发明名称
数据传输系统及方法

摘要
一种数据传输系统，包含发送装置及接收装置，发送装置包含用版本数来表示区块被接收到的先后的影像接收单元、存储区块的版本数的第一数据库、用用户数据协议将区块传送至接收装置的传送单元。判断区块是否需要传送的判断模块、可更新第一数据库中之版本数的更新单元，及利用传输控制协议告知接收装置每个位置的区块的最新版本数的通知单元。接收装置包含第二数据库、可用用户数据协议接收区块的数据接收单元，可判断区块的版本数并显示区块的显示单元及一可用传输控制协议发出要求发送装置重新传送区块的处理单元。
1. 一种发送装置，可将数据传送至接收端，该发送装置包括；
影像接收单元，用于将接收至的每张影像划分成多个区块，并可用不同的版本数来表示前后张影像的区块被该影像接收单元接收到的先后顺序；
第一数据库，用于存储该影像接收单元接收到的影像中的每一个位置的最新区块的影像数据及版本数；
传送单元，与该影像接收单元电连接，用于利用用户数据传输协议的方式将接收到的区块影像数据，该区块在该画面中对应的位置及该区块的版本数传送至该接收端；
判断模块，与该影像接收单元电连接，用于接收该影像接收单元传送来的区块，并在判断出该区块需要传送至该接收端时发出通知。
更新单元，与该第一数据库、该判断模块及该传送单元电连接，用于接收该判断模块传送来的通知，且根据该通知更新该第一数据库中的版本数，并将新的版本数、该区块的影像数据及位于画面中的位置送至该传送单元，和
通知单元，与该第一数据库电连接，且每隔一个检验周期，则会参考该第一数据库存储的最新版本数，并利用传输控制协议的方式对该接收端发出通知，以告知该接收端位于影像中每个位置的版本数，
其中，该影像接收单元可对每一个区块给定标志，且每一个标志可被设定在第一状态或第二状态，当该标志呈现该第一状态时，则表示与该标志相对应的区块需要被重新传送至该接收端，而当与该标志相对应的区块已被重新传送或与该标志相对应的区块不需要被重新传送至该接收端时，该标志将被设定在该第二状态，且影像中每个位置的最新区块的标志状态会存储在该第一数据库中。
还包含与该第一数据库电连接的指令接收单元，该指令接收单元可利用传输控制协议的方式接收由该接收端送出要求重新传送区块的指令，且依据该指令控制存储于该第一数据库中的标识的状态，即当该指令包含该接收端希望该发送端重新传送的区块时，则该指令接收单元将设定与该区块对应的标识呈该第一状态。
2. 根据权利要求1所述的发送装置，其中，该判断模块包括与该更新单元电连接的比较单元，该比较单元可比较位于前后张影像的同一位置区块的影像数据，且当该区块的影像数据有改变时，则送出包含该区块及该区块目前版本数的通知给该更新单元。
3. 根据权利要求1所述的发送装置，其中，该更新单元也可将该第一数据库中已传送至该接收端的区块的标志切换为该第二状态。
4. 根据权利要求1所述的发送装置，其中，该判断模块包括与该更新单元及该第一数据库电连接的检测单元，该检测单元可检测存储在该第一数据库中的标识状态，并在该标识是呈第一状态时，将该标识相对应的区块及该区块目前的版本数告知该更新单元。
5. 根据权利要求1所述的发送装置，其中，该影像接收单元可连续地接收来自摄影机的影像。
6. 根据权利要求1所述的发送装置，其中，该影像接收单元可连续获取屏幕上的画面。
7. 根据权利要求1所述的发送装置，其中，该影像接收单元每接收至K张影像时，则会告知该通知单元已达到该检验周期，且K为大于或等于1的正整数。
8. 一种接收装置，可接收由发送端送出的数据，该接收装置包含；
第二数据库，用于存储多个区块的版本数；
数据接收单元，利用用户数据报协议的方式接收由该发送端传来的区块的影像数据，版本数及位于画面中的位置；

显示单元，与该第二数据库及该数据接收单元电连接，用于接收该数据接收单元传来的区块，并可比较该区块的版本与该第二数据库中所存的版本数，且在该区块的版本数较新时，更新该第二数据库中所存的版本数，并将具有较新版本数的区块显示干画面上；

处理单元，与该第二数据库电连接，且用于比较该第二数据库内所存储的区块的最新版本数与该发送端所告知已送出区块的最新版本数，并当发现该第二数据库所纪录的版本数比该发送端告知的最新版本数旧时，利用传输控制协议的方式对该发送端发出要求重新传送区块的请求。

