

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2012323808 B2

(54) Title
Apparatus for processing plastic material

(51) International Patent Classification(s)
B29B 13/10 (2006.01) **B29B 17/04** (2006.01)
B01F 15/02 (2006.01) **B29C 47/10** (2006.01)
B02C 18/08 (2006.01) **B29C 47/58** (2006.01)

(21) Application No: **2012323808** (22) Date of Filing: **2012.10.12**

(87) WIPO No: **WO13/052979**

(30) Priority Data

(31) Number (32) Date (33) Country
A 1508/2011 **2011.10.14** **AT**

(43) Publication Date: **2013.04.18**
(44) Accepted Journal Date: **2015.08.20**

(71) Applicant(s)
EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H.

(72) Inventor(s)
Feichtinger, Klaus;Hackl, Manfred

(74) Agent / Attorney
Lord & Company, PO Box 530, West Perth, WA, 6872

(56) Related Art
EP 1628812
EP 1273412
US 5102326
DE 10140215

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum

Internationales Büro

(43) Internationales Veröffentlichungsdatum

18. April 2013 (18.04.2013)

(10) Internationale Veröffentlichungsnummer
WO 2013/052979 A1

(51) Internationale Patentklassifikation:

B29B 13/10 (2006.01)	B29C 47/58 (2006.01)
B29B 17/04 (2006.01)	B01F 15/02 (2006.01)
B29C 47/10 (2006.01)	B02C 18/08 (2006.01)

(74) Anwalt: WILDHACK & JELLINEK PATENTANWÄLTE; Landstrasser Hauptstrasse 50, A-1030 Wien (AT).

(21) Internationales Aktenzeichen: PCT/AT2012/050151

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) Internationales Anmeldedatum:

12. Oktober 2012 (12.10.2012)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

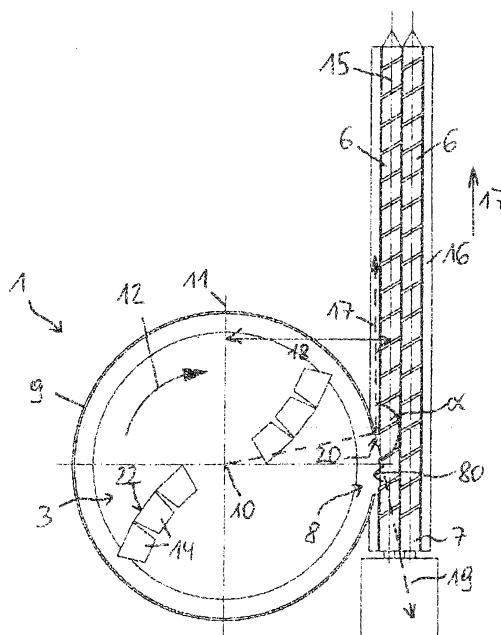
(30) Angaben zur Priorität:

A 1508/2011 14. Oktober 2011 (14.10.2011) AT

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): EREMA ENGINEERING RECYCLING MASCHINEN UND ANLAGEN GESELLSCHAFT M.B.H. [AT/AT]; Freindorf, Unterfeldstrasse 3, A-4052 Ansfelden (AT).

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, RU, TJ, TM), europäisches (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Erfinder; und


(71) Anmelder (nur für US): FEICHTINGER, Klaus [AT/AT]; Reindlstrasse 5, A-4040 Linz (AT). HACKL, Manfred [AT/AT]; Bachlbergweg 128, A-4040 Linz-Urfahr (AT).

[Fortsetzung auf der nächsten Seite]

(54) Title: APPARATUS FOR PROCESSING PLASTIC MATERIAL

(54) Bezeichnung : VORRICHTUNG ZUM AUFBEREITEN VON KUNSTSTOFFMATERIAL

Fig. 2

(57) Abstract: The invention relates to an apparatus for preprocessing and subsequently conveying or plasticizing plastics, comprising a container (1) with a mixing and/or comminuting tool (3) that can rotate about a rotational axis (10), wherein an opening (8) is formed in a lateral wall (9) through which the plastic material can be discharged and a multiple-screw conveyor (5) is provided with at least two screws (6) rotating in a housing (16). The invention is characterized in that the imaginary extension of the longitudinal axis (15) of the conveyor (5) passes by the rotational axis (10) counter to the conveying direction (17), wherein the longitudinal axis (15) of the screw (6) that is closest to the container (1) is on the outlet side offset by a distance (18) in relation to the radial (11) that is parallel to the longitudinal axis (15), and the two screws (6) run in opposite directions.

(57) Zusammenfassung: Die Erfindung betrifft eine Vorrichtung zum Vorbehandeln und anschließenden Fördern oder Plastifizieren von Kunststoffen mit einem Behälter (1) mit einem um eine Drehachse (10) drehbaren Misch- und/oder Zerkleinerungswerkzeug (3), wobei in einer Seitenwand (9) eine Öffnung (8) ausgebildet ist, durch die das Kunststoffmaterial ausbringbar ist, wobei ein Mehrschnecken-Förderer (5) vorgesehen ist, mit zumindest zwei in einem

[Fortsetzung auf der nächsten Seite]

Veröffentlicht:

- mit internationalem Recherchenbericht (Artikel 21 Absatz 3)
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eingehen (Regel 48 Absatz 2 Buchstabe h)

Gehäuse (16) rotierenden Schnecken (6). Die Erfindung ist dadurch gekennzeichnet, dass die gedachte Verlängerung der Längsachse (15) des Förderers (5) entgegen der Förderrichtung (17) an der Drehachse (10) vorbeiführt, wobei die Längsachse (15) der dem Behälter (1) nächsten Schnecke (6) ablaufseitig zu der zur Längsachse (15) parallelen Radialen (11) um einen Abstand (18) versetzt ist, und dass die Schnecken (6) zueinander gleichläufig sind.

Editorial Note

2012323808

Please note the following in regards to continuity in numbering of pages:

1. Description pages are numbered as 1 to 18.
2. Claim pages are numbered as 1 to 5.
3. For purpose of continuity of page numbering, Claim pages are notionally re-numbered as 19 to 23.

Apparatus for the treatment of plastics material

The invention relates to an apparatus according to the preamble of Claim 1.

The prior art reveals numerous similar apparatuses of varying design, comprising a receiver or cutter compactor for the comminution, heating, softening and treatment of a plastics material to be recycled, and also, attached thereto, a conveyor or extruder for the melting of the material thus prepared. The aim here is to obtain a final product of the highest possible quality, mostly in the form of pellets.

By way of example, EP 123 771 or EP 303 929 describe apparatuses with a receiver (receiver container) and, attached thereto, an extruder, where the plastics material introduced into the receiver is comminuted through rotation of the comminution and mixing implements and is fluidized, and is simultaneously heated by the energy introduced. A mixture with sufficiently good thermal homogeneity is thus formed. This mixture is discharged after an appropriate residence time from the receiver into the screw-based extruder, and is conveyed and, during this process, plastified or melted. 15 The arrangement here has the screw-based extruder approximately at the level of the comminution implements. The softened plastics particles are thus actively forced or stuffed into the extruder by the mixing implements.

It is also known in principle that twin-screw extruders can be used and that these can be linked to appropriate cutter compactors.

20 Many of these designs, which have been known for a long time, however, are unsatisfactory in respect of the quality of the treated plastics material obtained at the outgoing end of the screw, and/or in respect of the throughput of the screw. Especially when twin screws are used, there are particular considerations which cannot be derived from the results for single screws.

25 A distinction can be made between co-rotating and counter-rotating, and also touching and tightly intermeshing, twin-screw conveyors or twin-screw extruders, as a function of the axial distance therein between the screws and of their relative direction of rotation.

