,9-tétrahydro-3-[[5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl]méthyl]-9-(phénylméthyl)-4H-carbazole-4-one

On ajoute goutte à goutte une solution de 500 mg de 1,2,3,9-tétrahydro-3-[[5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl]méthyl]-4H-carbazole-4-one dans 3 ml de DMF anhydre à 38 mg d'une suspension agitée d'hydrure de sodium (dispersion à 73 % dans l'huile) dans 1 ml de DMF anhydre sous azote. Après 20 minutes, on ajoute 0,14 ml de bromure de benzyle et on agite le mélange pendant 3 heures. On ajoute 50 ml d'eau et on extrait la suspension avec du dichlorométhane (3 x 25 ml). On évapore les extraits organiques combinés et séchés pour obtenir une huile (environ 850 mg) que l'on purifie par CEC (colonne préparée dans un mélange d'acétate d'éthyle/hexane/triéthylamine 79/20/1) en éluant avec un mélange 4/1 d'acétate d'éthyle/hexane pour obtenir 265 mg de composé du titre sous forme d'un solide, p.f. 78-80°C.

Intérimaire 11

9-(cyclopentylméthyl)-1,2,3,9-tétrahydro-3-[[5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one

En utilisant les modes opératoires décrits ci-dessus pour
l'intermédiaire 10, on traite 500 mg de 1,2,3,9-tétrahydro-3-[(5-méthyl-1-(triphenylméthyl)-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one avec 38 mg d'hydrure de sodium (dispersion à 73 % dans l'huile) puis on agite avec 292 mg de p-toluenesulfonate de cyclo-pentaneméthanol pendant 24 heures. On effectue le traitement ultérieur et la CEC comme décrit ci-dessus pour obtenir 283 mg du composé du titre, p.f. 177-179°C.

Intermédiaire 12
1,2,3,9-tétrahydro-3-[(5-méthyl-1-(triphenylméthyl)-1H-imidazole-4-yl)méthyl]-9-(2-propynyl)-4H-carbazole-4-one

On ajoute 0,086 ml de bromure de propargyle à une suspension de 500 mg de 1,2,3,9-tétrahydro-3-[(5-méthyl-1-(triphenylméthyl)-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one et 265 mg de carbonate de potassium dans 10 ml d'acétone et on agite le mélange sous azote pendant 60 heures. On rajoute 0,086 ml de bromure de propargyle et on agite le mélange à la température ordinaire pendant 24 heures, puis à reflux pendant 6 heures. On ajoute 50 ml d'eau et on extrait la suspension avec du dichlorométhane (3 x 25 ml). On évapore les extraits organiques combinés et séchés pour obtenir 650 mg d'une gomme que l'on purifie par CEC (colonne préparée dans un mélange d'acétate d'éthyle/hexane/triéthylamine 80/19/1) en éluant avec un mélange 4/1 d'acétate d'éthyle sur hexane pour obtenir 95 mg du composé du titre sous forme d'une mousse CCM sur SiO₂ imprégné d'Et₃N (acétate d'éthyle/hexane 4/1) Rf : 0,30.

Intermédiaire 13
Maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole

On traite une suspension de 0,5 g de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one dans 150 ml de dichlorométhane anhydre à -57°C sous azote avec une solution de 6 ml d'hydrure de diisobutyraluminium (1,0 M dans le cyclohexane) et on agite le mélange pendant 4 heures en chauffant à 5°C. On ajoute 5 ml de méthanol et on agite le mélange pendant encore 1 heure puis on le filtre. On lave encore le précipité gélatineux avec 50 ml de dichlorométhane et on évapore sous vide les filtrats combinés. On purifie l'huile résiduelle (environ 0,55 g) par CEC en éluant avec le système A (95/5/0,5) pour obtenir 198 mg
d'un solide. Onhydrogène à la température ordinaire et à la
pression atmosphérique un mélange de 175 mg de ce solide dans 15 ml
d'éthanol sur une suspension agitée de charbon palladié à 10 %
préalablement réduit (pâte aqueuse à 50 % ; 20 mg) dans 10 ml
d'éthanol pendant 4 heures. On filtre le mélange, on évapore sous
vide et on soumet la gomme résiduelle à un partage entre 20 ml
d'acide chlorhydrique 0,2 N et 20 ml de dichlorométhane (que l'on
rejette). On alcalinise la couche acide (hydroxyde de sodium 2 N) et
on extrait avec du chloroforme (3 x 20 ml). On séche ces dernières
couches chloroformiques et on évapore sous vide pour laisser 155 mg
d'une gomme que l'on dissout dans 15 ml d'un mélange 1/1 de
dichlorométhane/méthanol et que l'on traite avec une solution de
65 mg d'acide maléique dans 0,3 ml de méthanol. Par concentration
sous vide à environ 2 ml et dilution avec de l'éther anhydre, on
obtient 176 mg de composé du titre sous forme d'un solide,
p.f. 175-179°C (décomposition).
Intermédiaire 14
1,2,3,9-tétrahydro-9-méthyl-3-[[5-méthyl-1-[(triphénylméthyl)-1H-
imidazole-4-yl]méthyl]-4H-carbazole-4-one

On ajoute goutte à goutte une solution de 286 mg de
trophénylchlorométhane dans 10 ml de DMF anhydre à une solution
agitée de 292 mg de 1,2,3,9-tétrahydro-9-méthyl-3-[[5-méthyl-1H-
imidazole-4-yl]méthyl]-4H-carbazole-4-one et 101 mg de triéthylamine
dans 20 ml de DMF anhydre et on agite la solution obtenue à la
température ordinaire sous azote pendant 3,5 heures. On verse
ensuite le mélange réactionnel dans 100 ml d'eau et on extrait la
suspension obtenue avec du dichlorométhane (3 x 50 ml). On adsorbe
les extraits organiques combinés et séchés sur de la silice pour CEC
puis on applique à une colonne et on élue selon une technique de CEC
avec le système A (150/8/1) pour obtenir un solide que l'on purifie
de plus par cristallisation dans un mélange 2/1 de dichlorométhane/
hexane pour obtenir 304 mg de composé du titre, p.f. 193-195°C.
Intermédiaire 15
M.N,5-triméthyl-4-[(2,3,4,9-tétrahydro-9-méthyl-4-oxo-1H-carbazole-
3-yl]méthyl]-1H-imidazole-1-sulfonamide

On ajoute une solution de 0,16 ml de chlorure de diméthyl-
sulfamoylé dans le dichlorométhane anhydre à une solution agitée de
438 mg de 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one et 0,25 ml de triéthylamine dans 30 ml de dichlorométhane anhydre et on chauffe le mélange à reflux pendant 18 heures. Après refroidissement, on adsorbe le mélange réactionnel sur de la silice pour CEC que l'on applique ensuite à une colonne et on élué selon une technique de CEC avec le système A (150/8/1) pour obtenir une huile qui se solidifie en une poudre par trituration avec 30 ml d'hexane anhydre. On purifie de plus cette poudre par dissolution dans 30 ml de dichlorométhane anhydre et recristallisation par addition de 10 ml d'hexane anhydre pour obtenir 518 mg de composé du titre, p.f. 122-124°C.

Intermédiaire 16

1,2,3,9-tétrahydro-3-[[1-(méthoxyméthyl)-5-méthyl-1H-imidazole-4-yl]méthyl]-9-méthyl-4H-carbazole-4-one et 1,2,3,9-tétrahydro-3-[[1-(méthoxyméthyl)-4-méthyl-1H-imidazole-5-yl]méthyl]-9-méthyl-4H-carbazole-4-one (4/1)

On ajoute une solution de 0,22 ml d'éther chlorométhyléthylé dans 10 ml de chloroforme à une solution agitée de 0,44 g de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one et 0,5 ml de triéthylamine dans 30 ml de chloroforme sous azote. On agite la solution obtenue à 20°C pendant 2 heures et on la soumet à un partage entre 25 ml de chloroforme et une solution de bicarbonate de sodium 2 N (2 x 30 ml). On évapore l'extrait organique séché et on purifie le résidu (0,45 g) par CEC en éluant avec le système A (200/8/1) pour obtenir 0,25 g des composés du titre sous forme d'une gomme, CCM (système A 75/8/1) Rf : 0,5.

La RMN (CDCl₃) montre que les composés du titre sont dans le rapport de 4/1.

Intermédiaire 17

5-méthyl-4-[(2,3,4,9-tétrahydro-9-méthyl-4-oxo-1H-carbazole-3-yl)méthyl]-1H-imidazole-1-carboxylate de phénylméthyle et 4-méthyl-5-[(2,3,4,9-tétrahydro-9-méthyl-4-oxo-1H-carbazole-3-yl)méthyl]-1H-imidazole-1-carboxylate de phénylméthyle (97/3)

On ajoute une solution de 0,26 ml de chloroformiate de benzyle dans 10 ml de chloroforme à une solution agitée de 0,44 g de
1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one et 0,25 ml de triéthylamine dans 30 ml de chloroforme sous azote. On agite la solution obtenue à 20°C pendant 2 heures et on soumet à un partage entre 25 ml de chloroforme et une solution de bicarbonate de sodium 2 N (2 x 30 ml). On sèche l'extrait organique et on évapore pour laisser 0,8 g d'une gomme que l'on purifie par CEC en éluant avec le système A (200/8/1) pour obtenir 0,64 g d'un solide que l'on cristallise dans 3 ml d'éthanol pour obtenir 0,62 g de composés du titre, CCM (système A 200/8/1) Rf : 0,47. La RMN (CDCl₃) indique que les composés du titre sont dans le rapport de 97/3.

Exemple 1
Maléate de (E)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyléné]-4H-carbazole-4-one.

On traite une solution de 2,70 g de 1,2,3,9-tétrahydro-3-[hydroxy[5-méthyl-1-(triphenylméthyl)-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one dans 100 ml d'acide acétique glacial avec 10,80 g d'acide p-toluenesulfonique monohydraté et on chauffe la solution agitée à reflux pendant 4 heures. On évapore le liquide foncé froid, on le traite avec 250 ml de bicarbonate de sodium aqueux saturé et on extrait dans l'acétate d'éthyle (4 x 250 ml). On évapore les extraits organiques combinés et sèchés et on les purifie par CCC. L'éluion avec le système A (97/20/5 → 94/50/5) fournit la base libre du composé du titre sous forme d'un solide jaune brun clair (488 mg). On traite une solution chaude de 87 mg de la base libre dans environ 16 ml d'éthanol avec une solution chaude de 38 mg d'acide maléique dans 1 ml d'éthanol et, par refroidissement, on recueille le précipité pour obtenir 81 mg de composé du titre p.f. 205-209°C.

Analyse trouvée : C 65,1 ; H 5,2 ; N 10,2 ; C₁₁₂H₁₇N₁₀O₁₁ nécessite C 64,9 ; H 5,2 ; N 10,3 %

Exemple 2
(E)-1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyléné]-4H-carbazole-4-one.

