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DATA PROCESSING APPARATUS AND METHOD
Field of Invention

The present invention relates to a data processing apparatus and method for
handling both integer and floating point data processing operations. More particularly,
embodiments of the present invention relate to the preservation of data values in

processor registers upon a context switch.

Background of the Invention

For many applications, it is desirable for a data processing apparatus to be able
to interrupt a current process in which data processing instructions are being executed
in order to service another process. While the interrupted process could be terminated
entirely and restarted from the beginning once the interrupting process has been
serviced, it is desirable to be able to restart the interrupted process from the point at
which it was interrupted. In order to achieve this, it is known to copy the contents of a
register file storing the current parameters and the current state of the existing process

to a stack memory prior to switching to the new process.

A process runs in a context, which is the system state required for the process
to run correctly. In the case of an ARM architecture, this state iﬁcludes the values of
certain integer processor registers, including the program counter, stack pointer and
link register, and the values of the floating point registers if these are required by the
process. Switching between processes therefore requires a switch in the context,
including register values, and so a return from an interrupting process to the previous
interrupted process therefore requires the preservation and restoration of the context

corresponding to the interrupted process.

In the case of a data processing apparatus which provides hardware support by
way of dedicated registers only for integer data processing operations, at least some of
the integer registers need be preserved in the case of a context switch to service a

different process. In the case of a data processing apparatus which additionally
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provideé hardware support for floating point data processing operations by way of
dedicated floating point registers, then it is necessary on a context switch to preserve at
least some of the floating point registers in addition to the integer registers. This can
make it problematic to provide backwards compatibility with code intended to run on a
data processing apparatus without hardware support for float operations. The reasons
for this are that preserving both the integer registers and the floating point registers
would require each process to have sufficient space on its private stack to
accommodate the backed up integer and floating point registers, when previously
(where hardware floating point support was not provided) the private stacks only
needed room to preserve integer registers, and also that the integer and float
preservation process significantly increases the interrupt latency compared with the
integer only state preservation process of a data processing apparatus without hardware

floating point support.

Summary of Invention

According to one aspect of the present invention, there is provided a data
processing apparatus, comprising:

processing circuitry responsive to data processing instructions to execute
integer data processing operations and floating point data processing operations;

a first set of integer registers useable by said processing circuitry in executing
said integer data processing operations, and a second set of floating point registers
useable by said processing circuitry in executing said floating point data processing
operations;

wherein

said processing circuitry is responsive to an interrupt request to perform one of
an integer state preservation function in which at least a subset of only said integer
registers are copied to a stack memory, and a floating point state preservation function
in which at least a subset of both said integer registers and said floating point registefs
are copied to said stack memory, said one of said integer state preservation function
and said floating point state preservation function being selected by said processing

circuitry in dependence on state information.
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In this way, the more time and space intensive floating point state preservation
function (which backs up at least some of both the integer registers and the floating
point registers) is conducted only when the state information indicates that the floating
point registers need to be backed up. Otherwise, if the state information indicates that

‘only the integer registers need to be backed up, the less time and space intensive

* integer state preservation function is conducted to back up only the integer registers.

As a result, backwards compatibility is preserved, by maintaining interrupt latency and
private stack size requirements for integer-only code. Accordingly, undesirable
requirements to increase stack-frame sizes on legacy (integer-only) code and to adjust
legacy interrupt handlers to accommodate increased latency may be avoided, or at least
mitigated. In more general terms, embodiments of the present invention reduce the
memory size requirement through reduced stack sizes, and reduce the number of
memory accesses compared with the basic solution of always preserving floating point

registers. As a result, power usage and interrupt latency can be reduced.

The state information may comprise first state information which is indicative
of whether a current data processing context being executed by said processing
circuitry when the interrupt request is received is a floating point data processing
context which includes one or more floating point data processing operations or an
integer data processing context which does not include any floating point data

processing operations. This first state information may be set in response to a data

~ processing instruction which causes the processing circuitry to execute floating point

data processing operations. The processing circuitry may be responsive to the
interrupt request to perform said integer state preservation function if the first state
information indicates that the current data processing context is an integer data
processing context, and to perform the floating point state preservation function if the
first state information indicates that the current data processing context is a floating
point data processing context. This configuration enables floating point state
preservation to be conducted only when an interrupted process is using the floating

point registers.
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When the integer state preservation function is performed, the processing
circuitry inay set second state information to indicate that the floating point registers
have not been copied into the stack memory, and when the floating point state
preservation function is performed, the processing circuitry may set the second state
information to indicate that the floating point registers have been copied to the stack -
memory. In this case, the processing circuitry is responsive to the termination of a
target data processing context executed by the processing circuitry as a result of the
interrupt request to perform one of an integer state recovery function in which only
data preserved from the integer registers onto the stack are obtained from the stack and
copied into the corresponding registers, and a floating point state recovery function in
which data preserved from the integer and floating point registers onto the stack are
obtained from the stack and copied into the corresponding registers. In particular, the
integer state recovery function is selected by the processing circuitry if the second state
information indicates that the floating point registers have not been stored into the
stack memory, and the floating point state recovery function is selected by the
processing circuitry if the second state information indicates that the floating point

registers have been stored into the stack memory.

Alternatively, the processing circuitry may be responsive to the interrupt
request to perform the integer state preservation function if the first state information
indicates that the current data processing context is an integer data processing context,
and to perform, if the first state information indicates that the current data processing
context is a floating point data processing context, a first part of the floating point state
preservation function in which only the subset of integer registers are copied to the
stack memory and a second part of the floating point state preservation function in
which space is allocated on the stack memory for the subset of floating point registers.
In this case, when the integer state preservation function is performed, the processing
circuitry sets second state information to indicate that space for the floating point -
registers has not been allocated to the stack memory, and when the second part of the-
floating point state preservation function is performed, the processing circuitry sets the
second state information to indicate that space for the floating point registers has been

allocated in the stack memory.
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The processing circuitry may then be responsive to a data processing
instruction following the allocation of space on the stack memory which causes the
processing circuitry to execute floating point data processing operations to perform a
third part of the floating point state preservation function in which the subset of
floating point registers are copied to the allocated portion of the stack memory.

A stack allocation address register may be provided for storing the memory
address of the portion of the stack memory allocated in the second part of said floating
point state preservation function, wherein the processing circuitry copies the floating
point registers to an address within the stack memory indicated by the stack allocation
address register in the third part of the floating point state preservation function.

The third state information may be set in the second part of the floating point
state preservation function to indicate that space has been allocated in the stack
memory but that the copying of the floating point registers has not yet occurred. Here,
the third state information is reset as part of the third part of the floating point state
preservation function to indicate that the floating point registers have been copied into
the allocated space in the stack memory. By utilising the three part floating point state
preservation function, the floating point registers are only stored into the stack memory
if there is a danger of those registers being overwritten by an interrupting floating

point instruction which may modify those registers.

The processing circuitry may then be responsive to the termination of a target
data processing context executed by the processing circuitry as a result of the interrupt
request to perform one of an integer state recovery function in which only data
preserved from the integer registers onto said stack are obtained from the stack and
copiéd into the corresponding registers, and a floating point state recovery function in
which data preserved from the integer and floating point registers onto the stack are
obtained from the stack and copied into the corresponding registers. In particular, the
integer state recovery function is selected by the processing circuitry if the second state

information indicates that the floating point registers have not been stored into the
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stack memory or if the second state information indicates that space has been allocated
in the stack memory for the floating point registers and the third state information
indicates that the copying of the subset of floating point registers to the allocated
portion of the stack memory has not yet occurred, and the floating point state recovery
function is selected by said processing circuitry if the second state information
indicates that space has been allocated in the stack memory for the floating point
registers and the third state information indicates that the subset of floating point
registers have been copied to the allocated portion of the stack memory. In this Way, if
space on the stack has been allocated to the floating point registers but the content of
the floating point registefs has not actually been copied into the allocated space, only

the integer registers are recovered from the stack.

When the integer state recovery function is performed, the first state
information is set to indicate that the current data processing context is an integer data
processing context, and when the floating point state recover function is performed,
the first state information is set to indicate that the current data processing context is a

floating point data processing context.

The processing circuitry may be responsive to fourth state information to select
between a floating point state preservation function in which the floating point
registers are copied to the stack memory in response to the interrupt request, and a
floating point state preservation function in which space in the stack memory is
allocated for the floating point registers in response to the interrupt request and in
which the floating point registers are copied into the allocated space in response to a
data processing instruction following the allocation of space on the stack memory
which causes the processing circuitry to execute floating point data processing

operations. In this way, it is possible to select between a mode in which deferred

-*floating point preservation is enabled, and a mode in which it is disabled.

In another embodiment, the state information may comprise first state
information which is indicative of whether a current data processing context being

executed by the processing circuitry when the interrupt request is received is a floating
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point data processing context which includes one or more floating point data
processing operations or an integer data processing context which does not include any
floating point data processing operations. The state information may also include
second state information which is indicative of whether a target data procéssing
context to be executed by the processing circuitry as a result of said interrupt request is
a floating point data processing context which includes one or more floating point data

processing operations or an integer data processing context which does not include any

floating point data processing operations. In this way, it is. possiblé to make the

decision regarding when to _éonduct ‘a. floating point state V- preservation process ‘a
function of the processor state at the time of the exception or interrupt (current

process), and the processor state required by the destination handler process.

The state information may also comprise third state information which is
indicative of whether a current data processing context is a thread data processing
context which has not been triggered by an interrupt request, or a handler data
processing context which has been triggered by an interrupt request. This makes it
possible to handle transitions from a thread to a handler differently to transitions from
a handler to a handler. To explain further, two basic modes of execution can be
considered, these being thread and handler. A thread mode is a baseline process, that
is, a process which is not triggered by an interrupt or exception. A handler mode is an
interrupting mode which interrupts either a thread mode process or another handler
process. In other words, the destination of an exception or interrupt is always a
handler, but the origin may be either a thread or a handler. Usually, a thread is
assumed to relate to the execution of tasks/processes, while a handler provides
privileged execution for exceptions and interrupts. Embodiments of the present
invention provide additional machine state that annotates each handler as either using
the floating point hardware (a ﬂoat-handlér), or not (an integer-handler). Similarly,
additional machine state can be provided indicating that the current thread uses the

floating point hardware (a float-thread) or not (an integer-thread).

In one embodiment, the additional machine state is used to limit floating point

state preservation to the case where the destination process is a “float-handler” and the
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origin process is not an “integer-thread” (i.e. where the origin is either a float-thread, a
float handler or an integer handler). As a result, floating point state preservation does
not take place if the interrupting handler is an integer handler, because the interrupting
process will not overwrite the floating point registers. Furthermore, even if the
interrupting handler is a floating point handler, floating point preservation does not
take place if the interrupted (origi'n) process is an integer thread, because in this case
the floating point. registers which may be overwritten by the floating point handler are
not required byl the interrupted process, and the interrupted process does not itself
interrupt ’any‘ other process wl.ijch‘might require the floating point registers (because it
is a thread rathér than a handler).

