POLYACETAL MOLDINGS WITH DIRECTLY MOLDED-ON FUNCTION ELEMENTS

Inventors: Frank Reil, Gemshiem; Frank Reuter, Grossostheim; Ulrich Haack, Alsbach; Gerhard Reuschel, Biblis, all of (DE)

Assignee: Hoechst Aktiengesellschaft, Frankfurt am Main

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/538,463
Filed: Mar. 30, 2000

Related U.S. Application Data
Continuation of application No. 09/298,547, filed on Apr. 23, 1999, now Pat. No. 6,111,029, which is a division of application No. 08/552,427, filed on Nov. 3, 1995, now Pat. No. 5,977,266.

Foreign Application Priority Data
Nov. 7, 1994 (DE) 44 39 766

Int. Cl.7 C08L 59/00; B29C 45/16; B29C 47/06
U.S. Cl. 525/402; 428/500; 428/522; 428/515; 428/501; 525/398; 525/474

Field of Search 428/524, 515, 428/522; 525/402, 398, 474

References Cited
U.S. PATENT DOCUMENTS
3,674,891 7/1972 Wheeler
3,955,697 5/1976 Valyi
5,135,475 8/1992 Nakamichi et al.
5,190,828 3/1993 Katsumata
5,251,953 10/1993 Willey
5,256,739 10/1993 Fleischer et al.
5,977,266 * 11/1999 Reil

FOREIGN PATENT DOCUMENTS
2 207 806 6/1974 (FR)
2 608 501 6/1988 (FR)
2 160 146 12/1985 (GB)

OTHER PUBLICATIONS

* cited by examiner

Primary Examiner—Fred Zitomer
(74) Attorney, Agent, or Firm—Frommer Lawrence & Haug LLP

ABSTRACT

The novel molding made from a combination of polyacetal with directly molded-on function elements is distinguished by the fact that the function elements comprise one or more elastomers. Such elastomers comprise partially or fully hydrogenated nitrile rubbers, one- or multicomponent silicone rubbers or sulfur-containing rubbers.

8 Claims, No Drawings
POLYACETAL MOLDINGS WITH DIRECTLY MOLDED-ON FUNCTION ELEMENTS

This is a continuation of prior application Ser. No. 09/298,547 filed Apr. 23, 1999, now U.S. Pat. No. 6,111,029 which is a divisional of original application Ser. No. 08/552,427, filed Nov. 3, 1995, now U.S. Pat. No. 5,977,266.

The invention relates to moldings made from a combination of the engineering material polyacetal, in particular polyoxymethylene, with directly molded-on function elements made from one or more elastomers.

The engineering material polyacetal, in particular polyoxymethylene (POM), has excellent mechanical properties and in addition is also resistant to all customary solvents and fuels. Moldings made from polyoxymethylene are therefore frequently used in fuel-conveying systems. Owing to its very good resistance to chemicals, housings are also made from polyoxymethylene. However, POM has a low mechanical damping factor, which makes the use of flexible damping elements necessary in some applications. Furthermore, a seal is frequently necessary at joints when polyoxymethylene moldings are installed. The high surface hardness of POM moldings and the low coefficient of sliding friction of POM can result in slipping of articles lying on top and restriction of the operating security of switches and controls made from POM.

Hitherto, seals and damping elements have been provided separately and usually anchored mechanically in an additional step, which causes additional work and in some cases considerable additional costs.

The object of the present invention was to provide a polyacetal molding with directly molded-on function elements, in which the adhesion between the molding as such and the function elements is improved without additional adhesive layers or mechanical anchoring being necessary.

This object is achieved by a molding of the above type wherein the directly molded-on function elements comprise elastomers which comprise partially or fully hydrogenated nitrile rubbers, one- or multicomponent silicone rubbers or sulfur-containing rubbers.

A nitrile rubber which has proven particularly suitable for the purposes of the present invention is acrylonitrile-butadiene copolymer. It was surprising that said rubber has very good adhesion to the polyoxymethylene of the moldings.

For the purposes of the present invention, the term “function elements” is taken to mean, for example, sealing and/or damping elements or alternatively regions for improving the grip, such as recessed grips and the like.

For the purposes of the present invention, the term “directly molded-on” is taken to mean that the function elements are preferably produced together with the POM moldings to which they are to bond in a one-step process, for example in a multicomponent injection-molding process or by coextrusion.

As a measure of the adhesive strength, the peel strength of two POM sheets with a width of 15 mm bonded by the elastomer is determined. In accordance with the invention, the peel strength between the molding and the directly molded-on function elements is at least 10 N, preferably at least 15 N.

The use of the abovementioned elastomers allows the sealing or damping elements to be molded directly onto POM moldings without further assembly steps being necessary. The elimination of the processing steps required hitherto for assembly of function elements allows considerable cost saving during production of the novel moldings and during their assembly.

Fields of application of the novel moldings are, for example, housings in automobile construction, such as door-lock housings, window-winder housings, sunroof sealing elements and the like, and fixing elements with good damping properties, for example clips or slip-proof controls, such as knobs or recessed grips on pens or switch levers.

What is claimed is:

1. A process for the preparation of a polyacetal molding, comprising a combination of polyacetal with directly molded-on function elements bonded thereto, wherein the function elements comprise regions which provide sealing, damping and gripping means to the molding, wherein the function elements comprise one or more elastomers selected from the group consisting of partially or fully hydrogenated nitrile rubbers, one- or multicomponent silicone rubbers, sulfur-containing rubbers, acrylonitrile-butadiene copolymers, and styrene-butadiene copolymers, wherein the adhesion between the function elements and the polyacetal is maintained without adhesive layers or mechanical anchoring therebetween, which comprises contacting one or more elastomers selected from the group consisting of contacting polyacetal with partially or fully hydrogenated nitrile rubbers, sulfur-containing rubbers, acrylonitrile-butadiene copolymers in a one-step process.

2. The process according to claim 1 wherein the one-step process is a multicomponent injection process.

3. The process according to claim 1 wherein the one-step process is a coextrusion process.

4. The process according to claim 1 wherein the polyacetal is polyoxymethylene.

5. A process for the preparation of a polyacetal molding, comprising a combination of polyacetal with directly molded-on function elements bonded thereto, wherein the function elements comprise regions which provide sealing, damping and gripping means to the molding, wherein the function elements comprise one or more elastomers selected from the group consisting of acrylonitrile-butadiene copolymers, wherein the adhesion between the function elements and the polyacetal is maintained without adhesive layers or mechanical anchoring therebetween, comprising contacting polyacetal with one or more elastomers selected from the group consisting of acrylonitrile-butadiene copolymers in a one-step process.

6. The process according to claim 4 wherein the one-step process is a multicomponent injection process.

7. The process according to claim 4 wherein the one-step process is a coextrusion process.

8. The process according to claim 4 wherein the polyacetal is polyoxymethylene.

* * * * *