On ajoute goutte à goutte 45 ml de diisopropylamidure de lithium mono(tétrahydrofuranne) (1,5 M dans le cyclohexane) à une solution froide (-70°C) de 5,0 g de 1,2,3,9-tétrahydro-4H-carbazole-
4-one dans 500 ml de THF anhydre sous azote. On agite la solution à -70°C pendant une heure puis on ajoute 10 g de l'intermédiaire 2 et on laisse revenir à la température ordinaire en 3 heures. On refroidit ensuite à -70°C et on ajoute 80 ml d'acide acétique puis 51,4 g d'acide p-toluénesulfonique. On chauffe la solution obtenue à reflux pendant 20 heures et on chasse le solvant sous vide. On traite le résidu avec 2 l d'une solution à 8 % de bicarbonate de sodium et on extrait avec du dichlorométhane (3 x 1 l). On évapore les extraits organiques combinés et séchés pour obtenir une gomme (environ 20,8 g) que l'on purifie par CEC en éluant avec le système A (100/10/1) pour obtenir 5,2 g de composé du titre, CCM (système A 100/10/1) Rf : 0,35.

1H-NMR (D4-méthanol) δ 2,39 (3H, s), 3,09 (2H, t), 3,50 (2H, t 1), 7,15-7,25 (2H, m), 7,33-7,43 (1H, m), 7,53 (1H, s 1), 7,69 (1H, s), 8,10-8,18 (1H, m).

Exemple 3
(E)-7-fluoro-1,2,3,9-tétrahydro-9-méthyl-3-{(5-méthyl-1H-imidazole-4-y1)méthyléné}-4H-carbazole-4-one.

On ajoute goutte à goutte en 10 minutes à -70°C sous azote 3,3 ml de diisopropylamidure de lithium mono(tétrahydrofuranne) (1,5 M dans le cyclohexane) à une suspension agitée de 975 mg de 7-fluoro-1,2,3,9-tétrahydro-9-méthyl-4H-carbazole-4-one dans 30 ml de THF anhydre. Après 1,5 heure, on ajoute une suspension de 1,74 g de l'intermédiaire 2 dans 10 ml de THF anhydre et on agite la suspension à -10°C pendant 2 heures. On refroidit la solution obtenue à -70°C et on ajoute 12 ml d'acide acétique. On laisse ensuite la solution se réchauffer à -10°C et on ajoute 5,8 g d'acide p-toluénesulfonique monohydraté et on agite la solution à reflux pendant 20 heures. On refroidit ensuite, on évapore et on soumet le résidu à un partage entre 100 ml de bicarbonate de sodium aqueux à 8 % et 70 ml de dichlorométhane. On filtre la suspension et on cristallise le solide obtenu (1,02 g) dans 100 ml de méthanol pour obtenir 366 mg de composé du titre, p.f. 290-295°C.

Analyse trouvée : C 69,9 ; H 5,2 ; N 13,2 ; C18H16FN3O nécessite C 69,9 ; H 5,2 ; N 13,6 %

Exemple 4
(E)-1,2,3,9-tétrahydro-6-méthoxy-5-{(5-méthyl-1H-imidazole-4-y1)
méthylène]-4H-carbazole-4-one.

On ajoute goutte à goutte 5,0 ml de n-butyllithium (1,39 M dans l'hexane) à une solution agitée froide (-70°C) de 0,98 ml de diisopropylamine dans 10 ml de THF anhydre sous azote. On agite la solution à 0°C pendant 30 minutes, on refroidit à -70°C et on ajoute goutte à goutte à une solution agitée froide (-70°C) de 640 mg de 1,2,3,9-tétrahydro-6-méthoxy-9-méthyl-4H-carbazole-4-one dans 20 ml de THF anhydre sous azote et on laisse la solution obtenue atteindre 0°C en une heure. On refroidit ensuite à -70°C et on ajoute goutte à goutte une suspension de 985 mg de l'intermédiaire 2 dans 10 ml de THF anhydre et on laisse le mélange agité revenir à la température ordinaire en 3 heures. On refroidit ensuite à -70°C et on traite avec 8 ml d'acide acétique puis 5,3 g d'acide p-toluenesulfonique et on chauffe à reflux pendant 16 heures. On chasse le solvant sous vide et on traite le résidu avec 150 ml d'une solution à 8 % de bicarbonate de sodium et on extrait avec du dichlorométhane (4 x 50 ml). On évapore les extraits organiques combinés et séchés pour obtenir une gomme (environ 2 g) que l'on purifie par CEC en éluant avec le système A (200/10/1) pour obtenir 220 mg de composé du titre sous forme d'un solide, p.f. 133-135°C, CCM (système A 200/10/1) Rf : 0,24.

Exemple 5

Maléate de (Z)-6,7,8,9-tétrahydro-5-méthyl-9-[(5-méthyl-1H-imidazole-4-yl)méthylène]cyclohept[b]indole-10(5H)-one.

On ajoute une solution de 3,2 ml de diisopropylamidine de lithium (1,5 M dans le cyclohexane) à une suspension agitée froide (-70°C) de 0,96 g de 5-méthyl-6,7,8,9-tétrahydrocyclohept[b]indole-10(5H)-one dans 30 ml de tétrahydrofuranne anhydre sous azote. On agite la solution obtenue à -70°C pendant 15 minutes puis à 20°C pendant 30 minutes, on refroidit à -70°C et on traite avec une solution de 1,6 g d'intermédiaire 2 dans 30 ml de THF. On agite ensuite le mélange réactionnel à -70°C pendant 30 minutes, à 20°C pendant une heure, on refroidit à -70°C et on traite avec 25 ml d'acide acétique. On chauffe la solution obtenue au bain-marie bouillant pendant une heure et on concentre sous vide à environ 10 ml et on soumet à un partage entre 90 ml d'une solution saturée de carbonate de sodium et de l'acétate d'éthyle (3 x 90 ml). On
évapore les extraits organiques combinés et séchés pour laisser une
gomme (environ 2 g) que l'on dissout dans 100 ml de THF et que l'on
traite avec 8,5 g d'acide p-toluesulfonique monohydraté à 100°C
pendant 3 heures. On concentre la solution obtenue sous vide à
environ 5 ml et on soumet à un partage entre de l'acétate d'éthyle
(3 x 90 ml) et 90 ml de carbonate de potassium saturé. On évapore
les extraits organiques combinés et séchés pour laisser une gomme
(environ 2 g) que l'on purifie par CEC en éluant avec le système A
(200/8/1) pour obtenir une gomme (environ 0,75 g) que l'on soumet à
un partage entre 30 ml d'acide chlorhydrique 2 N et 30 ml d'acétate
d'éthyle. On soumet le précipité obtenu, dont on a soigneusement
décanté le liquide, à un partage entre 30 ml de carbonate de
potassium saturé et de l'acétate d'éthyle (3 x 30 ml). On évapore
les extraits organiques combinés pour obtenir un solide (environ
260 mg) que l'on cristallise dans 15 ml d'éthanol absolu pour
obtenir 0,15 g de la base libre du composé du titre. On dissout ce
solide dans 30 ml d'éthanol chaud et on traite avec une solution de
57 mg d'acide maléique dans 2 ml d'éthanol pour précipiter par
refroidissement 90 mg du composé du titre, p.f. 175-176°C.

Analyse trouvée : C 65,2 ; H 5,4 ; N 9,8 ;
C₁₉H₁₉N₃O.C₄H₄O₄ nécessite C 65,5 ; H 5,5 ; N 10,0 %

Exemple 6
(E)-6,7,8,9-tétrahydro-5-méthyl-9-[(5-méthyl-1H-imidazole-4-yl)
méthylène]cyclohept[b]indole-10(5H)-one.

L'éluion de la colonne de CEC de l'exemple 5 fournit
egalement environ 0,45 g d'un semi-solide que l'on cristallise dans
25 ml d'éthanol absolu pour obtenir 0,3 g du composé du titre, p.f.
230-232°C.

Analyse trouvée : C 74,3 ; H 6,3 ; N 13,6 ;
C₁₉H₁₉N₃O nécessite C 74,7 ; H 6,3 ; N 13,8 %

Exemple 7
1,2,3,9-tétrahydro-9-méthyl-3-[(1H-imidazole-4-yl)méthylène]-4H-
carbazole-4-one.

On traite goutte à goutte une solution de 1,54 ml de
diisopropylamine dans 20 ml de THF anhydre à -78°C avec 8,3 ml de
n-butyllithium (1,32 M dans l'hexane). On laisse le mélange se
réchauffer à 0°C et on refroidit à -78°C. On l'ajoute ensuite en
3 minutes à une suspension agitée de 2,0 g de 1,2,3,9-tétrahydro-9-méthyl-4H-carbazole-4-one dans 80 ml de THF anhydre à -78°C. On agite ensuite la suspension obtenue à -78°C pendant 2 heures puis on traite avec 3,72 g de 1-(triphénylméthyl)-1H-imidazole-4-carboxaldéhyde. On agite le mélange pendant encore 2 heures en le laissant lentement revenir à la température ordinaire, puis on refroidit à -78°C et on arrête la réaction avec 2 ml d'acide acétique. On laisse la solution obtenue se réchauffer à la température ordinaire et on la verse dans 600 ml de bicarbonate de sodium aqueux à 8 %.

On extrait le mélange avec du dichlorométhane (3 x 150 ml) et on évapore les extraits organiques combinés et séchés pour obtenir une mousse. On chauffe à reflux pendant 5 heures une solution de cette mousse et de 18 g d'acide p-toluènesulfonique monohydraté dans un mélange de 25 ml d'acide acétique et 150 ml de THF anhydre. On ajoute le mélange refroidi avec précaution à 650 ml de bicarbonate de sodium aqueux à 8 % et on extrait avec du dichlorométhane (3 x 150 ml). On évapore les extraits organiques combinés et séchés pour obtenir un solide que l'on purifie par CE en éluant avec le système A (100/10/1) pour obtenir 1,42 g de composé du titre, p.f. 225-232°C.

Analyse trouvée : C 73,3 ; H 5,6 ; N 14,7 ;
C₁₁H₁₅N₃O nécessite C 73,6 ; H 5,5 ; N 15,1 %
Exemple 8

25 Maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-y1)méthyl]-4H-carbazole-4-one.

On ajoute une solution de 3,50 g de 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-y1)méthylène]-4H-carbazole-4-one dans 85 ml de DMF et 50 ml d'éthanol à une suspension préalablement réduite de 3,4 g d'oxyde de palladium à 10 % sur du charbon dans 50 ml d'éthanol et on hydrogène à la température ordinaire et à la pression atmosphérique jusqu'à ce que la fixation cesse (270 ml). On sépare le catalyseur par filtration et on évapore le filtrat. On adsorbe le résidu dans 170 ml de méthanol sur de la silice pour CCC et on applique à une colonne de FCC. Une éluion avec un gradient du système A (967/30/3 / 912/80/8) fournit la base libre du composé du titre sous forme d'un solide (2,32 g). On traite une portion de
500 mg de ce solide dans 15 ml d'éthanol chaud avec une solution chaude de 224 mg d'acide maléique dans 2 ml d'éthanol et, par refroidissement, on recueille le précipité pour obtenir 415 mg du composé du titre, p.f. 130,5-137°C, CCM (système A 200/10/1) Rf : 0,30.