30 In the case of co-rotating screws, the two screws rotate in the same direction with identical angular velocities.

Each of these types has particular application sectors and uses. In the case of the co-rotating twin-screw extruder, the conveying and the pressure increase are brought about in essence by virtue of the friction between the stationary housing wall and the material rotating concomitantly with the screw, and the conveying effect is mainly a result of drag flow. In the case of the counter-rotating twin-screw extruder, in contrast, the dominant principle is forced conveying.

Critical to the end quality of the product are, firstly, the quality of the pretreated or softened polymer material that enters the conveyor or extruder from the cutter compactor, and, additionally, the situation at intake and on conveying or, where appropriate, extrusion. Relevant factors here include the length of the individual regions or zones of the screw, and also the screw parameters, such as, for example, screw thickness, flight depths, and so on.

In the case of the present cutter compactor/conveyor combinations, accordingly, there are particular circumstances, since the material which enters the conveyor is not introduced directly, without treatment and cold, but instead has already been pretreated in the cutter compactor, viz. heated, softened and/or partly crystallized, etc. This is a co-determining factor for the intake and for the quality of the material.

The two systems – that is, the cutter compactor and the conveyor – exert an influence on one another, and the outcomes of the intake and of the further conveying, and compaction, where appropriate, are heavily dependent on the pretreatment and the consistency of the material.

One important region, accordingly, is the interface between the cutter compactor and the conveyor, in other words the region where the homogenized pretreated material is passed from the cutter compactor into the conveyor or extruder. On the one hand, this is a purely mechanical problem area, requiring the coupling to one another of two differently operating devices. Moreover, this interface is tricky for the polymer material as well, since at this point the material is usually, close to the melting range, in a highly softened state, but is not allowed to melt. If the temperature is too low, then there are falls in the throughput and the quality; if the temperature is too high, and if unwanted melting occurs at certain places, then the intake becomes blocked.

Furthermore, precise metering and feeding of the conveyor is difficult, since the system is a closed system and there is no direct access to the intake; instead, the feeding of the material takes place from the cutter compactor, and therefore cannot be influenced directly, via a gravimetric metering device, for example.

It is therefore critical to design this transition not only in a mechanically considered way, in other words with an understanding of the polymer properties, but at the same time to consider the economics of the overall operation – in other words, high throughput and appropriate quality. The preconditions to be observed here are in some cases mutually
5 contradictory.

Co-rotating multi- or twin-screw conveyors must generally be operated with underfeed. With underfeed, the feed determines the throughput of the extruder, and material intake has to be very constant.

However, specifically in systems where there is a conveyor or extruder attached to
10 a cutter compactor, the intake or feed into the twin-screw conveyor is anything but easy to adjust, and there is no possibility, for example, of metering by way of a gravimetric metering system. On the contrary, in a cutter compactor the rotating mixing and comminution implements bring about continuous feed of the pretreated, softened particles or a continuous flow of material to the intake aperture of the conveyor or extruder.

15 In addition, another factor common to the known apparatuses is that the direction of conveying or of rotation of the mixing and comminution implements, and therefore the direction in which the particles of material circulate in the receiver, and the direction of conveying of the conveyor, in particular an extruder, are in essence identical or have the same sense. This arrangement, selected intentionally, was the result of the desire to
20 maximize stuffing of the material into the screw, or to force-feed the screw. This concept of stuffing the particles into the conveying screw or extruder screw in the direction of conveying of the screw was also very obvious and was in line with the familiar thinking of the person skilled in the art, since it means that the particles do not have to reverse their direction of movement and there is therefore no need to exert any additional force for the
25 change of direction. An objective here, and in further derivative developments, was always to maximize screw fill and to amplify this stuffing effect. By way of example, attempts have also been made to extend the intake region of the extruder in the manner of a cone or to curve the comminution implements in the shape of a sickle, so that these can act like a trowel in feeding the softened material into the screw. Displacement of the
30 extruder, on the inflow side, from a radial position to a tangential position in relation to the container further amplified the stuffing effect, and increased the force with which the plastics material from the circulating implement was conveyed or forced into the extruder.

Apparatuses of this type are in principle capable of functioning, and they operate satisfactorily, although with recurring problems:

By way of example, an effect repeatedly observed with materials with low energy content, e.g. PET fibres or PET foils, or with materials which at a low temperature

- 5 become sticky or soft, e.g. polylactic acid (PLA) is that when, intentionally, stuffing of the plastics material into the intake region of the extruder or conveyor, under pressure, is achieved by components moving in the same sense, this leads to premature melting of the material immediately after, or else in, the intake region of the extruder or of the screw. This firstly reduces the conveying effect of the screw, and secondly there can also be
- 10 some reverse flow of the said melt into the region of the cutter compactor or receiver, with the result that flakes that have not yet melted adhere to the melt, and in turn the melt thus cools and to some extent solidifies, with resultant formation of a clump or conglomerate made of to some extent solidified melt and of solid plastics particles. This causes blockage of the intake and caking of the mixing and comminution implements. A further
- 15 consequence is reduction of the throughput or quantitative output of the conveyor or extruder, since adequate filling of the screw is no longer achieved. Another possibility here is that movement of the mixing and comminution implements is prevented. In such cases, the system normally has to be shut down and thoroughly cleaned.

Problems also occur with polymer materials which have already been heated in the cutter compactor up to the vicinity of their melting range. If overfilling of the intake region occurs here, the material melts and intake is impaired.

Problems are also encountered with fibrous materials that are mostly orientated and linear, with a certain amount of longitudinal elongation and low thickness or stiffness, for example plastics foils cut into strips. A main reason for this is that the elongate

- 25 material is retained at the outflow end of the intake aperture of the screw, where one end of the strip protrudes into the receiver and the other end protrudes into the intake region. Since the mixing implements and the screw are moving in the same sense or exert the same conveying-direction component and pressure component on the material, both ends of the strip are subjected to tension and pressure in the same direction, and release
- 30 of the strip becomes impossible. This in turn leads to accumulation of the material in the said region, to a narrowing of the cross section of the intake aperture, and to poorer intake performance and, as a further consequence, to reduced throughput. The increased feed pressure in this region can moreover cause melting, and this in turn causes the problems mentioned in the introduction.

Especially for co-rotating twin-screw conveyors, this type of stuffing effect is counter-productive, and it is very difficult to avoid overfeed.

It is therefore an object of the present invention to overcome the disadvantages mentioned and to improve an apparatus of the type described in the introduction in such a 5 way as to allow the screws to achieve problem-free intake, even of materials that are sensitive or strip-shaped, and to permit processing or treatment of these materials to give material of high quality, with high throughput, while avoiding overfeed of the conveyor.

The characterizing features of Claim 1 achieve this object in an apparatus of the type mentioned in the introduction.

10 A first provision here is that the imaginary continuation of the central longitudinal axis of the conveyor, in particular extruder, if this has only a single screw, or the longitudinal axis of the screw closest to the intake aperture, if the conveyor has more than one screw, in the direction opposite to the direction of conveying of the conveyor, passes, and does not intersect, the axis of rotation, where, on the outflow side, there is an offset 15 distance between the longitudinal axis of the conveyor, if this has a single screw, or the longitudinal axis of the screw closest to the intake aperture, and the radius that is associated with the container and that is parallel to the longitudinal axis and that proceeds outwards from the axis of rotation of the mixing and/or comminution implement in the direction of conveying of the conveyor.