9. 一种数据传输系统，包含一种发送装置及一种接收装置，该发送装置可将数据传送至该接收装置，而该接收装置可接收由该发送装置送出的数据，

该发送装置包括：

影像接收单元，用于将接收到的每张影像划分成多个区块，并可用不同的版本数来表示前后张影像的区块被该影像接收单元接收到的先后顺序；

第一数据库，用于存储该影像接收单元接收到的影像中每一个位置的最新区块的影像数据及版本数；

传送单元，与该影像接收单元电连接，并利用用户数据报协议的方式将接收到区块的影像数据、该区块在该画面上对应的位置及该区块的版本数传送至该接收装置；

判断模块，与该影像接收单元电连接，用于接收该影像接收单元传送的区块，并在判断出该区块需要传送至该接收装置时发出通知；

更新单元，与该第一数据库、该判断模块及该传送单元电连接，并可接收该判断模块传送来的通知，且根据该通知更新该第一数据库中的版本数，并将新的版本数、该区块的影像数据及位于画面中的位置传送至该发送单元；及

通知单元，与该第一数据库电连接，且每隔一个检验周期，参考该第一数据库储存的最新版本数，并利用传输控制协议的方式对该接收装置发出通知，以告知该接收装置位于影像中每一个位置的区块的最新版本数；

该接收装置包括：

第二数据库，用于存储复数区块的版本数；

数据接收单元，利用用户数据报协议的方式接收由该发送装置传送的区块的影像数据，版本数及位于画面中的位置；

显示单元，与该第二数据库及该数据接收单元电连接，可接收该数据接收单元传来的区块，并比较该区块的版本数与该第二数据库中所存的版本数，且在该区块的版本数较新时，更新该第二数据库中所存的版本数，并将具有较新版本数的区块显示于画面上；及

处理单元，与该第二数据库电连接，用于比较该第二数据库内所存区块的最新版本数与该发送装置所告知已送出区块的最新版本数，并当发现该第二数据库所纪录的版本数比该发送装置告知的最新版本数旧时，利用传输控制协议的方式对该发送装置发出要求重新传送区块的请求；
其中，该影像接收单元可对每一个区块设置标志，且每一个标志可被设定在第一状态或第二状态，当该标志呈现该第一状态时，则表示与该标志相对应的区块需要被重新传送至该接收装置，而当与该标志相对应的区块已被重新传送或是与该标志相对应的区块不需要被重新传送至该接收装置时，该标志将被设定在该第二状态，且影像中每一个位置的最新区块的标志状态存储在该第一数据库中。

该发送装置还包括与该第一数据库电连接的指令接收单元，该指令接收单元利用传输控制协议的方式接收由该接收装置的处理单元发出的指令，该指令控制存储于该第一数据库中的标志的状态，即当该指令包含该接收装置希望该发送装置重新传送的区块时，则该指令接收单元将设定与该区块对应的标志呈该第一状态。

10. 根据权利要求9所述的数据传输系统，其中，该判断模块包括与该更新单元电连接的比较单元，该比较单元比较位于前后张影像的同一位置区块的影像数据，且当该区块的影像数据有改变时，送入包括该区块及该区块前版本数的通知给该更新单元。

11. 根据权利要求9所述的数据传输系统，其中，该更新单元可将该第一数据库中已传送至该接收装置的区块的标志切换为该第二状态。

12. 根据权利要求9所述的数据传输系统，其中，该判断模块包括与该更新单元及该第一数据库电连接的检测单元，该检测单元可检测存储在该第一数据库中的标志状态，并在发现该标志呈第一状态时，将该标志相对应的区块及该区块前版本数通知该更新单元。

13. 根据权利要求9所述的数据传输系统，其中，该影像接收单元可连续地接收来自摄影机的影像。

14. 根据权利要求9所述的数据传输系统，其中，该影像接收单元可连续撷取屏幕上的画面。

15. 根据权利要求9所述的数据传输系统，其中，该影像接收单元每接收到K张影像时，则告知该通知单元已达到该检验周期，且K为大于或等于1的正整数。

16. 一种传送数据的方法，将数据由发送端传送至接收端，该传送数据的方法包含以下步骤：

(A) 接收第一张影像，并将该影像分为N个区块，而N为大于1或等于1的正整数，且对每一个区块设置相对应的初始版本数，并将每一个区块的影像数据、初始版本数存储到第一数据库中；

(B) 利用用户数据报协议的方式将步骤(A)的每一个区块传送到该接收端；

(C) 接收下一张影像并将该影像分为N个区块；

(D) 判断步骤(C)中的多个区块的其中之一是否需要重新传送，如果该区块不需要重新传送，则跳到步骤(E)，如果需要重新传送，则跳到步骤(I)并依序执行步骤(I)及(I)；

(E) 是否已处理完一张影像中的所有区块，如果是，则跳到步骤(F)，如果不是，则跳回步骤(D)继续处理其它区块；

(F) 判断是否已处理完K张影像，如果是，则跳到步骤(G)，如果不是，则跳到步骤(C)，且K为大于或等于1的正整数；

(G) 利用传输控制协议的方式发出通知给该接收端，以告知该接收端位于影像中每一个位置的区块的最新版本数；
(H) 更新该第一数据库中需重新传送的块的版本数，并存储需重新传送的块的影像数据至该第一数据库中；及