Analyse trouvée :
- C 63,2 ; H 5,5 ; N 9,7 ;
- C_{18}H_{19}N_{3}O.C_{4}H_{4}O_{4}.0,33 H_{2}O nécessite C 61,6 ; H 5,7 ; N 10,1 %

Titrage de l'eau : 1,55 % p/p H_{2}O ≈ 0,33 mol.

H-NMR (D_{6}-DMSO) δ 1,8-1,98 (1H,m), 2,1-2,25 (1H,m), 2,25 (3H,s), 2,68-2,84 (2H,m), 2,85-3,3 (3H,m), 3,75 (3H,s), 6,0 (2H,s-maléate), 7,18-7,32 (2H,m), 7,57 (1H,d 1), 8,03 (1H,d 1), 8,88 (1H,s).

Exemple 9
Maléate de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl) méthyl]-4H-carbazole-4-one.

On hydrogène à la température ordinaire et à la pression atmosphérique une solution de 5,2 g de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthylène]-4H-carbazole-4-one dans 100 ml d'éthanol sur une suspension agitée préalablement réduite de 1,0 g d'un catalyseur constitué d'oxyde de palladium à 10 % sur charbon (pâte aqueuse à 50 %) dans 30 ml d'éthanol pendant 4,5 heures. On filtre ensuite le mélange et on évapore pour obtenir environ 5 g d'une huile que l'on purifie par CEC en éluant avec le système A (100/10/1) pour obtenir 3,96 g de la base libre du composé du titre sous forme d'une huile. On dissout un échantillon de 400 mg dans 4 ml d'éthanol et on traite avec une solution de 170 mg d'acide maléique dans 1,25 ml d'éthanol. On chasse le solvant sous vide et on triture le résidu avec de l'éther anhydre (5 x 25 ml) pour obtenir 555 mg d'un solide. On dissout environ 500 mg de ce solide dans 5 ml de méthanol chaud et on ajoute 15 ml d'acétate d'éthyle.

On concentre la solution à un volume de 10 ml et on laisse refroidir. Après une heure, on recueille le solide précipité pour obtenir 314 mg du composé du titre, p.f. 160-162°C.

Titrage de l'eau : 0,36 % p/p ≈ 0,06 mol d'H_{2}O.

Analyse trouvée :
- C 63,3 ; H 5,3 ; N 10,2 ;

C_{17}H_{17}N_{3}O.C_{4}H_{4}O_{4}.0,06 H_{2}O nécessite C 63,6 ; H 5,4 ; N 10,6 %

Exemple 10
Maléate de 7-fluoro-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-
imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On hydrogène à la température ordinaire et à la pression atmosphérique, sur 300 g d’oxyde de palladium à 10 % sur charbon (pâte aqueuse à 50 %) préalablement réduit pendant 2 heures, une solution de 315 mg de 7-fluoro-1,2,3,9-tétrahydro-9-méthyl-1-([(5-méthyl-1H-imidazole-4-yl)méthylène]-4H-carbazole-4-one dans 25 ml d’éthanol. On filtre le mélange et on évapore pour obtenir une mousse que l’on purifie par CEC en éluant avec le système A (912/80/8) pour obtenir 230 mg de la base libre du composé du titre sous forme d’un solide. On dissout dans 30 ml d’éthanol chaud et on traite avec une solution de 85 mg d’acide maléique dans 3 ml d’éthanol chaud. On évapore la solution obtenue et on triture l’huile résiduelle avec 40 ml d’éther pour obtenir 210 mg d’une poudre. On la combine avec les liqueurs mères, on évapore, on traite avec 25 ml de bicarbonate de sodium aqueux à 8 % et on extrait avec de l’acétate d’éthyle (3 x 20 ml). On évapore les extraits organiques combinés et séchés pour obtenir un solide que l’on dissout dans 20 ml d’éthanol chaud et on dilue avec une solution de 86 mg d’acide maléique dans 3 ml d’éthanol. On évapore la solution et on cristallise le solide résiduel dans 5 ml d’éthanol pour obtenir 202 mg du composé du titre, p.f. 153-156°C.

Analyse trouvée : C 61,6 ; H 5,2 ; N 9,6 ;

C_{18}H_{18}F_{3}O_{2}C_{4}H_{4}O_{4} nécessite C 61,8 ; H 5,2 ; N 9,8 %

Exemple 11

1,2,3,9-tétrahydro-6-méthoxy-9-méthyl-3-([(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On hydrogène à la température ordinaire et à la pression atmosphérique, sur une suspension agitée de 100 mg de catalyseur constitué d’oxyde de palladium à 10 % sur charbon (pâte aqueuse à 50 %) dans 5 ml d’éthanol absolu, une solution de 200 mg de (E)-1,2,3,9-tétrahydro-6-méthoxy-9-méthyl-3-([(5-méthyl-1H-imidazole-4-yl)méthylène]-4H-carbazole-4-one dans 15 ml d’éthanol absolu. On filtre le mélange et on évapore pour obtenir environ 200 mg d’une mousse que l’on purifie par CEC en éluant avec le système A (200/10/1) pour obtenir 154 mg de composé du titre sous forme d’un solide, p.f. 227-229°C, CCM (système A 200/10/1) Rf : 0,26.
Exemple 12
Maléate de 6,7,8,9-tétrahydro-5-méthyl-9-[(5-méthyl-1H-imidazole-4-yl)méthyl]cyclohept[b]indole-10(5H)-one.

On hydrogène à la température ordinaire et à la pression atmosphérique, sur 100 mg d’oxyde de palladium à 10 % sur charbon pendant environ 5 heures, une solution de 0,4 g de (E)- et (Z)-6,7,8,9-tétrahydro-5-méthyl-9-[(5-méthyl-1H-imidazole-4-yl)méthylène]cyclohept[b]indole-10(5H)-one dans 250 ml d’éthanol. On sépare le catalyseur par filtration et on lave à nouveau avec 100 ml d’éthanol. On combine les filtrats et on évapore pour laisser 0,4 g d’une gomme que l’on purifie par CEC en éluant avec le système A (200/8/1) pour obtenir 0,12 g d’une huile. On la dissout dans 15 ml d’éthanol absolu et on traite avec une solution de 120 mg d’acide maléique dans 5 ml d’éthanol. On concentre la solution obtenue à environ 5 ml et on dilue avec 5 ml d’éther anhydre pour précipiter 0,41 g de composé du titre, p.f. 160-162°C.
 Analyse trouvée : C 64,9 ; H 6,0 ; N 9,8 ;
C₁₉H₂₁N₃O.C₄H₄O₄ nécessite C 65,2 ; H 6,0 ; N 9,9 %

Exemple 13
Maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On hydrogène à la pression atmosphérique et à la température ordinaire, sur 130 mg d’un catalyseur constitué de charbon palladié à 10 % (pâte aqueuse à 50 %), une solution de 1,37 g de 1,2,3,9-tétrahydro-9-méthyl-3-[(1H-imidazole-4-yl)méthylène]-4H-carbazole-4-one dans 100 ml d’éthanol. Après environ 30 minutes, il se forme un précipité et on ajoute environ 30 ml de THF pour redissoudre le précipité. On agite le mélange pendant encore 4 heures, puis on filtre. On traite le filtrat avec 569 mg d’acide maléique et on évapore la solution obtenue pour produire un solide que l’on recristallise dans un mélange de méthanol et d’acétate d’éthyle pour obtenir 1,35 g de composé du titre, p.f. 175-177°C.
 Analyse trouvée : C 64,2 ; H 5,5 ; N 10,6 ;
C₁₇H₁₇N₃O.C₄H₄O₄ nécessite C 63,8 ; H 5,4 ; N 10,6 %

Exemple 14
Maléate du 1,2,3,4-tétrahydro-N,N-diméthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4-oxo-9H-carbazole-9-carboxamide.
On ajoute goutte à goutte une solution de 500 mg de l'intermédiaire 7 dans 3 ml de DMF à une suspension agitée de 53 mg d'hydrure de sodium (dispersion à 52 % dans l'huile) dans 1 ml de DMF anhydre sous azote. Après 20 minutes, on ajoute 0,11 ml de chlorure de diméthylcarbamyle et on agite le mélange pendant 2 heures. On ajoute 50 ml d'eau et on extrait la suspension avec du dichlorométhane (3 x 25 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 800 mg d'une huile que l'on dissout dans un mélange de 10 ml de THF, 10 ml d'acide acétique et 10 ml d'eau et que l'on chauffe à reflux pendant 1,5 heure. On verse le mélange dans 60 ml d'une solution saturée de carbonate de potassium et on extrait avec du dichlorométhane (3 x 30 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 800 mg d'une huile que l'on purifie par CEC en éluant avec le système A (200/10/1) pour obtenir 188 mg d'une mousse. On dissout celle-ci dans 3 ml d'éthanol et on traite avec une solution de 64 mg d'acide maléique dans 0,5 ml d'éthanol. On chasse le solvant sous vide et on tritute le résidu avec de l'éther anhydre (5 x 5 ml) pour obtenir 195 mg de composé du titre, p.f. 157-158°C.

Analyse trouvée : C 61,4 ; H 5,7 ; N 11,8 ;
C_{20}H_{22}N_{4}O_{2}.C_{4}H_{4}O_{4} nécessite C 61,8 ; H 5,6 ; N 12,0 %

On prépare les exemples 15 et 16 de la même façon que l'exemple 14.
Exemple 15

Maléate de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl) méthyl]-9-(phénylsulfonyl)-4H-carbazole-4-one.

On fait réagir 500 mg de l'intermédiaire 7 avec 0,15 ml de chlorure de benzénesulfonyle pour obtenir 215 mg de composé du titre, p.f. 154-156°C.

Analyse trouvée : C 60,3 ; H 4,7 ; N 7,5 ;
C_{23}H_{21}N_{3}O_{5}.C_{4}H_{4}O_{4} nécessite C 60,6 ; H 4,7 ; N 7,9 %.
Exemple 16

Maléate du 1,2,3,4-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl) méthyl]-4-oxo-9H-carbazole-9-acétate de méthyle.