20 The direction of conveying of the mixing implements and the direction of conveying of the conveyor are therefore no longer in the same sense, as is known from the prior art, but instead are at least to a small extent in the opposite sense, and the stuffing effect mentioned in the introduction is thus reduced. The intentional reversal of the direction of rotation of the mixing and comminution implements in comparison with 25 apparatuses known hitherto reduces the feed pressure on the intake region, and the risk of overfilling decreases. In this way, excess material is not stuffed or trowelled with excess pressure into the intake region of the conveyor, but instead, in contrast, there is in fact in turn a tendency to remove excess material from that region, in such a way that although there is always sufficient material present in the intake region, the additional 30 pressure exerted is small or almost zero. This method can provide adequate filling of the screw and constant intake of sufficient material by the screw, without any overfilling of the screw with, as a further consequence, local pressure peaks where the material could melt.

Melting of the material in the region of the intake is thus prevented, and operating efficiency is therefore increased, maintenance intervals are therefore lengthened, and downtime due to possible repairs and cleaning measures is reduced.

By virtue of the reduced feed pressure, displaceable elements which can be used

5 in a known manner to regulate the degree of filling of the screw react markedly more sensitively, and the degree of filling of the screw can be adjusted with even greater precision. This makes it easier to find the ideal point at which to operate the system, in particular for relatively heavy materials, for example regrind made of high-density polyethylene (HDPE) or PET.

10 Surprisingly and advantageously it has moreover been found that operation in the opposite sense, according to the invention, improves intake of materials which have already been softened almost to the point of melting. In particular when the material is already in a doughy or softened condition, the screw cuts the material from the doughy ring adjacent to the container wall. In the case of a direction of rotation in the direction of

15 conveying of the screw, this ring would instead be pushed onward, and removal of an outer layer by the screw would not be possible, with resultant impairment of intake. The reversal of the direction of rotation, according to the invention, avoids this.

Furthermore, the retention or accumulation phenomena formed in the case of the treatment of the materials which have been described above and are in strip form or

20 fibrous can be resolved more easily, or do not occur at all, since, at the aperture edge situated in the direction of rotation of the mixing implements on the outflow side or downstream, the direction vector for the mixing implements and the direction vector for the conveyor point in almost opposite directions, or in directions that at least to a small extent have opposite sense, and an elongate strip cannot therefore become curved

25 around, and retained by, the said edge, but instead becomes entrained again by the mixing vortex in the receiver.

The overall effect of the design according to the invention is that intake performance is improved and throughput is markedly increased. The stability and performance of the entire system made of cutter compactor and conveyor is thus

30 increased.

In this connection, the applicant has found through experimentation, and recognized, that precisely this non-aggressive intake resulting from the altered direction of rotation of the implements has particularly good suitability for co-rotating twin-screw

conveyors, since the lack of stuffing effect assists underfeed, and overfeed effects are therefore avoided. The intake is more controlled, and less pressurized, and throughput is higher or operation is more reliable.

With this system it is possible to operate a co-rotating twin screw with underfeed.

- 5 Different modes of operation can be established for different levels of compaction. With heavy bulk densities, it is thus possible to maintain a relatively low degree of compaction in the cutter compactor, and to create both underfeed and an adequate fill level. With light starting materials, the mode of operation with relatively high compaction in the cutter compactor is selected, and the same effect can be achieved.

- 10 Other advantageous embodiments of the invention are described via the following features:

In particular, it is advantageous if there are precisely two screws provided or the conveyor is a co-rotating twin-screw conveyor. This can give the most reliable results.

According to one preferred development of the invention, the screws are

- 15 cylindrical and parallel to one another or the conveyor is a parallel twin-screw conveyor, in particular in the form of twin-screw extruder.

According to an alternative development, the screws are conical or the conveyor is a conical twin-screw conveyor or conical twin-screw extruder. This type of conveyor has particularly good suitability for intake of low-weight flowable solids.

- 20 If one of the screws is longer than the other(s), preferably by a length greater than or equal to three times the diameter of the screw, there is the advantageous possibility of building up a melt pressure.

It is also possible that, at least in the region of the intake aperture, the screws intermesh tightly or touch, in order to comply with the requirements of the material to be treated.

According to another advantageous embodiment that saves space and provides effective intake, one of the cross sections of the screws is vertically above the other, and the screws in the immediate region of the intake aperture are in particular symmetrical with respect to the centre of the intake aperture and at an equal distance from the plane 30 of the intake aperture.

In a possible alternative, one of the cross sections of the screws is obliquely

above the other or horizontally alongside the other, and only the screw closest to the intake aperture is in the immediate region of the intake aperture.

In this connection, it is particularly advantageous for intake performance if the screws or the screw closest to the intake aperture, viewed from the starting point that is 5 close to the intake or to the container, where appropriate at the end close to the motor, of the screws, or from the intake aperture, in the direction towards the end or the discharge aperture of the conveyor, rotate(s) clockwise.

This is particularly advantageous for regrind materials, since these are generally 10 very flowable. In known apparatuses with conventional screw rotation direction, material is charged to the screw solely through the effect of gravity, and the implements have only little influence. This makes it difficult to introduce energy into the material, since it has often been necessary specifically to make a large reduction in the height of the outer 15 implements or even often to omit them. This in turn impairs the melting performance in the screw, since the material has not been adequately heated in the cutter compactor. This is all the more critical in the case of regrind materials, since regrind materials are thicker than foils, and it is all the more important that the interior of the particles is also heated.

If the screw rotation direction is then reversed, material is no longer automatically 20 charged to the screw, and the implements are necessary for conveying the material into the upper region of the screw. This method is also successful in introducing adequate energy into the material to facilitate any subsequent melting. A further consequence of this is increased throughput, and also better quality, since a higher average temperature of the particles can reduce shear in the screw, and this in turn contributes to improved MFI values.

25 The diameters of the screws are advantageously identical.

According to an advantageous development of the invention, the conveyor is arranged on the receiver in such a way that the scalar product of the direction vector (direction vector that is associated with the direction of rotation) that is tangential to the circle described by the radially outermost point of the mixing and/or comminution 30 implement or to the plastics material transported past the aperture and that is normal to a radius of the receiver, and that points in the direction of rotation or of movement of the mixing and/or comminution implement and of the direction vector that is associated with the direction of conveying of the conveyor at each individual point or in the entire region of the aperture or at each individual point or in the entire region immediately radially in

front of the aperture is zero or negative. The region immediately radially in front of the aperture is defined as that region which is in front of the aperture and at which the material is just about to pass through the aperture but has not yet passed the aperture. The advantages mentioned in the introduction are thus achieved, and there is effective

- 5 avoidance of all types of agglomeration in the region of the intake aperture, brought about by stuffing effects. In particular here, there is also no dependency on the spatial arrangement of the mixing implements and of the screw in relation to one another, and by way of example the orientation of the axis of rotation does not have to be normal to the basal surface or to the longitudinal axis of the conveyor or of the screw. The direction
- 10 vector that is associated with the direction of rotation and the direction vector that is associated with the direction of conveying lie within a, preferably horizontal, plane, or in a plane orientated so as to be normal to the axis of rotation.

In another advantageous formation, the angle included between the direction vector that is associated with the direction of rotation of the mixing and/or comminution

- 15 implement and the direction vector that is associated with the direction of conveying of the conveyor is greater than or equal to 90° and smaller than or equal to 180° , where the angle is measured at the point of intersection of the two direction vectors at the edge of the aperture situated upstream of the direction of rotation or of movement, in particular at the point that is on the said edge or on the aperture and is situated furthest upstream.
- 20 This therefore describes the range of angles within which the conveyor must be arranged on the receiver in order to achieve the advantageous effects. In the entire region of the aperture or at each individual point of the aperture, the forces acting on the material are therefore orientated at least to a small extent in an opposite sense, or in the extreme case the orientation is perpendicular and pressure-neutral. At no point of the aperture is the
- 25 scalar product of the direction vectors of the mixing implements and of the screw positive, and no excessive stuffing effect occurs even in a subregion of the aperture.