(1) 利用用户数据协议的方式将需重传的块的影像数据、版本数及在画面中的位置传送至该接收端，并在执行完毕后跳到步骤 (E)。

17. 根据权利要求 16 所述的传送数据的方法，其中，在步骤 (A) 中，还对每一个区块给定相对应的标志，且每一个标志可被设在第一状态或第二状态，当该标志被呈该第一状态时，则表示与该标志相对应的区块需被重新传送至该接收端，而当与该标志相对应的区块已被重新传送或是与该标志相对应的区块不需要被重新传送至该接收端时，该标志将被设定在该第二状态，且影像中每一个位置的最新块的标志状态会存储在该第一数据库中。

18. 根据权利要求 17 所述的传送数据的方法，在步骤 (A) 和 (C) 之间还包含将该第一数据库中的标志皆设在该第二状态的步骤。

19. 根据权利要求 18 所述的传送数据的方法，其中，该步骤 (D) 根据该第一数据库中每一个标志的状态来判断该区块是否需要重传。

20. 根据权利要求 19 所述的传送数据的方法，在步骤 (D) 和 (E) 之间还包含比较接收到的区块的影像数据是否与位于前张影像的同一位置的区块相同的步骤，如果是，则跳到步骤 (E)，如果不是，则跳到步骤 (H)，并依序执行步骤 (H) 及 (I)。

21. 根据权利要求 19 所述的传送数据的方法，还包含利用传输控制协议的方式接收由该接收端送出的指令的步骤，及依据接收到的指令控制存储于该第一数据库中的标志的状态，使需重新传送的区块之标志呈该第一状态的步骤。

22. 一种接收数据的方法，可接收由发送端传来的数据，该接收数据的方法包含以下步骤：

(a) 利用用户数据协议的方式接收由该发送端传来的区块及区块的版本数和区块在影像中的位置；

(b) 判断是否第一次接收到此类型的区块，如果，则将该区块显示于画面上并将该区块的版本数存储于第二数据库中，如果，则将该区块的版本号与该第二数据库中所存的相对应块的版本号比较，且在该区块的版本号存储于第二数据库中的区块新时，更新该第二数据库中所存区块的版本号，并将具有较新版本号的区块显示于画面上；

(c) 利用传输控制协议的方式接收由该发送端发出的关于每一个位置的区块的最新版本号的通知；及

(d) 比较该第二数据库所记录的版本号与该发送端送出的版本数，并在该第二数据库所记录的版本号较旧时，利用传输控制协议的方式要求该发送端重新传送版本数较旧的区块。

23. 一种数据传送方法，包含一种传送数据的方法及一种接收数据的方法，该传送数据的方法可将数据由发送端传送至接收端，而该接收数据的方法可接收由该发送端传来的数据。

该传送数据的方法包括以下步骤：

(A) 接收第一张影像，并将该影像分为 N 个区块，而 N 为大于 1 或等于 1 的正整数，且对每一个区块给定相对应的初始版本数，并将每一个区块的影像数据、初始版本数存储到第
一数据库中；
（B）利用用户数据控制协议的方式将步骤 (A) 的每一个区块送至该接收端；
（C）接收下一张影像并将该影像分成 N 个区块；
（D）判断步骤 (C) 中的多个区块的其中之一是否需要重传，如果该区块不需要重传，则
跳到步骤 (E)，如果需要重传，则跳到步骤 (H)，并依序执行步骤 (H) 及 (I)；
（E）是否已处理完一整张影像中的所有区块，如果是，则跳到步骤 (F)，如果不是，则跳
回步骤 (D) 继续处理其它区块；
（F）判断是否已处理完 K 张影像，如果是，则跳到步骤 (G)，如果不是，则跳到步骤 (C)，
且 K 为大于或等于 1 的正整数；
（G）利用传输控制协议的方式发出通知给该收端，以告知该收端位于影像中每一个
位置的区块的最新版本数；
（H）更新该第一数据库中需要重传的区块的版本数，并存储需重传的区块的影像数据
至该第一数据库中；及
（I）利用用户数据控制协议的方式将需重传的区块的影像数据、版本数及在画面中的
位置传送至该接收端，并在执行完毕后跳到步骤 (E)；
该接收数据的方法包含以下步骤：
（a）利用用户数据控制协议的方式接收该发送端传送来的区块及区块的版本数和区块
在影像中的位置；
（b）判断是否第一次接收到此类型的区块，如果是，则直接将该区块显示于画面上并
将该区块的版本数存储于第一数据库中，如果不是，则将该区块的版本数与该第一数据库
中所存储的相对应区块的版本数比较，且在该区块的版本数比存储于该第一数据库中的区
块新时，更新该第一数据库中所存区块的版本数，并将具有较新版本数的区块显示于画面上；
（c）利用传输控制协议的方式接收由该发送端发出关于每一个位置的区块的最新版本数
的通知；及
（d）比较该第一数据库所纪录的版本数与该发送端送出的版本数，并在该第一数据库
中所纪录的版本数较旧时，利用传输控制协议的方式要求该发送端重新传送版本数较旧的区
块。