On fait réagir 500 mg de l'intermédiaire 7 avec 0,09 ml de chloroforme de méthyle pour obtenir 155 mg de composé du titre,
p.f. 167-168°C.
Analyse trouvée : C 60,8 ; H 5,0 ; N 9,1 ;
C₁₉H₁₉N₃O₄.C₂H₄O₄ nécessite C 60,9 ; H 5,1 ; N 9,3 %.
Exemple 17
5 Maléate de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)
méthyl]-9-(2-propényl)-4H-carbazole-4-one.
On ajoute goutte à goutte une solution de 500 mg de
l'intermédiaire 7 dans 10 ml de DMF anhydre à une suspension agitée
de 36 mg d'hydrure de sodium (dispersion à 73 % dans l'huile) dans
du DMF anhydre sous azote et on agite la suspension obtenue à la
temperaturé ordinaire pendant 30 minutes, puis on ajoute une
solution de 121 mg de bromure d'allyle dans 1 ml de DMF anhydre et
on agite la solution obtenue à la température ordinaire pendant
1 heure. On verse ensuite le mélange réactionnel dans 500 ml d'eau
et on extrait avec du dichlorométhane (4 x 100 ml). On lave les
extraits organiques combinés avec de l'eau (3 x 250 ml), on sèche et
on concentre pour obtenir une huile que l'on dissout dans un mélange
de 5 ml de THF, 5 ml d'eau et 5 ml d'acide acétique et on chauffe à
reflux pendant 1,5 heure. Après refroidissement, on alcalinise la
solution avec une solution 2 N de carbonate de sodium puis on
extrait avec du dichlorométhane (2 x 50 ml). On concentre les
extraits organiques combinés et sèchés pour obtenir une huile que
l'on purifie par CEC en éluant avec le système A (150/8/1) pour
obtenir 151 mg de la base libre du composé du titre sous forme d'un
solide. On dissout ce dernier dans 20 ml de méthanol anhydre, on
ajoute 55 mg d'acide maléique et on chauffe la solution obtenue au
bain-marie bouillant pendant 10 minutes. On refroidit ensuite la
solution et on ajoute 10 ml d'éther pour précipiter 174 mg de
composé du titre, p.f. 194-196°C.
30 Analyse trouvée : C 65,7 ; H 6,0 ; N 9,3 ;
C₂₀H₂₁N₃O.C₄H₄O₄ nécessite C 66,1 ; H 5,8 ; N 9,65 %.
Exemple 18
Maléate de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)
méthyl]-9-(cyclopentyl)-4H-carbazole-4-one.
On ajoute une solution de 750 mg de l'intermédiaire 7 dans
30 ml de DMF anhydre à une suspension agitée de 50 mg d'hydrure de
sodium (dispersion à 73 % dans l'huile) dans 5 ml de DMF anhydre.
sous azote et on agite le mélange obtenu à la température ordinaire pendant 30 minutes. On ajoute une solution de 223 mg de bromocyclopentane dans 5 ml de DMF anhydre et on agite la solution obtenue à la température ordinaire sous azote pendant 8 heures, puis à 100-110°C pendant encore 18 heures. Après refroidissement, on verse le mélange réactionnel dans 500 ml d'eau et on extrait la suspension obtenue avec du dichlorométhane (3 x 100 ml). On lave les extraits organiques combinés avec de l'eau (2 x 500 ml), on sèche et on concentre pour obtenir une huile que l'on adsorbe sur silice pour CEC. L'éluion selon une technique CEC avec le système A (100/8/1) fournit 77 mg de la base libre du composé du titre sous forme d'une huile. On la dissout dans 10 ml de méthanol anhydre, on ajoute 26 mg d'acide maléique et on chauffe la solution obtenue au bain-marie bouillant pendant 10 minutes. On refroidit la solution et on ajoute 10 ml d'éther pour précipiter 82 mg de composé du titre, p.f. 194-196°C, CCM (système A 100/8/1) Rf : 0,35.
Exemple 19
Maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(1-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.
On traite 600 mg de maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one avec 70 ml de bicarbonate de sodium aqueux à 8 % et on extrait avec du dichlorométhane (3 x 25 ml). On évapore les extraits organiques combinés et séchés pour obtenir 483 mg d'une mousse que l'on dissout dans 25 ml de DMF anhydre à 5°C et que l'on traite avec 59 mg d'hydrure de sodium (dispersion à 73 % dans l'huile). On agite le mélange à 5°C pendant 20 minutes puis on traite avec 0,95 ml d'iodyure de méthyle. On agite la solution pendant encore 1 heure et on traite avec 10 ml de bicarbonate de sodium aqueux à 8 %. On dilue la suspension avec 120 ml d'eau et on extrait avec du dichlorométhane (3 x 40 ml). On évapore les extraits organiques combinés et séchés pour obtenir 641 mg d'un solide que l'on purifie par CEC. L'éluion avec un gradient du système A (100/3/0,3 → 100/10/1) fournit 432 mg d'une cire que l'on purifie par chromatographie liquide haute performance (CLHP) (colonne Spherisorb 5 sw ; 25 cm x 20 mm) en éluant avec un mélange 200/80/15/1 de chloroforme/hexane/méthanol/eau à
20 ml.min⁻¹ pour obtenir 110 mg d'une huile comme premier composant élué révélé en lumière ultraviolette. On évapore à sec une solution de cette huile et 44 mg d'acide maléique dans 15 ml d'éthanol pour obtenir 154 mg du composé du titre sous forme d'un solide, p.f. 138-141°C, CCM (système A 100/10/1) Rf : 0,4.

Exemple 20

Maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(1-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

La poursuite de l'éluation de la colonne de CLHP de l'exemple 19 fournit 50 mg d'un solide. On évapore à sec une solution de ce solide et 20 mg d'acide maléique dans 10 ml d'éthanol pour obtenir 70 mg du composé du titre, p.f. 122-125°C, CCM (système A 100/10/1) Rf : 0,4.

Exemple 21

Maléate de 1,2,3,9-tétrahydro-6-hydroxy-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On ajoute goutte à goutte 1,4 ml de tribromure de bore (1 M dans le dichlorométhane) à une solution agitée froide (0°C) de 150 mg de 1,2,3,9-tétrahydro-6-méthoxy-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one dans 15 ml de dichlorométhane anhydre sous azote. Après 1 heure, on ajoute 10 ml de méthanol et on évapore la solution. On purifie le résidu par CEC en éluant avec le système A (100/10/1) pour obtenir 83 mg d'un solide que l'on dissout dans l'éthanol (environ 20 ml) et que l'on traite avec une solution de 32 mg d'acide maléique dans environ 2 ml d'éthanol. On chasse le solvant sous vide et on triture le résidu avec de l'éther anhydre (3 x 25 ml) pour obtenir 90 mg du composé du titre, p.f. 197-199°C, CCM (système A 100/10/1) Rf : 0,33.

Exemple 22

Maléate et hémimaléate de 3,4-dihydro-4-méthyl-2-[(5-méthyl-1H-imidazole-4-yl)méthyl]cyclopent[b]indole-1(2H)-one.

On ajoute goutte à goutte une solution de 6 ml de diisopropylamidure de lithium (1,5 M dans le cyclohexane) à une suspension agitée froide (-70°C) de 1,5 g de 3,4-dihydro-4-méthyl-cyclopent[b]indole-1(2H)-one dans 90 ml de THF anhydre sous azote. On agite la solution obtenue à -70°C pendant 15 minutes et à 20°C
pendant 30 minutes. On refroidit à nouveau la solution à -70°C et on
traite avec 3,0 g de 4-(chlorométhyl)-1-(triéthylmethyl)-1H-imidazole. On agite le mélange à -70°C pendant 2 heures puis à 20°C
pendant 2 heures et on arrête la réaction avec 30 ml d’acide
acétique et 30 ml d’eau. On laisse reposer le mélange obtenu pendant
1 nuit puis on chauffe au bain-marie bouillant pendant 1 heure, on
refroidit et on soumet à un partage entre 200 ml d’acétate d’éthyle
(que l’on rejette) et de l’acide chlorhydrique 2 N (2 x 100 ml). On
alcalinise la couche aqueuse acide (à pH 9) avec du carbonate de
potassium et on extrait avec un mélange d’acétate d’éthyle et
d’éthanol (20/1 ; 3 x 150 ml). On évapore les extraits organiques
combines séchés pour laisser une mousse (environ 2 g) que l’on
purifie par CEC en éluant avec le système A (150/8/1) pour obtenir
0,72 g d’un solide que l’on triture avec 5 ml d’éthanol absolu. On
dissout 0,45 g de ce solide dans 20 ml d’éthanol absolu chaud et on
traite avec une solution de 187 mg d’acide maléique dans 5 ml
d’éthanol. On concentre la solution obtenue à environ 5 ml et on
dilue avec 10 ml d’éther anhydre pour précipiter 0,6 g d’un solide
que l’on recristallise dans un mélange de 15 ml d’acétate
d’éthyle/méthanol (15/1) pour obtenir 0,2 g du composé du titre sous
forme de l’hémimaléate, p.f. 207-208°C.
Titration de l’eau : 0,211 % p/p = 0,04 mole H₂O.
Analyse trouvée :
C₁₇H₁₅N₃ 0,0,5 C₄H₄O₄ 0,04 H₂O nécessite C 67,5 ; H 5,7 ; N 12,4 %.
On obtient également une seconde récolte du composé du titre
(maléate neutre ; 0,3 g), p.f. 143-145°C, CCM (système A 75/8/1)
Réf : 0,26.
Exemple 23
Maléate de 6-fluoro-1,2,3,9-tétrahydro-9-méthyl-3-[5-méthyl-1H-
imidazole-4-yl]méthyll-4H-carbazole-4-one.
On agite sous azote pendant 18 heures une solution de 1,2 g
de 3-méthoxy-6-[5-méthyl-1-(triéthylmethyl)-1H-imidazole-4-yl]
méthyll]-2-cyclohexène-1-one dans un mélange de 15 ml d’eau et 2,7 ml
d’acide chlorhydrique 2 N. On ajoute 378 mg de 1-méthyl-1-(4-fluoro-
phényl)hydrazine et on agite la suspension à reflux sous azote
pendant 2 heures. On verse le mélange refroidi dans 60 ml de
bicarbonate de sodium aqueux à 8 % et on extrait avec de l’acétate
d'éthyle (2 x 50 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 1,2 g d'une huile que l'on purifie par CCC en éluant avec le système A (923/70/7) pour obtenir 240 mg de la base libre du composé du titre sous forme d'une poudre. On la dissout dans 15 ml d'éthanol chaud, on ajoute une solution de 99 mg d'acide maléique dans 2 ml d'éthanol chaud et on évapore la solution obtenue. On cristallise le résidu solide dans 6 ml d'éthanol pour obtenir 175 mg de composé du titre, p.f. 148-150°C.

Titrage de l'eau : 2,17 % p/p = 0,53 mole H₂O.

Analyse trouvée :
C 60,5 ; H 5,2 ; N 9,4 ;
C₁₈H₁₈FN₃O.C₄H₄O₄ 0,53 H₂O nécessite C 60,5 ; H 5,3 ; N 9,6 %.