Another advantageous formation of the invention provides that the angle included between the direction vector that is associated with the direction of rotation or of movement and the direction vector that is associated with the direction of conveying is

- 30 from 170° to 180° , measured at the point of intersection of the two direction vectors in the middle of the aperture. This type of arrangement is relevant by way of example when the conveyor is arranged tangentially on the cutter compactor.

In order to ensure that no excessive stuffing effect occurs, the distance, or the offset, between the longitudinal axis and the radius can advantageously be greater than

- 35 or equal to half of the internal diameter of the housing of the conveyor or of the screw.

It can moreover be advantageous for these purposes to set the distance or offset between the longitudinal axis and the radius to be greater than or equal to 7%, or still more advantageously greater than or equal to 20%, of the radius of the receiver. In the case of conveyors with a prolonged intake region or with grooved bushing or with

5 extended hopper, it can be advantageous for this distance or offset to be greater than or equal to the radius of the receiver. This is particularly true for cases where the conveyor is attached tangentially to the receiver or runs tangentially to the cross section of the container.

In a particularly advantageous embodiment here, the longitudinal axis of the
 10 conveyor or of the screw or the longitudinal axis of the screw closest to the intake aperture runs tangentially with respect to the inner side of the side wall of the container, or the inner wall of the housing does so, or the envelope of the screw does so, where it is preferable that there is a drive connected to the end of the screw, and that the screw provides conveying, at its opposite end, to a discharge aperture which is in particular an
 15 extruder head and which is arranged at the end of the housing.

In the case of conveyors that are radially offset, but not arranged tangentially, it is advantageous to provide that the imaginary continuation of the longitudinal axis of the conveyor in a direction opposite to the direction of conveying, at least in sections, passes, in the form of a secant, through the space within the receiver.

20 It is advantageous to provide that there is immediate and direct connection between the aperture and the intake aperture, without substantial separation or a transfer section, e.g. a conveying screw. This permits effective and non-aggressive transfer of material.

The reversal of the direction of rotation of the mixing and comminution implements
 25 circulating in the container can certainly not result from arbitrary action or negligence, and it is not possible - either in the known apparatuses or in the apparatus according to the invention - simply to allow the mixing implements to rotate in the opposite direction, in particular because the arrangement of the mixing and comminution implements is in a certain way asymmetrical or direction-oriented, and their action is therefore only single-sided or unidirectional. If this type of equipment were to be rotated intentionally in the wrong direction, a good mixing vortex would not form, and there would be no adequate comminution or heating of the material. Each cutter compactor therefore has its
 30 unalterably prescribed direction of rotation of the mixing and comminution implements.

In this connection, it is particularly advantageous to provide that the manner of

formation, set-up, curvature and/or arrangement of the frontal regions or frontal edges that are associated with the mixing and/or comminution implements, act on the plastics material and point in the direction of rotation or of movement, differs when comparison is made with the regions that, in the direction of rotation or of movement, are at the rear or 5 behind.

In an advantageous embodiment here, on the mixing and/or comminution implement there are implements and/or blades which, in the direction of rotation or of movement, have a heating, comminuting and/or cutting effect on the plastics material. The implements and/or blades can either have been fastened directly on the shaft or 10 preferably have been arranged on a rotatable implement carrier or, respectively, a carrier disc arranged in particular parallel to the basal surface, or have been formed therein or moulded onto the same, optionally as a single piece.

In principle, the effects mentioned are relevant not only to compressing extruders or agglomerators but also to conveying screws that have no, or less, compressing effect. 15 Here again, local overfeed is avoided.

In another particularly advantageous formation, it is provided that the receiver is in essence cylindrical with a level basal surface and with, orientated vertically in relation thereto, a side wall which has the shape of the jacket of a cylinder. In another simple design, the axis of rotation coincides with the central axis of the receiver. In another 20 advantageous formation, the axis of rotation or the central axis of the container have been orientated vertically and/or normally in relation to the basal surface. These particular geometries optimize intake performance, with an apparatus design that provides stability and simple construction.

In this connection it is also advantageous to provide that the mixing and/or 25 comminution implement or, if a plurality of mutually superposed mixing and/or comminution implements have been provided, the lowest mixing and/or comminution implement closest to the base is arranged at a small distance from the basal surface, in particular in the region of the lowest quarter of the height of the receiver, and also that the aperture is similarly arranged. The distance here is defined and measured from the 30 lowest edge of the aperture or of the intake aperture to the container base in the edge region of the container. There is mostly some rounding of the edge at the corner, and the distance is therefore measured from the lowest edge of the aperture along the imaginary continuations of the side wall downwards to the imaginary outward continuation of the container base. Distances with good suitability are from 10 to 400 mm.

It is moreover advantageous for the treatment process if the radially outermost edges of the mixing and/or comminution implements almost reach the side wall.

The container does not necessarily have to have a cylindrical shape with circular cross section, even though this shape is advantageous for practical reasons and reasons of manufacturing technology. When container shapes that deviate from the cylindrical shape with circular cross section, examples being containers having the shape of a truncated cone or cylindrical containers which, in plan view, are elliptical or oval, a calculation is required for conversion to a cylindrical container which has circular cross section and the same volume capacity, on the assumption that the height of this imaginary container is the same as its diameter. Container heights here which are substantially higher than the resultant mixing vortex (after taking into account the distance required for safety) are ignored, since this excess container height is not utilized and it therefore has no further effect on the processing of the material.

The expression conveyor means mainly systems with screws that have non-compressing or decompressing effect, i.e. screws which have purely conveying effect, but also systems with screws that have compressing effect, i.e. extruder screws with agglomerating or plastifying effect.

The expressions extruder and extruder screw in the present text mean extruders or screws used for complete or partial melting of the material, and also extruders used to agglomerate, but not melt, the softened material. Screws with agglomerating effect subject the material to severe compression and shear only for a short time, but do not plastify the material. The outgoing end of the agglomerating screw therefore delivers material which has not been completely melted but which instead is composed of particles incipiently melted only at their surface, which have been caked together as if by sintering. However, in both cases the screw exerts pressure on the material and compacts it.

Further features and advantages of the invention are apparent from the description of the inventive examples below of the subject matter of the invention, which are not to be interpreted as restricting, and which the drawings depict diagrammatically and not to scale:

Figure 1 shows a vertical section through an apparatus according to the invention with extruder attached approximately tangentially with one screw located above the other.

Figure 2 shows a horizontal section through an alternative embodiment with extruder attached approximately tangentially with parallel cylindrical screws located alongside one another.

Figure 3 shows another embodiment with minimal offset of the extruder.

5 Figure 4 shows another embodiment with relatively large offset of the extruder.

Neither the containers, nor the screws nor the mixing implements are to scale, either themselves or in relation to one another, in the drawings. By way of example, therefore, the containers are in reality mostly larger, or the screws longer, than depicted here.

10 The cutter compactor/extruder combinations depicted in different views in **Figure 1** and **Figure 2** have very similar structure and are therefore described together below. They differ mainly in the arrangement of the screws 6 with respect to one another, a point on which more details will be given below.

15 Each of the advantageous cutter compactor/extruder combinations depicted in Figure 1 and Figure 2 for the treatment or recycling of plastics material has a cylindrical container or cutter compactor or shredder 1 with circular cross section, with a level, horizontal basal surface 2 and with a vertical side wall 9 oriented normally thereto with the shape of a cylinder jacket.

