

United States Patent

Shartle

[15] 3,648,477
[45] Mar. 14, 1972

[54] **TANK DEFROSTER FOR BEVERAGE DISPENSING MACHINE**

[72] Inventor: **Edward W. Shartle, Irondequoit, N.Y.**

[73] Assignee: **Fasco Industries, Inc., Rochester, N.Y.**

[22] Filed: **June 26, 1970**

[21] Appl. No.: **50,030**

[52] U.S. Cl. **62/155, 62/156, 62/351,
62/394, 165/61**

[51] Int. Cl. **F25d 21/06**

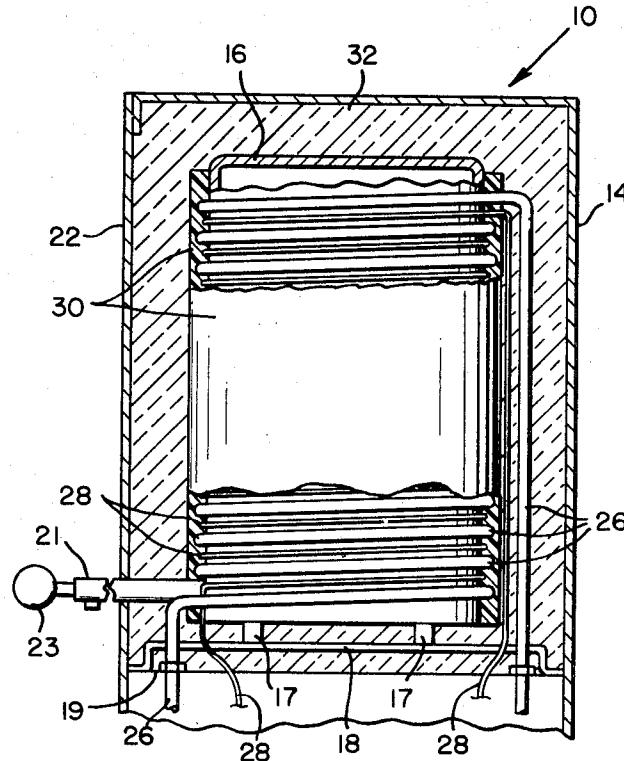
[58] Field of Search. **62/156, 276, 351, 155, 234,
62/80, 394, 395; 165/17, 61**

[56] **References Cited**

UNITED STATES PATENTS

2,744,391 5/1956 Deane 165/61
3,469,415 9/1969 Cornelius 62/394

2,601,466 6/1952 Thomas 62/155


Primary Examiner—Meyer Perlin
Attorney—Shlesinger, Fitzsimmons & Shlesinger

[57]

ABSTRACT

A slush-type soft drink dispenser contains one or more cylindrical tanks for holding the drinks that are to be dispensed. Each tank has the usual tap or spigot, and is surrounded by a helically-wound tubular evaporator or cooling coil which is connected in the usual manner to a refrigerator unit in the dispenser, and by a helically-wound electrical heater coil, the convolutions of which alternate with those of the cooling coil. The coils are secured by a flexible layer of mastic to the outside of each tank, and this assembly is enclosed in a layer of heat insulation in the dispenser. A switch is provided for selectively actuating the refrigeration unit and the heater coil, respectively.

