Title: FORWARDING ONE OR MORE PREFERENCES DURING CALL FORWARDING

Abstract: In one embodiment, a telephony system includes a memory that stores one or more call preferences of a user, and a central call routing entity that enables a user to set a call forwarding rule. In accordance with the call forwarding rule and in response to an incoming call to a first telephone device of the user, the call routing entity routing the incoming call to a second telephone device along with a message indicating that the one or more call preferences of the user are stored in the memory. The one or more call preferences are then fetched and applied at the second telephone device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
FORWARDING ONE OR MORE PREFERENCES
DURING CALL FORWARDING

FIELD OF THE INVENTION

[0001] The present invention relates generally to the fields of telecommunications and telephony systems; more specifically, to telephony networks that include call management systems or advanced call processing features.

BACKGROUND OF THE INVENTION

[0002] Many telephony systems include advanced features that enhance user capabilities. For instance, "call waiting" is a well-known feature of telephony systems that notifies a caller when another call is coming in during an active call. "Caller ID" is another well-known feature that displays the originating telephone number and the subscriber's name associated with that number to the called party before the called party answers a telephone call. Still another configurable feature is "call forwarding", wherein incoming calls to a particular directory number are automatically routed to another number. A number of variations to the basic call forwarding feature also exist. By way of example, "call forward busy" is a feature that re-routes incoming calls to an alternate line only when the first line is in use. Similarly, "call forward no answer" is a configurable feature that re-routes incoming calls from one phone to another phone when the first phone is not answered after a certain number of rings.

[0003] A number of commercial communication system products are available that combine call processing and Internet Protocol (IP) telephony with many of the functions of a conventional IP-private branch exchange
(PBX) system for business enterprises. For instance, Cisco’s CallManager™ is a software-based call processing component that extends enterprise telephony features and functions to packet telephony network devices such as IP phones, media processing devices, voice-over-IP (VoIP) gateways, and multimedia applications. Additional data, voice, and video services such as unified messaging, multimedia conferencing, collaborative contact centers, and interactive multimedia response systems may interact with the IP telephony solution through the CallManager™ open telephony application programming interface (API). In a version of the CallManager™ call processing software, users may set various preferences on their telephone device, such as incoming call ring tones for different caller IDs and/or call priority (e.g., siren for important calls, chirp for medium priority calls, etc.), call display settings for displaying pictures or photos of a caller, etc. However, when a user forwards their calls to another telephone device these preference settings are not applied at the forwarded destination telephone device.
BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present invention will be understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the invention to the specific embodiments shown, but are for explanation and understanding only.

[0005] Figure 1 is a network diagram including different IP-PBX systems in accordance with one embodiment of the present invention.

[0006] Figure 2 is a conceptual network diagram of an IP-PBX system and wireless network in accordance with another embodiment of the present invention.

[0007] Figure 3 is a flowchart diagram that illustrates a method of operation according to one embodiment of the present invention.

[0008] Figure 4 is a flowchart diagram that illustrates a method of operation according to another embodiment of the present invention.
DESCRIPTION OF EXAMPLE EMBODIMENTS

[0009] A system and method that enables users to forward their call preferences, such as alerting ring tones, alerting caller ID preferences (such as display of numbers, photos etc.), and the like, to a target phone connected via the same PBX, or a different PBX, is described. In the following description specific details are set forth, such as device types, system configurations, methods, etc., in order to provide a thorough understanding of the present invention. However, persons having ordinary skill in the relevant arts will appreciate that these specific details may not be needed to practice the present invention.

[0010] Figure 1 is a conceptual-level diagram of a network architecture 10 that includes separate IP-PBX systems 15 & 17 connected via an IP network 11 according to one embodiment of the present invention. Each of the IP-PBX systems 15 & 17 may run call management software (CMS) or firmware program for implementing call routing, processing and other IP telephony functions described herein. A call forwarding preference repository (CFPR) 14, i.e., a memory or database that stores preferences of users, such as alerting ring tone, etc. whenever the user sets up call forwarding rule for his phone. The example of Figure 1 shows a first user (e.g., Sheila) of telephone device 18 associated with IP-PBX 17 and a second user (e.g., Joe) of telephone device 16 associated with IP-PBX 15. CFPR 14 is shown connected to IP network 11 via a server 13.