Exemple 24
Maléate de 1,2,3,9-tétrahydro-6,9-diméthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

D'une façon semblable à celle décrite dans l'exemple 23, on fait réagir 1,14 g de 3-méthoxy-6-[(5-méthyl-1-(triphenylméthyl)-1H-imidazole-4-yl)méthyl]-2-cyclohexène-1-one avec 350 mg de 1-méthyl-1-(4-méthylphényl)hydrazine. La purification par CCC avec elution avec le système A (934/60/6) fournit 350 mg de la base libre du composé du titre sous forme d'un solide. La formation du maléate fournit 205 mg du composé du titre, p.f. 150-152°C.

Analyse trouvée :
C 64,8 ; H 5,8 ; N 9,7 ;
C₁₉H₂₁N₂O.C₄H₄O₄ nécessite C 65,2 ; H 6,0 ; N 9,9 %.

Exemple 25
Maléate de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-(phénylméthyl)-4H-carbazole-4-one.

On chauffe à reflux pendant 2 heures une solution de 240 mg de 1,2,3,9-tétrahydro-3-[(5-méthyl-1-(triphenylméthyl)-1H-imidazole-4-yl)méthyl]-9-(phénylméthyl)-4H-carbazole-4-one dans un mélange de 7 ml d'acide acétique, 7 ml d'eau et 7 ml de THF. On verse le mélange dans 40 ml d'une solution saturée de carbonate de potassium et on extrait avec du dichlorométhane (3 x 20 ml). On évapore les extraits organiques combinés et séchés pour obtenir 256 mg d'un solide que l'on purifie par CCC en éluant avec le système A (200/10/1) pour obtenir 99 mg d'un solide. On dissout celui-ci dans 3 ml d'éthanol et on traite avec une solution de 33 mg d'acide maléique dans 1 ml d'éthanol. On chasse le solvant sous vide et on
triture le résidu avec de l'éther anhydre pour obtenir 128 mg du composé du titre, p.f. 142-144°C.

Titrage de l'eau : 0,27 % p/p Ξ 0,07 mole H₂O.
Analyse trouvée : C 68,7 ; H 5,6 ; N 8,5 ;

5 C₂₄H₂₃N₃O₄.4H₂O nécessite C 69,1 ; H 5,6 ; N 8,6 %.

On prépare les exemples 26 et 27 de la même façon que l'exemple 25 à partir de l'intermédiaire protégé approprié.

Exemple 26
Maléate de 9-(cyclopentylméthyl)-1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

La déprotection de 255 mg de 1,2,3,9-tétrahydro-9-(cyclopentylméthyl)-3-[(5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one fournit 127 mg de la base libre du composé du titre. La formation du maléate fournit 144 mg de composé du titre, p.f. 178-180°C.

Titrage de l'eau : 0,37 % p/p Ξ 0,1 mole H₂O.
Analyse trouvée : C 67,3 ; H 6,2 ; N 8,9 ;
C₂₃H₂₇N₃O₄.0,1H₂O nécessite C 67,7 ; H 6,6 ; N 8,8 %.

Exemple 27
20 Maléate de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-(2-propynyl)-4H-carbazole-4-one.

La déprotection de 90 mg de 1,2,3,9-tétrahydro-3-[(5-méthyl-1-(triphénylméthyl)-1H-imidazole-4-yl)méthyl]-9-(2-propynyl)-4H-carbazole-4-one et la purification par CEC fournissent 30 mg de la base libre du composé du titre. La formation du maléate fournit 40 mg de composé du titre, p.f. 189-191°C.

Titrage de l'eau : 1,4 % p/p Ξ 0,34 mole H₂O.
Analyse trouvée : C 65,0 ; H 5,4 ; N 9,1 ;
C₂₀H₁₉N₃O₄.0,34H₂O.0,125C₂H₅OH nécessite : C 65,4 ; H 5,5 ; N 9,4 %

Exemple 28
Méthanesulfonate de la (E)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyle]-4H-carbazole-4-one.

On ajoute goutte à goutte en 15 minutes à -5°C sous azote 57,3 ml de disisopropylamidure de lithium (dérivant du n-butyl-lithium, 1,55 M dans l'hexane) et 11,64 ml de diisopropylamine dans 45 ml de THF à une suspension agitée de 15 g de 1,2,3,9-tétrahydro-
9-méthyl-4H-carbazole-4-one dans 510 ml de THF. Après 45 minutes, on ajoute 26,5 g de l'intermédiaire 2 en une seule portion et on agite la solution obtenue entre -5 et +5°C pendant 1,75 heure. On traite la solution avec de l'acide acétique en-dessous de 20°C et on agite pendant 1 heure. On ajoute 34 ml d'acide méthanésulfonique et on agite le mélange en le chauffant à reflux pendant 16 heures. On refroidit la suspension à 5°C, on agite en dessous de 5°C pendant 1 heure et on sépare le solide par filtration. On lave le produit avec du THF (2 x 50 ml) et on sèche sous vide à 50°C pour obtenir 28,5 g d'un solide que l'on recristallise dans le méthanol pour obtenir 17 g du composé du titre, p.f. 264,5-267°C.

Analyse trouvée : C 54,5 ; H 5,3 ; N 9,75 ; C_{18}H_{17}N_{3}O_{1,4} CH_{4}O_{3}S nécessite C 54,7 ; H 5,35 ; N 9,9 %.

Exemple 29

1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On hydrogène à la température ordinaire et à la pression atmosphérique, sur une suspension de 1 g (pâte aqueuse) d'un catalyseur prééduit constitué d'oxyde de palladium à 10 % sur charbon dans 10 ml de méthanol, une solution de 10 g de méthanésulfonate de (E)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthylène]-4H-carbazole-4-one dans 150 ml de méthanol et 3,6 ml de triéthylamine. On filtre ensuite le mélange, on concentre à environ 100 ml et on chauffe à reflux. On ajoute 50 ml d'eau et on refroidit la solution à 0°C. On sépare par filtration le solide obtenu, on lave avec environ 50 ml d'eau et on sèche sous vide à 50°C pour obtenir 3,80 g du composé du titre. La \(^1\)H-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8.

Exemple 30

Chlorhydrate monohydraté de la 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one.

On chauffe à ébullition une suspension de 20 g de 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one dans 200 ml d'ADP et on ajoute 50 ml d'acide chlorhydrique 2 N. On laisse la solution obtenue refroidir à 20°C, on agite la suspension formée pendant 1 heure puis on refroidit à
4°C pendant 2 heures. On sépare le produit par filtration et on sèche sous vide à 55°C pour obtenir 20,8 g de composé du titre, p.f. 290°C (décomposition).

Analyse trouvée : C 62,1 ; H 6,25 ; N 12,05 ; Cl 9,85 ;

C_{18}H_{19}N_{3}O.HCl.H_{2}O nécessite C 62,5 ; H 6,4 ; N 12,15 ; Cl 10,25 %.

Exemple 31

(+)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On traite une solution de 500 mg de (+)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one dans 30 ml de méthanol chaud avec une solution de 690 mg d’acide (+)-2,3-bis-[[(4-méthylphényl)carbonyl]oxy]butanédioïque dans 10 ml de méthanol et on laisse la solution reposer à 0°C pendant 3 jours. On filtre ensuite pour laisser un solide que l’on recristallise dans le méthanol pour obtenir 195 mg du sel désiré, p.f. 146-148°C. On met en suspension une portion (186 mg) de ce sel dans 10 ml d’eau et on ajoute une solution de carbonate de potassium (1 g dans 15 ml d’eau), et on extrait le mélange avec du dichlorométhane (2 x 40 ml). On évapore sous vide les extraits organiques combinés et séchés pour obtenir 79,2 mg du composé du titre sous forme d’un solide, p.f. 210-232°C, [α]_D^{20} = -49,7° (c = 0,41 % ; CHCl_3).

Exemple 32

(-)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On traite une solution de 500 mg de (+)-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one dans 30 ml de méthanol chaud avec une solution de 690 mg d’acide (-)-2,3-bis-[[(4-méthylphényl)carbonyl]oxy]butanédioïque dans 10 ml de méthanol et on laisse la solution reposer à 0°C pendant 3 jours. On filtre ensuite pour laisser un solide que l’on recristallise dans le méthanol pour obtenir 162 mg du sel désiré, p.f. 147-149°C. On le met en suspension dans 15 ml d’eau et on ajoute une solution de carbonate de potassium (1 g dans 10 ml d’eau), et on extrait le mélange avec du dichlorométhane (2 x 30 ml). On évapore sous vide les extraits organiques combinés et séchés pour obtenir 72,5 mg du composé du titre sous forme d’un solide, p.f. 210-232°C.
\[\alpha_D^{20} = -48,4^\circ \ (c = 0,44 \ % ; \text{CHCl}_3) \].

Exemple 33

\[1,2,3,9-\text{tétrohydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one} \].

On ajoute goutte à goutte une solution de 190 mg de l'intermédiaire 7 dans 1 ml de DMF anhydre à une suspension agitée de 20 mg d'hydrure de sodium (dispersion à 52 % dans l'huile) dans 0,4 ml de DMF anhydre sous azote. Après 15 minutes, on ajoute 0,027 ml d'iodométhane et on agite le mélange pendant 1,5 heure. On ajoute 20 ml d'eau et on extrait la suspension avec du dichlorométhane (3 x 10 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 300 mg d'une huile que l'on dissout dans un mélange de 4 ml de THF, 4 ml d'acide acétique et 4 ml d'eau et que l'on chauffe à reflux pendant 1,5 heure. On verse le mélange dans 20 ml d'une solution saturée de carbonate de potassium et on extrait avec du dichlorométhane (3 x 10 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 255 mg d'un semi-solide que l'on purifie par CCC en éluant avec le système A (200/10/1) pour obtenir 7 mg du composé du titre. La \(^1\)H-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8.

Exemple 34

\[1,2,3,9-\text{tétrohydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one} \].

On ajoute goutte à goutte 2,07 ml de n-butyllithium (1,45 M dans l'hexane) à une solution agitée froide (-70°C) de 0,42 ml de diisopropylamine dans 20 ml de THF anhydre sous azote. On laisse la solution revenir à 0°C en 30 minutes, on refroidit à -70°C et on l'ajoute à une solution agitée froide (-70°C) de 500 mg de 1,2,3,9-tétrahydro-9-méthyl-4H-carbazole-4-one dans 10 ml de THF anhydre sous azote. On ajoute 0,44 ml d'hexaméthylphosphoramidate et on laisse le mélange revenir à 0°C en 1 heure. On refroidit la solution à -70°C, on ajoute une suspension de 936 mg de 4-(chlorométhyl)-5-méthyl-1-(triphenylméthyl)-1H-imidazole dans 15 ml de THF anhydre et on laisse le mélange revenir à environ 20°C en 2,5 heures. On agite pendant encore 18 heures, on verse dans 100 ml d'une solution de bicarbonate de sodium à 8 % et on extrait avec du dichlorométhane.
(3 x 50 ml). On évapore les extraits organiques combinés et séchés pour obtenir un semi-solide que l'on traite avec un mélange de 10 ml d'acide acétique, 10 ml d'eau et 10 ml de THF, et que l'on chauffe à reflux pendant 1,5 heure. On verse la solution dans 100 ml d'une solution saturée de carbonate de potassium et on extrait avec du dichlorométhane (3 x 50 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 1,8 g d'un solide que l'on purifie par CCC en éluant avec le système A (200/10/1) pour obtenir 17 mg de composé du titre. La \(^{1}H\)-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8.