The processing circuitry may be responsive to state information indicating that
the target data processing context is a floating point data processing context, and that
the current data processing context is either a floating point data processing context, or
an integer data processing context triggered by an interrupt request, to select the .
floating point state preservation function. In this way, ﬂoatihg point state preservation
can be provided for potentially active floating-point state. In other words, where the
target data processing context will have access to the floating point registers, the data
values stored in the floating point registers are preserved if there is a possibility that

they store data required for an interrupted process.

The processing circuitry may be responsive to state information indicating that
the current data processing context is an integer data processing context and that the
target data processing context is an integer data processing context to select the integer
state preservation function. In this way, the latency of a state preservation function in

the case of an integer exception remains constant with legacy code.

The processing circuitry may be responsive to state information indicating that
the current data processing context is a floating point data processing context and that
the target data processing context is a floating point data processing context to select
the floating point state preservation function. In this way, floating point state

preservation can be provided for potentially active floating-point state.
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The processing circuitry may be responsive to state information indicating that
the current data processing context is an integer data processing context not triggered
by an interrupt request, and that the target data processing context is a floating point
data processing context, to select the integer state preservation function. In this way, it
becomes unnecessary to provide for float-frame storage when backing up integer
threads. It will be appreciated that when backing up integer handlers, it cannot be

assumed that preservation of the floating point registers is not required, because the

" integer handler may itself have interrupted a floating point thread or handler, in which

case the content of the floating point registers may be required in the future (when
processing returns to that earlier thread or handler), and may not have previously been
preserved. For this reason, it is envisaged that in the case of an integer handler being

interrupted by a floating point handler, the floating point registers would be preserved.

As an alternative, additional state information indicating whether a previous
(interrupted) process made use of floating point registers could be stored in a register
and referred to at the time of determining whether to perform the integer or floating
point state preservation function, instead of making the determination dependent on

whether the origin process is a thread or a handler.

The data processing apparatus may include an interrupt controller for
generating the interrupt requests. The interrupt controller may be arranged to store
state information regarding a target process in association with one or more possible
interrupt requests for triggering target processes, and to communicate the state
information associated with a selected one of the possible interrupt requests to the

processing circuitry along with the selected interrupt request.

Alternatively, a conventional interrupt controller -could be used, and a state
information store for storing the state information in association with one or more
possible interrupt requests could be provided separately, for instance within the

processor itself, or within main memory. The processing circuitry would in this case
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be configured to read the state information from the state information store in response

to a received interrupt request.

Once the integer or floating point state preservation function has been
completed, the state of the system needs to be set up for the target data processing
context, while setting register information to enable the processing circuitry to return
to the current data processing context once the target data processing context has
completed or terminated. In one example a first configuration register into which the
second state information is stored prior to commencement of the target data processing
context, and a second configuration register into which the first and third state
information is stored prior to commencement of the target data processing context may
be provided. The first configuration register may be a dedicated configuration register
indicating a current floating point state of the system (that is, whether a currently
executing context is an integer or floating point context), and the second configuration
regiéter may be a link register for indicating the stack pointer of the previous data
processing context, and an indication of whether the previous data processing context
is an integer data processing context or a floating point data processing context. In this
case, when a target data processing context is to be started, the processing circuitry
sets the link register to indicate the stack pointer of the current data processing context,
and to indicate whether the current data processing context is an integer data
processing context or a floating point data processing context. In this way, the
processing circuitry will have access to the information required (stack identification
and the amount of data backed up to the stack) to enable a return to the current data
processing context once the target data processing context has completed. It will be
appreciated that the link register is the mechanism traditionally used in function calls
and for servicing interrupts. In the case of a function call, a branch instruction writes
the address of its following instruction in the link register and branches to the specified
location. To return after the branch has completed, the processor uses the value which
was stored into the link register to determine exactly where to go back to. The same
applies on entering an exception, whereby an exception return value would

traditionally be stored in the link register. However, it is possible, and may in some



10

15

20

25

30

WO 2010/146328 PCT/GB2010/000879

11

cases be useful, to use a register other than the link register to store a return value for a
function call or interrupt. A

The first set of integer registers may comprise a register for storing a stack
pointer, the stack pointer pointing to the top of a process stack when the current data
processing context is a thread, and pointing to the top of a main stack when the current
data processing context is a handler: In this case, the stack pointer can be used to
determine whether a current context is a thread or a handler, and thus the active stack

pointer may be used as the third state information.

In this case, when the first set of integer registers comprises a link register, the
processing circuitry may be responsive to the interrupt request to set the link register to
indicate the stack pointer of the current data processing context, and the indication of
whether the current data processing context is an integer data processing context or a
floating point data processing context. The processing circuitry will then be
responsive to the termination of the target data processing context to perform one of
the integer state recovery function and the floating point state recovery function using
the information stored in the link register.

The state information may be hard wired, or may alternatively be configurable
by the processing circuitry under the control of an operating system or other program

code.

A problem which could arise in only preserving the contents of the floating
point registers in certain cases is that an error in programming might cause a data
processing operation intended to operate in an integer context to attempt to use the
floating point registers. If permitted, this would overwrite registers which have not
been stored to the stack, thereby causing errors in subsequent execution of an
interrupted process. To avoid tlﬁs, an embodiment of the invention provides that, if
the target data processing operation triggered by the interrupt request attempts to use
the floating point registers when the state information indicates that the target data

processing context is an integer data processing context, the processing circuitry
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generates an exception before the floating point registers are overwritten. The

processor can then handle this exception in an appropriate manner.

There are several options for transferring the content of the registers to the
stack. For example, the floating point state preservation function may be conducted by
first copying the first set of integer registers to the stack, and then copying the second
set of floating point registers to the top of the stack. As will be appreciated, the
process of copying the register values to the stack takes a certain period of time. In
order that higher priority interrupts can be processed more quickly, the processing
circuitry is responsive to a higher priority interrupt requiring an integer state
preservation function received while the floating point state preservatioh function is
being conducted to inhibit the copying of the second set of floating point registers to
the stack, and to set a stack pointer to indicate the first set of integer registers to be at
the top of the stack. This improves the timeliness of the state preservation process
when two interrupts are received close together, and reduces processing and energy
requirements. More particularly, this assists the realisation of the integer-handler
latency benefits by providing for late-arrival of a higher priority interrupt in the form
of the ability to abandon float stacking in favour of taking an integer handler.

As an alternative, the floating point state preservation function may be
conducted by first copying the second set of floating point registers to the stack, and
then copying the first set of integer registers to the stack. In this case, the processing
circuitry is responsive to a higher priority interrupt requiring an integer state
preservation function received while the floating point state preservation function is
being conducted to complete storage of both the floating point registers and integer
registers to the stack, and to generate further state information indicating that the
interrupting floating point process was interrupted before the floating point state
preservation process had completed and that the floating point register values stored to
the stack are no longer required. As a result, this further state information can be used
when returning to the earlier process to cause only the relatively smaller amount of

data relating to the integer registers to be copied from the stack to the integer registers,
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rather than copying the relatively larger amount of data relating to both the integer and

floating point registers.

Under certain circumstances, for instance in a legacy mode, it may be desirable
to deactivate the floating point state preservation function. In this case, the processing
circuitry may be responsive to an override signal to perform the integer state
preservation function in response to an interrupt request irrespective of the state

information.

According to another aspect of the invention, there is provided a data processing
method of executing integer data processing operations and floating point data
processing operations in response to data processing instructions, said integer data
processing operations using a first set of integer registers, and said floating point data
processing operations using a second set of floating point registers, the method
comprising the steps of:

performing, in response to an interrupt request, one of an integer state
preservation function in which at least a subset of only said integer registers are copied
to a stack memory, and a floating point state preservation function in which at least a
subset of both said integer registers and said floating point registers are copied to said
stack memory, said one of said integer state preservation function and said floating

point state preservation function being selected in dependence on state information.

Various other aspects and features of the present invention are defined in the

claims, and include a computer program product.



10

15

20

25

30

WO 2010/146328 PCT/GB2010/000879

14

Brief Description of the Drawings

Embodiments of the invention will now be described, by way of example only,
with reference to the accompanying drawings in which:

Figure 1 schematically illustrates a data processing apparatus in which integer
registers and floating point registers are preserved to a stack memory in response to an
interrupt request from an interrupt controller; |

Figure 2 sche‘rnatically illustratés an example set of integer registers (Figure
2A) and an example set of ﬂoatmg pomt registers (Fi igure 2B);

Flgu.re 3 schematically illustrates the storage of register entnes in the stack for
an example integer state preservation operation (Figure 3A) and two example floating
point state preservation operations (Figures 3B and 3C); |

Figure 4 schematically illustrates a data processing apparatus according to a
first embodiment in which integer or floating point state preservation is carried out in
dependence on whether a current data processing context ié an integer context or a
floating point context;

Figure 5 is a schematic flow diagram illustrating the operation of a state
preservation function according to the first embodiment;

Figure 6 is a schematic flow diagram illustrating the operation of a state
recovery function according to the first embodiment;

Figure 7 is a state diagram which schematically illustrates the operation of the
first embodiment in a mode in which floating point state preservation and deferred
preservation are both enabled;

Figure 8 is a state diagram which schematically illustrates the operation of the
first embodiment in a mode in which floating point state preservation is enabled but in
which deferred preservation is disabled;

Figure 9 schematically illustrates the operation of the first embodiment in a
mode in which both floating point state preservation and deferred preservation are
disabled;

Figure 10 schematically illustrates a first example data processing apparatus
according to a second embodiment in which integer or floating point state preservation

is carried out in dependence on (a) whether a current data processing context is an
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integer context or a floating point context, (b) whether the current data processing
context is a thread or a handler, and (c) whether an inteffupting data processing context
is an integer context or a floating point context, and in which state information is
provided by an interrupt controller;

Figure 11 schematically illustrates another éXaimple of the second embodiment
in which state information is provided in the form of a look up table within a
Processor; '

Figure 12 schematically illustrates four example thread/handler progressions;

Figure 13 is a schematic flow diagram illustrating a context switch method in
response- to an interrupt in accordance with the second embodiment; and

Figure 14 is a schematic flow diagram illustrating a context switch method
occurring when an interrupting process has completed in accordance with the second

embodiment.

Description of Example Embodiments

Referring to Figure 1, a data processing apparatus 1 is shown which comprises
a data processor 10, a main memory 20; an interrupt controller 30 and a bus 40. The
data processor 10 comprises: processing circuitry 12 and a register file 14. The
register file 14 includes a set of integer registers 14A and a set of floating point
registers 14B. The processing circuitry 12 is operable in response to data processing
instructions to execute data processing operations utilising the values stored in the
integer registers 14A and floating point registers 14B of the register file 14. More
particularly, integer data processing operations are executed by the processing circuitry
12 using the integer registers 14A, while floating point data procéssing operations are
executed by the processing circuitry 12 using both the integer registers 14A and the
floating point registers 14B.

The integer registers 14A may include general purpose registers for storing
data values for use and manipulation by the processing circuitry 12, and may include
registers which have a dedicated purpose (although in some cases these may also be

used as general purpose registers). In the case of an ARM-based processor
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architecture, 16 integer registers are provided. These include a program counter
(register 15), a link register (register 14) and a stack pointer (register 13). The
program counter stores the memory address of a current instruction being executed by
the processing circuitry 12. The link register stores, in the case of a branch from a first
process to a second process, a memory address of a next instruction within the first
process to be executed when the branch to the second process has been completed.
The stack pointer stores an address indicating the top of a stack associated with a

current process.