2 Claims, 3 Drawing Figures

Patented March 14, 1972

3,648,477

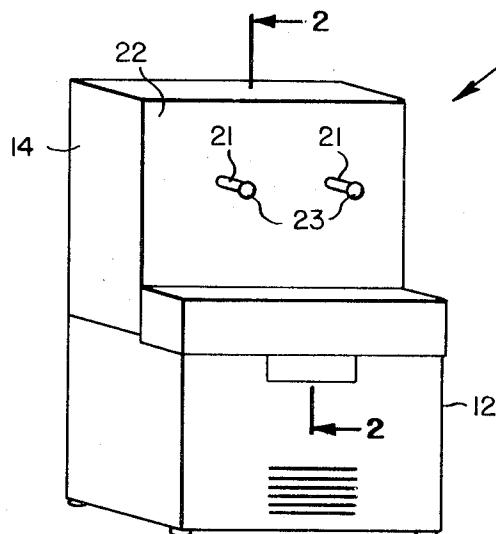


FIG. 1

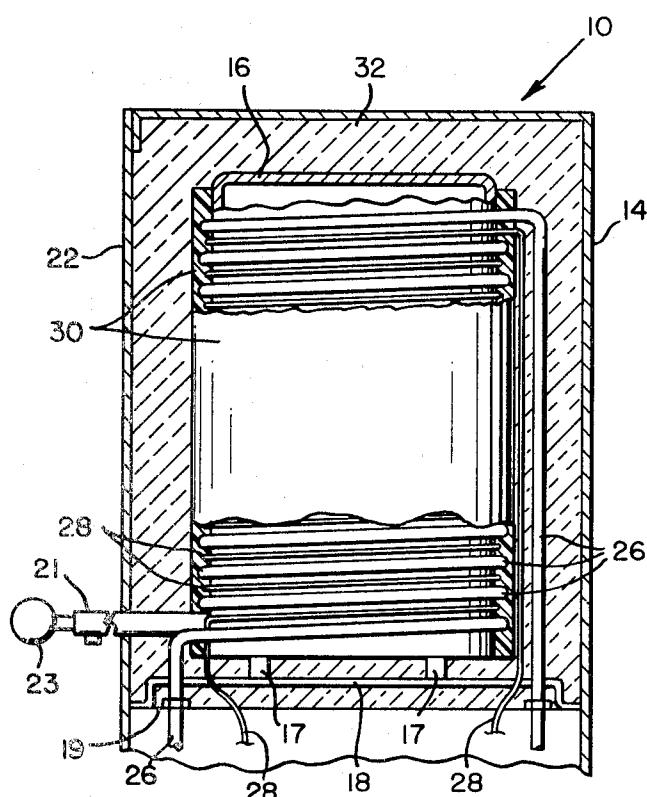


FIG. 2

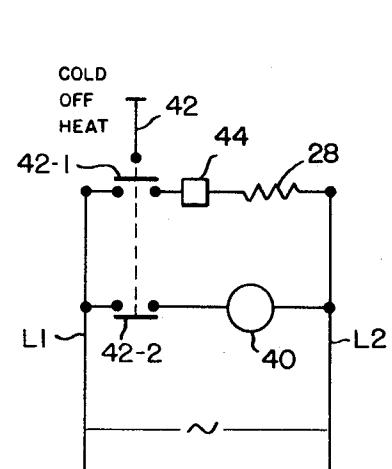


FIG. 3

INVENTOR
EDWARD W. SHARTLE
BY

Sklaringer, Fitzsimons & Sklaringer
ATTORNEYS

TANK DEFROSTER FOR BEVERAGE DISPENSING MACHINE

This invention relates to a beverage dispenser, and more particularly to a defrosting device for a slush-type beverage dispenser.

Soft drinks of the type that are dispensed in slush form have become quite popular in recent years. By using a refrigerated dispenser, which causes small crystals of ice to form in the soft drink while still in the dispenser, the need for subsequently adding ice to the drink after it is dispensed is eliminated. Moreover, as compared to drinks that are merely chilled before serving, the slush-type soft drink remains cold for a substantially longer period of time.

It is essential, of course, when using such a dispenser, to prevent the crystals of slush from becoming too large, because lumpy or oversize crystals are undesirable for consumption, and also tend to impair the proper operation of the dispenser. The present models of these dispensers are so well insulated that the frequent occurrence of lumpy or oversize ice crystals in the machines has become quite a problem. Usually by the close of a day the slush crystals have become too large for desirable consumption; and the dispensing units are so well insulated that without the use of induced heat the unit will not thaw out enough to be ready for operation the following day.

The primary object of this invention is to provide an improved soft drink dispenser which can rapidly and readily be defrosted, when desired.

A further object of this invention is to provide an improved dispenser of the type described, which has improved means for regulating the size of ice crystals formed in the drinks dispensed therefrom.

Other objects of the invention will be apparent hereinafter from the specification and from the recital of the appended claims, particularly when read in conjunction with the accompanying drawing.

In the drawing:

FIG. 1 is a perspective view of a typical slush-type soft drink dispenser incorporating a defrosting device made in accordance with one embodiment of this invention;

FIG. 2 is an enlarged, fragmentary sectional view taken generally along the line 2-2 in FIG. 1 looking in the direction of the arrows; and

FIG. 3 is a wiring diagram illustrating one manner in which this defrosting device may be wired for operation.

Referring now to the drawing by numerals of reference, 10 denotes generally a soft drink dispenser having in its lower section 12 a conventional refrigeration unit (not illustrated), and in its upper section 14 a pair of cylindrical chilling tanks 16, only one of which is illustrated in FIG. 2. Each tank 16 is supported by a plurality of feet 17, or the equivalent, on a horizontal base plate 18, which is fastened on a shelf 19 above the dispenser's refrigeration unit. Each tank 16 has the usual fluid discharge pipe or spigot 21, which projects from the lower end of the tank through a registering opening in a front panel or cover 22 for the section 14. Each spigot contains the usual, normally closed flow valve (not illustrated), which is operable manually by a headed or knobbed lever 23, which projects from each spigot.

Wound around the outside of each tank 16 in a helical path axially of the tank, is an evaporator or cooling coil 26 opposite ends of which extend downwardly beneath shelf 19 for attachment in the usual manner to the refrigeration unit. Also wound in a helical path around the outside of each tank 16, with its convolutions alternating with those of the associated cooling coil 26, is an insulated electric heating element or wire 28, which may be of the type used for radiant cable heat. Both the cooling coil 26 and the heating cable 28 are cemented or secured to the outside surface of the tank by a layer or coating 30 of thermal conducting mastic, which remains flexible indefinitely. While in practice this layer 30 of mastic material is relatively thin, in FIG. 2 its thickness has been exaggerated for purposes of illustration.