24. 根据权利要求 23 所述的数据传送方法，其中，在步骤 (A) 中，还对每一个区块给
定相对应的标志，且每一个标志可被设定在第一状态或第二状态，当该标志呈现该第一状
态时，则表示与该标志相对应的区块需要被重新传送至该接收端，而当与该标志相对应的
区块已被重新传送或是与该标志相对应的区块不需被重新传送至该接收端时，该标志将
被设定在该第二状态，且影像中每一个位置的最新区块的标志状态会存储在该第一数据库
中。

25. 根据权利要求 24 所述的数据传送方法，在步骤 (A) 和 (C) 之后还包含将该第一数
据库中的标志皆设定在该第二状态的步骤。

26. 根据权利要求 25 所述的数据传送方法，其中，该步骤 (D) 根据该第一数据库中每一
个标志的状态来判断该区块是否需要重传。

27. 根据权利要求 26 所述的数据传送方法，在步骤 (D) 和 (E) 之间还包含比对接收到
的区块的影像数据是否与位于前张影像的同一位置的区块相同的步骤，如果是，则跳到步骤 (E)，如果不是，则跳到步骤 (H)，并依序执行步骤 (H) 及 (I)。

28. 根据权利要求 26 所述的数据传送方法，其中，该传送数据的方法更包括利用传输控制协议的方式接收由该接收端送出指令的步骤，及依据接收到的指令控制存储于该第一数据库中的标志的状态，使需要重新传送的区块之标志呈第一状态的步骤。
数据传输系统及方法

技术领域
[0001] 本发明是有关于一种数据传输系统及方法，特别是指一种将数据透过网络传输的
数据传输系统及方法。

背景技术
[0002] 传输控制协议 (Transmission Control Protocol, 简称 TCP) 与用户数据报协议
(User Datagram Protocol, 简称 UDP) 是二种位于传输层的通信协议。其中，TCP 可提供
一种联机导向 (Connection-oriented) 式及可信赖 (Reliable) 的端对端数据传输服务。
因此，发送端在传送数据前，会先利用控制信息和一个接收端建立联机，也就是一种握手
(Handshaking) 动作，并在建立完联机后才开始传送数据到该接收端，且当数据传输完成
后，该发送端会终止与该接收端的联机。
[0003] 而 UDP 则是提供一种非联机导向且不可信赖的数据传输服务，因此，当发送端以
UDP 的方式传送数据到一个接收端时，则不会有线采用 TCP 时的握手、确认、重新传送等复
杂程序。所以在同一网络环境中，UDP 是一种具有比 TCP 高速、有效率的数据传输方式，且
使用的频宽也比 TCP 少。但相对的，UDP 则比 TCP 有较高的数据传送错误率。
[0004] 因此，发送端可根据使用需求采用 UDP 或 TCP 的方式传送数据到接收端。就是说，
当数据量的正确性不是很重要的时候，可考虑使用 UDP；反之，对于数据的正确性要求较严
格时，TCP 则是较佳的选择。但当发送端要传送大量数据到多个接收端时，需要较多频宽的
TCP 则无法达到实时 (Real-time) 传输的功能。
[0005] 目前位于不同地区的使用者常常利用网络视频通信来进行会议。一般在视频会议
进行时，位于每一地区的摄影机会分别撷取当地的影像数据，并将撷取到的影像经由网络
传送至其它位于不同地区的接收端。而当一个发送端与多个接收端间采用 TCP 的方式来传
送数据量庞大的影像数据时，则会因频宽不足而无法达到实时显示的功能。因此，一般在需
要连续地传送影像或是屏幕画面的情形下，如：视频会议、网络教学 (E-learning)、遥控控
制 (Remote Control)，一个发送端和至少一个接收端间都是采用 UDP 的方式来传送数据。
但使用 UDP 通信协议一次传送整张影像也会出现严重的封包丢失问题。
[0006] 目前的解决方案是该发送端把要传送的影像先分成多个区块 (Blocks)，然后再逐
一传送每一区块到每一个接收端。且因为前后张影像的内容可能变化不大，故前后影像中
位于同一位置的区块可能是相同的，所以在传送后一张影像的区块时，只需传送数据已改
变的区块，而不需每一区块都传送，如此，可大量减少需传送的数据量。但是因为 UDP 是一
种非可靠性的传输方式，故无法保证每一更新区块都可以顺利到达每一接收端，所以若有
传送错误的情形出现，则接收端所显示的影像会持续显示旧的区块，而无法成功显示正确的
区块。
[0007] 因此，现有的数据传输方式在采用 TCP 形式的通信协议时，虽可有较佳的正确率，
但却无法达到实时传输的目的；但如果采用 UDP 形式的通信协议，则会因 UDP 是一种非可靠
性的传输而频繁发生传输错误的现象。
发明内容

[0008] 因此，本发明的目的是提供一种数据传输系统；该系统同时具有 UDP 通信协议传输速度快及 TCP 通信协议值得信赖的优点。

[0009] 因此，本发明的另一目的是提供一种数据传输方法，该方法可减少需传送的数据量以达到节省传输频宽的目的。

[0010] 于是，本发明的数据传输系统包含发送装置及接收装置。该发送装置包含影像接收单元、第一数据库、传送单元、判断模块、更新单元及通知单元。该接收装置包含第二数据库、数据接收单元、显示单元及处理单元。