The main memory 20 is operable to store data values for a variety of purposes,
and is accessible by the data processor 10 via the bus 40. The bus 40 may itself
include a data bus for carrying data values, an address bus for carrying address signals
indicative of storage locations within the main memory and a control bus for exerting
control signals for controlling the reading and writing of data to and from the main
memory 40. The main memory 20 comprises a stack storage area 22 which provides a
storage area for a main stack (MSP) 22A and a process stack (PSP) 22B. A stack is a
last-in-first-out (LIFO) data structure whereby new data values are added to the stack
by “pushing” them on to the top of the stack, and are subsequently accessed by
“popping” them off the top of the stack. In either case, a stack pointer (in the present
case stored in register 13) is updated to reflect the new position of the top of the stack.
In an ARM architecture, a process stack is provided which is used by “thread”
processes (that is, processes which have not been triggered by interrupts or
exceptions), and a main stack is provided which provides a “privileged” mode for use
by “handler” processes (that is, processes which have been triggered by interrupts or
exceptions). In addition, each of several handler processes can treat a different part of

the process stack as its own private stack by making use of private stack pointers.

The interrupt controller 30 includes prioritisation circuitry 32 for receiving
interrupts 36 and selecting a highest priority interrupt from the received interrupts to
be applied to the processing circuitry 12 of the data processor 10 via a signal line 38.
The received interrupts 36 may be hardware interrupts received from peripheral

devices or other hardware components of the data processing apparatus 1, or may be
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software interrupts issued by the processing circuitry 12 in response to data processing

instructions.

In operation, the processing circuitry 12 executes a stream of data processing
instructions of a current process until an interrupt is received from the interrupt
controller 30 via the signal line 38. The received interrupt indicates that the current
process should be suspended while a new process is serviced. In order that the ¢ﬁrrent
process can be resumed, information relating to the current process is to be stored so
that it can be restored in due course. This information to be stored includes at least a
portion of the contents of one or both of the integer registers 14A and the floating
point registers 14B of the register file 14. In particular, the integer registers 14A will
be stored by both an integer state preservation function and a floating point state
preservation function, whereas the floating point registers 14B will be stored only by
the floating point state preservation function. The floating point state preservation
function can therefore be initiated only when the state of the system at the time of an

interrupt requires the preservation of the floating point registers.

When the interrupting process terminates, the processing circuitry 12 is
operable to recover the state information (including the register values preserved to the
stack) and then continue the interrupted process from the point at which it was

interrupted.

Referring now to Figures 2A and 2B, example integer and floating point
processor register banks are schematically illustrated. It will be appreciated that
embodiments of the present invention are equally applicable to other sets of integer and
floating point registers. Figure 2A illustrates a set of 17 integer registers 10 to r15 and
xpsr. Registers 10 to r15 are general purpose registers (although register r13 functions as

a stack pointer, register r14 functions as a link register and register r15 functions as a-

program counter). Register xpsr is a program status register which indicates the current
state of the system. The integer registers which are to be backed up as part of an integer
or floating point state preservation function are registers r0 to 3, r12, r14, r15 and xpsr.

The remaining registers need not be backed up in the case of an interrupt being received.
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Figure’2B ﬂlustrates a set of 34 floating point registers s0 to s31, fpscr and fpexc.
Registers s0 to s31 are general purpose registers. Register fpscr is a floating point status
and control register which contains status and control bits for floating point operations.
Register fpexc is a floating point exception register for recording an exception status
relating to a floating point process. The floating point registers which are to be backed up
as part of a floating point state preservation function are s0 to s15, fpscr and fpexc. The
remaining registers need n’_of be backed ﬁp in the case of an interrupt bemg .re,céived. |

Two reasons for not backing up the entirety of fhe integer registers and floating
point registers are that the storage operation takes a finite period of time, increasing
latency on a context switch, and also that backing up the entirety of the registers would
require increased stack size for the processes being switched. It is recognised that not all
registers need be backed up in order to store the state of the system to the extent
necessary to permit a process to be returned to after an interrupting process has been
completed. In particular a procedure call standard may require a new context to manually

preserve and restore some registers if it wishes to use them.

Referring now to Figures 3A, 3B and 3C, example portions of a stack are
schematically illustrated which include register contents backed up from the integer and
floating point registers shown in Figures 2A and 2B. In particular, Figure 3A shows the - |
top portion of a stack following an integer state preservation operation in which the
content of registers r0 to r3, r12, r14, r15 and xpsr have been stored to the top of the
stack. The previous (pre-interrupt request IRQ) top of stack position is shown in Figure
3A. The new top of stack position corresponds to the position within the memory at
which the value of integer register 10 is stored. In an ARM architecture, when items are
added td the stack, the memory address of the top of the stack is actually decremented
because the stack memory is filled from the top (highest address value) down.

In Figure 3B, the top portion of a stack following a floating point state
preservation operation is shown. This includes, at positions which correspond with those

of Figure 3A, the backed up values of the integer registers 10 to r3, r12, r14, r15 and xpsr.
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However, stored above these (closer to the top of the stack) are the backed up values of
the floating point registers s0 to s15, fpscr and fpexc. The previous (pre-interrupt request
IRQ) top of stack position is shown in Figure 3B. The new top of stack position
corresponds to the address at which the value of floating poinf register s is stored.

In Figure 3C, as with Figure 3B the top portion of a stack following a floating
point state preservation operation is shown. However, unlike Figure 3B, the floating
point registers are backed up first, and then the integer registers are stored on top of the

' floating point registers. Accordingly, the integer registers 10 to r3, r12, r14, r15 and xpsr

are stored closer to the top of the stack than the floating point registers sO to s15, fpscr
and fpexc. The previous (pre-interrupt request IRQ) top of stack position is shown in
Figure 3C. The new top of stack position corresponds to the position within the memory
at which the value of integer register r0) is stored.

As will be appreciated, the storage of data values from the integer and floating
point registers onto the stack takes a finite period of time. During this time, it is possible
that another, higher priority, interrupt will be received by the processing circuitry 12, and
that in this case the previous interrupt (which triggered an integer and floating point state
preservation function) will be cancelled and the higher priority interrupt serviced.. In this
case, if the higher priority interrupt relates to an integer process the floating point
registers will not be used and therefore may (in some embodiments) no longer need to be
preserved. The manner in which this situation may be dealt with depends on the order in
which the integer registers and floating point registers are stored to the stack. In the case
of the order illustrated in Figure 3B, the storage to the stack of the floating point registers
as part of the floating point state preservation function could be terminated, and the top of
stack pointer set to 0. The stack pointer, as well as an indication of whether the
interrupted process is an integer or 'ﬂoating point process, will be copied to the link
register when the interrupting process starts, and can be used obtain access to the stack to
restore the register values when the interrupted process is recommenced. The indication
of whether the interrupted process is an integer or floating point process can be used to
determine whether only the integer registers need to be restored, or whether both the

integer and floating point registers need to be restored.
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In the case of the order illustrated in Figure 3C, the storage to the stack of both the
floating point and integer registers will be completed, but the preserved floating point
register values will not be restored when thé interrupted process recommences, because
the processing circuitry will determine that only the integer registers need to be restored,
and therefore the portion of the stack storing the floating point registers will be ignored
during a state recovery function.

In general terms, depending on a decision made in dependence on state
information, the processing circuitry 12 will either transfer only the contents of (at least
some of) the integer registers to a stack, or will transfer the contents of (at least some of)
both the integer and floating point registers to a stack. Then, once the required registers
have been copied to the stack, the incoming process can utilise the registers as required
without destroying state information or data which will be required when returning to the

earlier process.

First Embodiment

A first embodiment will now be described in which the selection of the integer
or floating point state preservation function at the time of an interrupt request is
conducted in dependence on whether the current data processing context (the context
being interrupted) is an integer context which uses only the integer registers, or a
floating point context using both the integer registers and the floating point registers.
In particular, an integer state preservation function is performed if the current context
is an integer context whereas a floating point state preservation function is performed

if the current context is a floating point context.

Referring to Figure 4, an apparatus 100 according to the first embodiment is

- schematically illustrated in which a data processor 110 has processing circuitry 112

which is response to an interrupt request 138 received from an interrupt controller to
suspend a current context, preserve state information (register contents) relating to the

current (suspended) context, and service a new (interrupting) context. In Figure 4, as
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with Figure 1, a register file 114 includes a set of integer registers 114A and a set of
floating point registers 114B. The integer registers 114A are shown in this case to.
include a stack pointer (SP) 115 and a link register (LR) 116 which are utilised in a
state recovery process to be described later. As with Figure 1, a main memory 120 of
the data processing apparatus 100 includes a stack memory 122 which is configured to
store content relating to the integer and/or floating point processor registers into either
a main stack area 122A or a process stack area 122B in dependence on whether the
interrupted data processing context is a thread or a handler. In particular, if the
interrupted process is a thread, the registers relating to that process will be copied into
the main stack by a state preservation function, whereas if the interrupted process is a
handler, the registers relating to that process will be copied into the process stack by

the state preservation function.

The data processor 110 also comprises a set of configuration registers 140,
including a control register 141, a floating-point context control register (FPCCR) 142,
and a floating point context address register (FPCAR) 143. These configuration

registers are described below:

Control Register
Bit [2] ‘ Bit [1] Bit [0]
Current Context Int/FP Stack in use Privilege of Thread Mode

The control register 141 is a 3 bit register having a first bit (bit [2]) which
indicates whether a currently running context is an integer or floating point context, a
second bit (bit[1]) which indicates which of a main (MSP) stack and a process (PSP)
stack is being used in the current context, and a third bit (bit [0]) which indicates the
privilege state of a thread mode. For the purpose of the first embodiment, bit [2] is the
‘component of the control register 141 which is of particular interest, because the
selection of the state preservation function to be performed is conducted based on

whether the current context is an integer context or a floating point context.
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FPCCR
Bit [31] Bit [30] Bits [29:1] Bit [0]
ASPEN LSPEN Privilege/Reserved LSPACT

The floating-point context control register (FPCCR) 142 is a register which
will typically be accessible only to software running in a privileged mode. The
floating-point context control register 142 includes a bit [31] (ASPEN) which is
settable to indicate whether a floating point state preservation function is available.
The integer state preservation function is assumed always to be available. More
particularly, bit [31], if set to make the floating point state preservation function
available, enables a bit [2] of the control register 141 described above to be set on
execution of a floating point instruction, resulting in automatic hardware state
preservation and restoration for a floating point context on exception entry and exit.
The floating-point context control register 142 also includes a bit [30] (LSPEN) which
enables and disables automatic lazy floating point state preservation (described later).
The floating-point context control register 142 also includes a bit [0] (LSPACT)
indicating that lazy floating point state preservation is active, and in particular
indicating that a floating point stack frame has been allocated on the stack, but that
saving state (content of processor registers) to it has been deferred. The floating-point
context control register 142 includes a number of other bits (bits [29:1]) which are
either reserved for other uses or provide state information for preserving priority and
privilege information relating to an interrupted process pending a return to the

interrupted process.