20 Arranged at a small distance from the basal surface 2, at most at about 10 to 20%, or optionally less, of the height of the side wall 9 - measured from the basal surface 2 to the uppermost edge of the side wall 9 - is an implement carrier 13 or a level carrier disc orientated parallel to the basal surface 2, which carrier or disc can be rotated, in the direction 12 of rotation or of movement indicated by an arrow 12, around a central axis 10 of rotation, which is simultaneously the central axis of the container 1. A 25 motor 21, located below the container 1, drives the carrier disc 13. On the upper side of the carrier disc 13, blades or implements, e.g. cutter blades, 14 have been arranged, and together with the carrier disc 13 form the mixing and/or comminution implement 3.

30 As indicated in the diagram, the blades 14 are not arranged symmetrically on the carrier disc 13, but instead have a particular manner of formation, set-up or arrangement on their frontal edges 22 facing in the direction 12 of rotation or of movement, so that they can have a specific mechanical effect on the plastics material. The radially outermost

edges of the mixing and comminution implements 3 reach a point which is relatively close to, about 5% of the radius 11 of the container 1 from, the inner surface of the side wall 9.

The container 1 has, near the top, a charging aperture through which the product to be processed, e.g. portions of plastics foils, is charged by way of example by means of 5 a conveying device in the direction of the arrow. The container 1 can, as an alternative, be a closed container and capable of evacuation at least as far as an industrial vacuum, the material being introduced by way of a system of valves. The said product is received by the circulating mixing and/or comminution implements 3 and is raised to form a mixing 10 vortex 30, where the product rises along the vertical side wall 9 and, approximately in the region of the effective container height H, falls back again inward and downward into the region of the centre of the container, under gravity. The effective height H of the container 1 is approximately the same as its internal diameter D. In the container 1, a mixing vortex 30 is thus formed, in which the material is circulated in a vortex both from top to bottom and also in the direction 12 of rotation. By virtue of this particular 15 arrangement of the mixing and comminution elements 3 or the blades 14, this type of apparatus can therefore be operated only with the prescribed direction 12 of rotation or movement, and the direction 12 of rotation cannot be reversed readily or without additional changes.

The circulating mixing and comminution implements 3 comminute and mix the 20 plastics material introduced, and thereby heat and soften it by way of the mechanical frictional energy introduced, but do not melt it. After a certain residence time in the container 1, the homogenized, softened, doughy but not molten material is, as described in detail below, removed from the container 1 through an aperture 8, passed into the intake region of a twin-screw extruder 5, and received by screws 6 there and 25 subsequently melted.

At the level of the, in the present case single, comminution and mixing implement 3, the said aperture 8 is formed in the side wall 9 of the container 1, and the pretreated plastics material can be removed from the interior of the container 1 through this aperture. The material is passed to a twin-screw extruder 5 arranged tangentially on 30 the container 1, where the housing 16 of the extruder 5 has, situated in its jacket wall, an intake aperture 80 for the material to be received by the screws 6. This type of embodiment has the advantage that the screws 6 can be driven from the lower ends in the drawing by a drive, depicted only diagrammatically, in such a way that the upper ends of the screws 6 in the drawing can be kept free from the drive. The discharge aperture for 35 the plastified or agglomerated plastics material conveyed by the screws 6 can therefore

be arranged at the said upper end, e.g. in the form of an extruder head not depicted. The plastics material can therefore be conveyed without deflection by the screws 6 through the discharge aperture; this is not readily possible in the embodiments according to Figures 3 and 4.

5 There is connection for conveying of material or for transfer of material between the intake aperture 80 and the aperture 8, and in the present case this connection to the aperture 8 is direct and immediate and involves no prolonged intervening section and no separation. All that is provided is a very short transfer region.

10 In the housing 16, there are two cylindrical screws 6 with compressing effect, each mounted rotatably around its longitudinal axis 15. As an alternative, the screws can also be conical.

15 The extruder 5 conveys the material in the direction of the arrow 17. The extruder 5 is a conventional twin-screw extruder known per se in which the softened plastics material is compressed and thus melted, and the melt is then discharged at the opposite end, at the extruder head.

In the case of the embodiment according to Figure 1, one of the two screws 6 is vertically above the other, and in the case of the embodiment according to Figure 2 the two screws 6 are horizontally alongside one another.

The two screws 6 rotate in the same direction, and are therefore co-rotating.

20 The mixing and/or comminution implements 3 or the blades 14 are at approximately the same level as the central longitudinal axis 15 of the lowermost screw 6 in Fig. 1 or of the screw 6 adjacent to the intake aperture 80. The outermost ends of the blades 14 have adequate separation from the flights of the screws 6.

25 In the embodiments according to Figures 1 and 2, the extruder 5 is, as mentioned, attached tangentially to the container 1, or runs tangentially in relation to its cross section. In the drawings, the imaginary continuation of the central longitudinal axis 15 of the lower screw 6 or of the screw 6 adjacent to the intake aperture 80 in a direction opposite to the direction 17 of conveying of the extruder 5 towards the rear passes close to the axis 10 of rotation and does not intersect the same. On the outflow side, there is an offset 30 distance 18 between the longitudinal axis 15 of this screw 6 and the radius 11 that is associated with the container 1 and that is parallel to the longitudinal axis 15 and that proceeds outwards from the axis 10 of rotation of the mixing and/or comminution implement 3 in the direction 17 of conveying of the extruder 5. In the present case, the

imaginary continuation of the longitudinal axis 15 towards the rear does not pass through the space within the container 1, but instead passes it at a short distance.

The distance 18 is somewhat greater than the radius of the container 1. There is therefore a slight outward offset of the extruder 5, or the intake region is somewhat

5 deeper.

The expressions "opposite", "counter-" and "in an opposite sense" here mean any orientation of the vectors with respect to one another which is not acute-angled, as explained in detail below.

In other words, the scalar product of a direction vector 19 which is associated with

10 the direction 12 of rotation and the orientation of which is tangential to the circle described by the outermost point of the mixing and/or comminution implement 3 or tangential to the plastics material passing the aperture 8, and which points in the direction 12 of rotation or movement of the mixing and/or comminution implements 3, and of a direction vector 17 which is associated with the direction of conveying of the extruder 5 and which proceeds

15 in the direction of conveying parallel to the central longitudinal axis 15 of the screw 6 is everywhere zero or negative, at each individual point of the aperture 8 or in the region radially immediately in front of the aperture 8, and is nowhere positive.

In the case of the intake aperture in Figures 1 and 2, the scalar product of the direction vector 19 for the direction 12 of rotation and of the direction vector 17 for the

20 direction of conveying is negative at every point of the aperture 8.

The angle α between the direction vector 17 for the direction of conveying and the direction vector for the direction 19 of rotation, measured at the point 20 that is associated with the aperture 8 and situated furthest upstream of the direction 12 of rotation, or at the edge associated with the aperture 8 and situated furthest upstream, is approximately

25 maximally about 170° .

As one continues to proceed downwards along the aperture 8 in Figure 2, i.e. in the direction 12 of rotation, the oblique angle between the two direction vectors continues to increase. In the centre of the aperture 8, the angle between the direction vectors is about 180° and the scalar product is maximally negative, and further downwards from

30 there the angle indeed becomes $> 180^\circ$ and the scalar product in turn decreases, but still remains negative. However, these angles are no longer termed angles α , since they are not measured at point 20.

An angle β , not included in the drawing in Figure 2, measured in the centre of the

aperture 8, between the direction vector for the direction 19 of rotation and the direction vector for the direction 17 of conveying is about 178° to 180° .

The apparatus according to Figure 2 represents the first limiting case or extreme value. This type of arrangement can provide a very non-aggressive stuffing effect or a 5 particularly advantageous feed, and this type of apparatus is particularly advantageous for sensitive materials which are treated in the vicinity of the melting range, or for product in the form of long strips.