[0011] 该影像接收单元可将接收到的每张影像分成多个区块，并可用不同的版本数来表示前后张影像的区块被该影像接收单元接收到的先后顺序。

[0012] 该第一数据库存储该影像接收单元接收到的影像中每一位置的最新区块的影像数据及版本数。

[0013] 该传送单元与该影像接收单元电连接，并可利用用户数据报协议的方式将接收到底区块的影像数据、该区块在该画面中对应的位置及该区块的版本数传送至该接收装置。

[0014] 该判断模块与该影像接收单元电连接，可接收该影像接收单元传来的区块，并在判断出该区块需要传送至该接收装置时发出通知。

[0015] 该更新单元与该第一数据库、该判断模块及该传送单元电连接，并可接收该判断模块传来的通知，且根据该通知更新该第一数据库中的版本数，并将新的版本数、该区块的影像数据及位于画面中的位置送至该传送单元。

[0016] 该通知单元与该第一数据库电连接，且每隔一个检验周期，则会参考该第一数据库存储的最新版本数，并利用传输控制协议的方式对该接收装置发出通知，以告知该接收装置位于一个影像中每个位置的区块的最新版本数。

[0017] 该第二数据库可存储多个区块的版本数。

[0018] 该数据接收单元可利用用户数据通信协议的方式接收由该发送装置传送来的区块的影像数据、版本数及位于画面中的位置。

[0019] 该显示单元与该第二数据库及该数据接收单元电连接，可接收该数据接收单元传来的区块，并可比较该区块的版本数与该第二数据库中所存的版本数，且在该区块的版本数较新时，才更新该第二数据库中所存的版本数，并将具有较新版本数的区块显示于画面上。

[0020] 该处理单元与该第二数据库电连接，且会比较该第二数据库内所存区块的最新版本数与该发送装置所告知已送出区块的最新版本数，并当发现该第二数据库所纪录的版本数比该发送装置告知的最新版本数旧时，则会利用传输控制协议的方式对该发送装置发出要求重新传送区块的请求。

[0021] 于是，本发明的数据传输方法是包含一种传送数据的方法及一种接收数据的方法，该传送数据的方法可将数据由发送端传送至接收端，而该接收数据的方法可接收由该发送端传来的数据。

[0022] 该传送数据的方法包含以下步骤；

[0023] (A) 接收第一张影像，并将该影像分为 N (N 为大于 1 或等于 1 的正整数) 个区块,
且对每一区块给定一相对应的初始版本数，并将每一区块的影像数据、初始版本数存储到
第一数据库中。

【0024】（B）利用用户数据报协议的方式将步骤（A）的每一区块送至该接收端。
【0025】（C）接收下一张影像并将该影像分成N个区块。
【0026】（D）判断步骤（C）中的多个区块的其中之一是否需要重传，如果该区块不需要重传，则跳到步骤（E），否则跳到步骤（H），并依序执行步骤（H）及（I）。
【0027】（E）是否已处理完一整张影像中的所有区块，如果是，则跳到步骤（F），如果不是，则跳回步骤（D）继续处理其它区块。
【0028】（F）判断是否已处理完K张影像，如果是，则跳到步骤（G），否则则跳到步骤（C），且K为大于或等于1的正整数。
【0029】（G）利用传输控制协议的方式发出通知给该接收端，以告知该接收端位于一个影
像中每个位置的区块的最新版本数。
【0030】（H）更新第一数据库中需要重传的区块的版本数，并存储需重传的区块的影像数
据至该第一数据库中。
【0031】（I）利用用户数据报协议的方式将需重传的区块的影像数据、版本数及在画面中
的位置传送至该接收端，并在执行完毕后跳到步骤（E）。
【0032】该接收数据的方法是包含以下步骤：
【0033】（a）利用用户数据报协议的方式接收由该发送端送来的第一张影像的区块及该等
区块之版本数和在影像中的位置。
【0034】（b）在画面上显示该多个区块，并将该多个区块的版本数及在影像中的位置送至
一第二数据库中存储。
【0035】（c）继续利用用户数据报协议的方式接收由该发送端送来的区块及区块的版本
数和区块在影像中的位置，并将接收到的区块的版本数与该第二数据库中所存的版本数比
较，且在接收到的区块的版本数较新时，才更新第二数据库中所存区块的版本数，并将该具
有较新版本数的区块显示于画面上。
【0036】（d）利用传输控制协议的方式接收由该发送端发出关于每一个位置的区块的最新
版本数的通知。
【0037】（e）比较该第二数据库所纪录的版本数与该发送端送出的版本数，并在该第二数
据库所记录的版本数较旧时，利用传输控制协议的方式要求该发送端重新传送版本数较旧
的区块。