FPCAR

Bits [31:3] Bits [2:0]

Address Reserved

In order to achieve deferred floating point state preservation, the floating-point
context address register (FPCAR) 143 is provided, which as with the floating-point
context control register 142 is accessible only in a privileged mode. The floating-point

context address register 143 stores an address (in bits [31:3]) indicating a position in
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the stack to which the floating point registers are to be subsequently copied in the case

of a deferred floating point state preservation function. Bits [2:0] are reserved.

In operation, bit [2] of the control register 141 is used by the processing
circuitry 112 to record whether a floating point instruction is being executed. Bit [2]
of the control register 141 is sef in dependence on whether an instruction currently
being executed is using only integer registers, or both integer registers and floating

-

point registers. For example:

ADDr00#1 (1)
CMP 10,#3 V)

is purely integer code using "rX" integer registers, and is thus an integer context. In
particular, instruction (1) serves to increment the value in integer register r0 by 1, and
instruction (2) serves to compare a value stored in integer register 0 with the number

3. In both cases these instructions operate only on integer registers.
In contrast, the following instructions:

VADD.F32 50,50,s1 3)
VCMP.F32 s0,#0 @)

make use of the floating-point instructions and "sX" floating-point registers (as
well as integer registers and instructions), and thus form a floating point context. In
particular, instruction (3) adds the values stored in floating point registers sO and sl
together and stores the result in floating point register s0. Instruction (4) compares the
value stored in floating point register sO with the value 0. Execution of the VADD.F32
(if this is the first VFP instruction) will cause bit [2] of the control signal 141 to be set,

indicating that the context is now a floating point context.

A simple example of the use of an integer context could be a function taking a

pointer to two integer values, multiplying them and returning the result:
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C—Cdde:

int integer mul(int *int_array)
{
return int_array[0] * int_array[1];

}

Assembly equivalent:

LDR rl,[r0] ;load int array[0] into r1 (rO contains pointer)
LDR 12,[r0,#4] ; load int_array[1] into 12

MUL r0,r1,r2 ; multiply into r0 (return value)

BX Ir ; return from function

A simple example of a floating point context could be the same function taking
a pointer to two floating point values, multiplying them together and returning the

result:

C-Code:

float float mul(float *float_array)

{

return float_array[0] * float_array[1];

}

Assembly equivalent:

VLDR  sl,[f0] ;load float_array[0] into sl (0 contains pointer)
VLDR  s2,[r0,#4] ;load float array[1] into s2

VMUL.F32 s0,s1,s2 ; multiply into sO (return value)

BX Ir ; return from function
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If VLDR was the first VFP instruction encountered in the current context, then
it would cause the context to become a VFP context, whereupon bit [2] of the control

register 141 would be set.

If a current data processing context is pre-empted by an interrupt, and bit [2] of
the control register 141 is set, then bit [31] of the floating point context control register
142 indicates to the processing circuitry 112 whether to allocate a floating point
frame (for floating point state preservation) or an integer frame (for integer state
preservation). A further bit of the floating point context control register 142 (bit [30])
indicates whether to populate the floating point frame in the stack at the time of
allocation or to defer populating the floating point frame until a later time. If deferred,
a further bit in the floating point context control register 142 (bit [0]) is set, and the
address of the empty floating point frame in the stack memory is recorded into the
floating point context address register (FPCAR) 143.

On entry to an interrupt, bit [2] of the control register 141 is inverted, and the
inverted value is set as a frame size indicating bit in the link register 116. This bit is
used to indicate the size of the frame (integer frame or floating point frame) allocated
or copied into the stack memory 122. Once this bit is set in the link register 116, bit
[2] of the control register 141 is cleared to a value of zero. If a floating point
instruction is executed whilst bit [2] of the control register 141 is clear and bit [0] of
the floating point context control register 142 is set to a value of one (indicating
floating point frame allocated but not yet stored), then the floating point content still
inside the floating point registers 114B is stored to the address specified in the floating
point context address register 143, and bit [0] of the floating point context control
register 142 is clearéd to zero (to indicate that the floating point registers have now
been stored to the allocated space in the stack) and bit [2] of the control register 141
(first state information) is then set.

On return from an interrupting process when the frame size indicating bit in the

link register 116 is clear (zero), indicating that a floating point frame has been
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allocated, then if bit [0] of the floating point context control register 142 is set to a
value of one to indicate that the floating point frame has been allocated in the stack but
not populated, then the floating point frame in the stack is simply skipped over,
because bit [0] is in this case indicating that copying of the floating point registers to
the allocated space in the stack never occurred. However, if bit [0] of the floating
point context control register 142 is clear (zero), as will be the case once the content of
the floating point registers 114B has been copied into the stack 122, then the stacked
floating point frame is loaded back into the floating point registers 114B. Bit [2] of the
control signal is then updated in dependence on whether the apparatus is returning to
an integer context or a floating péint context. Bit [2] is updated independently of
whether or not state was restored. This fundamentally implements a hardware based
lazy context switching system.

Return from an interrupt is implemented using the link register 116, which is
set at the time of the interrupt to specify a return value which indicates to the processor
to which stack (main or process) state information of the interrupted context was
stored, how much information was stored (integer frame or floating point frame), and
whether the process being returned to is a thread or a handler. An example of the

return values which can be set in the link register 116 to achieve this are shown below:

EXC_RETURN Return to Return stack Destination uses FP
OxFFFF_FFE1 Handler Mode MSP Yes
OXFFFF_FFE9 Thread Mode MSP Ves
OxFFFF_FFED Thread Mode PSP Yes
0xFFFF_FFF1 Handler Mode MSP No
OxFFFF_FFF9 Thread Mode MSP No
OxFFFF_FFFD Thread Mode PSP No

Table 1: Exception Return Values for Link Register

It can be seen from Table 1 that the penultimate hexadecimal value in the
exception return value is either E or F, with a value of E indicating (column 4) that the

destination (return) context is a floating point context, and a value of F indicating that
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the destination cbntext is an integer context. This value therefore implements the
frame size indicating bit described above. It can also be seen that the final
hexadecimal value in the exception return value is either 1, 9 or D, with a value of 1
indicating (columns 2 and 3) a return to the main (MSP) stack into a handler mode, a
value of 9 indicating a return to the main stack into a thread mode, and a value of D
indicating a return to the process (PSP) stack into a thread mode.

Figure 5 schematically illustrates a state preservation process according to the
first embodiment. In particular, at a step S1, a current process is proceeding. At a step
S2, it is determined whether an interrupt has been received which has a highér priority
than the process currently being executed. In the case where no interrupt is received,
or an interrupt is received which has a lower priority than the currently executing
process, the process reverts to the step S1. When, at the step S2, it is determined that
an interrupt request is received which has a higher priority than the currently executing

“process, it is determined at a step S3 whether floating point state preservation is
enabled based on bit [31] of the floating point context control register 142. If it is
determined, at the step S3 that floating point state preservation is not enabled, then an
integer state preservation function is conducted at a step S4. As described above, the
‘integer state preservation function causes predetermined ones of the integer registers to
be copied to the stack. When the integer registers have been stored to the stack, the
stack pointer indicating th_e top of the stack is updated to reflect the new top of stack
position at a step SS. Tlﬁs will involve modifyiﬁg the stack pointer by an amount
equal to an integer frame of preserved register content. The link register 116 is then
updated with an exception return address at a step S6 to include a bit to indicate that an
integer frame has been stored to the stack and to indicate to which stack the registers
have been stored (MSP or PSP). The target (interrupting) process then commences at
a step S7, in which the integer registers (and potentially the floating point registers)

may be overwritten.

If at the step S3 it is determined that floating point state preservation is
enabled, then it is then determined at a step S8 whether floating point register storage

is required based on whether the current process is operating in an integer data
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processing context or a floating point data processing context, as indicated by bit [2] of
the control register 141. If it is determined that the current context is an integer
context, then the process is directed to the steps S4 to S7 which are conducted as
described above. However, if it is determined at the step S8 that the current context is
a floating point context, then a floating point state preservation function is conducted.
In particular, at a step S9, it is determined whether the storage of the floating point
registers should be conducted immediately (at the time of stack allocation) or deferred,
based on bit [30] of the floating point context control register 142. If it is determined
at the step S10 that the storage of the floating point context is not to be deferred, then
the process progresses to a step S10, where both the integer and floating point registers
are copied into the stack memory. The stack pointer is then updated at a step S11 to
reflect the new top of stack position by modifying the stack pointer by an amount
equal to a floating point frame of preserved register content. The link register 116 is
then updated with an exception return address at a step S12 to include a bit to indicate
that a floating point frame has been stored to the stack. The target (interrupting)
process then commences at a step S13, in which the integer registers (and potentially

the floating point registers) may be overwritten.

If it is determined at the step S9 that copying of the floating point registers to
the stack is to be deferred, then at a step S14 only the integer registers are copied to the
stack. Then, at a step S15, the stack pointer is. updated to indicate to reflect the new
top of stack position by incrementing the stack pointer by an amount equal to a
floating point frame of preserved register content. In this way, although only the
integer registers have been copied to the stack, space is allocated in the stack for the
floating point registers. Moreover, at a step S16, an address register is set to store an
address value indicating the location of the allocated area in the stack to which the
floating point registers may be copied, and a flag is set in the floating point context
control register 142 (bit [0]) to indicate that space for the floating point registers has
been allocated on the stack, but that copying of the floating point registers into the
allocated space has not yet been conducted. The link register 116 is then updated with
an exception return address at a step S17 to include a bit to indicate that a floating

point frame has been stored to the stack. In this way, a return to the interrupted
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process using the link register 116 will obtain the floating point register content from
the stack if the floating point registers have been copied. If the floating point registers
have not been copied then the empty portion of the stack can be ignoréd during state
recovery (described below). The target (interrupting) process then commences at a

step S18.

At a step S19, the process monitors received instructions following the

commencement of the target process to determine if a floating point instruction is to be

A éxe_cﬂted which would cause thf: floating ‘_point' registers to be overwritten. If such an

instruction is not received then the monitoring process of step S19 continues. If such
an instruction is received then the floating point state preservation process terminates
at a step S20 by storing the floating point registers into the allocated space indicated by
the address register, and resetting the flag in the floating point context control register
142 (bit [0]) to a valuer of zero to indicate that copying of the floating point registers
has now been conducted. It should be noted that the trigger for copying the floating
point registers into the allocated space on the stack may not simply be an instruction
which uses the floating point registers, it will preferably be an instruction which will

actually modify the content of the floating point registers.