Exemple 35

1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On soumet 37 mg de maléate de 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole à un partage entre 10 ml de bicarbonate de sodium 2 N et du chloroforme (3 x 15 ml). On évapore les couches organiques combinées et séchées pour obtenir 26 mg de la base libre que l'on dissout dans 4 ml de THF aqueux à 10 % à \(-10^\circ\)C sous azote. A cette solution agitée, on ajoute goutte à goutte une solution de 49 mg de 2,3-dichloro-5,6-dicyano-1,4-benzoquinone dans 1,6 ml de THF anhydre et on laisse le mélange réactionnel se réchauffer à 0°C en 3 heures. On évapore la solution sous vide et on purifie par CEC en éluant avec le système A (94,5/5/0,5) pour obtenir 10 mg du composé du titre sous forme d'un solide. La \(^{1}H\)-RMN et la CCM de cette matière concordent avec celles obtenues pour le produit de l'exemple 8.

Exemple 36

1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-méthyl-4H-carbazole-4-one.

On traite 203 mg de 3-méthoxy-6-[(5-méthyl-1-(triphenyl-méthyl)-1H-imidazole-4-yl)méthyl]-2-cyclohexène-1-one avec un mélange de 5 ml d'eau et 0,45 ml d'acide chlorhydrique 2 N, et on agite la solution obtenue à la température ordinaire sous azote pendant 18 heures. On ajoute goutte à goutte 0,05 ml de 1-méthyl-1-phénylhydrazine et on poursuit l'agitation pendant 7 heures. On rajoute 0,05 ml de 1-méthyl-1-phénylhydrazine et on poursuit l'agitation à la température ordinaire pendant 5 jours. On verse la
suspension dans 10 ml de bicarbonate de sodium aqueux à 8 % et on extrait avec de l'acétate d'éthyle (3 x 15 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 240 mg d'une huile que l'on purifie par CEC en éluant avec le système A (189/10/1) pour obtenir 55 mg d'un solide. On chauffe une portion (40 mg) de ce solide à 85°C avec 450 mg de chlorure de zinc fondu dans 3 ml d'acide acétique glacial pendant 5 heures. On refroidit le mélange, on le verse dans 20 ml d'hydroxyde de sodium aqueux 2 N et on extrait avec de l'acétate d'éthyle (3 x 15 ml). On évapore les extraits organiques combinés et séchés pour obtenir environ 20 mg d'une huile que l'on purifie par CEC en éluant avec le système A (89/10/1) pour obtenir 5 mg du composé du titre. La 1H-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8. Exemple 37

1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On chauffe à 100-110°C pendant 8 heures une solution de 268 mg de 1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-(triphenyl- méthyl)-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one dans un mélange de 5 ml d'acide acétique glacial, 5 ml de THF et 5 ml d'eau. Après refroidissement, on ajoute 50 ml d'une solution d'hydroxyde de sodium 2 N et on extrait la suspension obtenue avec du dichlorométhane (2 x 50 ml). On concentre les extraits organiques combinés et séchés pour obtenir une mousse que l'on purifie par CEC en éluant avec le système A (100/8/1) pour obtenir 114 mg de composé du titre sous forme d'un solide. La 1H-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8. Exemple 38

1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one.

On chauffe à 100-110°C pendant 8 heures une solution de N,N,5-triméthyl-4-[(2,3,4,9-tétrahydro-9-méthyl-4-oxo-1H-carbazole-3-yl)méthyl]-1H-imidazole-1-sulfonamide dans 30 ml d'acide chlorhydrique 2 N et 5 ml d'éthanol absolu. On effectue le traitement ultérieur et la CEC comme décrit dans l'exemple 32 pour obtenir 261 mg de composé du titre sous forme d'un solide. La 1H-RMN
et la CCM de cette matière concordent avec celles du produit de l'exemple 8.

Exemple 39

1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-y1)méthyl]-9-méthyl-4H-carbazole-4-one.

On agite à 20°C pendant 30 minutes une solution de 0,2 g des produits constituant l'intermédiaire 16 dans 3 ml d'acide bromhydrique à 49 %. On chauffe ensuite le mélange au bain-marie bouillant pendant 30 minutes et on porte doucement à reflux (à environ 150°C) pendant 1,5 heure. On dilue le mélange avec 20 ml d'eau et on lave avec de l'acétate d'éthyle (2 x 20 ml ; que l'on rejette). On alcalinisé la phase aqueuse acide (à pH 9) avec du carbonate de potassium et on extrait avec un mélange 20/1 d'acétate d'éthyle/éthanol (2 x 30 ml). On évapore les extraits organiques combinés et séchés pour laisser un solide que l'on triture avec 5 ml d'éther anhydre pour obtenir 0,09 g du composé du titre sous forme d'un solide. La ¹H-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8.

Exemple 40

1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-y1)méthyl]-9-méthyl-4H-carbazole-4-one.

On chauffe au bain-marie bouillant pendant 1 heure une solution de 0,5 g des produits constituant l'intermédiaire 17 dans un mélange de 20 ml d'éthanol absolue et 10 ml d'acide chlorhydrique 2 M. On concentre la solution obtenue sous vide à environ 20 ml, on dilue avec 40 ml d'eau et on lave avec de l'acétate d'éthyle (2 x 40 ml ; que l'on rejette). On alcalinisé la couche aqueuse acide (à pH 9) avec du carbonate de potassium et on extrait avec un mélange 20/1 d'acétate d'éthyle/éthanol (2 x 50 ml). On évapore les extraits organiques combinés et séchés pour obtenir 0,34 g du composé du titre sous forme d'un solide. La ¹H-RMN et la CCM de cette matière concordent avec celles du produit de l'exemple 8.

Les exemples suivants illustrent des compositions pharmaceutiques selon l'invention contenant la

1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-y1)méthyl]-4H-carbazole-4-one comme ingrédient actif. Les sels physiologiquement acceptables et/ou les solvates de ce composé et
d'autres composés de formule (I) et leurs sels physiologiquement acceptables et/ou leurs solvates peuvent être présentés de façon semblable.

COMPRIMES POUR L'ADMINISTRATION ORALE

On peut préparer les comprimés selon des procédés habituels, tels que la compression directe ou la granulation humide.

Les comprimés peuvent être enrobés d'une pellicule de matières filmogènes appropriées telles que l'hydroxypropylméthylcellulose selon des techniques semblables. Sinon, les comprimés peuvent être dragéifiés.

Compression directe

<table>
<thead>
<tr>
<th>Comprimé</th>
<th>mg/comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingrédient actif</td>
<td>0,50</td>
</tr>
<tr>
<td>Hydrogénophosphate de calcium BP*</td>
<td>87,25</td>
</tr>
<tr>
<td>Croscarmellose sodique NF</td>
<td>1,80</td>
</tr>
<tr>
<td>Stéarate de magnésium BP</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Poids à la compression 90,00

* de qualité convenant à la compression directe.

On fait passer l'ingrédient actif à travers un tamis ayant une ouverture de maille de 0,250 mm, on mélange avec l'hydrogénophosphate de calcium, la croscarmellose sodique et le stéarate de magnésium. On presse le mélange obtenu en comprimés avec une machine à comprimés Manesty F3 munie de poinçons plats de 5,5 mm à bord biseauté.

Comprimé sublingual

<table>
<thead>
<tr>
<th>mg/comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingrédient actif</td>
</tr>
<tr>
<td>Sucre comprimable NF</td>
</tr>
<tr>
<td>Stéarate de magnésium BP</td>
</tr>
</tbody>
</table>

Poids à la compression 65,0

On fait passer l'ingrédient actif à travers un tamis approprié, on mélange avec les excipients et on comprime avec des poinçons appropriés. On peut, pour préparer des comprimés contenant d'autres quantités d'ingrédient actif, modifier soit le rapport de l'ingrédient actif aux excipients, soit le poids à la compression et utiliser les poinçons appropriés.
Granulation humide

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingrédient actif</td>
<td>0,5</td>
</tr>
<tr>
<td>Lactose BP</td>
<td>153,5</td>
</tr>
<tr>
<td>Amidon BP</td>
<td>30,0</td>
</tr>
<tr>
<td>Amidon de maïs prégélatinisé BP</td>
<td>15,0</td>
</tr>
<tr>
<td>Stéarate de magnésium BP</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Poids à la compression: 200,0

On fait passer l'ingrédient actif à travers un tamis approprié et on mélange avec le lactose, l'amidon et l'amidon de maïs prégélatinisé. On ajoute des volumes appropriés d'eau purifiée et on granule les poudres. Après séchage, on tamise les granules et on mélange avec le stéarate de magnésium. On presse ensuite les granules en comprimés avec des poinçons de 7 mm de diamètre.

On peut préparer des comprimés contenant d'autres quantités de l'ingrédient actif en modifiant le rapport de l'ingrédient actif au lactose ou le poids à la compression et en utilisant des poinçons appropriés.

Comprimé sublingual

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingrédient actif</td>
<td>0,5</td>
</tr>
<tr>
<td>Mannitol BP</td>
<td>58,5</td>
</tr>
<tr>
<td>Hydroxypropylmethylcellulose</td>
<td>5,0</td>
</tr>
<tr>
<td>Stéarate de magnésium BP</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Poids à la compression: 65,0

On fait passer l'ingrédient actif à travers un tamis approprié et on mélange avec le mannitol et l'hydroxypropylmethylcellulose. On ajoute des volumes appropriés d'eau purifiée et on granule les poudres. Après séchage, on tamise les granules et on façonne en comprimés en utilisant des poinçons appropriés.

On peut préparer des comprimés contenant d'autres quantités d'ingrédient actif par modification du rapport de l'ingrédient actif au mannitol ou le poids à la compression et avec des poinçons appropriés.
CAPSULES

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amidon 1 500*</td>
<td>98,5</td>
</tr>
<tr>
<td>Stéarate de magnésium BP</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Charge

| | 100,0 |

une forme d'amidon directement compressible.

On tamise l'ingrédient actif et on le mélange avec les excipients. On introduit le mélange dans des capsules dures n° 2 de gélatine en utilisant un mécanisme approprié. On peut, pour préparer d'autres doses, modifier le poids de la charge et au besoin la taille de la capsule.