附图说明
【0038】图1是根据本发明的数据传输系统的优选实施例的系统方块图；
【0039】图2是该优选实施例的流程图，说明发送端送出区块到接收端的处理流程；
【0040】图3是该优选实施例的流程图，说明该接收端接收到区块的处理流程；
【0041】图4是该优选实施例的流程图，说明该接收端送出有关要求重新传送区块的通知
的处理流程；及
【0042】图5是该优选实施例的流程图，说明该发送端接收到有关要求重新传送区块的通知
的处理流程。
具体实施方式

[0043] 有关本发明的前述及其它技术内容、特点与功效，在以下配合参考附图给出优选实施例的详细说明中，将是显而易见的。

[0044] 参阅图1，本发明的数据传输系统的优选实施例包含位于发送端的发送装置1及位于接收端的接收装置2。

[0045] 该发送装置1包括影像接收单元11、判断模块12、更新单元13、第一数据库14、通知单元15、传送单元16及指令接收单元17。

[0046] 而该接收装置2包括数据接收单元21、处理单元22、显示单元23及第二数据库24。

[0047] 该发送装置1的影像接收单元11可连续地接收来自如：摄影机、照相机等装置的影像。此外，该影像接收单元11也可连续取样屏幕上的画面。该影像接收单元11可将接收或撷取到的每一个影像或画面分割成多个区块，且对每一个区块给定一个版本数（Version Number）及个标志（Flag），并将该版本数及标志存储到该第一数据库14中。

[0048] 该影像接收单元11用不同的版本数来表表示前后张影像的区块被接收到的先后顺序，且对位于不同位置的区块给定一套独立的版本数系统。如，对位于画面中最上方的区块依接收到的时间先后顺序，对较晚接收到的区块给定一个较大的版本数目，即，将在时间t1接收到且位于画面中最上方的区块设定其版本数为1，将在时间（t1+Δt）时接收到且位于最上方的区块设定其版本数为2，并将在时间（t1+2×Δt）时接收到且位于最上方的区块设定其版本数为3。且为了避免区块的版本数递增过快，也可在确定该区块需传送至该接收装置2时，才增加该区块的版本数，若该区块不需传送，则不需增加版本数。

[0049] 而该多个标志则可被设定在第一状态或第二状态，当该标志呈现第一状态时，即表示与该标志相对应的区块需被重新传送至该接收端，而当与该标志相对应的区块已被重新传送或是与该标志相对应的区块不需要被重新传送至该接收端时，该标志将被设定在第二状态。

[0050] 而在本实施例中，设定该影像接收单元11收到K张影像的期间为一个检验周期，且K为大于或等于1的正整数。而一般将K设为5，但也可视系统规格而增加或减少K值。且当该影像接收单元11每接收到K张影像时，则会告知该通知单元15已达到一个检验周期。

[0051] 该第一数据库14存储影像中每一位置的最新区块的影像数据、每一位置的最新区块的版本数及每一最新区块所对应的标志状态。

[0052] 该判断模块12包括比较单元121及检测单元122，并可接该影像接收单元11传来的区块，并在判断出该区块需要传送至该接收端时发出通知。

[0053] 该判断模块12的检测单元122与该影像接收单元11、更新单元13及第一数据库14电连接，并可接收该影像接收单元11传送来的区块，且会检测存储在该第一数据库14中与该区块相对应的标志，并在发现该标志呈第一状态时，将该标志相对应的区块及该区块目前的版本数通知该更新单元13。

[0054] 该判断模块12的比较单元121与检测单元122、更新单元13电连接，可接收该检测单元122判断完的区块，并可比较位于前后张影像的同一位置的区块，以判断前后张影
像间相对应的区块的影像数据是否相同。若该区块的影像数据有改变，则将该区块及该区块目前的版本数告知该更新单元 13。

[0055] 该更新单元 13 与该传送单元 16 及第一数据库 14 电连接，且可接收该比较单元 121 或该检测单元 122 传来的通知，并根据该通知将已更新的区块或标志呈第一状态的区块的版本数加 1，且将新的版本数目及该区块的影像数据、位于画面中的位置等信息传送至该第一数据库 14 中存储及送至该传送单元 16。此外，该更新单元 13 也可将该第一数据库 14 中已传送至该接收端的区块的标志切换为第二状态。

[0056] 该传送单元 16 可将由该更新单元 13 或该影像接收单元 11 传来的区块及相关信息，如：该区块在该画面中对应的位置及该区块的版本数、影像数据等信息，利用 UDP 通信协议的方式传送至该接收装置 2 的数据接收单元 21。

[0057] 该通知单元 15 与该影像接收单元 11 及该第一数据库 14 电连接，并且该影像接收单元 11 每隔一个检查周期，都会通知该通知单元 15，而该通知单元 15 则开始参考该第一数据库 14 存储的最新版本数，并利用 TCP 通信协议的方式对该接收装置 2 的处理单元 22 发出通知，以告诉该处理单元 22 目前位于一影像中每个位置之区块的最新版本数。