Figure 6 schematically illustrates a state recovery process according to the first
embodiment. In particular, the method illustrated provides a context switch from the
target (interrupting) process back to the thread or handler process which was interrupted
by the target process. At a step T1, the process triggered by an interrupt proceeds until it
terminates at a step T2. Once the process terminates at the step T2, the link register 116
is read at a step T3 to determine to which stack (MSP or PSP) the state information of the
interrupted process was copied, and whether an integer frame of data or a floating point
frame of data was stored to that stack (the frame size indicating bit). At a step T4 it is
determined based on the frame size indicating bit, and based on the flag in the floating
point context control register 142, whether (a) an integer frame was allocated and copied,
(b) a floating point frame was allocated and copied (either immediately or after a
subsequent floating point instruction), or (c) a floating point frame was allocated but not
populated (because no floating point instruction was executed prior to the interrupting
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process terminating at the step T2). If it is determined at the step T4 that only an integer
frame was allocated and stored to the stack, the appropriate amount of data is popped
from the stack at a step T5 to obtain the data values of the integer registers, and the
obtained values are stored to the corresponding registers at a step T6. Then, at a step T7,
the stack pointer is updated to indicate a new top of stack position, which will differ from
the previous top of stack position by an amount equal to an integer frame. The previous

process is then resumed at a step T8.

If it is determined at the step T4 that a floating point frame was allocated to and
stored in the stack, a larger amount of data (corresponding to a floating point frame) is
popped off the stack at a step T9, and copied to the integer and floating point registers at a
step T10. Then, at a step T7, the stack pointer is updated to indicate a new top of stack
position, which will differ from the previous top of stack position by an amount equal to a
floating point frame. The previous process is then resumed at a step T8.

If it is determined at the step T4 that a floating point frame was allocated to but
not actually stored to the stack, a smaller amount of data (corresponding to an integer
frame) is popped off the stack at a step T9, and copied to the integer registers at a step
T10. Then, at a step T7, the stack pointer is updated to indicate a new top of stack
position, which will differ from the previous top of stack position by an amount equal to a
floating point frame, because the space required by the floating point frame would have
been allocated, even if not ultimately used. The previous process is then resumed at a
step T8.

The first embodiment is now further explained with reference to state diagrams
which schematically illustrate the setting of various register bits to transition the data
processing apparatus being first, second, third and fourth states.

Referring first to Figure 7, the ASPEN and LSPEN bits in the FPCCR are set
such that both floating point state preservation and lazy context switching are
available. In this case, first, second and third states of the apparatus are attainable by

hardware based state preservation and recovery functions, and a fourth state is



10

15

20

25

30

WO 2010/146328 PCT/GB2010/000879

31

attainable only by direct software control. The portion of the state diagram accessible
only by direct software control is indicated by the region Z.

In Figure 7, at a step Al, the data processing apparatus is reset, or switched on,
whereby the apparatus enters the first state in which a first control bit (bit [2] vof the
control register 14.1) is set to zero, and a second control bit (bit [0] of the FPCCR) is set to
zero, at a step A2. The first state is a state in which a current data processing context is
an integer data probessing context. If an interrupt request (IRQ) is received at a step A3
while the apparatus is in the first state, an integer state preservation function is initiated,
and a third control bit is set in the link register to have a value which is the inverse of the
first control bit. As the first control bit has a value of zero while the apparatus is in the
first state, the third control bit to be stored in the link register 116 is set to a value of one.
To service the interrupt request, the contents of (some of) the integer registers is stored to
the stack, and the stack pointer is updated to reflect the new top of the stack, in this case
32 bytes (corresponding to eight 32 bit registers being copied to the stack) from the
previous top of stack position. It will be noted that due to the nature of the stack in an

- ARM architecture, the modification of the stack pointer when items are added to the stack

is conducted by decrementing the stack pointer. Similarly, when items are removed from
the stack, the modification of the stack pointer is conducted by incrementing the stack

pointer.

If a return from an interrupting process (exception return) occurs at a step A5
while the apparatus is in the first state, then it is determined whether the interrupted
process operated in an integer context where the apparatus was in the first state or the
third state (indicated by the third control bit being set to a value of one), or in a floating
point context where the apparatus was in the second state or the fourth state (indicated by
the third control bit being set to a value of zero). If the interrupted process operated in an

integer context then the integer state recovery function is performed at the step A7 by -

popping the preserved integer register content from the stack and updating the stack:
pointer to reflect the new top of the stack, in this case 32 bytes (corresponding to eight 32
bit registers being popped off the stack) from the previous top of stack position. In this

case, the apparatus remains in the first state once the integer state recovery function has
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been performed. If the interrupted process operated in a floating point context then the
floating point state recovery function is performed at the step A6 by popping the
preserved integer and floating point register content from the stack and updating the stack
pointer to reflect the new top of the stack, in this case 104 bytes (corresponding to twenty
six 32 bit registers being popped off of the stack) from the previous top of stack position.
In this case, the apparatus is caused to enter the second state at a step B1 once the floating
point state recovery function has been performed. This is because a floating point state
recovery function is followed by the continuation of a floating point data processing
context.

If a floating point instruction is received at a step A4 while the apparatus is in the
first state, the apparatus is caused to enter fhe second state at the step B1, because this
will mark the initiation of a floating point data processing context. When the apparatus
enters the second state, the first control bit is set to one, but the second control bit remains

at zero.

In the second state, if a floating point instruction is executed at a step B2, no
change of state occurs and the apparatus remains in the second state. This is because the
second state always represents a floating point data processing context. However, if an
interrupt request is received at a step B3 while the apparatus is in the second state, a
floating point state preservation function is initiated, and a third control bit is set in the
link register to have a value which is the inverse of the first control bit. As the first
control bit has a value of one while the apparatus is in the second state, the third control
bit to be stored in the link register is set to a value of zero. To service the interrupt
request, the contents of (some of) the integer registers is stored to the stack, but because
Figure 7 represents a system state in which the copying of floating point registers is
deferred, the floating point registers are not stored into the stack at this time. However,
the stack pointer is updated to reflect the new top of the stack at a position which
allocates space on the stack for the floating point registers, in this case 104 bytes
(corresponding to twenty six 32 bit registers being copied to the stack) from the previous
top of stack position. Once the link register and stack pointer have been updated, the
apparatus is caused to enter the third state at a step C1.
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If a return from an interrupting process (exception return) occurs at a step BS
while the apparatus is in the second state, then it is determined whether the interrupted
process operated in an integer context where the apparatus was in the first state or the
third state (indicated by the third control bit being set to a value of one), or in a floating
point context where the apparatus was in the second state or the fourth state (indicated by
the third control bit being set to a value of zero). If the interrupted process operated in an
integer context then the integer state recovery function is performed at the step B6 by
popping the preserved integer register content from the stack and updating the stack
pointer to reflect the new top of the stack, in this case 32 bytes (corresponding to eight 32
bit registers being popped off the stack) from the previous top of stack position. In this
case, the apparatus is caused to enter the first state at a step A2 once the integer state
recovery function has been performed. This is because an integer state recovery function
is followed by the continuation of an integer data processing contexﬁ If the interrupted
process operated in a floating point context then the floating point state recovery function
is performed at the step B6 by popping the preserved integer and floating point register
content from the stack and updating the stack pointer to reflect the new top of the stack,
in this case 104 bytes (corresponding to twenty six 32 bit rggisters being popped off of
the stack) from the previous top of stack position. In this case,’the apparatus remains in
the second state once the floating point state recovery function has been performed.

The third state is one in which the first control bit (bit [2] of the control register
141) is set to zero (as with the first state) to indicate that the current context is an integer
data processing context, and a second control bit (bit [0] of the FPCCR) is set to a value
of one, to indicate that space is currently allocated in the stack memory for the floating
point registers, but that the floating point registers have not yet been copied into the
allocated space. If a floating point instruction is received at a step C3 while the apparatus
“is*in the third state, the apparatus is caused to store the floating point state (floating point
registers) into the allocated space in the stack memory at a step C4, and to then enter the
second state at the step B1, because the execution of the received floating point

instruction will mark the initiation of a floating point data processing context. When the
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apparatus enters the second state, the first control bit is set to one, and the second control

bit is reset to zero.

If an interrupt request (IRQ) is received at a step C2 while the apparatus is in the
third state, an integer state preservation function is initiated, and a third control bit s set
in the link register to have a value which is the inverse of the first control bit. As the first
control bit has a value of zero while the apparatus is in the third state, the third control bit
to be stored in the link register is set to a value of one. To service the interrupt request,
the contents of (some of) the integer registers is stored to the stack, and the stack pointer
is updated to reflect the new top of the stack, in this case 32 bytes (corresponding to eight
32 bit registers being copied to the stack) from the previous top of stack position.

If a return from an interrupting process (exception return) occurs at a step C5
while the apparatus is in the third state, then it is determined whether the interrupted
process operated in an integer context where the apparatus was in the first state or the
third state (indicated by the third control bit being set to a value of one), or in a floating
point context where the apparatus was in the second state or the fourth state (indicated by
the third control bit being set to a value of zero). If the interrupted process operated in an
integer context then the integer state recovery function is performed at the step C7 by
popping the preserved integer register content from the stack and updating the stack
pointer to reflect the new top of the stack, in this case 32 bytes (corresponding to eight 32
bit registers being popped off the stack) from the previous top of stack position. In this
case, the apparatus remains in the third state once the integer state recovery function has
been performed. If the interrupted process operated in a floating point context then the
floating point state recovery function is performed at the step C6 by popping the
preserved integer and floating point register content from the stack and updating the stack
pointer to reflect the new top of the stack, in this case 104 bytes (corresponding to twenty.
‘six 32 bit registers being popped off of the stack) from the previous top of stack position.
In this case, the apparatus is caused to enter the second state at a step B1 one the floating
point state recovery function has been performed. This is because a floating point state
recovery function is followed by the continuation of a floating point data processing

context.
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The fourth state is accessible only by software at a step D1, and is a state in which
the first control bit (bit [2] of the control register 141) is set to a value of one,.and the
second control bit (bit [0] of the FPCCR) is set to a value of one, at a step D2. The fourth
state is a state in which a current data processing context is a floating point data
processing context, and in which space is currently allocated in the stack memory for the
floating point registers, but that the floating point registers have not yet been copied into
the allocated space (as indicated by the fact that the second control bit is set to a value of

one).

In the fourth state, if a floating point instruction is received at a step D4, the
apparatus is caused to store the floating point state (floating point registers) into an
allocated space in the stack memory at a step D5, and to then enter the second state at the
step B1. When the apparatus enters the second state, the first control bit remains set to a

value of one, but the second control bit is reset to zero.

If an interrupt request is received at a step D3 while the apparatus is in the fourth
state, a floating point state preservation function is initiated, and a third control bit is set
in the link register to have a value which is the inverse of the first control bit. As the first
control bit has a value of one while the apparatus is in the fourth state, the third control bit
to be stored in the link register is set to a value of zero. To service the interrupt request,
the contents of (some of) the integer registers is stored to the stack, but because Figure 7
represents a system state in which the copyi'ng of floating point registers is deferred, the
floating point registers are not stored into the stack at this time. However, the stack
pointer is updated to reflect the new top of the stack at a position which allocates space on
the stack for the floating point registers, in this case 104 bytes (corresponc\ling to twenty
six 32 bit registers being copied to the stack) from the previous top of stack position.
Once the link register and stack pointer have been updated, the apparatus is caused to
enter the third state at a step C1.