Figures 3 and 4 serve merely to illustrate the connection possibilities for the 10 extruder with regard to the direction of rotation of the implements. The drawings do not include the values for L, B and A.

Figure 3 shows an alternative embodiment in which an extruder 5 with two co-rotating screws 6, one located vertically above the other, is attached by its end 7, rather than tangentially, to the container 1. The screw 6 and the housing 16 of the extruder 5 have been adapted in the region of the aperture 8 to the shape of the inner wall of the 15 container 1, and have been offset backwards so as to be flush. No part of the extruder 5 or of the screws 6 protrudes through the aperture 8 into the space within the container 1.

The distance 18 here corresponds to about 5 to 10% of the radius 11 of the container 1 and to about half of the internal diameter d of the housing 16. This embodiment therefore represents the second limiting case or extreme value with the 20 smallest possible offset or distance 18, where the direction 12 of rotation or of movement of the mixing and/or comminution implements 3 is at least slightly opposite to the direction 17 of conveying of the extruder 5, and specifically across the entire area of the aperture 8.

The scalar product in Figure 3 at that threshold point 20 situated furthest upstream 25 is precisely zero, this being the point located at the edge that is associated with the aperture 8 and situated furthest upstream. The angle α between the direction vector 17 for the direction of conveying and the direction vector for the direction 19 of rotation, measured at point 20 in Figure 3, is precisely 90° . If one proceeds further downwards 30 along the aperture 8, i.e. in the direction 12 of rotation, the angle between the direction vectors becomes ever greater and becomes an oblique angle $> 90^\circ$, and at the same time the scalar product becomes negative. However, at no point, or in no region of the aperture 8, is the scalar product positive, or the angle smaller than 90° . No local overfeed

can therefore occur even in a subregion of the aperture 8, and no detrimental excessive stuffing effect can occur in a region of the aperture 8.

This also represents a decisive difference in relation to a purely radial arrangement, since there would be an angle $\alpha < 90^\circ$ at point 20 or at the edge 20' in a 5 fully radial arrangement of the extruder 5, and those regions of the aperture 8 situated, in the drawing, above the radius 11 or upstream thereof or on the inflow side thereof would have a positive scalar product. It would thus be possible for locally melted plastics product to accumulate in these regions.

Figure 4 shows another alternative embodiment in which an extruder 5 with two 10 co-rotating screws 6, one located vertically above the other, has been displaced somewhat further than in Figure 3 on the outflow side, but is still not tangential as in Figures 1 and 2. In the present case, as also in Figure 3, the rearward imaginary continuation of the longitudinal axis 15 of the screws 6 passes through the space within the container 1 in the manner of a secant. As a consequence of this, the aperture 8 is – 15 measured in the circumferential direction of the container 1 – wider than in the embodiment according to Figure 3. The distance 18 is also correspondingly greater than in Figure 3, but somewhat smaller than the radius 11. The angle α measured at point 20 is about 150° , and the stuffing effect is therefore reduced in comparison with the apparatus of Figure 3; this is more advantageous for certain sensitive polymers. The 20 inner wall of the housing 16 or the right-hand-side inner edge, as seen from the container 1, is tangential to the container 1, and therefore, unlike in Figure 3, there is no oblique transitional edge. At this furthest downstream point of the aperture 8, on the extreme left-hand side in Figure 4, the angle is about 180° .

Patent claims:

1. Apparatus for the pretreatment and subsequent conveying, plastification or agglomeration of plastics, in particular of thermoplastics waste for recycling purposes, with a container (1) for the material to be processed, where the arrangement has, in the container (1), at least one mixing and/or comminution implement (3) which rotates around an axis (10) of rotation and which is intended for the mixing, heating and optionally comminution of the plastics material, where an aperture (8) through which the pretreated plastics material can be removed from the interior of the container (1) is formed in a side wall (9) of the container (1) in the region of the level of the, or of the lowest, mixing and/or comminution implement (3) that is closest to the base, where at least one multiscrew conveyor (5) is provided to receive the pretreated material, and has at least two screws (6) which rotate in a housing (16) and which have conveying, in particular plastifying or agglomerating, action, where the housing (16) has, located at its end (7) or in its jacket wall, an intake aperture (80) for the material to be received by the screw (6), and there is a connection between the intake aperture (80) and the aperture (8),
characterized in that
the imaginary continuation of the central longitudinal axis (15) of the conveyor (5) or of the screw (6) closest to the intake aperture (80), in a direction opposite to the direction (17) of conveying of the conveyor (5), passes, and does not intersect, the axis (10) of rotation, where, on the outflow side or in the direction (12) of rotation or of movement of the mixing and/or comminution implement (3), there is an offset distance (18) between the longitudinal axis (15) of the conveyor (5) or of the screw (6) closest to the intake aperture (80), and the radius (11) that is associated with the container (1) and that is parallel to the longitudinal axis (15) and that proceeds outwards from the axis (10) of rotation of the mixing and/or comminution implement (3) in the direction (17) of conveying of the conveyor (5), and in that the screws (6) co-rotate.
2. Apparatus according to Claim 1, characterized in that there are precisely two screws (6) provided or the conveyor (5) is a co-rotating twin-screw conveyor.

3. Apparatus according to Claim 1 or 2, characterized in that the screws (6) are cylindrical and are parallel to one another or the conveyor (5) is a parallel twin-screw conveyor.
4. Apparatus according to any of Claims 1 to 3, characterized in that the screws (6) are conical or the conveyor (5) is a conical twin-screw conveyor.
5. Apparatus according to any of Claims 1 to 4, characterized in that one of the screws (6) is longer, preferably by a length greater than or equal to 3 times the diameter (d) of the screw (6).
6. Apparatus according to any of Claims 1 to 5, characterized in that, at least in the region of the intake aperture (80), the screws (6) intermesh tightly or touch.
7. Apparatus according to any of Claims 1 to 6, characterized in that one of the cross sections of the screws (6) is vertically above the other, and the screws (6) in the immediate region of the intake aperture (80) are in particular symmetrical with respect to the centre of the intake aperture (80) and at an equal distance from the plane of the intake aperture (80).
8. Apparatus according to any of Claims 1 to 7, characterized in that one of the cross sections of the screws (6) is obliquely above the other or horizontally alongside the other, and only the screw (6) closest to the intake aperture (80) is in the immediate region of the intake aperture (80).
9. Apparatus according to any of Claims 1 to 8, characterized in that the screws (6) or the screw (6) closest to the intake aperture (80), viewed from the starting point that is close to the intake or to the container, of the screws (6), or from the intake aperture (80), in the direction towards the end or the discharge aperture of the conveyor (5), rotate(s) clockwise.
10. Apparatus according to any of Claims 1 to 9, characterized in that, for a conveyor (5) in contact with the container (1), the scalar product of the direction vector that is associated with the direction (19) of rotation and that is tangential to the circle described by the radially outermost point of the mixing and/or comminution implement (3) or that is tangential to the plastics material transported past the aperture (8) and that is normal to a radius (11) of the container (1), and that points in the direction (12) of rotation or of movement of the mixing and/or

communition implement (3) and of the direction vector (17) that is associated with the direction of conveying of the conveyor (5) at each individual point or in the entire region of the aperture (8) or immediately radially in front of the aperture (8) is zero or negative.