SIROPS

Il peut s'agir d'une présentation contenant ou non du saccharose

A. Sirop au saccharose

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/dose de 5 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharose BP</td>
<td>2 750,0</td>
</tr>
<tr>
<td>Glycérine BP</td>
<td>500,0</td>
</tr>
<tr>
<td>Tampon</td>
<td></td>
</tr>
<tr>
<td>Arôme</td>
<td>à la demande</td>
</tr>
<tr>
<td>Colorant</td>
<td></td>
</tr>
<tr>
<td>Conservateur</td>
<td></td>
</tr>
<tr>
<td>Eau purifiée BP</td>
<td>qsp</td>
</tr>
</tbody>
</table>

On dissout l'ingrédient actif, le tampon, l'arôme, le colorant et le conservateur dans de l'eau et on ajoute la glycérine. On chauffe le reste de l'eau pour dissoudre le saccharose puis on refroidit. On combine les deux solutions, on ajuste au volume et on mélange. On clarifie le sirop par filtration.

B. Sans saccharose

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/dose de 5 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxypropylmethylocellulose USP</td>
<td>22,5</td>
</tr>
<tr>
<td>(viscosité 4 000)</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td></td>
</tr>
<tr>
<td>Arôme</td>
<td>à la demande</td>
</tr>
<tr>
<td>Colorant</td>
<td></td>
</tr>
<tr>
<td>Conservateur</td>
<td></td>
</tr>
<tr>
<td>Edulcorant</td>
<td></td>
</tr>
<tr>
<td>Eau purifiée BP</td>
<td>qsp</td>
</tr>
</tbody>
</table>

On disperse l'hydroxypropylmethylocellulose dans de l'eau chaude, on refroidit puis on mélange avec une solution aqueuse contenant l'ingrédient actif et les autres composants de la
composition. On ajuste la solution obtenue au volume et on mélangé. On clarifie le sirop par filtration.

FORME D'ADMINISTRATION PAR INJECTION INTRAVEINEUSE

<table>
<thead>
<tr>
<th>mg/ml</th>
<th>mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>0,5</td>
</tr>
<tr>
<td>à la demande</td>
<td>à la demande</td>
</tr>
<tr>
<td>1,0 ml</td>
<td>1,0 ml</td>
</tr>
</tbody>
</table>

On peut ajouter du chlorure de sodium pour ajuster la tonicité de la solution et on peut ajuster le pH en utilisant un acide ou un alcali pour assurer la stabilité optimale et/ou faciliter la dissolution de l'ingrédient actif. Sinon, on peut utiliser des sels tampons appropriés.

On prépare la solution que l'on clarifie et on conditionne dans des ampoules de taille appropriée que l'on scelle par fusion du verre. On stérilise la forme injectable par chauffage à l'autoclave en utilisant un des cycles convenables. Sinon, la solution peut être stérilisée par filtration et conditionnée dans des ampoules stériles en conditions aseptiques. La solution peut être conditionnée sous une atmosphère inerte d'azote ou d'un autre gaz approprié.

AEROSOL DOSE SOUS PRÉSSION

<table>
<thead>
<tr>
<th>Suspension pour aérosol</th>
<th>mg/dose</th>
<th>Par</th>
</tr>
</thead>
<tbody>
<tr>
<td>délivrée</td>
<td></td>
<td>récipient</td>
</tr>
</tbody>
</table>

Ingrédient actif micronisé	0,050	12,0 mg
Acide oléique BP	0,020	4,80 mg
Trichlorofluorométhane BP	23,64	5,67 g
Dichlorodifluorométhane BP	61,25	14,70 g

On micronise l'ingrédient actif dans un broyeur à jet pour obtenir une granulométrie fine. On mélange l'acide oléique avec le trichlorofluorométhane à une température de 10-15°C et on mélange le médicament micronisé à la solution à l'aide d'un mélangeur à fort cisaillement. On introduit une quantité déterminée de suspension dans des récipients pour aérosol en aluminium et on sertit des valves doseuses appropriées, délivrant 85 mg de suspension, sur les récipients, puis on remplit les récipients de dichlorodifluorométhane sous pression par les valves.
Solution pour aérosol

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/dose délivrée</th>
<th>Par récipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol BP</td>
<td>7,500</td>
<td>1,80 g</td>
</tr>
<tr>
<td>Trichlorofluorométhane BP</td>
<td>18,875</td>
<td>4,53 g</td>
</tr>
<tr>
<td>Dichlorodifluorométhane BP</td>
<td>48,525</td>
<td>11,65 g</td>
</tr>
</tbody>
</table>

On peut également incorporer de l’acide oléique BP ou un agent tensio-actif approprié comme le Span 85 (trioléate de sorbitan).

On dissout l’ingrédient actif dans le l’éthanol avec l’acide oléique ou l’agent tensio-actif lorsqu’on les utilise. On introduit une quantité déterminée de la solution alcoolique dans des récipients appropriés pour aérosols, puis on introduit le trichlorofluorométhane. On sertit des valves doseuses appropriées sur les récipients et on remplit sous pression de dichlorodifluorométhane par les valves.

Cartouches pour inhalation

<table>
<thead>
<tr>
<th>Ingrédient actif (micronisé)</th>
<th>mg/cartouche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose BP</td>
<td>25,00</td>
</tr>
</tbody>
</table>

On micronise l’ingrédient actif dans un broyeur à jet à une granulométrie fine avant le mélange avec du lactose de qualité normale pour comprimés dans un mélangeur à forte puissance. On introduit le mélange en poudre dans des capsules dures de gélatine n°3 avec une machine à encapsuler appropriée. On administre le contenu des cartouches avec un inhalateur à poudre.

SUPPOSITOIRE

<table>
<thead>
<tr>
<th>Ingrédient actif</th>
<th>mg/cartouche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witepsol H15*</td>
<td>1,0 g</td>
</tr>
</tbody>
</table>

*Witepsol H15 est une spécialité d’Adeps Solidus Ph. Eur.

On prépare une suspension de l’ingrédient actif dans le Witepsol fondu et on l’introduit, avec un mécanisme approprié, dans des moules pour suppositoires de 1 g.
REVENDICATIONS

1. Nouveaux composés caractérisés en ce qu'ils répondent à la formule générale (I):

\[
\begin{align*}
Q & \quad \text{O} \\
& \quad \text{A} \\
& \quad \text{B} \\
& \quad \text{Im} \\
& \quad \text{(CH}_2\text{)}^n \\
& \quad \text{R}_1 \\
\end{align*}
\]

dans laquelle Im représente un groupe imidazolylique de formule:

\[
\begin{align*}
\text{R}_1 & \quad \text{représente un atome d'hydrogène ou un groupe choisi parmi} \\
alkeyle en C_{1-6}, \\alcényle en C_{3-6}, \\alcynyle en C_{3-10},
\text{cycloalkyle en} \\
C_{3-7},
\text{cycloalkyl(C}_{3-7}\text{)alkyle en} \\
C_{1-4},
\text{phényle, phénol-alkyle en} \\
C_{1-3},
-\text{CO}_2\text{R}_5,
-\text{COR}_5,
-\text{CONR}_5\text{R}_6 \\
\text{ou}
-\text{SO}_2\text{R}_5; \\
\text{R}_5 \\
\text{et}
\text{R}_6,
\text{qui peuvent être semblables ou différents,} \\
\text{représentent chacun un atome d'hydrogène, un groupe alkyle en} \\
C_{1-6} \\
or cycloalkyle en C_{1-7} \\
or un groupe phényle ou phénol-alkyle en C_{1-4} \\
or le groupe phényle est facultativement substitué par un ou plusieurs groupes alkyles en C_{1-4},
\text{alcoxy en C}_{1-4} \\
or hydroxy ou
\text{atomes d'halogène, sous réserve que}
\text{R}_5 \\
\text{ne représente pas un atome} \\
d'hydrogène lorsque}
\text{R}_1 \\
\text{représente un groupe}
-\text{CO}_2\text{R}_5 \\
or -\text{SO}_2\text{R}_5; \\
\text{un des groupes représentés par} \text{R}_2, \text{R}_3 \\
or \text{R}_4,
\text{est un atome}
\text{d'hydrogène ou un groupe alkyle en}
C_{1-6},
\text{cycloalkyle en}
C_{3-7},
\text{alcényle en}
C_{3-6},
\text{phényle ou phénol-alkyle en}
C_{1-3} \\
or \text{et chacun des}
\text{deux autres groupes, qui peuvent être semblables ou différents,} \\
\text{représente un atome d'hydrogène ou un groupe alkyle en}
C_{1-6}; \\
\text{Q représente un atome d'hydrogène ou d'halogène, ou un}
\end{align*}
\]
groupe hydroxy, alcoxy en C\textsubscript{1-4}, phényl-alcoxy en C\textsubscript{1-3} ou alkyle en C\textsubscript{1-6} ou un groupe -NR\textsubscript{7}R\textsubscript{8} ou -CONR\textsubscript{7}R\textsubscript{8} ;

R\textsubscript{7} et R\textsubscript{8}, qui peuvent être semblables ou différents, représentent chacun un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1-4} ou alcényle en C\textsubscript{3-4} ou, ensemble avec l'atome d'azote auquel ils sont fixés, forment un cycle saturé à 5 à 7 chaînons ;

n représente 1, 2 ou 3 ; et

A-B représente le groupe CH-CH\textsubscript{2} ou C=CH ;

et leurs sels physiologiquement acceptables et leurs solvates.

2. Nouveaux composés selon la revendication 1, caractérisés en ce que R\textsubscript{2} représente un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1-3}, alcényle en C\textsubscript{3-4}, alcynyle en C\textsubscript{3-4}, cycloalkyle en C\textsubscript{5-6}, cycloalkyl(C\textsubscript{5-6})méthyle, phényl-alkyle en C\textsubscript{1-2}, alcoxy(C\textsubscript{1-3})

carbonyle, N,N-di-alkyl(C\textsubscript{1-3})carboxamido ou phénylsulfonyl.

3. Nouveaux composés selon l'une des revendications 1 ou 2, caractérisés en ce que R\textsubscript{2} représente un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1-3}.

4. Nouveaux composés selon l'une quelconque des revendications 1 à 3, caractérisés en ce que R\textsubscript{3} représente un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1-3}.

5. Nouveaux composés selon l'une quelconque des revendications 1 à 4, caractérisés en ce que R\textsubscript{4} représente un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1-3}.

6. Nouveaux composés selon l'une des revendications 1 ou 2, caractérisés en ce que R\textsubscript{2} et R\textsubscript{3} représentent chacun un atome d'hydrogène et R\textsubscript{4} représente un groupe méthyle.

7. Nouveaux composés selon l'une quelconque des revendications 1 à 6 caractérisé en ce que Q représente un atome d'hydrogène, un atome d'halogène ou un groupe hydroxy, alcoxy en C\textsubscript{1-3} ou alkyle en C\textsubscript{1-3}.