[0058] 该指令接收单元 17 与该第一数据库 14 电连接，并可利用 TCP 通信协议的方式接收由该接收装置 2 的处理单元 22 发出的指令，且依据该指令控制存储在该第一数据库 14 中的标志的状态，即该指令包含该接收端希望该发送端重新传送的区块时，则该指令接收单元 17 将设定与该区块对应的标志呈第一状态。

[0059] 该接收装置 2 的第二数据库 24 可存储区块的版本数。

[0060] 而该数据接收单元 21 与该显示单元 23 电连接，并可利用 UDP 通信协议的方式接收由该发送端的传送单元 16 传来的区块及相关信息，并将该等区块的影像数据、版本数及在画面中的位置传送至该接收单元 23 中。

[0061] 该显示单元 23 与该第二数据库 24 电连接，可接收该数据接收单元 21 传来的区块，并比较该区块的版本数与该第二数据库 24 中所存的相对应区块的版本数，且在该区块的版本数比存储于第二数据库 24 中的区块新时，才更新第二数据库 24 中所存的区块的版本数，并将具有较新版本数的区块显示于画面上。

[0062] 该处理单元 22 与该第二数据 24 电连接，且会比较该第二数据库 24 内所存的区块的最新版本数与该通知单元 15 所告知该发送端已送出区块的最新版本数。如果该处理单元 22 发现该第二数据库 24 中该记录的版本数比该通知单元 15 告知的最新版本数旧，则表示在传送过程中有区块遗失或受损的现象，则该处理单元 22 会利用 TCP 通信协议的方式对该发送装置 1 的指令接收单元 17 发出通知，以发出重新传送已遗失或受损区块的请求，并该重新传送请求中也针对每一位置的区块给定是否需要重新传送的讯息。

[0063] 如图 1 与图 2 所示，本实施例数据传输系统的发送装置 1 在传送影像给接收装置 2 时，所使用的数据传输传送包含以下步骤：

[0064] 在步骤 S1，该影像接收单元 11 接收第一张影像，并将其影像分为 N（N 为大于 1 或等于 1 的正整数）个区块，并对每一区块给定一个相对应的初始版本数及一标志，并将每一区块的影像数据、初始版本数及标志存储到该第一数据库 14 中。

[0065] 在步骤 S2，该影像接收单元 11 命令该传送单元 16 利用 UDP 通信协议的方式将步骤 S1 的每一区块送至该接收端的数据接收单元 21。
[0066] 在步骤 S3，该影像接收单元 11 将存储于该第一数据库 14 中的标志皆设定在该第二状态。
[0067] 在步骤 S4，该影像接收单元 11 设定一个检验周期，该检验周期为该影像接收单元
11 收到或撷取到 K 张影像的期间。
[0068] 在步骤 S5，该影像接收单元 11 设定已接收到的影像数目为 0。
[0069] 在步骤 S6，是该影像接收单元 11 接收下一张影像，并将该影像分成 N 个区块，且将
该等区块一一传入该检接单元 122。
[0070] 在步骤 S7，该检接单元 122 根据该第一数据库 14 中每一标志的状态判断该影像
接收单元 11 传来的区块是否需要重传。如果该区块不需要重传，则跳到步骤 S8，如果需要
重传，则跳到步骤 S12。
[0071] 在步骤 S8，比较单元 121 比较已由该检接单元 122 判定完的区块与位于前张影像
的同一位置的区块是否相同，如果相同，则跳到步骤 S9，如果不同，则跳到步骤 S12。
[0072] 在步骤 S9，判断该检接单元 122 是否已处理完一整张影像中的所有区块。如果是，
则跳到步骤 S10，如果不是，则跳回步骤 S7 继续处理其它区块。
[0073] 在步骤 S10，判断该影像接收单元 11 接收到的影像数目是否为 K。如果是，则表示
已达到一个检验周期，则跳到步骤 S11，如果不是，则跳回步骤 S6。
[0074] 在步骤 S11，该通知单元 15 利用 TCP 通信协议的方式发出通知给位于接收装置 2
的处理单元 22，告知该处理单元 22 目前已由该发送端送出的各区块的最新版本数，及位于
画面中每个位置的区块的最新版本数。
[0075] 在步骤 S12，该更新单元 13 将已更新的区块或标志呈第一状态的区块的版本数加
1，且将新的版本数目及该区块的影像数据，位于画面中的位置等信息传至该第一数据库 14
中存储及送至该传送单元 16。
[0076] 在步骤 S13，该传送单元 16 利用 UDP 通信协议的方式将需重传的区块及其相关信息
传送到该接收装置 2 的数据接收单元 21，并在执行完毕后跳到步骤 S9。
[0077] 参考图 1 与图 3，本实施例数据传输系统的接收装置 2 在接收由该发送装置 1 传来的
区块时，所使用的数据接收方法包含以下步骤：
[0078] 在步骤 T1，该数据接收单元 21 利用 UDP 通信协议的方式接收由该发送装置 1 的传
送单元 16 送来的区块及区块的版本数和区块在影像中的位置等相关信息。
[0079] 在步骤 T2，该数据接收单元 21 将在步骤 T1 接收到的区块的影像数据、版本数及在
画面中的位置等相关数据传送至该显示单元 23 中。
[0080] 在步骤 T3，该显示单元 23 根据由该数据接收单元 21 传来的区块的版本数，判断是
否第一次接收到此类型的区块，如果是，则直接将该区块显示在画面上，并将该区块的版本
数存储在该第二数据库 24 中，如果不同，则将该区块的版本数与该第二数据库 24 中所存的
相对应区块之版本数比较，且在该区块的版本数比存储在第二数据库 24 中的区块新时，才
更新第二数据库 24 中所存的区块的版本数，并将具有较新版本数的区块显示于画面上。且
在执行完步骤 T3 时，跳回步骤 T1。
[0081] 参考图 1 与图 4，本实施例数据传输系统的接收装置 2 在接收由该发送装置 1 送
来的通知时，所使用的数据传输方法包含以下步骤：
[0082] 在步骤 R1，该接收装置 2 的处理单元 22 利用 TCP 通信协议的方式接收由该发送装
置 1 的通知单元 15 发出关于每一位置的区块的最新版本数的通知。