11. Apparatus according to any of Claims 1 to 10, characterized in that the angle (α) included between the direction vector that is associated with the direction (19) of rotation of the radially outermost point of the mixing and/or comminution implement (3) and the direction vector (17) that is associated with the direction of conveying of the conveyor (5) is greater than or equal to 90° and smaller than or equal to 180° , measured at the point of intersection of the two direction vectors (17, 19) at the inflow-side edge that is associated with the aperture (8) and that is situated upstream in relation to the direction (12) of rotation or of movement of the mixing and/or comminution implement (3), in particular at the point (20) that is on the said edge or on the aperture (8) and is situated furthest upstream.
12. Apparatus according to any of Claims 1 to 11, characterized in that the angle (β) included between the direction vector (19) that is associated with the direction (12) of rotation or of movement and the direction vector (17) that is associated with the direction of conveying of the conveyor (5) is from 170° to 180° , measured at the point of intersection of the two direction vectors (17, 19) in the middle of the aperture (8).
13. Apparatus according to any of Claims 1 to 12, characterized in that the distance (18) is greater than or equal to half of the internal diameter of the housing (16) of the conveyor (5) or of the screw (6), and/or greater than or equal to 7%, preferably greater than or equal to 20%, of the radius of the container (1), or in that the distance (18) is greater than or equal to the radius of the container (1).
14. Apparatus according to any of Claims 1 to 13, characterized in that the imaginary continuation of the longitudinal axis (15) of the conveyor (5) in a direction opposite to the direction of conveying is arranged in the manner of a secant in relation to the cross section of the container (1), and, at least in sections, passes through the space within the container (1).
15. Apparatus according to any of Claims 1 to 14, characterized in that the conveyor

(5) is attached tangentially to the container (1) or runs tangentially in relation to the cross section of the container (1), or in that the longitudinal axis (15) of the conveyor (5) or of the screw (6) or the longitudinal axis of the screw (6) closest to the intake aperture (80) runs tangentially with respect to the inner side of the side wall (9) of the container (1), or the inner wall of the housing (16) does so, or the envelope of the screw (6) does so, where it is preferable that there is a drive connected to the end (7) of the screw (6), and that the screw provides conveying, at its opposite end, to a discharge aperture which is in particular an extruder head and which is arranged at the end of the housing (16).

16. Apparatus according to any of Claims 1 to 15, characterized in that there is immediate and direct connection between the aperture (8) and the intake aperture (80), without substantial separation, in particular without transfer section or conveying screw.
17. Apparatus according to any of Claims 1 to 16, characterized in that the mixing and/or comminution implement (3) comprises implements and/or blades (14) which, in the direction (12) of rotation or of movement, have a comminuting, cutting and heating effect on the plastics material, where the implements and/or blades (14) are preferably arranged or formed on or at a rotatable implement carrier (13) which is in particular a carrier disc (13) and which is in particular arranged parallel to the basal surface (12).
18. Apparatus according to any of Claims 1 to 17, characterized in that the manner of formation, set-up, curvature and/or arrangement of the frontal regions or frontal edges (22) that are associated with the mixing and/or comminution implements (3) or with the blades (14), act on the plastics material and point in the direction (12) of rotation or of movement, differs when comparison is made with the regions that, in the direction (12) of rotation or of movement, are at the rear or behind.
19. Apparatus according to any of Claims 1 to 18, characterized in that the container (1) is in essence cylindrical with circular cross section and with a level basal surface (2) and with, orientated vertically in relation thereto, a side wall (9) which has the shape of the jacket of a cylinder, and/or the axis (10) of rotation of the mixing and/or comminution implements (3) coincides with the central axis of the container (1), and/or the axis (12) of rotation or the central axis are orientated vertically and/or normally in relation to the basal surface (2).

20. Apparatus according to any of Claims 1 to 19, characterized in that the lowest implement carrier (13) or the lowest of the mixing and/or comminution implements (3) and/or the aperture (8) are arranged close to the base at a small distance from the basal surface (2), in particular in the region of the lowest quarter of the height of the container (1), preferably at a distance of from 10 mm to 400 mm from the basal surface (2).

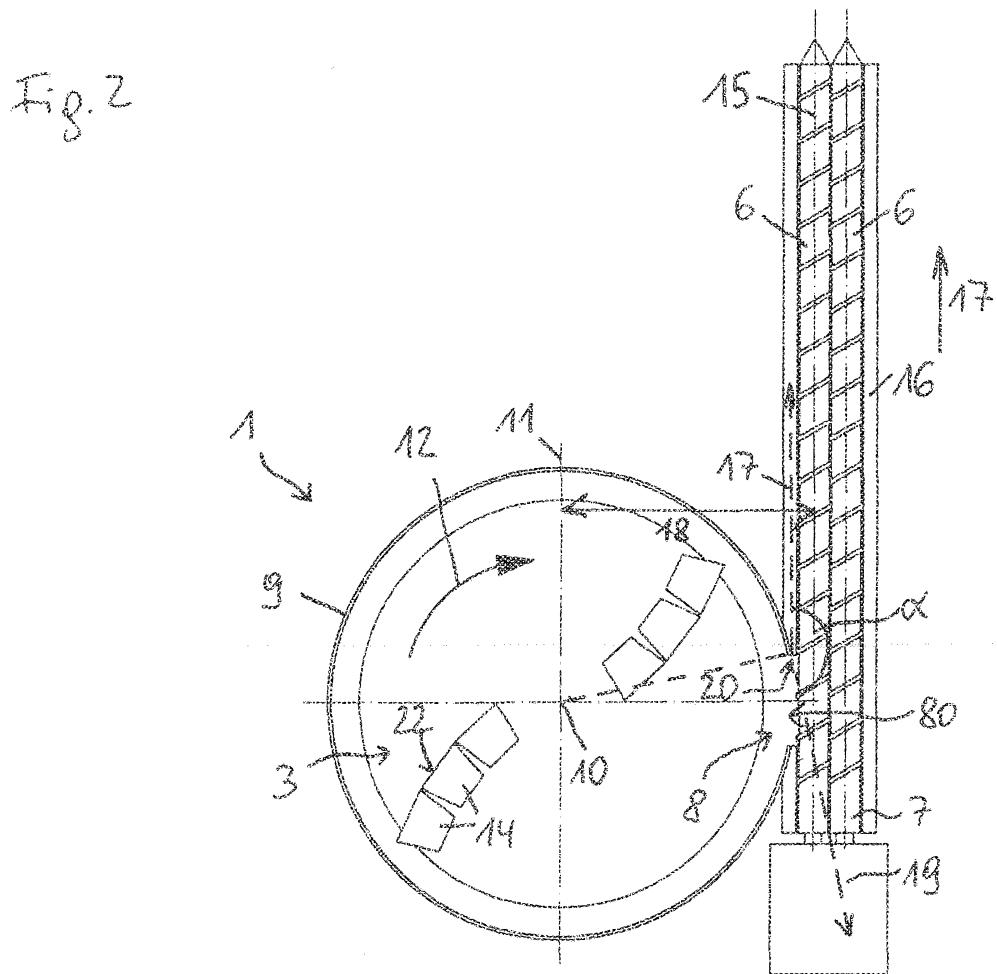
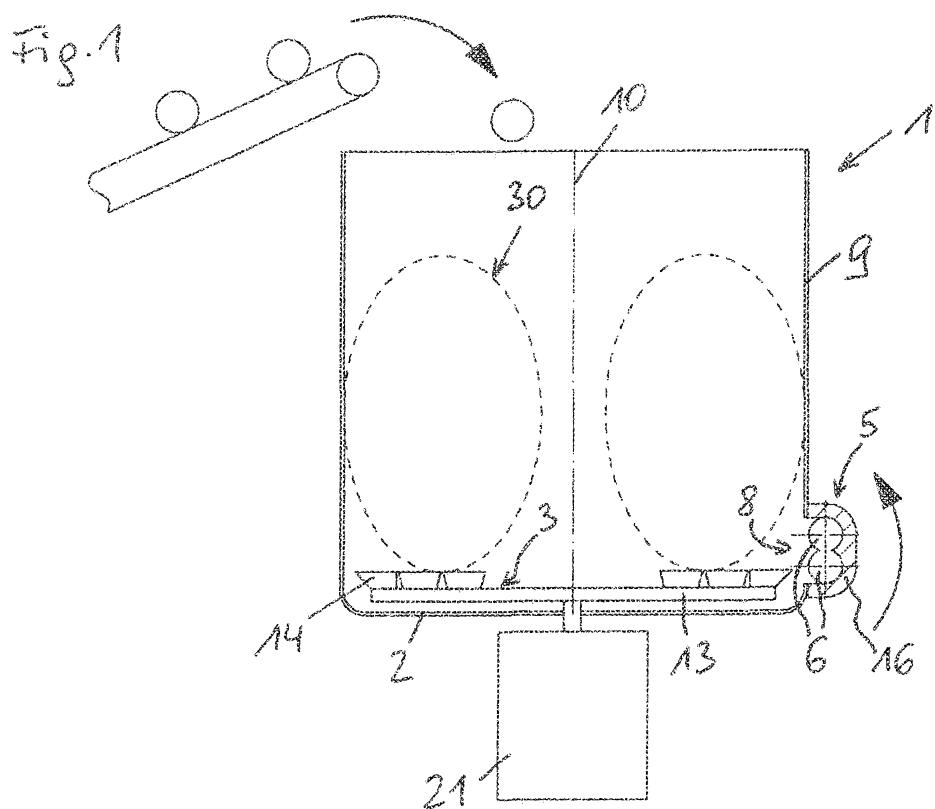