If a return from an interrupting process (exception return) occurs at a step D6

while the apparatus is in the fourth state, then it is determined whether the interrupted
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process operated in an integer context where the apparatus was in the first state or the
third state (indicated by the third control bit being set to a value of one), or in a floating
point context where the apparatus was in the second state or the fourth state (indicated by
the third control bit being set to a value of zero). If the interrupted process operated in an
integer context then the integer state recovery function is performed at the step D7 by
popping the preserved integer register content from the stack and updating the stack
pointer to reflect the new top of the stack, in this case 32 bytes (corresponding to eight 32
bit registers being popped off the stack) from the previous top of stack position. In this
case, the apparatus is caused to enter the third state at a step A2 once the integer state
recovery function has been performed. If the interrupted process operated in a floating
point context then the floating point state recovery function is performed at the step D8
by popping the preserved integer and floating point register content from the stack and
updating the stacklpointer to reflect the new top of the stack, in this case 104 bytes
(corresponding to twenty six 32 bit registers being popped off of the stack) from the
previous top of stack position. In this case, the apparatus enters the second state once the

floating point state recovery function has been performed.

In Figure 8, the ASPEN bit in the FPCCR is set such that floating point state
preservation is available, but the LSPEN bit in the FPCCR is set such that lazy context
switching is not available. Accordingly, the third and fourth states described above
with reference to Figure 7 are only available under direct software control. The
portion of the state diagram accessible only by direct software control is indicated by
the region Z’.

In this case, the operation of the apparatus in the first state is identical to that
described above with reference to Figure 7. However, the operation of the apparatus
in the second state, while similar to that described above, differs in that the content of
the floating point registers is copied (along with the integer registers) into the stack
memory immediately at a step B3’ (which corresponds to step B3 in Figure 7), rather
than the copying of the floating registers being deferred until a subsequent floating
point operation is received while the apparatus is in the third state. In addition,

whereas the step B3 in Figure 7 transitioned into the third state, the step B3” in Figure
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8 transitions into the first state. The third state is only available via the fourth state

(which is iteself only available via direct software control).

In Figure 9, the ASPEN and LSPEN bits in the FPCCR are set such that neither
floating point state preservation nor lazy context switching are available. Accordingly,
the second, third and fourth states described above with reference to Figure 7 are only
available under direct software control. The portion of the state diagram accessible

only by direct software control is indicated by the region Z”’.

In this case, the apparatus is tied to the first state, and floating point
instructions received at a step A4’ corresponding to step A4 in Figures 7 and 8 do not
cause the apparatus to change to a different state. It is noted that when the apparatus is
tied to the first state, the step A6 will not be reached (other than via direct software
control from one of the second, third and fourth states) because bit 4 of the link
register can only be set to one (the inverse of the control bit, which is fixed at zero in

the case of the apparatus being tied to the first state).

Second Embodiment

A second embodiment will now be described in which a determination of
which of the two sets of registérs to store is made on the basis of (a) whether the
current process is a thread, that is a process which has not been triggered by an
interrupt, or a handler, that is a process which has been triggered by an interrupt, (b)
whether the current process is an integer process which does not use the floating point
registers or a ﬂoating point process which does use the floating point registers, and (c)
whether the interrupting process is an integer process which does not use the floating

point registers or a floating point process which does use the floating point registers.

Referring to Figure 10, an example data processor 210 and interrupt controller
230 are schematically illustrated in which state circuitry 234 providing an indication of
whether an interrupting process is an integer process or a floating point process is

provided within the interrupt controller 230. The data processor 210 and the interrupt
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controller 230 are coupled together via a bus 240. The data processor 210 comprises (in a
similar manner to Figure 1) processing circuitry 212 and a register file 214. The register
file 214 comprises integer registers 214A (which include a stack pointer 215 and a link
register 216) and floating point registers 214B. The interrupt controller 230 comprises
prioritisation circuitry 232 which takes the form of a multiplexer which selects between
incoming interrupt requests 236-1 to 236-4 on the basis of relative priority. In this case
interrupt requests 236-1 and 236-2 are software interrupts generated by the processing
circuitry 212, while interrupt requests 236-3 and 236-4 are hardware interrupts generated
by hardware devices (not shown). The prioritisation circuitry 232 selects between the
interrupt requests 236-1 to 2364 to generate an interrupt signal which is applied to the
processing circuitry 212 via signal line 238 to indicate an interrupting process to be
serviced by the processing circuitry 212.

The prioritisation circuitry 232 also generates a control signal 233 which indicates
to state circuitry 234 the interrupt request which has been selected. The state circuitry
234 takes the form of a multiplexer which selects between state indicators 235-1 to 235-4
in dependence upon the received control signal 233. Each of the state indicators 235-1 to
235-4 corresponds to one of the interrupt requests 236-1 to 236-4. The state circuitry 234
therefore generates a control signal which is applied to the processing circuitry 212 and
which indicates the state of the received interrupt, and in particular indicates if the
received interrupt relates to a process which requires access to the floating point registers
214B. The state indicators 235-1 to 2354 can be set by the processing circuitry 212 as
appropriate under hardware or software control by applying control signals via the bus
240.

In this way, the state circuitry 234 of the interrupt controller 230 generates state
information corresponding to a selected interrupt, and applies a signal representing the
state information to the processing circuitry 212 of the data processor via a signal line 239
in association with the selected interrupt which is applied via the signal line 238.
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The processing circuitry 212 is able to utilise the state information acquired via
the signal line 239 to determine whether the interrupt received on the signal line 238

relates to an integer context or a floating point context.

The data processor 210 also comprises configuration registers 240 including a
control register 241 having a first bit 241A for indicating whether the current context is
an integer context or a floating point context, a second bit 241B for indicating which of
the main stack (MSP) and process stack (PSP) is currently in use, and a third bit 241C for
indicating the privilege of a thread mode. In particular, the control register 241
corresponds to the control registér 141 described above with reference to Figure 4.

Referring to Figure 11, another example data processor 310 and interrupt
controller 330 are schematically illustrated in which a state store providing a look up
table mapping possible interrupts to a corresponding state is provided within the data
processor 310. The data processor 310 and the interrupt controller 330 are coupled
together via a bus 340. The data processor 310 comprises (in a similar manner to Figure
10) processing circuitry 312 and a register file 314 comprising integer registers 314A
(which include a stack pointer 315 and a link register 316) and floating point registers
314B.

The interrupt controller 330 comprises prioritisation circuitry 332 which takes the
form of a multiplexer which selects between incoming interrupf requests 336-1 to 3364
on the basis of relative priority. As with Figure 10, the interrupt requests 336-1 and 336-
2 are software interrupts generated by the processing circuitry 312, while interrupt
requests 336-3 and 3364 are hardware interrupts generated by hardware devices (not
shown). The prioritisation circuitry 332 selects between the interrupts 336-1 to 336-4 to
generate an interrupt signal which is applied to the processing circuitry 312 via signal line

238 to indicate an interrupting process to be serviced by the processing circuitry 312.

In Figure 11, a state information store 316 which is provided within the data
processor 310 takes the place of the state circuitry 334 in Figure 10, enabling a

conventional interrupt controller to be used rather than the adapted interrupt controller
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provided in the arrangement of Figure 10. The state information store 316 stores state
information indicating for each of one or more possible interrupt requests, whether a
process corresponding to that request requires the floating point registers 314B. The
processing circuitry 312 is configured to read the state information from the state
information étore in response to a received interrupt request from the interrupt
controller 330. In this way, the processing circuitry 312 is able to appropriately back
up either only the integer registers 314A or both the integer registers 314A and
floating point registers 314B. The state information store can be updated as

‘appropriate under software or hardware control by the processing circuitry 312.

The data processor 310 also comprises configuration registers 340 including a
control register 341 having a first bit 341 A for indicating whether the current context is
an integer context or a floating point context, a second bit 341B for indicating which of
the main stack (MSP) and process stack (PSP) is currently in use, and a third bit 341C for
indicating the privilege of a thread mode. In particular, the control register 341
corresponds to the control register 241 described above with reference to Figure 10.

In the case of both the example of Figure 10 and the example of Figure 11, the
state information from the interrupt controller or the state information store
respectively provides an indication of whether the interrupting (target) data processing

context is an integer context or a floating point context.

Where a current process is a handler, the state information indicating whether
the current process is an integer process or a floating point process is obtained from
either the interrupt controller (Figure 10) or the state information store (Figure 11) and
is used to update bit [2] of the control register 241 or 341 respectively to indicate
whether the current context is an integer context or a floating point contéxt. When the
current process is a thread, then bit [2]-of the control register 241 or 341 is set directly
by the hardware or software. In this way, the state required to determine whether an
integer or floating point state preservation function is to be performed can be extracted
from the interrupt controller or state information store which indicates whether the

target context is an integer context or a floating point context, from bit [2] of the
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control register 241, 341 which indicates whether the current context is an integer
context or a floating point context, and from bit [1] of the control register 241, 341
which indicates (as described above) whether the current context is a thread or a
handler.

An example preservation policy which is dependent on the context of the current
and future processes, and on whether the current process is a thread or a handler is shown
in Table 2, with an indication of whether integer only state preservation or integer and

float state presérvaﬁon is required.

Origin Destination Preserve to Stack
Integer thread Integer handler Integer only
Integer thread Float handler Integer only

Float thread Integer handler Integer only
Float thread ' Float handler Integer and float

Integer handler Integer handler Integer only
Integer handler Float handler Integer and float

Float handler ' Integer handler Integer only
Float handler Float handler Integer and float

Table 2: Preservation Policy

The preservation policy shown in Table 1 protects against loss 'of floating point
register file data while only conducting floating point state preservation where there is a

risk of overwrite.

Example processes and interrupts in accordance with the second embodiment will

now be described with reference to Figures 12A to 12D.

In Figure 12A, a first example series of processes and interrupts is schematically
illustrated. During period 602, an integer thread process (process 1A) is taking place,
until interrupted at a point 604 by an interrupt triggering an integer handler process

(process 2A). As described above, a context switch from an integer thread to an integer
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handler requires only the integer registers to be backed up, because the floating point
registers will not and have not been used. The context switch occurs between the point
604 and a point 606 when the state preservation operation of the integer registers has

been completed and the new integer handler process (2A) can commence.

The integer handler process (2A) continues unti] a poiht 608 when it is interrupted
by an interrupt triggering a floating point handler process (process 3A). As described
above, a context switch from an integer handler to a floating point handler requires both
the integer registers and the floating point registers to be backed up, because the
interrupting floating point handler process (3A) will use the floating point registers, and
the integer handler process (2A) may itself have interrupted a floating point process
which used the floating point registers. The context switch occurs between the point 608
and a point 610 when the state preservation operation of the integer and floating point
registers has been completed and the new floating point handler process (3A) can
commence. It will be appreciated that while the duration of the integer state preservation
operation between the points 604 and 606 is shown for simplicity to be the same as the
duration of the floating point state preservation operation between the points 608 and 610,
the duration of the latter context switch may be greater due to the requirement to store

more registers to the stack.

The floating point process (3A) which commenced at the point 610 then
continues until a point 612 at which the floating point process (3A) terminatés and the
interrupted process (2A) can be resumed. To return to the interrupted process (2A) the
backed up integer registers and floating point registers must be restored by reading the
values stored to the stack in the integer and floating point state preservation process, and
storing these values into the corresponding registers. This operation takes place between
the point 612 and a point 614, after which the integer handler process (2A) can be
resumed. The integer handler process (2A) then continues until a point 616 at which it
terminates and the interrupted process (1A) can be resumed. To return to the interrupted
process (1A) the backed up integer registers must be restored by reading the values stored

to the stack in the integer state preservation operation, and storing these values into the
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corresponding registers. This restore operation takes place between the point 616 and a
point 618, after which the integer thread process (1A) can be resumed.