[0011] In other embodiments, CFPR 14 may be resident on each user's PBX, e.g., IP-PBX system 15 & 17, or on a single IP-PBX system that handles call management functions for an organization or enterprise. By way
of example, Figure 2 shows an IP-PBX system 26 with a CMS program 27 that handles call routing, processing and other IP telephony functions for users of telephone devices 21 & 22, a PC 20 with built-in softphone capabilities, and a cellular telephone device 23 connected with IP-PBX 26 via a wireless network 24. IP-PBX 26 is connected with a database or CFPR 28 that stores preferences of users of telephone devices 20-13; those preference including things such as alerting ring tone, display preference, priority call ring tones, etc. In the architecture of Figure 2, an incoming call intended for any of devices 20-23 may be forwarded to another telephone device connected to IP-PBX 26 along with one or more user preferences (e.g., alerting ring tone) fetched from CFPR 28. These preferences are then immediately applied at the target telephone device.

[0012] Continuing with the example of Figure 1, practitioners in the art will appreciate that in still another embodiment, user preferences may be stored in a variety of other hardware (e.g., RAM) or firmware components connected with IP network 11. In certain embodiments, user preferences may be incorporated into memory or storage components of IP-PBX 26 (or IP-PBX system 15 and/or 17 in Figure 1), or be integrated into the user preferences or profile settings typically provided for in CMS 27.

[0013] According to one embodiment of the present invention, when Joe sets up a call forwarding rule on telephone device 16 such that his calls are forwarded to Sheila's telephone device 18, all (or a selected subset) of Joe's call preferences are uploaded from CFPR 14 onto IP-PBX 15. At a later time, when IP-PBX 15 receives an incoming call to Joe's telephone device 16.
information in the call control message indicating that user preferences for that call are stored on the forwarding PBX, i.e., IP-PBX 15.

[0014] Note that in an alternative embodiment, Joe’s call preferences may be stored on his telephone device 16 – rather than on CFPR 14 – and uploaded to IP-PBX 15 when Joe configures his telephone device 16 with a call forwarding rule. In still another implementation, Joe’s call preferences are not uploaded from CFPR 14 to IP-PBX 15 at the time that Joe configures telephone device 16 to forward calls to Shelia’s telephone number. Instead, when IP-PBX 15 receives an incoming call to Joe’s telephone device 16, IP-PBX 15 forwards that call to Sheila’s telephone device 18 and includes information in the call control message indicating that user preferences for that call are stored on CFPR 14, which may be accessed via server 13 on IP network 11.

[0015] Regardless of where user preferences are stored, or how user preferences are uploaded and accessed, information in the call control message sent to the target (i.e., forwarded) telephone device may include instructions on how to download the user’s preferences – e.g., either from the forwarding IP-PBX, CFPR 14, or elsewhere. In an alternative embodiment, the user’s call preferences may be included in the call control message header with instructions regarding how to download media files such as ring tones specified in the user’s preferences, pictures, photos, etc. For example, the call control message may comprise a Session Initiation Protocol (SIP) message with a SIP header field that includes a Uniform Resource Locator (URL) with authentication information for downloading media files. This latter embodiment is described in more detail later below.
[0016] When Sheila's telephone device 18 receives the forwarded call intended for Joe, it fetches Joe's call preferences along with any media files for ring tones according to instructions/information received and then applies those preferences to the current call. For example, Joe's user preferences may specify that a traditional Italian song or melody is played as a ring tone for his calls, whereas Sheila's usual ring tone may consist of the start of Beethoven's Fifth symphony. As a result, when a call forwarded from Joe's telephone device 16 rings on Sheila's telephone device 18, it does so with an alerting ring tone specified by Joe's user preferences (e.g., the traditional Italian song). Thus, the specific alerting ring tone that Sheila and Joe both hear allows each of them to immediately identify the intended recipient of the current call.

[0017] As discussed above, a variety of different network architecture configurations and specific implementations may be utilized to achieve forwarding of user preferences in conjunction with forwarding of that user's calls. For instance, in another embodiment, when Joe sets up his call forwarding rule to forward his calls to Sheila's telephone device 18, his call preferences are immediately sent directly to Sheila's telephone device 18 along with instructions on downloading any media files for ring tones. In response to the instructions Sheila's telephone device 18 may fetch Joe's call preferences and save them locally along with any media files downloaded either from Joe's telephone device 16, CFPR 14, or elsewhere. Thereafter, any time when IP-PBX 15 forwards an incoming call intended for Joe to Sheila's telephone device 18, IP-PBX 15 may include information (e.g., contained in a call control message header) identifying the call as such. In
response, Sheila's telephone device 18 retrieves Joe's user preferences stored locally and applies those preferences (e.g., a traditional Italian song for the alerting ring tone) for handling the forwarded call intended for Joe.

[0018] In a more specific embodiment, Sheila's telephone device 18 may ask her permission before saving Joe's user preferences and media files locally. In still another embodiment, Sheila's telephone device 18 includes software or firmware that permits her to set up rules specific to the handling of forwarded calls. For instance, she may configure telephone device 18 such that telephone device 18 only saves user preferences for forwarded calls locally, but does not immediately fetch and download media files (e.g., ring tone) specified by the user preferences. Instead, telephone device 18 fetches and downloads media files (e.g., from a repository server) for the user preferences at the time it receives a forwarded call.