Fig. 3

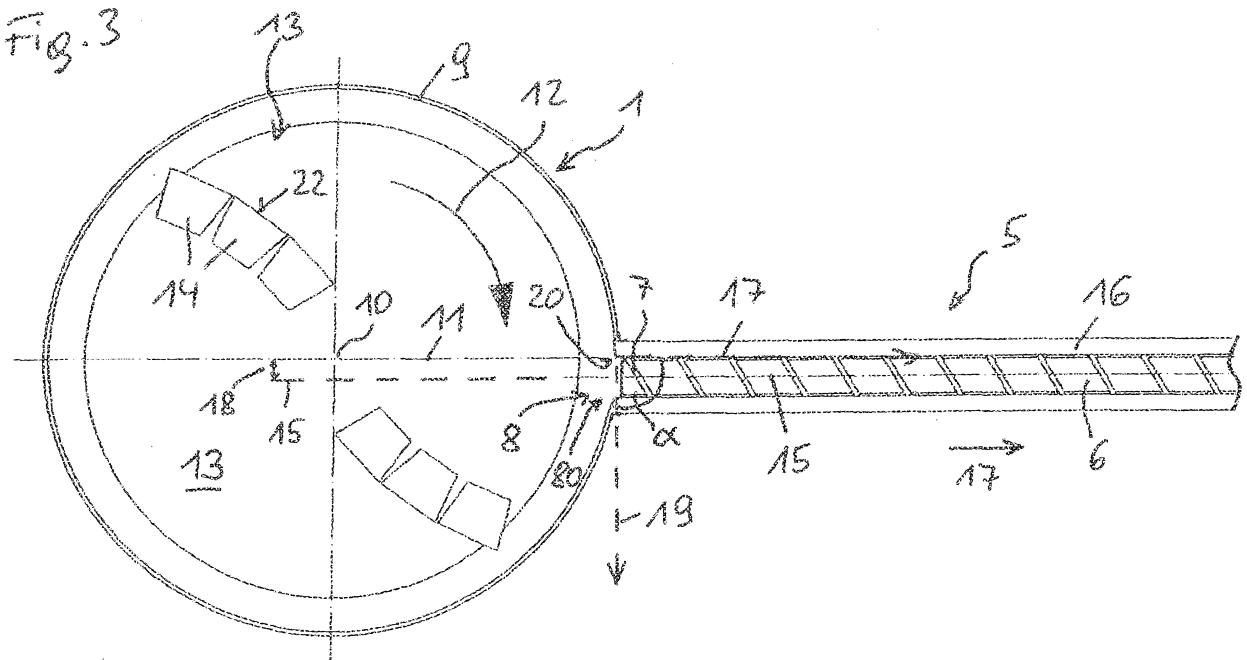
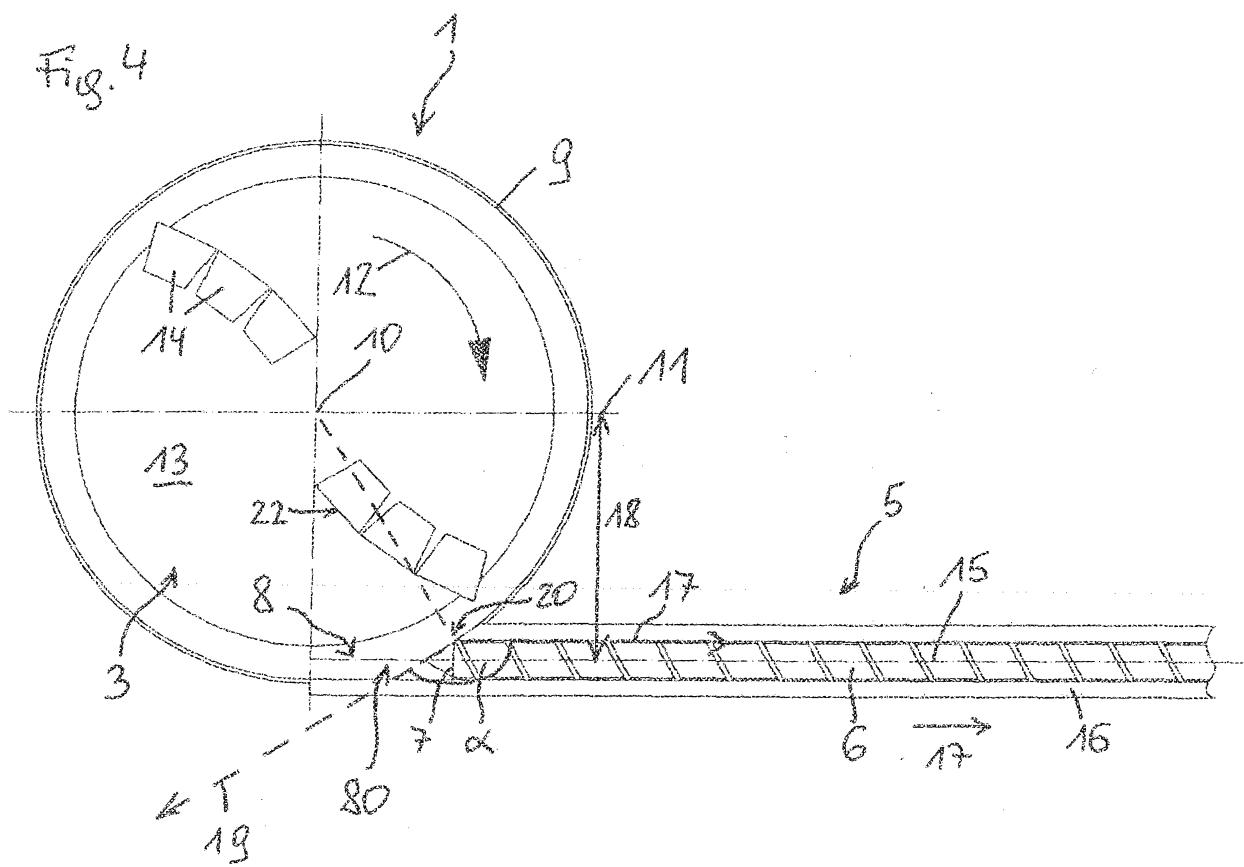



Fig. 4