In the above example, the integer thread (1A) may be an application process
operating in a user mode and using the process stack (described above). The integer
handler (2A) and the floating point handler (3A) may be operating system processes
running in a privileged mode and using the main stack (described above). The stack
pointer used for a user process utilising the process stack will be a process stack pointer
(PSP) stored in register 13, whereas the stack pointer used for a privileged process
utilising the main stack will be a main stack pointer (MSP) stored in register 13. The
processing circuitry is therefore able to determine whether a process is a thread (user
mode utilising the process stack) or a handler (privileged mode utilising the main stack)
by examining the address pointed to by the stack pointer stored in register 13. The same

technique may be used with each of the following examples.

In Figure 12B, a second example series of processes and interrupts is
schernaﬁcélly illustrated. During period 622, an integer thread process (process 1B) is
taking place, until interrupted at a point 624 by an interrupt triggering a floating point
handler process (process 2B). As described above, a context switch from an integer
thread to a floating point handler requires only the integer registers to be backed up,
because the floating point registers have not previously been used, and thus will not need
to be preserved. The context switch occurs between the point 624 and a point 626 when
the state preservation operation of the integer registers has Been completed and the new

floating point handler process (2B) can commence.

The floating point handler process (2B) continues until a point 628 when it is
interrupted by an interrupt triggering a further floating point handler process (process
3B). As described above; a context switch from a floating point handler to another
floating point handler requires both the integer registers and the floating point registers to
be backed up, because both the current floating point handler process (2B) and the
interrupting floating point handler process (3B) will use the floating point registers. The

context switch occurs between the point 628 and a point 630 when the state preservation
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operation of the integer and floating point registers has been completed and the new

floating point handler process (3B) can commence.

The floating point process (3B) which commenced at the point 630 then continues
until a point 632 at which the floating point process (3B) terminates and the interrupted
process (2B) can be resumed. To return to the interrupted process (2B) the backed up
integer registers and floating point registers must be restored by reading the values stored
to the stack in the integer and floating point state preservation process, and storing these
values into the corresponding registers. This operation takes place between the point 632
and a point 634, after which the floating point handler process (2B) can be resumed. The
floating point handler process (2B) then continues until a point 636 at which it terminates
and the interrupted process (1B) can be resumed. To return to the interrupted process
(1B) the backed up integer registers and floating point registers must be restored by
reading the values stored to the stack in the integer state preservation operation and the
floating point state preservation operation, and storing these values into the corresponding
registers. This restore operation takes place between the point 636 and a point 638, after
which the integer thread process (1B) can be resumed.

In Figure 12C, a third example series of processes and interrupts is schematically
illustrated. During period 642, a floating point thread process (process 1C) is taking
place, until interrupted at a point 644 by an interrupt triggering an integer handler process
(process 2C). As described above, a context switch from a floating point thread to an
integer handler requires only the integer registers to be backed up, because the floating
point registers will not be overwritten by the interrupting integer process. The context
switch occurs between ﬂ1e point 644 and a point 646 when the state preservation
operation of the integer registers has been completed and the new integer handler process
‘(2C) can commence.

The integer handler process (2C) continues until a point 648 when it is interrupted
by an interrupt triggering a further integer handler process (process 3C). As described
above, a context switch from an integer handler to an integer handler requires only the

integer registers to be backed up, because the interrupting handler process (3C) will not
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use the floating point registers. The context switch occurs between the point 648 and a
point 650 when the state preservation operation of the integer registers has been

completed and the new integer handler process (3C) can commence.

The integer handler pfocess (3C) which commenced at the point 650 then
continues until a point 652 at which the integer process (3C) terminates and the
interrupted process (2C) can be resumed. To return to the interrupted process (2A) the
backed up integer registers must be restored by reading the values stored to the stack in
the integer state preservation process, and storing these values into the corresponding
registers. This operation takes place between the point 652 and a point 654, after which
the integer handler process (2C) can be resumed. The integer handler process (2C) then
continues until a point 656 at which it terminates and the interrupted process (1C) can be
resumed. To return to the interrupted process (1C) the backed up integer registers must
be restored by reading the values stored to the stack in the integer state preservation
process, and storing these values into the corresponding registers. The floating point
registers which are used by the floating point thread process (1C) have not been used by
the interrupting processes (2C and 3C) and thus will still be preserved in the floating
point registers. The restore operation takes place between the point 656 and a point 658,
after which the floating point thread process (1C) can be resumed.

In Figure 12D, a fourth example series of processes and interrupts is
schematically illustrated. During period 662, a floating point thread process (process 1D)
is taking place, until interrupted at a point 664 by an interrupt triggering a floating point
handler process (process 2D). As described above, a context switch from a floating point
thread to a floating point handler requires both the integer registers and the floating point
registers to be backed up, because both the current floating point handler process (1D)
and the interrupting floating point handler process (2D) will use the floating point
registers. The context switch occurs between the point 664 and a point 666 when the-
state preservation operation of the integer registers and floating point registers has been -

completed and the new floating point handler process (2D) can commence.
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The floating point handler process (2D) continues until a point 668 when it is
interrupted by an interrupt triggering an integer handler process (process 3D). As
described above, a context switch from a floating point handler to an integer handler
requires only the integer registers to be backed up, because the interrupting integer
handler process (3D) will not use the floating point registers. The context switch occurs
between the point 668 and a point 670 when the state preservation operation of the
integer registers has been completed and the new integer handler process (3D) can

commence.

The integer process (3D) which commenced at the point 670 then continues until
a point 672 at which the integer process (3D) terminates and the interrupted process (2D)
can be resumed. To return to the interrupted process (2D) the backed up integer registers
must be restored by reading the values stored to the stack in the integer state preservation
process, and storing these values into the corresponding registers. This operation takes
place between the point 672 and a point 674, after which the floating point handler
process (2D) can be resumed. The floating point handler process (2D) then continues
until a point 676 at which it terminates and the interrupted process (1D) can be resumed.
To return to the interrupted process (1D) the backed up integer registers and floating
point registers must be restored by reading the values stored to the stack in the integer and
floating point state preservation processes, and storing these values into the
corresponding registers. This restore operation takes place between the point 676 and a
point 678, after which the floating point thread process (1D) can be resumed.

Figure 13 is a schematic flow diagram showing an example method of providing
a context switch from a current process to a target process. At a step Ul, a current
process proceeds until an interrupt is received by the processing circuitry at a step U2.
When the interrupt is received at the step U2, it is deterrhined, at a step U3, whether the
target process which is being initiated by the interrupt is an integer process or a floating
point process. As described above, this determination may be made based on -state
information provided by an interrupt controller in association with the interrupt or
obtained from a state information store provided within the data processor. Then, at a

step U4, it is determined whether the current process is an integer process or a floating
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point process. As described above, this information may be stored into a bit [2] of the
control register when the current process was initiated, either based on state information
from the interrupt controller (where the current process is a handler), or set directly by the
hardware or software (whether the current process is a thread). This indication can be
extracted from that control register by the processing circuitry. Then, at a step U5, it is
determined whether the current process is a thread process or a handler process. This
determination may be made in dependence on whether bit [1] of the control register,
which indicates whether the main stack is currently in use (indicating that the current
process is a handler, or the process stack is currently in use (indicating that the current
process is a thread). The information gathered at the steps U3 to US is that which is
required in order to make a decision regarding whether only the integer registers should
be stored to the stack, or whether both the integer registers and floating point registers
should be stored to the stack.

At a step U6, the determination as to whether the floating point registers are to be
stored is made. Then, in the case that the determination is made that the floating point
registers are not to be stored, at a step U7 only the integer registers are stored to the stack. -
Then, the stack pointer is updated to reflect the new top of the stack at a step U8, and the
link register is updated at a step U9 to store an indication of which of the main stack and
the process stack have been used to store the preserved processor registers, and an
indication that the interrupted process uses a floating point context. If at the step U6 a
determination is made that the floating point registers are to be stored, then at a step U8
the integer régisters and the floating point registers are stored to the stack. Then, the
stack pointer is updated to reflect the new top of the stack at the step U8, and the link
register is updated at the step U9 to store an indication that the interrupted process uses a
floating point context.

g At a step Ul1, bit [2] of the control register may be set to indicate whether the

target process (to become the current process) based on the information obtained at the
step U3 indicating whether the interrupting process uses an integer or floating point data
processing context. Finally, at a step U12 the target process is commenced. When the

target process is commenced, if the target process triggered by the interrupt request
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attempts to use the floating point registers when the state information obtained at the
step U3 and stored in bit [2] of the control register at the step U1l indicates that the
target data processing context is an integer data processing context, an exception is
generated by the processing circuitry. This exception will halt the target process
before the floating point registers can be overwritten, thereby preventing loss of
floating point register data which has not been stored to the stack. The exception
could then be dealt with simply by conducting the floating point state preservation

operation at that point, or by terminating the target process.

Figure 14 is a schematic flow diagram showing an example method of providing
a context switch from the target (interrupting) process back to the thread or handler
process which was interrupted by the target process. At a step V1, the process triggered
by an interrupt (such as that described with reference to Figure 13) proceeds until it
terminates at a step V2. Once the process terminates at the step V2, the link register is
read at a step V3 to determine to which of the main stack and the process stack the
processor registers were copied, and to determine whether the interrupted process used a
floating point context (which forms an indication of how much data (integer frame or
floating point frame) is to be popped from the stack). At a step V4 it is determined based
on the value stored in the link register whether the floating point registers were stored to
the stack when the process was interrupted. If it is determined at the step V4 that the
floating point registers were stored to the stack, the appropriate amount of data is popped
from the stack at a step V5 to obtain the data values of the integer and floating point
registers, and the obtained values would be stored to the corresponding registers at a step
V6. In the case of the example shown m Figures 2 and 3 this would require an amount of
data corresponding to 26 registers to be popped from the stack. If on the other hand it is
determined at the step V5 that the floating point registers were not stored to the stack, a
smaller amount of data is popped off the stack at a step V7, and copied into the integer
registers at a step V8. In the case of the example shown in Figures'2 and 3 this would
require an amount of data corresponding to 8 registers to be popped from the stack. Ata
step V9, once either the step V6 or the step V8 has been completed, the previous process

is resumed.
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Various further aspects and features of the present invention are defined in the
appended claims. Various modifications can be made to the embodiments herein

before described without departing from the scope of the present invention.
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CLAIMS

1. A data processing apparatus, comprising:

processing circuitry responsive to data processing instructions to execute
integer data processing operations and floating point data processing operations; .. ..

a ﬂrst set of integer registers useable by said processing circuitry in executing
said integer data processing operations, and

a second set of floating point registers useable by said processing circuitry in
executing said floating point data processing operations;

wherein

said processing circuitry is responsive to an interrupt request to perform one of
an integer state preservation function in which at least a subset of only said integer
registers are copied to a stack memory, and a floating point state preservation function
in which at least a subset of both said integer registers and said floating point registers
are copiedb to said stack memory, said one of said integer state preservation function
and said floating point state preservation function being selected by said processing

circuitry in dependence on state information.