[0019] In instances where Sheila's phone already has the ring tone specified in Joe's forwarded preferences stored locally, it simply plays that ring tone when a forwarded call intended for Joe arrives. In a case where Sheila's telephone device 18 attempts to download a ring tone or media file from a server and is unsuccessful, telephone device 18 may utilize a default ring tone when a forwarded call for Joe arrives.

[0020] In yet another embodiment, the forwarding of preferences is transitive. In other words, preferences are carried forward along with the call regardless of how many times the call gets forwarded. By way of example, if Joe forwards his incoming calls to Sheila's telephone, and then from Sheila's device Joe later forwards his calls to Bob's telephone, then Bob's telephone
device would receive (or fetch) Joe’s user preferences and apply them to the forwarded call.

[0021] It should be understood that the various embodiments of the present invention described herein are not limited to the user of VoIP telephone devices or networks. Any telephone device or network capable of packet-based message transmission may be utilized in conjunction with the present invention. For instance, telephone devices and networks compatible with the Integrated Services Digital Network (ISDN) standard may be utilized in certain embodiments. Similarly, the network configurations, systems, and methods described herein in accordance with different embodiments are not limited to the use of IP-PBX systems. Any central call routing entity, such as a PBX, cellular network, service provider network, etc., may be adapted or modified to implement the functions and capabilities described herein.

[0022] Figure 3 is a flowchart diagram that illustrates a basic method of operation according to one embodiment of the present invention. The process begins with user “A” setting up call forwarding on his telephone device so that his incoming calls are forwarded to user “B” (block 31). Thereafter, when an incoming call arrives at the PBX system to user “A’s” telephone (block 32), the PBX system sends an alerting message to user “B’s” telephone device that this is a forwarded call (block 33). In response to the alerting message user “B’s” telephone device fetches user “A’s” preferences from a central repository (block 34). As explained earlier, the central repository may comprise any storage location, memory, or database located anywhere that is accessible to the forwarded telephone device. In certain implementations, user preferences may be fetched and cached locally in a storage location on
the user's telephone device. In such as case, user "B's" telephone device would first check its cache to determine whether a copy of user "A's" preferences are stored locally before proceeding to fetch those preferences from an external location / entity.

[0023] Once user "B's" telephone device obtains (e.g., downloads) user "A's" preferences, those preferences are utilized or applied to the forwarded call on user "B's" telephone device (block 35). In other words, according to the embodiment of Figure 3 the preferences or properties are fetched dynamically – e.g., when call alerting occurs – and then utilized or applied to the forwarded call. For example, if user "A's" preferences include a certain song as an alerting ring tone, that song will be played on user "B's" telephone device rather than user "B's" normal or preset alerting ring tone. Other common user preferences include specific sounds or tones (e.g., siren, chirp, etc.) for indicating call priority levels, photos or video clips displayed on the telephone device (e.g., a photograph or captured image of the incoming caller), etc.

[0024] Figure 4 is a flowchart diagram that illustrates a method of operation according to another embodiment of the present invention in which both user's telephone devices are SIP endpoint devices. The example of Figure 4 begins at block 41 with an incoming call to user "A's" telephone device (received by the local PBX system). After the call arrives and before any telephone device is alerted, the PBX system embeds user "A's" preferences (e.g., call alerting properties, etc.) in a SIP message header that is sent to user "B's" telephone device along with the forwarded call (block 42). In other words, as calls to user "A's" endpoint device are forwarded to user
"A's" endpoint device, user "A's" preferences pertaining to common capabilities on both devices are transferred as well. By way of example, the SIP message header may comprise a SIP INVITE message, a SIP Call- History message, or a SIP Diversion header field that is commonly used to enable call control redirection. Additional tags in the message or header may contain a URL link to the relevant media files.

[0025] In certain implementations, the SIP message header may also include the specific ring tone or media files to be applied / played on user "B's" telephone. In instances where the SIP header does not contain the ring tone or other media files specified in user "A's" preferences, and user "B's" telephone device similarly does not have the specified ring tone or media files stored locally, user "B's" telephone device may download the needed ring tone / media files from another entity, e.g., the PBX system, central repository, etc. (block 43). In still another embodiment, where user "B's" telephone device is missing some capabilities as compared to user "A's" telephone device, then user "A" is informed of the missing capabilities that could not be transferred. Conversely, in cases where user "B's" telephone device has additional capabilities over user "A's" telephone device, then user "A" may be informed of those additional capabilities and be allowed to set up his preferences to take advantage of those capabilities at the time that he sets up his call forwarding.