8. Nouveaux composés selon l'une quelconque des revendications 1 à 7, caractérisés en ce que A-B représente CH-CH\textsubscript{2}.

9. Nouveaux composés selon l'une quelconque des revendications 1 à 8, caractérisés en ce que n représente 2 ou 3.

10. Nouveaux composés selon la revendication 1, caractérisés en ce que R\textsubscript{1} représente un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1-3}, alcényle en C\textsubscript{3-4}, alcynyle en C\textsubscript{3-4}, cycloalkyl(C\textsubscript{5-6})méthyle,
phényl-alkyle en C₁₋₂, alcoxy(C₁₋₃)carbonyle ou N,N-di-alkyl(C₁₋₃)
carboxamido ; R² et R³ représentent chacun un atome d’hydrogène ; R⁴
de représente un groupe alkyle en C₁₋₃ ; Q représente un atome d’hydro-
gène ou d’halogène ou un groupe hydroxyle ; A-B représente CH-CH₂ ou
C=CH ; et n représente 2 ou 3.

11. Nouveaux composés selon la revendication 1, caractérisés
en ce que R¹ représente un atome d’hydrogène ou un groupe méthyle,
prop-2-ényle, prop-2-ynylé, cyclopentylméthyle, benzyle ou
N,N-diméthylcarboxamido ; R² et R³ représentent chacun un atome
d’hydrogène ; R⁴ représente un groupe méthyle ; Q représente un
atome d’hydrogène ou un atome de fluor ; A-B représente CH-CH₂ ; et
n représente 2 ou 3.

12. Nouveaux composés selon l’une des revendications 10 ou
11, caractérisés en ce que n représente 2.

13. Nouveaux composés selon la revendication 1, caractéris-
és en ce qu’ils consistent en la 1,2,3,9-tétrahydro-9-méthyl-3-
[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-4-one, ses sels
physiologiquement acceptables et ses solvates.

14. Composé selon la revendication 13 caractérisé en ce
qu’il est sous forme d’un chlorhydrate.

15. Composé selon la revendication 13, caractérisé en ce
qu’il consiste en le chlorhydrate monohydraté de la 1,2,3,9-tétra-
hydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carbazole-
4-one.

16. Nouveaux composés selon la revendication 1, caractérisés
en ce qu’ils consistent en : la
6-fluoro-1,2,3,9-tétrahydro-9-méthyl-3-[(5-méthyl-1H-imidazole-4-
yl)méthyl]-4H-carbazole-4-one ; la
1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-4H-carba-
zole-4-one ; la
9-(cyclopentylméthyl)-1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imida-
zole-4-yl)méthyl]-4H-carbazole-4-one ;
la 1,2,3,9-tétrahydro-3-[(5-méthyl-1H-imidazole-4-yl)méthyl]-9-
(2-propynyl)-4H-carbazole-4-one ;
la 6,7,8,9-tétrahydro-5-méthyl-9-[(5-méthyl-1H-imidazole-4-yl)
méthyl]cyclohept[b]indole-10(5H)-one ;
et leurs sels physiologiquement acceptables et leurs solvates.
17. Procédé pour la préparation d'un composé répondant à la formule générale (I) comme défini dans l'une quelconque des revendications 1 à 16 ou d'un sel physiologiquement acceptable ou d'un solvate de celui-ci, caractérisé en ce qu'il comprend :

(A) pour la préparation d'un composé de formule (I) dans laquelle A-B représente le groupe C=CH, la déshydratation d'un composé de formule (II)

(B) la conversion d'un composé de formule (I) en un autre composé de formule (I) selon des techniques classiques ; ou

(C) pour la préparation d'un composé de formule (I) dans laquelle A-B représente le groupe CH-CH₂, la réaction d'un composé de formule (III)

(d) un dérivé protégé de celui-ci, avec un composé de formule (V)

(LCH₂-Im) (V)

30 dans laquelle L représente un atome ou un groupe labile ou un dérivé protégé de celui-ci, en présence d'une base, suivie au besoin de l'élimination des groupes protecteurs présents ; ou

(D) pour la préparation d'un composé de formule (I) dans laquelle A-B représente le groupe CH-CH₂, l'oxydation d'un composé de formule (VI)
dans laquelle A représente un atome d'hydrogène ou un groupe hydroxyle, ou d'un sel ou dérivé protégé de celui-ci, suivie au besoin de l'élimination des groupes protecteurs présents ; ou

(E) pour la préparation d'un composé de formule (I) dans laquelle A-B représente le groupe CH-CH₂, la cyclisation d'un composé de formule (VII)

ou d'un sel ou dérivé protégé de celui-ci, suivie au besoin de l'élimination des groupes protecteurs présents ; ou

(F) l'élimination d'un ou plusieurs groupes protecteurs d'une forme protégée d'un composé de formule (I) ;
et, lorsque le composé de formule (I) est obtenu sous forme d'un mélange d'énantiomères, le dédoublement facultatif du mélange pour obtenir l'énantiomère désiré ;
et/ou, lorsque le composé de formule (I) est sous forme d'une base libre, la conversion facultative de la base libre en un sel.

18. Nouveaux médicaments utiles notamment dans le traitement des troubles psychotiques, de l'anxiété, des nausées et des vomissements, caractérisés en ce qu'ils contiennent comme produit actif au moins un des composés selon la revendication 1 ou un sel physiologiquement acceptable ou un solvate de ceux-ci, avec au moins un support ou excipient physiologiquement acceptables.

19. Nouveaux composés utiles notamment comme intermédiaires
pour la préparation des composés selon l’une quelconque des revendications 1 à 16, caractérisés en ce qu’ils répondent à la formule générale (II)

\[
\begin{align*}
\text{Q} & \\
\text{O} & \\
\text{OH} & \\
\text{Im} & \\
(\text{CH}_2)_n & \\
\end{align*}
\]

(II)

dans laquelle Im, R, Q et n sont comme défini dans l’une quelconque des revendications 1 à 11.

20. Nouveaux composés utiles notamment comme intermédiaires pour la préparation des composés selon l’une quelconque des revendications 1 à 16, caractérisés en ce qu’ils répondent à la formule générale (VI)

\[
\begin{align*}
\text{Q} & \\
\text{A} & \\
\text{Im} & \\
(\text{CH}_2)_n & \\
\end{align*}
\]

(VI)

dans laquelle A représente un atome d’hydrogène ou un groupe hydroxylique et Im, R, Q et n sont comme défini dans l’une quelconque des revendications 1 à 11.
21. Composés de formule générale (I) tels que définis dans l'une quelconque des revendications 1 à 16, ainsi que leurs sels et solvates physiologiquement acceptables utiles dans le traitement d'une maladie causée par une perturbation de la fonction 5HT neuronale.

22. Composés de formule générale (I) tels que définis dans l'une quelconque des revendications 1 à 16, ainsi que leurs sels et solvates physiologiquement acceptables utiles dans le traitement de l'anxiété.

23. Composés de formule générale (I) tels que définis dans l'une quelconque des revendications 1 à 16 ainsi que leurs sels et solvates physiologiquement acceptables utiles dans le traitement des désordres psychotiques.

24. Composition pharmaceutique pour le traitement d'une maladie causée par une perturbation de la fonction 5HT neuronale, caractérisée en ce qu'elle comprend comme ingrédient actif, au moins un composé de formule générale (I) tel que défini dans l'une quelconque des revendications 1 à 16 ou un de ses sels ou un de ses solvates physiologiquement acceptable.

25. Composition pharmaceutique pour le traitement de l'anxiété, caractérisée en ce qu'elle comprend comme ingrédient actif au moins un composé de formule générale (I) tel que défini dans l'une quelconque des revendications 1 à 16 ou un de ses sels ou un de ses solvates physiologiquement acceptable.

26. Composition pharmaceutique pour le traitement des désordres psychotiques, caractérisée en ce qu'elle comprend comme ingrédient actif au moins un composé de formule générale (I) tel que défini dans l'une des revendications 1 à 16 ou un de ses sels ou un de ses solvates physiologiquement acceptable.

27. Agent thérapeutique pour le traitement d'une maladie causée par la perturbation de la fonction
5HT neuronale, caractérisé en ce qu'il comprend comme ingrédient actif au moins un composé de formule générale (I) tel que défini dans l'une quelconque des revendications 1 à 16, ou un de ses sels ou un de ses solvates physiologiquement acceptable.

28. Agent thérapeutique pour le traitement de l'anxiété, caractérisé en ce qu'il comprend comme ingrédient actif au moins un composé de formule générale (I) tel que défini dans l'une quelconque des revendications 1 à 16 ou un de ses sels ou un de ses solvates physiologiquement acceptable.

29. Agent thérapeutique pour le traitement de désordre psychotique, caractérisé en ce qu'il comprend comme ingrédient actif au moins un composé de formule (I) tel que défini dans l'une quelconque des revendications 1 à 16 ou un de ses sels ou un de ses solvates physiologiquement acceptable.
RAPPORT DE RECHERCHE

étalé en vertu de l'article 21 § 1 et 2 de la loi belge sur les brevets d'invention du 28 mars 1984

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication concernée</th>
<th>CLASSEMENT DE LA DEMANDE (Int. Cl.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D,A</td>
<td>EP-A-0 191 562 (GLAXO GROUP) ---</td>
<td>C 07 D 403/06</td>
<td></td>
</tr>
<tr>
<td>D,A</td>
<td>GB-A-2 153 821 (GLAXO GROUP) -----</td>
<td>A 61 K 31/415</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A 61 K 31/40</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINE TECHNIQUES RECHERCHÉS (Int. Cl.4)

<table>
<thead>
<tr>
<th>C 07 D 403/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 61 K 31/00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date d'achèvement de la recherche</th>
<th>DE BUYSER I.A.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-12-1988</td>
<td></td>
</tr>
</tbody>
</table>

CATEGORIE DES DOCUMENTS CITES

- **X**: particulièrement pertinent à lui seul
- **Y**: particulièrement pertinent en combinaison avec un autre document de la même catégorie
- **A**: arrière-plan technologique
- **O**: divulgation non-écrite
- **P**: document intercalaire

T: théorie ou principe à la base de l'invention

E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date

D: cité dans la demande

L: cité pour d'autres raisons

A: membre de la même famille, document correspondant
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche visé ci-dessus.
Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 05/01/89
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP-A- 61210083</td>
<td>18-09-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4695578</td>
<td>22-09-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 3809785</td>
<td>01-08-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 8500368</td>
<td>26-07-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3502508</td>
<td>14-08-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A,B 2561244</td>
<td>20-09-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 8500202</td>
<td>16-08-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU-A- 85743</td>
<td>04-08-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4695578</td>
<td>22-09-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-B- 664152</td>
<td>15-02-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 579132</td>
<td>17-11-88</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82