The tanks 16 are contained within the upper section 14 of the dispenser 10, and the space between the tanks and the

housing 14 is filled with a conventional heat insulating material 32, so that the tanks are completely encapsulated in thermal insulation.

In FIG. 3, lines L1 and L2 represent a typical means for supplying power to the heating and cooling elements of one of the tanks 16 in the dispenser 10. These lines are adapted to be connected in any conventional manner to an AC power source. Connected in parallel between lines L1 and L2 are the heater coil or element 28 for a tank, and the motor 40 for the refrigeration unit, that provides the coolant for the evaporator or cooling coil 26 of that tank. The heater coil 28 and the motor 40 are controlled by a double-throw switch 42, which has a first contact 42-1 connected in series with the coil 28, and a second contact 42-2 connected in series with the motor 40. When the switch 42 is in the "OFF" position illustrated in FIG. 3, both the coil 28 and the motor 40 are deenergized. When switch 42 is moved to a first or "COLD" position, its contact 42-2 closes to energize the motor 40, but its contact 42-1 remains open to maintain the heater coil deenergized. On the other hand, when the switch 42 is moved to its "HEAT" position, contact 42-1 closes to energize the heater coil 28, while the contact 42-2 remains open to maintain the motor 40 deenergized.

15 In use, and assuming for purposes of illustration that the heating and cooling coils of each tank 16 are controlled by separate switches 42, so that the coils of one tank 16 are energizable independently of the coils of the other tank; and assuming also that the tanks 16 have been filled with the desired soft drinks, each switch 42 usually is disposed in its "COLD" position, so that the associated motor 40 is operating to maintain the contents of the associated tank 16 chilled to the point where the soft drink is in slush form upon being dispensed from one of the spigots 21. If the ice crystals in the slush 20 become too large, or too lumpy, the operator need only manipulate switch 42 to shutdown the refrigeration cycle, and turn on the electric heater coil 28 to accelerate defrosting of the tank.

25 If desired, a timer or thermostat may be provided to automatically restart refrigeration when the defrosting cycle is complete. 44 denotes a timer or thermostat. When the defrosting cycle is complete the unit 44 will release a spring or actuate a solenoid (not shown) to deenergize coil 28 and shift switch 42 automatically to again close the current to the motor 40 that supplies refrigerant to the cooling coil 26.

30 Heretofore, once the oversized crystals had formed in the soft drink, the dispenser tended to operate erratically if at all; and mere interruption of the refrigeration cycle was no solution, because of the inordinately long period of time necessarily involved in thawing the tank contents. Now if a dispenser of the type disclosed herein begins to freeze up at a time when customers are lined up for service, the operator need only to turn switch 42 to its "HEAT" position, and the coil 28 will 35 rapidly thaw and reduce the size of the ice crystals in the tank 16. Obviously this permits the operator readily to control the size of crystals formed in the soft drink, merely by manipulating switch 42.

40 Since the coils 26 and 28 are never operated simultaneously, any residual heat, or lack thereof, in the respective coils, will have little effect upon the subsequently energized or actuated coil. By employing a permanently flexible mastic material 30 for holding the coils around and against the associated tank 16, the rapid temperature changes, which occur 45 upon movement of a switch 42 between its two operative positions, create no undue stresses in the system; the flexible coating 30 will absorb any sudden expansion or contraction of the coils 26 and/or 28.

46 Although a separate switch 42 has been illustrated and 50 described for controlling each coil 28 and motor 40, it will be apparent to one skilled in the art, that any number of coils 28 could be connected in parallel with one another to be controlled by switch contact 42-1. Similarly a single motor 40 could be used for supplying a coolant to a plurality of the cooling coils 26. Also, if desired, a conventional timer could also

be employed for automatically effecting operation of either the coil 28 or motor 40, or both.

Having thus described my invention, what I claim is:

1. Apparatus for dispensing soft drinks in slush-ice form while maintaining the proper consistency of the slush-ice, 5 comprising

a tank for holding a soft drink,

a tubular cooling coil wound helically around the outside of said tank, and connected to a refrigeration unit,

an electric heater coil wound helically around the outside of 10 said tank with its convolutions alternating with those of said cooling coil,

a layer of mastic around the outside of said tank and in which said coils are embedded to secure said coils to said tank, and to maintain the convolutions of the two coils 15 spaced from one another,

a housing surrounding said tank in spaced relation to said tank and the layer of mastic,

a layer of thermal insulation disposed in the space between said tank and said housing and encapsulating said tank 20

and said layer of mastic,
a spigot connected at one end to the bottom of said tank, and projecting at its opposite end through said insulation and said housing to the exterior of the housing, and operable for controlling the flow of drink from the tank, and

means for actuating said refrigeration unit and said heater coil, and

movable control means for said actuating means operative when said refrigeration unit is actuated to render said heater coil inoperative, and vice versa, thereby to control the size of the ice crystals formed in said tank,
said layer of mastic being flexible, to permit expansion and contraction of said coils in response to temperature changes produced therein.

2. Apparatus as defined in claim 1, wherein said actuating means includes means for reactuating said refrigeration unit automatically upon deactivation of said heater coil.

* * * * *