[0026] Once the preferences / properties have been received or obtained, they are utilized or applied to the forwarded call on user "B's" telephone device (block 44).
It should be understood that elements of the present invention may also be provided as a computer program product which may include a machine-readable medium having stored thereon instructions which may be used to program a computer (e.g., a processor or other electronic device) to perform a sequence of operations. Alternatively, the operations may be performed by a combination of hardware and software. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, propagation media or other type of media/machine-readable medium suitable for storing electronic instructions. For example, elements of the present invention may be downloaded as a computer program product, wherein the program may be transferred from a remote computer or telephonic device to a requesting process by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

Additionally, although the present invention has been described in conjunction with specific embodiments, numerous modifications and alterations are well within the scope of the present invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
CLAIMS

We claim:

1. A system comprising:
 a memory that stores one or more call preferences of a user;
 a call routing entity operable to receive a request from the user to
 forward calls for a first endpoint device associated with the user to a second
 endpoint device, to access one or more call preferences of the user, and
 communicate the one or more call preferences to the second endpoint device
 to effect the one or more call preferences at the second endpoint device on
 calls intended for the first endpoint device and forwarded to the second
 endpoint device.

2. The system of claim 1 wherein the second endpoint device fetches
 the one or more call preferences from the memory and applies the one or
 more call preferences to the forwarded calls responsive to the request.

3. The system of claim 1 wherein the call routing entity comprises an
 Internet Protocol private branch exchange (IP-PBX).

4. The system of claim 3 wherein the memory comprises a repository
 that stores call preferences of a plurality of users.

5. The system of claim 1 wherein the one or more call preferences
6. The system of claim 1 wherein the request comprises a call control message sent to the second endpoint device, the call control message including instructions on how to download the one or more call preferences.

7. Logic encoded in one or more tangible media for execution and when executed is operable to:
 receive an incoming call at a routing entity, the incoming call being directed to a first telephone device associated with a user; and
 route the incoming call to a second telephone device along with a call control message which includes information that enables the second telephone device to apply one or more call alerting preferences of the user to the routed incoming call.

8. The logic of claim 7 wherein the routing entity is private branch exchange (PBX).

9. The logic of claim 7 wherein execution of the one or more media is further operable to:
 fetch the one or more call alerting preferences from a central repository.

10. The logic of claim 7 wherein the one or more call alerting preferences specify one or more media files, the information including instructions
11. The logic of claim 7 wherein the call control message comprises a Session Initiation Protocol (SIP) message.

12. A method comprising:
 receiving a request from a user to forward calls intended for a first endpoint associated with the user to a second endpoint;
 accessing one or more call preferences of the user; and
 communicating the one or more of the call preferences to the second endpoint to effect the one or more call preferences at the second endpoint on calls intended for the first endpoint and forwarded to the second endpoint according to the request.

13. The method of claim 12 wherein the communicating step comprises automatically routing the calls to the second endpoint by a private branch exchange (PBX).

14. The method of claim 12 wherein the communicating step comprises embedding the one or more call preferences in a message header.

15. The method of claim 12 wherein the accessing step comprises fetching the one or more call preferences from a central repository.
16. The method of claim 12 wherein the one or more call alerting preferences specify one or more media files, the information including instructions regarding how to access media files.

17. The method of claim 14 wherein the message header comprises a Session Initiation Protocol (SIP) message header.

18. The method of claim 12 wherein the one or more call preferences comprise call alerting preferences.

19. The method of claim 17 wherein the SIP message header includes a Uniform Resource Locator (URL) with authentication information for downloading media files.

20. A system comprising:
 a memory that stores one or more call preferences of a user;
 means for receiving a request from the user to forward calls for a first endpoint device associated with the user to a second endpoint device, for accessing one or more call preferences of the user, and for communicating the one or more call preferences to the second endpoint device to effect the one or more call preferences at the second endpoint device on calls intended for the first endpoint device and forwarded to the second endpoint device.
User "A" Sets Call Forwarding From His Phone To User "B"'s Phone

Incoming Call To User "A"'s Phone

PBX Sends Alerting Message To User "B"'s Phone — "Forwarded Call"

Call Forwarding Preferences And/Or Alerting Properties Of User "A" Fetched From Repository

Preferences And/Or Alerting Properties Utilized On User "B"'s Phone

FIG. 3
Incoming Call To User “A”'s Phone

Call Forwarding Preferences And Alerting Properties Included In SIP Header Of Forwarded Call

User “B”'s Phone Receives Forwarded Call And Retrieves Any Needed Preferences/Properties

Preferences/Properties Utilized On User “B”'s Phone For Forwarded Call

FIG. 4