2. A data processing apparatus according to claim 1, wherein

said state information comprises first state information which is indicative of
whether a current data processing context being executed by said processing circuitry
when the interrupt request is received is a floating point data processing context which
includes one or more floating point data processing operations or an integer data
processing context which does not include any floating point data processing

operations.

3. A data processing apparatus according to claim 2, wherein
said first state information is set in response to a data processing instruction
which causes the processing circuitry to execute floating point data processing

operations.

4. A data processing apparatus according to claim 2 or claim 3, wherein



10

15

20

25

30

WO 2010/146328 PCT/GB2010/000879

51

said processing circuitry is responsive to said interrupt request to perform said
integer state preservation function if said first state information indicates that the
current data processing context is an integer data processing context, and to perform
said floating point state preservation function if said first state information indicates

“that the current data processing context is a floating point data processing context.

5. A data processing apparatus according to claim 4, wherein, when said integer
state preservation function is perfonned,' said processing circuitry sets second state
information to indicate that the floating point registers. have not been copied into the
stack memory, and when said floating point state preservation function is performed,
said processing circuitry sets said second state information to indicate that the floating

point registers have been copied to the stack memory.

6. A data processing apparatus according to claim 5, wherein said processing
circuitry is responsive to the termination of a target data processing context executed
by said processing circuitry as a result of said interrupt request to perform one of an
integer state recovery function in which only data preserved from said integer registers
onto said stack are obtained from the stack and copied into the corresponding registers,
and a floating point state recovery function in which data preserved from said integer
and floating point registers onto said stack are obtained from the stack and copied into
the corresponding registers, wherein
said integer state recovery function is selected by said processing circuitry if
the second state information indicates that the floating point registers have not been
stored into the stack memory, and
- said floating point state recovery function is selected by said processing
circuitry if the second state information indicates that the floating point registers have

been stored into the stack memory.

7. A data processing apparatus according to claim 3, wherein
said processing circuitry is responsive to said interrupt request to perform said
integer state preservation function if said first state information indicates that the

current data processing context is an integer data processing context, and to perform, if
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said first state information indicates that the current data processing context is a
floating point data processing context, a first part of said floating point state
preservation function in which only the subset of integer registers are copied to the

stack memory and a second part of said floating point state preservation function in

8. A data processing apparatus accordihg to claim 7, wherein, when said integer
state preservation function is performed, said processing circuitry sets second state
information to indicate that space for the ﬂoating point registers has not been allocated
to the stack memory, and when said second part of the floating point state preservation
function is performed, said processing circuitry sets said second state information to
indicate that space for the floating point registers has been allocated in the stack

memory.

9. A data processing apparatus according to claim 7 or claim 8, wherein

said processing circuitry is responsive to a data processing instruction
following the allocation of space on the stack memory which causes the processing
circuitry to execute floating point data processing operations to perform a third part of
said floating point state preservation function in which the subset of floating point

registers are copied to the allocated portion of the stack memory.

10. A data processing apparatus according to any one of claims 7, 8 or 9,
comprising a stack allocation address register for storing the memory address of the
portion of the stack memory allocated in-said second part of said floating point state
preservation function, wherein said processing circuitry copies the floating point
registers to an address within the stack memory indicated by said stack allocation
address register in said third part of the floating point state preservation function.

11. A data processing apparatus according to claim 9, wherein third state
information is set in said second part of the floating point state preservation function to
indicate that space has been allocated in the stack memory but that the copying of the

floating point registers has not yet occurred, and wherein said third state information is
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reset as part of said third part of the floating point state preservation function to
indicate that the floating point registers have been copied into the allocated space in

the stack memory.

12. A data processing apparatus according to claim 11, wherein said processing
circuitry is responsive to the termination of a target data processing context executed
by said processing circuitry as a result of said interrupt request to perform one of an
integer state recovery function in which only data preserved from said integer registers
onto said stack are obtained from the stack and copied into the corresponding registers,
and a floating point state recovery function in which data preserved from said integer
and floating point registers onto said stack are obtained from the stack and copied into
the corresponding registers, wherein

said integer state recovery function is selected by said processing circuitry if
the second state information indicates that the floating point registers have not been
stored into the stack memory or if the second state information indicates that space has
been allocated in the stack memory for the floating point registers and the third state
information indicates that the copying of the subset of floating point registers to the
allocated portion of the stack memory has not yet occurred, and

said floating point state recovery function is selected by said processing
circuitry if the second state information indicates that space has been allocated in the
stack mémory for the floating point registers and the third state information indicates
that the subset of ﬂoating> point registers have been copied to the allocated portion of

the stack memory.

13. A data processing apparatus according to claim 12, wherein, when said integer
state recovery function is performed, said first state information is set to indicate that
the current data processing context is an integer data processing context, and when
said floating point state recover function is performed, said first state information is set
to indicate that the current data processing context is a floating point data processing

context.

14. A data processing apparatus according to any preceding claim, wherein
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said processing circuitry is responsive to fourth state information to select
between a floating point state preservation function in which the floating point
registers are copied to the stack memory in response to the interrupt request, and a
floating point state preservation function in which space in the stack memory is
allocated for the floating point registers in response to the interrupt request and in
which the floating point registers are copied into the allocated space in response to a
data processing instruction following the allocation of space on the stack memory
which causes the processing circuitry to execute floating point data processing

operations.

15. A data processing apparatus according to claim 1 or claim 2, wherein

said state information comprises second state information which is indicative
of whether a target data processing context to be executed by said processing circuitry
as a result of said interrupt request is a floating point data processing context which
includes one or more floating point data processing operations or an integer data
processing context which does not include any floating point data processing

operations.

16. A data processing apparatus according to claims 1, 2 or 15, wherein

said state information comprises third state information which is indicative of
whether a current data processing context is a thread data processing context which has
not been triggered by an interrupt request, or a handler data processing context which

has been triggered by an interrupt request.

17. A data processing apparatus according to claims 2, 15 and 16, wherein

said processing circuitry is responsive to state information indicating that said
target data processing context is a floating point data processing context, and that said
current data processing context is either a floating point data processing context, or an
integer data processing context triggered by an interrupt request, to select said floating

point state preservation function.

18. A data processing apparatus according to claims 2, 15 and 16, wherein
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said processing circuitry is responsive to state information indicating that said
current data processing context is an integer data processing context and that said
target data processing context is an integer data processing context to select said

integer state preservation function.

19. A data processing apparatus according to claims 2, 15 and 16, wherein

said processing circuitry is responsive to state information indicating that said
current data processing context is a floating point data processing context and that said
target data processing context is a floating point data processing context to select said

floating point state preservation function.

20. A data processing apparatus according to claims 2, 15 and 16, wherein

said processing circuitry is responsive to state information indicating that said
current data processing context is an integer thread context not triggered by an
interrupt request, and that said target data processing context is a floating point data

processing context, to select said integer state preservation function.

21. A data processing apparatus according to claims 2, 15 and 16, wherein

said processing circuitry is responsive to state information indicating that said
current data processing context is an integer handler context triggered by an interrupt
request, and that said target data processing context is a floating point data processing

context, to select said floating point state preservation function.

22. A data processing apparatus according to claims 2, 15 and 16, wherein said
first set of integer registers comprises a register for storing a stack pointer, said stack
pointer pointing to the top of a process stack when the current data processing context
is a thread, and pointing to the top of a main stack when the current data processing
context is a handler, and wherein-

said third state information is provided by said stack pointer.

23. A data processing apparatus according to claim 22, wherein said first set of

integer registers comprises a link register for storing a return address to a previous data
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processing context, and an indication of whether the previous data processing context
is an integer data processing context or a floating point data processing context, and
wherein

said processing circuitry is responsive to said interrupt request to set the link
register to include a stack pointer of the current data processing context, and an
indication of whether the current data processing context is an integer data processing

context or a floating point data processing context.

24. A data processing apparatus according to claim 23, wherein said processing
circuitry is responsive to the termination of said target data processing context to
perform one of an integer state recovery function in which only data preserved from
said integer registers onto said stack are obtained from the stack and copied into the
corresponding registers, and a floating point state recovery function in which data
preserved from said integer and floating point registers onto said stack are obtained
from the stack and copied into the corresponding registers, wherein

said one of said integer state recovery function and said floating point state
recovery function is selected by said processing circuitry in dependence on whether
the stack pointer within the link register points to the main stack or the process stack,
and on whether the link register indicates that the previous data processing context was

an integer data processing context or a floating point data processing context.

25. A data processing apparatus according to any preceding claim, wherein said

state information is configurable by said processing circuitry.

26. A data processing apparatus according to any one of claims 15 to 25, further
comprising an interrupt controller for generating said interrupt request; wherein:

said interrupt controller stores said second state information in association with
one or more possible interrupt requests, and communicates second state information
associated with a selected one of said possible interrupt requests to said processing

circuitry along with the selected interrupt request.
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27. A data processing apparatus according to any one of claims 15 to 25,
comprising:

a state information store for storing said second state information in association
with one or more possible interrupt requests, said processing circuitry being
configured to read said second state information from said state information store in

response to a received interrupt request.

28. A data processing apparatus according to claim 15, wherein if said target data
processing operation triggered by said interrupt request attempts to use said floating
point registers when said second state information indicates that the target data
processing context is an integer data processing context, said processing circuitry

generates an exception.

29. A data processing apparatus according to any preceding claim, wherein said
floating point state preservation function is conducted by first copying said first set of
integer registers to said stack, and then copying said second set of floating point

registers to the top of said stack.

30. A data processing apparatus according to claim 29, wherein said processing
circuitry is responsive to a higher priority interrupt requiring an integer state
preservation function received while said floating point state preservation function is
being conducted to inhibit the copying of said second set of floating point registers to
said stack, and to set a stack pointer to indicate the first set of integer registers to be at

the top of said stack.

31. A data processing apparatus according to claim 29, wherein said floating point
state preservation function is conducted by first copying said second set of floating
point registers to said-stack, and then copying said first set of integer registers to said

stack.

32. A data processing apparatus according to any preceding claim, wherein said

processing circuitry is responsive to fourth state information to perform said integer
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state preservation function in response to an interrupt request irrespective of the state

information.

33. A data processing method of executing integer data processing operations and
floating point data processing operations in response to data processing instructions,
said integer data processing operations using a first set of integer registers, and said
floating point data processing operations using a second set of floating point registers,
the method comprising the steps of:

performing, in response to an interrupt request, one of an integer state
preservation function in which at least a subset of only said integer registers are copied
to a stack memory, and a floating point state preservation function in which at least a
subset of both said integer registers and said floating point registers are copied to said
stack memory, said one of said integer state preservation function and said floating

point state preservation function being selected in dependence on state information.

34, A computer program product comprising a computer program operable to

cause a computer to execute a method according to claim 33.

35. A data processing apparatus substantially as hereinbefore described with

reference to the accompanying drawings.

36. A data processing method substantially as hereinbefore described with

reference to the accompanying drawings.

37. A computer program product substantially as hereinbefore described with

reference to the accompanying drawings.
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