在步骤 R2，该处理单元 22 比较该第二数据库 24 所纪录的版本数是否比由步骤 R1 
接收到的最新版本数旧，如果是，则跳到步骤 R3，如果不是，则跳回步骤 R1。

在步骤 R3，该处理单元 22 利用 TCP 通信协议的方式要求该发送装置 1 的指令接收 
单元 17 重新传送该第二数据库 24 所纪录的版本数比该通知单元 15 告知的最新版本数旧 
的区块。

如图 1 与图 5 所示，本实施例的数据传输系统的发送装置 1 在接收由该接收装置 
2 送来的通知时，所使用的数据传输方法包含以下步骤：

在步骤 M1，该指令接收单元 17 利用 TCP 通信协议的方式接收由该接收装置 2 的处 
理单元 22 送出的指令。

在步骤 M2，该指令接收单元 17 依据接收到的指令控制存储在该第一数据库 14 中 
的标志的状态，使需重新传送的区块的标志呈第一状态。

在步骤 M3，该检测单元 122 将根据该第一数据库 14 中的标志状态，透过该更新单 
元 13 命令该传送单元 16 重新传送标志呈第一状态的区块至该接收装置 2。

值得注意的是，虽然本实施例中只有一个接收装置 2，但实际上本发明也可包含多 
个接收装置 2，且每一个接收装置 2 所包含的组件及组件间操作情形皆与上述相同，并可 
分别与该发送装置 1 进行上述的数据交换流程。

综上所述，本发明是利用 UDP 通信协议的方式来传送数据量较大的影像区块，并 
利用每一个区块均给予版本数的方式来辨识区块间的新旧关系。且利用具有可靠性的 TCP 
通信协议来传送有关区块是否正确到达或是需要重传区块的讯息及指令。如此，本发明即可 
同时具有 UDP 通信协议传输速度快及 TCP 值得信赖的优点，因此可达到本发明的目的。此 
外，本发明是每隔一个检验周期才检查区块是否正确到达接收端，如此，可避免因利用 TCP 
通信协议在反复进行检查、确认的操作时占用了太多的传输频宽。且本发明也对每一区块 
给予相适应的标志以用来标志此区块是否需重新传送，故可方便地进行确认与注记的操 
作。

以上描述了本发明的优选实施例，应该理解，这些优选实施例的描述只是为了理 
解本发明，而作为对本发明的实施范围的限定，不脱离本发明精神和范围的任何变更，修 
改，等效变化等仍属本发明的范围之内。本发明的范围仅由所附权利要求限定。
S1. 接收第一张影像，并将该影像分为N个区块，对每个区块给定初始版本数及标志

S2. 将每个区块传送到接收端

S3. 将标志都设定为第二状态

S4. 设定一个检验周期为收到K张影像的期间

S5. 设定已接收到的影像数量为0

S6. 接收下一张影像，并将该影像分成N个区块

S7. 检测接收到的区块是否需要重传？

S8. 比较接收到的区块与位于前张影像的同一位置的区块是否相同？

S9. 是否已处理完整张影像的N个区块？

S10. 检查接收到的影像数量是否为K？

S11. 通知接收端已送出的各区块的最新版本数

S12. 更新第一数据库中需要重传的区块的影像及版本数

S13. 将需重传的区块及其相关信息传送到接收端

图2
图 3

接收由发送端传送来的区块及相关信息

将区块的相关数据传送到显示单元

判断区块是否需要更新，并将较新的区块显示在画面上

图 4

接收由发送端传送的有关每个区块的最新版本的变化通知

第二数据库所记录的版本数是否比由步骤 R1 接收到的最新版本数旧？

是

要求发送端重新传送区块

图 5

指令接收单元接收由该接收端的处理单元传送来的指令

将接收到的指令存储到第一数据库，并控制标志的状态

传送单元重新传送标志呈第一状态的区块到接收端